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Summary.—So far, little is known of the effect of camber or twist on the pressure distribution and drag of a wing
flying at supersonic speeds, but with subsonic leading edges. According to the linear theory, for a subsonic leading edge,
there is a singularity in the perturbation -velocity component normal to the edge. Associated with this singularity
is an infinite (or very large) suction over the sharp leading edge, as in subsonic flow.

The present investigation was undertaken with a view to finding the shape of a curved wing, such that the thrust
loading on the leading edges, particularly near the wing tips, is removed or modified. The shapes of two groups of such
wings have been found :\—

(1) For the first group, when the wings are at design incidence, there are no leading-edge pressure singularities,
and therefore no leading-edge thrust. The pressure difference is finite and positive everywhere on the wing,
and decreases to zero on the leading edges.

(2) For wings of the second group, the leading-edge singularity is modified so that its strength increases along
the edge from zero at the apex to a maximum, and then decreases to zero, after which it would become negative.
The effect of additional incidence is to increase the local lift everywhere and to move the positions of maximum
and zero singularity strength further downstream.

In this report, it is also shown how the shapes of wings of the second group can be determined to satisfy certai
requirements with respect to camber and twist, or the magnitude of aerodynamic characteristics.

The lift, the induced drag, and the pitching-moment coefficients for some wings of triangular plan form have been
calculated, and the results are shown graphically. ,

1. Introduction.—When the leading edges of a flat delta wing, at incidence, at supersonic
speeds, lie within the Mach cone of the vertex, the component of the free-stream velocity, normal
to a leading edge, is less than the local sonic velocity, and the leading edge becomes ‘ subsonic.’
According to the linear theory, for a subsonic leading edge, there is a singularity in the pertur-
bation velocity component normal to the edge. Associated with this singularity is an infinite
(or very large) suction over the sharp leading edge, as in subsonic flow. The component of
this suction force in the free-stream direction tends to reduce the induced drag. The present
report is an account of an investigation undertaken with a view to finding the shape of a curved
wing (of negligible thickness) such that the thrust loading on the leading edges is removed or
modified, while, at the same time, certain requirements with respect to camber and twist, or
aerodynamic properties, are satisfied. By removing the suction peaks near the leading edge of
the outboard sections of the wing, the associated adverse pressure gradients are reduced, thereby
reducing the tendency for the boundary layer to separate. (Some preliminary results were given
in Reference 6.)

* R.A.E. Report Aero. 2386, received 3rd February, 1951.
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In Ref. 2 (R. & M. 2548), the linearised ditferential equation for supersonic flow is solved in
a special system of curvilinear co-ordinates known as hyperboloido-conal co-ordinates, and in
Ref. 1, two of these solutions are applied to the case of a thin delta wing (with subsonic leading
edges) in steady supersonic flow, when the local incidence varies linearly in a spanwise or chord-
wise direction, the induced velocity potentials being given by ¢ = CyX or ¢ = CxX, where
X = +/(x*—k%?"), & is the cotangent of the apex semi-angle of the surface, and C is an arbitrary
constant. x is measured downstream from the apex, y is measured to starboard and z is measured
vertically upwards. '

In this report, some general solutions are discussed and the results are applied to determine
the shapes of certain thin surfaces with swept-back leading edges, over which the induced flow
is given by the velocity potentials ¢ = C#2X, ¢ = Cy’X, ¢ = Cx*X or.¢ = Cxy*X. The surfaces
are symmetrical with respect to the zx-plane, and are set symmetrically to the wind direction,
the apex pointing against the stream. The solutions are only valid if the surfaces lie wholly
within the Mach cone of the apex, therefore the Mach angle (= cosec™* M) is greater than the
apex semi-angle y.

These solutions are combined to give the shapes of two wings, for which, at design incidence
the pressure is finite at all points on the wing, and decreases to zero at the leading edges. Other
combinations of these solutions, the solution ¢ = xX (Ref. 1), and the solution for the flat delta
wing at incidence (Refs. 1 and 2) are shown to give wings for which the pressure is finite except
at the leading edges, where, in general, it becomes infinite, but such that the strength of the
singularity on a leading edge increases along the edge from zero at the apex to a maximum
and then decreases until a point of zero pressure is reached, after which the strength would
become negative. The total lift in each case is finite.

The above solutions are further combined to give a general solution, which may be used when
there are certain conditions to be satisfied.

A number of numerical examples for special values of y and M are given, and some examples
of the pressure distributions at different incidences are shown graphically. The local spanwise
lift distribution, the total lift, the induced drag, and the moment coefficients, and also the
variation in camber and twist, have been calculated.

The mathematical work involved is mostly self-checking ; wherever possible, the formulae
have been checked by using at least two methods of derivation.

2. Method of Solution.—The co-ordinates used are the pseudo-orthogonal co-ordinates
7, u, v used in Refs. 1 and 2, where

. /37//11} o 1’(/"2 . k2)1/2(,‘)2 . h2>1/2’ . 1/(//‘2 _ kZ)l/Z(k2 . ,VZ)I/Z
X = hk,y~ 78 Z = 75 (1)
B2 =M*— 1 =cot’s = k? — }? } @
k* = cot’y, h* = cot’y — cot?z )

It is assumed that the surfaces all lie close to the plane x = %, (or z = 0), and that the induced
velocities on the surface are small and equal to the induced velocities on the plane. Therefore
the relation between the shape of the surface and its induced velocity potential ¢ is of the form

0z 1 /3¢
ax—V<82>”=k’ .. .. .. .. .. . . (3)

where V' is the stream velocity.

For the linearised theory, the pressure 44 on an element of the upper surface, and the pressure
coefficient C, are given by :

A]ﬁ:~pV<%i>ﬂ=k P



_24p _ 2 (%
cj,_pvz__Vme, R (5)

where p is the density of the free stream.

The linearised differential equation for the induced velocity potential ¢, in terms of the co-
ordinates 7, u, », is (R. & M. 2548%) 4

— ((v2 — (R — v2)>1/2§; K(w — (R — Y )l %—ﬂ =0 .. L (6)

and it has been shown, in Appendix V of Ref. 2, that a solution of equation (6) can be found
of the form ¢ = #*f(z, »), where f(u, ») is the product of two Lamé functions of u, v respectively,
of degree #, » being a positive integer. :

A standard Lamé function of degree #, E,(x), can be determined in (2n + 1) different ways,
and belongs to one of four classes K, L, M, N (Ref. 3). Assuming that E,(x) has been determined,
there is a second solution of Lamé’s equation, defined by : (References 1 and 3)

dat
F,(p) = En(ﬂ)Ju E.0O1H|E — e — )}

As stated in Ref. 2, the normal solutions of equation (6) of the form
o = 7F(w)E, ) @)

have the property that ¢ — 0 on approaching the Mach cone x* — 8*(y* + z*) = 0. Also they are
continuous inside the cone, except possibly across the triangular region x* — A%* > 0,2>0, z = 0.
Therefore, provided the requisite boundary conditions are satisfied, a function ¢ defined by (7)
inside the cone ¥ — pXy* + 2% = 0, x>0, and by ¢ = 0 elsewhere, may serve as a solution
to any particular problem related to a triangular aerofoil. In order that %, v, z (¢f. equations
(1), (2)) shall be expressed, in general, by a single set of values of 7, u, », it is assumed that
0 < 7 < -+, and that u ranges from -+ o to k and back, the sign of (u* — £*)'”* changing
from positive to negative as u passes through the value £°; and » ranges from & to 4 and back,
‘the sign of (»* — %% changing from positive to negative as » passes through the value 4.

o

For a lifting surface of negligible thickness, we require solutions such that ¢ is an odd function
of z, and on the plane z = 0 (x = ), is of the form ¢ = f(x, y*)(x* — R%*)'", where f(x, y*) is
a rational algebraic function of x and y% Our solutions are therefore based on Lamé tunctions
of the M class, that is E,(¢) is of the form ;

E(p) = M,(u) = (Ju* — B2 (0™ + ™ + ..) = (|o® — )" Pu(p) . (8)
where Pyp) = p" " + a7 4+ ...,

the last term in the expansion for P,(u) being a_s.p OF @p_yy2 according as # is even
or odd ; and therefore F,(u)-is of the form :

” at
_ 2 __ pelyie
- Fup) = (|p* — R D Pn(t“)J [P, {Wz — R — k2)|}1’2 . . 9)
It has been shown in Reference 1 that
lim F,(u) = 1 .. .. .. .. .. . ‘e .. (10)

e BED,(F)’



and that, if ¢y = Cp,F,(u)E,(v), then

. _ CrE,(v)
e = Tamp ey e (1D
and
lim (302 _ ¢ ot T a 1 it
u—>kr aZ > — C,ﬂ’ Pn('y)ﬂkPn(k)Jk dt [t[Pn(t)]z(tz ___ h2)1/2il (tz . k2)1/2 .« (12)

The general solutions for odd and even values of # are discussed in sections 3 and 4, but the
solutions which follow, in sections 6 and 7, for » = 3 and # = 4, are complete in themselves,
and can be read without reference to sections 3 and 4.

3. Solutions for n = 2N -+ 1, wheve N is a positive integer—For n.= 2N -+ 1, there are
(N + 1) M-functions of the form

Moy ™(p) = (Jp* — B|)'2 Poy i ™u), .. .. .. . . . (13)
where  Poy,"(u) = p® + ay, ™ + ..+ ay,,, .. . .. . . (14)
m=1,2, ... (N ¥ 1).

We consider the solution

Pm — CzN+17’2N+1F2N+1m(M>E2N+1m(")-
At the plane 2 =0,y k, and

= (x* — B2)[B%, ** = hix*[pR .. .. .. . .. (15)
Hence, using equation (11), it can be shown that

CZN+172N+1(k2 _ V2)1/2P2N+1m(1))

lim ¢, =
pield BkPuy. (%)
= —ﬂi}_A lszl a ('hzxz)N—s(xz_ﬁzyz)s (xz___k@a)uz
REHIPy (k) s=o|
= C2N+1 % A sz—zsyzs (xz . kayz)uz (16)
kﬂ2N+IP2N+lm(k) o s g .. . .
where A, is a function of (8, &, 4y, s, ... ay,,), and a,, = 1.

By constructing a potential
N+1

¢2N+1 == mél (Amcpm>

where the i's are constants determined by equating corresponding coefficients, we can obtain
any potential of the form (16), where the constant coefficients 4, are given, and hence, by using
equations (12) and (3), we can determine the shape of the surface corresponding to the given
flow.

In practice, it is simplest to determine the (N-+-1) surfaces on which the induced velocity
potentials are of the form

¢2N+1s: D2N+1x2N—25+2y2s—2(x2 . kzyZ)uz . .. . .. . (17>
s=1,2,... (N-+1),
Dyy41 being a constant, and then to combine these solutions.
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To determine the shape of the surface, we require the value of (884;,,,) . Using (12),
pu=k
0Py
( ? > = Conra ¥ Poyi"(v)BRPaysa"(R) X

k. 1 - . .. - 8
J‘k Zt ‘:t[PzNHm(t)],z(zz - k?)i_/zj’ (252 — k2)112 ‘ : (1 )

It is shown in Appendix III that the integral in (18) can be evaluated in terms of the complete
elliptic integrals of the first and second kind of modulus #/k. Hence

(a(Pm> |:Bsx21v_25+2y25-2:l ) . . . | . .. .. (19)
u=k s~

B, being constant, and, using (3),

1N+1 B,
vV 2 | 9N — 25 + 3

Zm =]

szzs”“‘]—l—f() . (20)

where f(y) is a (small) arbitrary function of y.
The equation of the surface whose induced velocity potential is given by (17) is

Nl '
z__g( Zu) 5 e . .. .. . .. .. .. (21)
the A’s having been chosen to give the correct potenﬁal. -
From ( :
acpm 2N+1 J AN —25—1,,2s 22 .
< ) = B D,, R 2 l:Asx Y% + (2N — 25)X .. (22)
where = (x* — R '

The pressure coefficient for the surface (20) can be evaluated from the formula

— g Oban. 1 2 ny1 99,
i) 5] . . e

4. Solutions for n = 2N, where N 1is a Positive Integer.—For n = 2N, there are N
M-functions of the form

Mo™(p) = (|u® — R?|) PPy (1) .. e .. .. .. (24)
where Poy™(u) = p® 1 4 byupt™ % + oL by, .. .. .. .. (25)
m=1,2, ... N,

We consider the solution
= Con?™ Fop" () Eon™(v).

Using (11) and (15), it can be shown that
. _Cﬂ?,zzv(kz _ 1,2)1/2})21\/”(v>

Ii =
o BRP"(F)
kﬁZNPCZN( 7 2 [AS’xZN‘l““me (x® — RPyH)L2 .. .. .. (26)
where A, is a function of ﬂ, By sy Doy oo Dy_i -
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By constructing a potential :

¢2N - 2( mcpm)

where the 1’s are constants to be determined, we can obtain any potential of the form (26),
where the constant coefficients A, are given, and hence we can determine the shape of the
corresponding surface as in section 3. In particular, we can determine the N ‘ basic ’ surfaces
on which the induced velocity potentials are of the form

bon' = D™V it1yB=2(x2 _ fEyE)1[2 .. .. .. .. .. (27)
s =1, 2, ... N, D,y being a constant. These ‘ basic’ solutions can then be combined to give
any solution of the form (26).

Using (12),
acpm —_— 2N—1 m "
= Con?™ 1Py (v)BRPoy™(R) X

“d 1 dt
J‘%[ﬂﬂw@P@“—WWJ@“—WW” S

The value of the integral in (28) is found, in terms of the complete elliptic integrals of the first
and second kind of modulus 4/%, in Appendlx III.

Hence <%m> k = sgl[Bs'x2”“25+lyzs"2:| , .. .. . .. .. - (29)
.
B,’ being a constant, and, using (3),
1w B/ .
%=vzkﬁ:%19”2“ }+ﬂ> @

where f(y) is a (small) arbitrary function of y.
The equation of the surface, whose induced velocity potential is given by (27), is

z*z(z,,,z,,,), e (31)

m==

the 4’s being chosen to give the correct potential.

From (

0Pm Coy o Lay  NF ! p BN —25—2, 25 9_{
< >ﬂ k ﬁZNP m( ) 5§0 [Asx y X+ (2N — 25 — I)X . . (32)

The pressure coefficient for surface (30) can be evaluated from the formula

(aqsm 24 1[ <a¢,,t>ﬂ J L R

In section 5, the solutions for » = 1 and » = 2 are quoted from Refs. 1 and 2 ; and in sections
6 and 7, the ‘ basic ’ solutions for # = 3 and # = 4 are found. For purposes of reference, the
results are tabulated in Appendix VI.

5. Solutions for n = 1 and n = 2.—The solutions for # = 1 and » = 2 are both given in
Ref. 2, and the results, which are used later in this report, are quoted below (with a slightly
different notation) :

6



For n = 1, the induced velocity potential is

0

BVs 2 2\1/2( 2 2\1 /2 dt -
E—(%—)y(/‘ ”“k) l(k - 1’)/ J (tz_ k2)312(t2_h2)1/2 s o (34)

©®
where E(x) is the complete elliptic integral of the second kind, modulus «(= #/%), gives the
flow past the flat delta wing, at small incidence 8, whose equation is

2=z = — 0x + f(v) .. . .. . .. .. (35)

where f(y) is a (small) arbitrary function of y.

‘151:

On the wing,

Vo
(‘f’l);mk = % (

Ve
=k—E—(';j

<>,,k V""- e

For n = 2, the induced Ve10c1ty potential is

- kzyz)y. 2

X, . (36)

and

| ? dt
— 8 2 __ pRI[2(pe __ ,2\1[2
& ARE(x) 7y (s R (R v%) J B — RRPE(E — pA)te (38)

-where 8, d are constants (8 small and non-dimensional), gives the flow- past the triangular
surface whose equation is ‘

ZE= 2y = dfjl (tany/tanu)x + fly), .. .. . . .. (39)
where f(tan y/tan g) = 2—%2%(—;{—)— {(2%2 — 1) E(x) 4+ (1 — aﬂ)K(%)J, .. .. . (40)

x® = h?[k* = 1 — tan® y[tan® g, K(»), E(») are the complete elliptic integrals of the first and
second kind with modulus x, and f(v) is a (small) arbitrary function of y.

On the surface,

(o)t = Uu%fs(};) xX | (41)
and ( ) %(ﬁ;—;—l—){) . . . .. .. .. k42)

It can be shown that as » —0, f;—0-75. The values of f; are given in Appendix II and Fig. 1.
6. Basic Solutions for n = 3.—For n = 3, there are two M-functions, and we assume
EMu) = My*(s) = (|p* — B¥|)* PPy (u) . .. . .. . .. (43)

where D) =ut—a, m=12. .. .. (44)

Putting N = 1 and ¢, = a,, in equation (I1I, 4) of Append1x III the equatlon giving the two
values of a,, is
5a,® — 2(2h* 4+ Ra,, + KR = 0. .. .. .. . .. (45)
Therefore
2 2 252
_ cll—l—a2=%(2——h—5+—k) and alazz}%

(46)

7



We first consider the solution

0m = Co®’Fy"(u)Es"(v), (m =1, 2)
= Co*(u? — RRVR (R — P12 - a,)(»* — a,) X
” dt
J (# — ) — kz)s/z(tz — m)iE m =12 . . (47)
‘At the plane z = 0, x — £, and .
Pt — BB, = B L (48

Hence, using equation (11), it can be shown that

. P — vt — a)
Im e = BRE — a,)

. Ca[(hZ . dm)x2 __I_ ﬁﬂamyz](x2 __ k2y2)112
— ) . N )

Our two basic solutions of the form (17) are
¢t = Dyx*X and ¢ = Dy'y?X
where X = (x* — £%?*'* and D,, D, are constants.

We construct a potential

b5’ = A9y + g0y, s = 1,2
where 4,, 4, are constants to be determined.

. It is slightly easier to construct the potential ¢, first.
* For the solution ¢s°, equating the corresponding coefficients, and using (46), we find that

A 6h°k* — Sa,k* — Saht
Aa 6hR? — Sak* — Sah?
We therefore construct the potential S
by® == szkz(% — @) — Sk*ase, — A1) — Sh*(a.e; — “2@2) .. (50)

which gives
_ 5Cha, — a)

(#57) umr ¥ y2X . .. . .. .. el (51)
For the solution ¢,', we construct the potential
bt = By" — 38Ry — @q) .. .. .. .. .. .. (52)
which gives ‘
- 2
(bed)y — 2Coll = W O 1% )

The values of ¢; — ¢,, @, — @10, @9, — @9, when p—k, are given in Appendix IV.
We choose the arbitrary constant C, so that
5Cs(an — a )i V8
B dE(x)
where 0, d are constants, é being small and non-dimensional, and E(x) is the complete elliptic

integral of the second kind, with modulus » = A/k. (C, is written in this form for the purpose
of later constructions.) '
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where Pru) = p(p* —a,), m=12. .. : - o, . - (61)

Putting N = 2 and 4, = a,, in equation (II1,5) of Appendix III, the equation giving the two
values of a, is

7a," — (6h* + 4k%a, + 3h%k* =0 .. .. e .. .. .. .. (62)
therefore ‘
648 452 3h*kE
a + a, = — _*,; y Ay = 7 . (63>

We first consider the solution
9w = CAFMWEN)  (m = 1,9
—_ C47’4(,u2 o k2)112(k2 — v2)lj2[uv(‘u2 o am)(,p2 . am) X

? dt
2072 2042 BL2\3/2(42 __ pa\ijz * . c . (64)
Lz(t @ — B — ) |
Using (11) and (48), it can be shown that

. Gt (R — A2 (»® — q,)
hm ¢, = PR — a)

_ Cu[(B* — a,)x* + B%a,°)(x* — k312
— P . .. . (65)

Our two basic solutions of the form (27) are ¢,'! = D#*X, and ¢2 — D/xy*X, where
X = (#* — E*®®'2, and D,, D, are constants.

We construct a potential

¢s° = A191 -+ As9,, s=1,2
where 4,, A, are constants to be determined.

For the solution ¢,°, equating the corresponding coefficients and using (63), we find that

Ao 1OWPRF — Tak — Ta .
Ay 10A°R* — Ta,k* — Ta.h?
We therefore construct the potential
bl = 104°k (@ — @5) — 7R (s, — Apy) — TH? (a0, — AsPs) . (66)
which gives »
3
(#a%)umr = ek (;’;kz %) . e (67)
For the solution ¢,', we construct the potential
¢t = B%° — 38R0, — 05), .. o .. .. . (68)
which gives
($)s — Z——*—Qkaéf;e: %) pox O )

The values of ¢; — 05, a9, — @19, @19, — dxp,, when u—k, are given in Appendix 1V.

We choose the arbitrary constant C, so that
7C4(d1 I ﬂg)h3 o Vé
- PR - d*E(%) ,
where 8, d are constants, § being small and non-dimensional. (¢f. choice of Cy in section 6.)
10




Therefore, from (67) and (69),

(%)~ e (5 + %)
(%)~ wmg (5 + %)

The values of a—z—(cpl — ®3), Py (Olz% — 2:93),

when p — £k, are given in Appendix V. Hence it can be shown that
0’ tan y an y . .
( ) d3k2 [ﬁ(tan ﬂ) fg(tan M) 4 } a "

f(tan ;:>: [(8 — 3x2 — 2xY)E(x) — (1 — #*)(8 + T{z)K(x)]/ (6%°E (),

tan g

and

az (“1‘?1 — “2@2);

where

and

tan y\ _ — %%)(8 — 13x® wt) K (
7 ) = 101 — <8 — 13 24K

tan @

— (8 — 17%* + 7x* — 4%6)E(x)]/(2%6E(x))

for foare > 0for 0 < » < 1, and when » — 0, fy — 0-15625, f, — 2-34375.
The values of f;, f, are given in Appendix IT and Figs. 2 and 3.
Therefore, from (8) and (72), the velocity potential ¢,” gives the flow over the surface

é
= s (e — k) + )

where f(y) is a (small) arbitrary function of y.

Oyt Ve tan y tan y
_a—z_>”=k"— A [f 12<tan > —/ 13<tam ) }

tanpy _ — %? 7> 2 ) K (»
fm< ) = [(1 — w08 + 74 + 129K()

tan g

2 = 24,9

Similarly

where

— (8 + 3x* + Tx* — 24x°)E ]/ (6%°E(x

and

fw(tan y> —[(8 — 11x* + 4 2 E(x)

tan g

— (1 — #%(8 — 7x* — %4)K(%)]/ (2#°E (%)

fm,‘ fla are > 0 for 0 < » < 1, and when » — 0, fi; — 265625, fi; — 0-46875.
11
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From (3) and (74), the velocity potential ¢, gives the induced flow over the surface |
d
=y = it — % f13k2x2y2> + f(v) . .. . . (75)
where f(y) is a (small) arbitrary function of y. '

The basic solutions found in sections 5, 6, 7 will now be combined to determine the shape of
a surface with swept-back leading edges, such that either:

(i) there are no pressure singularities, the pressure becoming zero on the leading edges ; or

(ii) although the pressure, in general, becomes infinite on the leading edges, the strength
of the pressure singularity increases from zero at the apex to a maximum value at some point
on the leading edge,-and then decreases to zero at a point on the leading edge further down-
stream.

There are five independent solutions giving surfaces of the two types considered. It will be
shown how these five solutions can be combined to give the shapes of swept-back wings of type
(i), satisfying certain requirements with respect to camber and twist, or with respect to the
aerodynamic characteristics.

8. Two Wings Having no Pressure Singularities, at Design Incidence—By combining the
two solutions given in section 6, or those given in section 7, it is possible to determine the shape
of a thin wing with swept-back leading edges, which, at design incidence, has no pressure
singularities, the pressure becoming zero at the leading edges.

(i) Using the basic solutions for n = 3, we construct the velocity potential

vs = ¢s' — k%® = — 3B*k*9; — 9u)ues. .. . . .. (76)
Therefore, from Appendix 1V, (IV,1), '
Vs .
('/)3),u=k"— m) X3, . .. . .. .. .. . (77)
where X = (x* — k*»*12; and
03 _ 3Vs
<ax = TRE(] ¥ X . R . . .. . . (78)

u=Fk
Using (59) and (57), the shape of the wing is given by
2= lgy — R, =

~§—2[f4(‘a—“?)x3—fﬁ(ta“ w150 9

tan g tan i
where f, = 3(fs + fo) and f; = f; + fi.

Using (5), the pressure coefficient for the upper surface of the wing (79) at design incidence is

—60
CM}Z%E—(%)M%X- .. . . . . . . (80)

The spanwise lift distribution /(y) is obtained by integrating —pV*C,, along the chords of
the wing. Thus for all chords lying outside the Mach cones of the trailing edge,

y) = f — pV3Ch dx = 2pV s (%,%)]s0

ky

2pV26_ 2 1,2,,2\3/2 81
dzkE(%)(xl k%) . . . . . . (81)

where x = x,(y) defines the trailing edge.
12



For a triangular wing of maximum chord ¢, %,(y) = ¢, and it can be shown that the design
lift coefficient, based on area, is

2nd

Coo= Zgea o) o ®)

where ¢ = c¢/d.

For a (small) additional incidence «, the pressure coefficient C, can be found by superimposing
the solution for the flat delta wing at incidence « (see section 5), Thus

—2% |« 36
| C+= 2B [)_( T X]
and ’ > .. . .. .. (83)

~

Cp = RE() [ 4 £607]

(ii) Using the basic solutions for » = 4, we construct the velocity potential

po = ¢t — B¢ = — 3R (91 — 0a)ums - e (84)
Hence, from Appendix IV (IV 4)
<1p4> d%E ¥ X?® .. . . . .. . . (85)

and

0 4 3 2
< 'P> dskE (X + 3x°X)

L
= @RE(x)

@ — %X . .. .. .. .. .. .. (88

Using (75) and (73), the shape of the wing is given by

—d | .- /tan
& = 841 — k234,2 = ? [%flo(taT;)fl

— (Gl e i @)
Whereflozfs"’*‘fm, andfn :f9 +f13- ’

The pressure coefficient, at design incidence, is

2
al%g(x) (4 — By)X. e s

& Cp(]: —

For chords outside the Mach cones of the trailing edge (¥ = %,(y)), the spanwise lift distribution
is given by

1y) = 20V [palta, )]oo

20 V%
A°RE (%)

mlwd — B . .. (89)
13



The design lift coefficient for a triangular wing of maximum chord ¢ [#,(y) = ¢] is

2nd
RE (%)

Cro = Ba) .. .. . (e0)

here ¢ = ¢d

For the triangular wings given in this section, d is a constant proportional to the maximum
chord ¢ of the wing, but since these solutions are used in later constructions, it is convenient
to write dfc = 1/o rather than 1.

The shape of and pressure distribution on wings (i) and (ii) for special values of y and M, (¢ = 1)
are shown in Figs. 6 and 7.

9. Wings with the Strength of the Leading Edge Singularities Reaching a Maximum, and
then Decreasing o Zevo at Some Point on the Leading Edge—By combining, in various ways,
the basic solutions for n» = 1, 2, 3, 4, the shape of a wing, with swept-back leading edges, can be
determined, such that, although the pressure, in general, becomes infinite on the leading edges,
the strength of the pressure singularity increases along the edge from zero at the apex to a
maximum, and then decreases to zero at some point on the edge further downstream. Three
elementary solutions of this type are discussed in this section.

It is clear that there are only five independent solutions giving surfaces of the type considered
in this section or in section 8. Therefore further solutions of this type, and also a general solution
involving four additional arbitrary constants, are found by combining the five solutions ((i)
to (v)) given in this and the previous section.

A general solution is given at the end of this section. For reference purposes, the functions
fi» Jo ... f13, which appear in the solutions, are given in Appendices I and II, and in Figs. 1 to 4,
and the basic solutions ¢4, ¢, ¢4', ... are tabulated in Appendix VI.

For the wings with leading-edge singularities, 4 is an arbitrary length, which is equal to the
chordwise distance (in the free-stream direction) behind the apex, of the point of zero pressure
on a leading edge. For a triangular wing, it is not, in general, proportional to the maximum
chord ¢. In the formulae which follow, d/c is written as 1/o (the point of zero pressure is on the
wing if ¢ = 1, or downstream of the wing tips if ¢ < 1).

It is convenient, at this stage, to introduce non-dimensional co-ordinates
- & = xole, V' = yolc, z = zolc.
The elementary solutions chosen are as follows :

(iii) Using the basic solutions ¢,, ¢, we construct the induced velocity potential

D, = ¢y — ba, . . . .. . . . . (91)
for which S
Véc -
(Do)yer, = oRE(x) (1 — x") X', . .. .. .. . . (92)
where X’ = (x"* — £*»'%)'”*; and the pressure coefficient is
B 2 /00, . 20 | x'(1 — %) ,
Cpo = — % <3x>u=k_ ~ RE(») [ 5 —X] . .. (93)
at all points of the wing outside the Mach cones of points on the trailing edge.
On the leading edges'of the wing, X’ = 0and C, ,— @% )

14



. o ,
where P is the strength of the singularity in the axial velocity < a%) . When " = Oor 1,
u=k

—26 .
P = 0, and C,7— FE() and O respectively.
From (98)
AN 94
3/2 :
and P increases from 0to ——( = as x" increases from 0 to i, and decreases to 0 as x’
2RE(x) \ 3

increases to 1.

Using (35) and (39), the shape of the wing, at design incidence, is given by
=z — & =6 — &)+ Ay . . . . (95)

where f(y’) is a (small) arbitrary function of y’.

For chords lying entirely outside the Mach cones of the trailing edge, the spanw1se lift dis-
tribution is given by

2p V%0
ZW)—(%E()
where ¥” = x,'(y) defines the trailing edge, and X," = (%, — A%y"%)Y/2

(1 — %)X, T < )

For a triangular wing of maximum chord ¢, the design lift coefficient is

2nd

CLOZ m(l—o‘) (97)
(iv) Using the basic solutions 4,, ¢,', we construct the induced velocity potential
Dl = ¢y — ¢t .. .. .. .. . .. .. .. (98)
for which
Ves
1 _ W N 77 .
(Pg) i = RE () (1‘ X', . .- .. .. . . (99)
and the pressure coefficient is
26 % (1 — x — 1
Cﬁoz—kE(%)[—(*X,—)—%XJ. .. .. . .. (100)

The strength of the pole on a leading edge is

kE </jﬂ e “. .. (101)

’

and P increases from 0 to a maximum as %’ increases from 0 to 4/ (#,) and decreases to 0 as x
increases to 1.

Using (35) and (59), the shape of the wing, at design incidence, is given by

2=z — 2 = 8(—x ++ fx® — SRy 4 f(y). .. .. (102)
The spanwise lift distribution is given by
_ 2V x
Z(y)—GkE(%) (1 — %X . e .. .- . (103)
15



and for a triangular wing of maximum chord ¢, the design lift coefficient is
2md

__anY 2

Cro = RE () (1 o?). .. .. - .. . .. .. ‘(104)

(v) Using the basic solutions ¢,, ¢,', we construct the induced velocity potential

Ol =, — ¢t .. .. .. .. . .. .. .. (105)

for which
Vo
1 o o IES ?
(D) i = oBE () (1 %)X .. - .. .. .. .. (106)

and the pressure coefficient is

26 [x'(1 — «9)
N kE(x)[ X

Cpo = —3x'2X'] R ¢ 11 7)|

The strength of the pole on a leading edge is

v N 1/2
P:k—Eé(%—)(l—x*)(;ﬁ) L aos)

and P increases from 0 to a maximum as " increases from 0 to (})**, and decreases to 0 as «’
increases to 1.

Using (35) and (75), the shape of the wing, at design incidence, is given by

2=z — oy = 0(— & 4 Lfext — L R - fy). .. .. (109)
The spanwise lift distribution is given by
_ 2pV7%o P
() = ChE(%) (1 — %)X, .. - . .. .. (110)
and, for a triangular wing of maximum chord ¢, the design lift coefficient is
200 .
CLO—W(l—O‘). .. .. .. .. .. . .- (111)

Some further simple examples of wings of this type will now be given. These can be obtained
directly from the ‘ basic * solutions, or by combining some of the solutions (i) to (v) given above.

(vi) The velocity potential

D = D' 4 yy = ¢, — R’ .. . .. .. . (112)
gives
Ves
2 _ B2\ Y
(D) er = oBE () (1 — R*y'3HX .. . . . . . (113)
. —2 x(1 — RPy'%)
C“_kE(n) X .. .. .. . . .. (114)
7= 8(— & — Ffx 4+ SRy 4 f(v). . . o .. (115)
(vii) The velocity potential ‘
C q—)42:®41+¢4:¢1—‘k2¢42 el . . . . .. ) (116)
gives ‘ '
Vo P '
(D) = RE(%) (1 — R’y X ‘. . . o . .. (117)
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’ 26 2 (1 — R’y ) e
cj,oz_kE(x)[ ( = ) —kzyx} ()
7= 8(— & — x4 TRy + fy). .. . . - (119)

(viii) The velocity potential : -
Gy, =y, + D — D = ' — k%,° .. . e . (120)
gives -
Vca ’ ’ ’ 14 -

(D34 = SBE() (' — RyHX .. . . . . (121)

—20 [ x"%(x" — R ; ,
C,o= kE(%)[ ( - YD) L — ke Z)X'], (122
¥ = o(—hfw" + SR — " 4 B+ ). (23

In each case, the effect on the pressure distribution, of a (small) additional incidence o, can
be found by superposing the solution for a flat delta wing at incidence « (see-section 5), that is
by adding the terms : ‘

-

L P 0 07}
' 2o ‘
Al = 30

to C,, and C,, respectively.

Some examples of the shape of and pressure distribution on wings. of shape (iii), (vi), (vii),
(viil) are shown in Figs. 14, 9, 10, 15.

9.1. General Solution.—Since we are using the linear theory of supersonic flow, a general
solution for wings of the type considered can be obtained by combining the five independent
solutions (i) to (v). In practice, it may be necessary to satisfy certain requirements with respect
to the shape of the wing, and it is therefore useful to write down the following five solutions :

Induced velocity Shape of surface
potential
2, = &, 2= [— &' + fix'?]
2, :f5(1531 ‘["fv%”s 7= 8[— fsxl + (%fsfs _‘f4f7)x'3]
2, = fu@nll + f131/)4 7 = 6[— fnx’ + %(fuflz — flOflS)x,4]
2, = fi®5" + 3 fovs 7= 8[— fix' 4+ R fefs — fif)R%'y"™]

Qs = [1uPd' + fups 2= 0[— fur" + $(fifie —fuf)RP2Y) .- K (125)
In each case, a (small) arbitrary function of 3’ can be added to the expression for 2.
We shall take as a general solution , 7 _
Q:él(ASQS), P ¢ )
where A, is an arbitrary constant.

Regarding A4, as a scale factor, the solution contains the four arbitrary parameters A,/4,,
s =23 4, 5.

17
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The shape of the corresponding surface is given by

# = ax' 4 0x" + A" 4 fit 4 gk By 4 fly)

where ' |
a = — 5(/11 + Azfs -+ Asfu + A4f4 + Asfm)
b = 6A1f1
d, ’
L= 5 =GN — fif) "t
4 25, ‘
ls = Z = 5(f11f12 <—f10f13)

(126) may also be written
2 = A0, + Bdgt + Cy; + Do} + By,

where
4 = 4, ]
B = 4.fs + Aufs
C = Azfv + %A4fﬁ f -
D = Asfu + 4;fu
E = Asfis + Asfi ]

(127)

(128)

(129)

(130)

Hence, using the results (i) to (v), it can be shown that the corresponding pressure coefficient
Cpo, the local spanwise lift coefficient Cio, and the design lift coefficient C 1o for a triangular

wing of maximum chord ¢ are given by :

. _ 2 &1 —x) : (1 — x7%) -
=y [ ) o 55

+ C(3¥'X") & D{ ’i%“ — 3xX}

+ E{ X%+ 35X }] ,-

co - 46 /o + ky"\'\?
Y RE(m)\o — kY

+(C + Eoj(o* — k%v'ﬂ =0

18

[21(1 — o) + B(l — o%) + D(I — oY

(131)

(132)

b= ) [A(L~ o) + B(l — o® + D(1 — o% + 3(C -+ Ea)az]. (153)



10. Formulae for the Pitching-Moment Coefficients—The centre of pressure for a flat delta
wing is at two-thirds the maximum chord from the vertex. For the wings considered in this
report (maximum chord ¢), the pitching moment is taken about this chordwise position. The
corresponding moment coefficient is given by ‘

' rc rafk '
S8k
JOo JO
4 nxllk -
= — = C,o(0 — %) dy' dx’. .. .. .. .. (134)

JOo JO

The formulae for surfaces (i) to (v) are as follows :

Surface VVeZocz'ty Potentral kfyf:) Cuo
(i) : Ys — 30°
(i) v ~ o
(i) P, (14
(iv) Pyt 50
(v) o, 1o®
The general formula is:
278 ‘
Cuo = s Atto) + (58 — 0+ gD 2B | 39

where A....E are given by (130).

It is thus possible to choose the constants 4....E, so that, as one condition, Cy, has any
given value. ‘

11. The Formulae for the Induced Dvag at Design Incidence (Refs. 2 and 4).~—The drag on a
body in fluid flow is the resultant in the free-stream direction of all the pressure forces acting on
the body. In the linearised theory of supersonic (inviscid) flow the total drag, due to lift (usually
termed the ‘induced drag’) is taken as the resultant axial force due to the lifting pressure
distribution.

For a wing with no pressure singularities on the leading edges, the induced drag D; is equal
to the axial component of the pressure integral, D,, and is given by ’

DizDﬁszZJjCMz—idxdy L (19
where the integral is taken over the surface of the wing. The corresponding drag coefficient
. D; . : .
is Cp; = NS where S is the area of the wing.

But, for a wing with pressure singularities on the leading edges, according to the linear theory,
there is an infinite suction force or leading-edge thrust, determined by the strength of the
singularity, as in subsonic flow. The component D, of this suction force in the free-stream
direction tends to reduce the induced drag, and the resultant induced drag is given by

D,=D,—D,, .. ce e s . . (137)
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the corresponding drag coefficient being given by

D,
CDizm:CDp_ch- « .. . s .. . (138)

Using the result given in Appendix IV, Ref. 2, the longitudinal component of the suction
force per unit length of a leading edge is :

T = mpP*(cot’y — cot®a)*siny
= apP*(R? — B%)'2sin y .. .. .. .. .. (139)

where P is the strength of the singularity in the axial velocity on the leading edge (cf. after |
(93)) ; and hence

’ - # 2 p2y1/2
D5:2JT—d—x:2np(~k—~ﬁ—)JP2dx L 40
, cosy &

0

where %, is the chordwise distance of the wing tip from the apex. '

For a given spanwise lift distribution, the trailing vortex field in regions far behind the aerofoil
is the same in supersonic as in subsonic flow (Ref. 2). It is therefore convenient to subdivide
the induced drag into vortex drag, which is the same for supersonic as for subsonic flow, and
induced wave drag, which appears only in supersonic flow. Thus the vortex-drag coefficient
Cp., for a wing of aspect ratio 4, is sC,*/n4 (Ref. 5), where ¢ depends upon the spanwise lift
distribution of the aerofoil ; and the induced wave-drag coefficient is :

Cow= Cp; — ECLZ/(“A)

= Cp, — Cp, — eC¥(md). .. . .. . .. .. (141)
To find the value of ¢, the spanwise lift distribution /(y) must be expressed as a Fourier series
of the form él (4, sin n6), by putting &y = — ccos 6, (0 < 0] < =, — ¢ < ky < + o).
- Then
2
s:—z(ﬁ”) Y § 2
(Ref. §)

Note: The integrands in (136) and (140) are not linear, and therefore the drag coefficients
for the separate surfaces (i) to (v) cannot be linearly superimposed to obtain a general solution.

If the velocity potential 2 is given by (129), and the corresponding surface by (127), the
general formulae for the drag coefficients are as follows : (Using the non-dimensional co-ordinates

x' = xofc, ¥ = yolc, &' = zo/c)
The pressure drag coefficient is :

Cpp = 2% J ' J Coold + 205 + 8o -+ 4fx™ + ghy'™ - 2ikin'y'™) dn’ dy’

g
=0 2 =Ry?

— kgg(i) {AP1+BP2+CP3+DP4+EP5] L (148)

where 4..... E are given by (130), and
Py = — [ha — (to — )0 — (36 — 3d — fsg)o"
— (Fots — §S + g — Toh)o® — & + dsh)ot],
20



P, = — [}a + $bo — (a — 84, — Teg)o® — (80 — 2f — 1lhu)d’
— (3 + Teg)o* — (S + Fsh)o’),
Py = — 30[5a + fobo + (3dy + Hsg)o® + (3 + Heh)o’],
P, = — [fa + 3bo + (§d, + Hg)0” — (e — §f — Folu)o?
5

— 17bo* — (38dy + Ts8)0” — (B + s%h)o’],
Py = — o'fa + fibo + (#5d + F5)o"
+ (F3f 4+ 1Esh)o®] . . . . . .. . (144)
The suction-drag coefficient is :
27‘552(1132 _ 132)1/2
oa*k* [E(x)]*

—Cpo= — J 2 [A(l — %) + B(1 — x%)+4 D(1 — x'¥)]*dx’ . (145)
0
The total induced-drag coefficient is
CDi = CDp - CDs .
The vortex-drag coefficient is
CDv = €CL2/(7ZA)5 Whel‘e

e =11 +50%(C + Eo¢)*
[A(1 — o) + B(1 — ¢®) + D(1 — ¢®) + 26*(C + Eo)]* °

The induced wave-drag coefficient is
CDw == CDi _ CDv == CDp - CDs - CDu .

The above formulae give the drag coefficients at design incidence. A formula for the total induced
drag coefficient at any incidence is given at the end of section 12.

(146)

- When ¢ — 0 (that is dfc — ), camber and twist tend to vanish, and the wing tends to
become a flat delta wing, at incidence. It has been verified that, when o — 0 (expressing the
results in a form not involving the scale factor ),

Cp,/(Cro’fmA) — 2E(x),
Copl(Cro’md) —> (B* — p*)/*[k = (1 — tan®y. cot® @),
Coof (Crolnd) —> 1

which are the results for the flat delta wing.

Some numerical examples of the total induced drag and the induced wave drag, for different
values of ¢, are shown in Figs. 6 to 17.

12.  Numerical Examples—Some numerical results, for specified values of y and M, for
wings of triangular plan form, are shown in Figs. 6 to 17. Formulae giving the shape of the
wing, and the pressure distribution on the wing, are given below. Some notes on the choice of
the arbitrary constants in the general solutions are given in examples (xiv), (xv), (xvi) at the
end of this section. '

The wnon-dimensional co-ordinates x' = xofc, ¥ = yoc, 2' = zo[c are used, where o = c/d,
and ¢ is the maximum chord of the wing (1/¢ measures the distance in maximum chord lengths,
of the position of zero leading-edge pressure from the apex of the wing, except in examples
(i) and (ii), where ¢ = 1. See Fig. 5). Since these co-ordinates are used throughout the -
numerical examples, the dashes are dropped in this section and in the figures. In each case
(v) is chosen so that z = 0 on the leading edges.
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Some numerical values of the pitching-moment coefficients and the drag coefficients for
different values of o or for a given ¢ and different lift coefficients, are given. When ¢ — 0, these
“values tend to those for the corresponding flat delta wing, at incidence.

The formulae for the local spanwise lift, total lift, and drag coefficients are given in Appendix
VII; the spanwise lift coefficient, for given ¢ and C, ,, are plotted against y, and the total induced-
drag and wave-drag coefficients (in a form not involving the scale factor 4), against 1 Jo.

The examples given below, and shown in Figs. 6 to 17, are grouped under the headings :
(1) wings with no leading-edge singularities ;
(2) mainly twisted wings ;
(3) mainly cambered wings ;
(4) cambered and twisted wings. _ ,
Figs. 6 and 7 show the effect of removing the leading—edge pressure singularities ; Figs. 8 to 11

are cases of almost pure twist ; Figs. 12 and 13 are cases of camber and small twist : and Figs.
14 to 17 show the effect of combined camber and twist.

Figs. 18 and 19 show application to wings of the solutions given in Figs: 8 and 14 respectively.
These are constructed by selecting a definite plan form, which is then regarded as the front
part of one of the curved plates. No allowance is made for tip loss in these calculations.

Figs. 20 to 22 show examples of wings which satisfy the following additional conditions :
(for given y and M, and ¢ =1). - L Jotow

In Fig. 20, C.,=0-1, Cyy = 0 (only one of a number of solutions which would satisty
these conditions). e .

In Fig. 21, C.,= 0-1, zero camber and positive incidence at the root, positive camber
elsewhere (not the only solution) :

In Fig. 22, C. = 0-1, zero camber and positive incidence at the root, minimum induced
drag (using the solutions for # = 1, 2, 3, 4 given in this report). The solution
. is completely determined by these conditions.

The numbers (i), (ii)...... (viii) of the examples correspond to those in sections 8, 9 of the
report. For each example, a short table showing the values of the drag coefficients C,,, C

- . Duys
Cp; for given o (taken as 1 in most cases), and différent values of C;, and also those for the
corresponding flat delta wing, at incidence, is given. s

(1)  Wings with no leading-edge singularitics .
(i) (¢f. equations (76) to (83)) (Fig. 6)
y =45°, M =1-166, (¢ = 1)
z = 0[— 0-6568x> + 2-525xv%] + f(v) ;
(in non-dimensional co-ordinates)
— Cpo = 4-70116x(x* — y*)*/2

CarofCro Co (Cootfnd)  Cpf(Coatfm) Coil (Cootlnd)

—4/15 4/3 1717 3-050
For the
corresponding
-flat delta 0 1 0-753 1-753
wing, at any
incidence.
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any incidence

23

Drag coefficients, at design incidence Fgélglivggg ezg ?Egiggnfg't
CLO CDw CDv CDi CDw CDrv, B CDi
0-025 0-000085 0-000066 0-00015 0-000037 0-00005 0-000087
0-05 0-00034 0-00027 0-00061 0-00015 0-0002 0-00035
0-075 0-00077 0-00060 0-0014 0-00034 0-00044 0-00078
0-1 0-0014 0-0010 0-0024 0-00060 0-0008 0-0014
0-15 0-0031 0-0024 0-0055 0-0013 0-0018 0-0031
0-2 0-0054 0-0043 0-0097 - 0-0024 0-0032 0-0056
(i) (¢f. equations (84) to (90)) (Fig. 7) :
y = 30°, M = 1-852, (o =1)-
z = 6[— 0-678x* - 4-223x™*] 4 f(v) ; - -
— Cpo = 0-77326(4x* — 3y*)(x* — 3y%)*/*
CaolCro Cof(Crotind) Coul(Crotfd) Coif (CofA)
’ —1/3 4/3 3-783 5-116
For the flat
delta wing at 0 1 1-550 2-550
any incidence
Drag coefficients, at design incidence F(ég}i};evgi%rgezaoﬁiiiggn%it
Cro Co Cr. Cas Con Con Cor
0-025 0-00033 | 0-00011 ; 0:00044 0-00013 0-00009 0-00022
-0-05 0-0013 0-00045 - | ©0-0018 ---f 0-00053 | 0:00035 " " ~~0700088 "
0-075 0-0029 0-0011 0-0040 0-0012 0-0008 0-0020
0-1 0-0052 0-0019 0-0071 0-0021 0-0014 0-0035
0-15 0-012 0-004 0-016 0-0048 0-0031 0-0079
0-2 0-021 0-007 0-028 0-0086 0-0055 0-0141
(2) Twisted wings (small camber)
(vi) (¢f. equations (112) to (113)) ‘
(via) y = 45°, M = 1-345 A
2 =06[—x —0-069%° 4+ 2-141xy"] + f(v); .
— Cpo = 1-33936x(1 — y*)(x* — y)~*/®
1/o Carof/Cro Cpof (Cro’[nA) Cpof(Cro’fmA) Cpif (Cro’lnA)
1/2 , Cro=0 ' ,
3/4 0-214 2-920 1-771 4-691
1 0-088 1-333 1-337 2:670
5/4 0-050 1-109 1-375 2-484
3/2 0-034 1-047 1-419 2- 466
Flat delta L
wing at 0 1 1-550 2-850 -



Drag coefficients, at design incidence, when ¢ = 1

For the corresponding flat
delta wing, at incidence

Cug Ca, Cou Cor Co Cou Coe
0-025 0- 000066 0-000066. 0-00013 0-000050 0-000075 0-000125
0-05 0-00026 0-00027 0-00053 0-00020 0-00030 0-00050
0-075 0-00060 0-00060 0-0012 0-00045 0-00068 0-00113
0-1 0-0010 0-0011 0-0021 0-0008 0-0012 0-0020
0-15 - 0-0024 0-0024 0-0048 0-0018 0-0027 0-0045
0-2 0-0042 0-0043 0-0085 0-0032 0-0048 0-0080
(vid) y = 45° M = 1-281 (Fig. 9)
2 =06 (—x —0-0767x> + 2-227xy%) + f(y) ;
— Cpo = 1:41036x(1 — 3?*)(x? — yH)
1/o Cauo/Cro Coof (CrLo’fmA) Cpof (CLo’mA) Coi(Cro®lnA)
1/2 CLO _ O
3/4 0-214 2-920 1-405 4-325
1 0-088 1-333 1-076 2-409
5/4 0-050 1-109 1-104 2-213
3/2 0-034 1-047 1-137 2-184
Flat delta o
wing at any 0 1 1-236 2-236
incidence -
Drag coefficients at design incidence, when ¢ = 1 For the corresponding flat
T e I . : delta wing, at incidence
CL 0 CD v . CD w CD i YDy CD 0 CD i
0-025 0. 00007 0-00005 0-00012 0-000050 0-000061 0-00011
0-05 0-00027 0-00020 0-00047 0-00020 0-00024 0-00044
0-075 0-0006 0-0005 - 0-0011 0-00045 0-00055 0-0010
0-1 0-0010 0-0008 0-0019 0-00080 0-00098 0-0018
0-15 - 0-0024 - 0-0019 0-0043 0-0018 0-0022 0-0040
0-2 0-004 0-003 0-007 0-0032 0-0039 0-0071
(vil) (cf. equationé (116) to (119)) (Fig. 10)
y = 60°, M =1-13
z2 = 6[—x —0-044x* -+ 0-398x%?] + fly);
= Cpo = 2:31988[x(1 — Fxy®)(* — §9%)~Y% — Lo(x® — Ly2)ue)
1 /U CMO/CLO CD v/(cLoz/”A) CDw/(CLoz/”A) CDi/(CLOZ/nA)
3/4 0-484 7-347 4-900 12-247
1 0-110 1-333 1-381 2-714
5/4 0-048 1-065 1-406 2-471
3/2 0-026 1-019 1-459 2-478
2 0-010 1-003 1-510 2-513
Flat delta
wing at any 0 1 1-550 2-550
incidence
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Drag coefficients at design incidence, for ¢ =1

For the corresponding flat
delta wing, at incidence

CLO CDv CDw . CD:‘ CDu CD w CDi
0-025 0-000038 0-000040 0-000078 0-000029 0-000044 0-000073
0-05 0-00015 0-00016 0-00031 0-00011 0-00018 0-00029
0-075 0-00034 0-00036 0-00070 0-00026 0-00040 0-00066
0-1 0-00061 0-00063 0-0012 000046 0-00071 0-0012
0-15 0-0014 0-0014 0-0028 0-0010 0-0016 0-0026
0-2 0-0025 0-0025 0-0050 0-0018 0-0028 ~0-0047

(xi) [General solution (126), with 4, = A, = A, =0, 4,=1, 4, = —0-1]
y = 45°, M =1-281  (Fig. 11) ,
2 = 6[— 0-4481x + 1-3956xy* — 0-2896x%7%] + f(¥) ;

1

— Gy = 1'410345[(0'448196 — 0-7085%® 4 0-2604x*) X

+ (0-4782x — 0-18154* 0-2407y2)X}, where X = (#* — y?)?

1o Cuo/Cro Cp./(Crot[mA) Cpof (Cro’fmA) Coi/(CLo’[mA)
1 _ 0-122 1-333 1-052 . 2-385
5/4 0-078 1-129 1-078 2-207
3/2 0-054 1-061 1-111 - 2-172
2 0-030 1-019 1-158 2-177
Flat delta ‘
wing at any 0 1 1-236 2-236
incidence
Drag coefficients at design incidence, for ¢ = 1 For the corresponding flat
delta wing, at incidence
CLO CDv CDw CDi CDu C_Dw CDi
0-025 0-00007 0-00005 0-00012 0-00005 0-00006 0-00011
0-05 0-00026 0-00021 0-00047 0-0002 0-00024 0-00044
0-075 0-00060 0-00047 0-00107 0-00045 0-00055 0-0010
0-1 0-00106 0-00084 0-00190 0-0008 0-00098 0-0018
0-15 0-00239 0-00188 0-00427 0-0018 0-0022 0-0040
0-2 0-00424 0-00335 0-00759 0-0032 0-0039 0-0071

(8) Cambered wings (with small twist)
(ix) [General solution (126), with 4,=A4,=4,= —1, 4,=4, A,=1-3]
= 45°, M = 1-281 (Fig. 12)
2 =06[—0-0279x — 0-7085x* — 1-3956x° — 1-4482x*
+ 5-5824xy* 4 3-76583x**] 4+ f(v) ;
—Cpy = 1'410346[(0'02794% + x® — 0-4597x° — 0-56_82954))%
4+ (1 4+ 6-2194x - 9-2952x% — 2-7500y2)X], where
X = (xz ___ y2)1/2
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1/ Crro/Cro : CD,,/(CLDQ/nA) C‘Dw/(CLoz/nA) Coif (CLo?lnA)
1/2 —0-298 1-501 3-726 5-227
3/4 —0-280 1-411 2-780 4191
1 —0-264 1-333 2-547 ~ 3-880
- 5/4 —0-250 -1-270 . 2-393. - -3-663 - -
3/2 —0-240 1-221 2-272 3-493
2 —0-224 1-151 2-103 3-254
Flat delta
wing at any 0 1 1-236 2-236
incidence
Drag coefficients at design incidence, for ¢ = 1 For the cofrespondingv flat ..
‘ delta wing, at incidence
CL[) CDU CDw . Cl)i - CDv . CD‘w CDz'
0-025 0-00007 0-00012 0-00019 0-00005 -0+00006 0-00011
0-05 0-00026 0-00051 0-00077 0-00020 0-00024 0-00044
0-075 0-0008 0-0011 0-0017 0-00045 0-00055 0-0010
0-1 0-0011 0-0020 0-0031 ~ 0-0008 0-00098 0-0018
0-15 0-0023 0-0046 C-0069 0-0018 0-0022 0-0040
0-2 0-0042 0-0081 0-0123 0-0032 0-0039 0-0071
The camber at 4 different spanwise positions, when ¢ = 1, is given by : :
' 0 1/4 _ 1/2 3/4
Camber per cent 1385 1286 996 - 566

In Fig. 12, ¢ is taken equal to 0-01 (C;, = 0-17 when ¢ = 1).

The relation between twist, camber and lift (at design incidence) is
Twist/camber at root — camber at  semi-span/C,, = 0-012/0-48/0- 1.
(x) * [General solution (126), with 4,=A,=A,—= —1, A,=10, A,= —0-2]
y = 45°, M = 1-281 (Fig. 18)
7 = 6[—0-3739x — 0-7085x% — 1-83956x° — 14482
+ 13-956xy® — 0-5793x%% + f(v),

A : x x° e X
—Cpo = 1-410346[0-3732 e + ¥ 4-7107 X

. .
+ 3-3375 % + X 4+ 9-0886xX - 7-4326x°X — O-8599X3J
1/0 CMD/CLO CDv/(CLoz/nA) CDw/(C;Loz/nA)
1 1-333 2-553
3/2 1-358 2-124
1-69 —0-190 : 1-35 . 1-95
2 —0-160 1-273 1-805
Flat delta
wing at any 0 1 1-236
incidence

For this wing (x), on the leading edges at x = 1, and at x = 0-59, Cyo = 0, and-

0 < x<0-59, —Chpo=+ o ;
0-59 <x< 1 , —Cpp= — ©
x> 1 | —Cpo= +
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Drag coefficients at design incidence, for ¢ = 0-59

For the corresponding flat
delta wing, at incidence

CDi

CLU CDv an Cz)z C'Du CDw
0-025 0-000067 0-000097 0-000164 0-00005 0-000061 0-00011
0-05 0-00026 0-00039 0-00065 0-0002 0-00024 0-00044
0-075 0-00060 0-00087 0-00147 0-00045 0-00055 0-0010
0-1 0-0011 0-0015 0-0026 0-00080 0-00098 0-0018
0-15 0-0024 0-0035 0-0059 0-0018 0-0022 0-0040
0-2 0-0043 0-0062 0-0105 0-0032 0-0039 0-0071

The camber ‘at 4 different spanwise positions, when ¢ = 0:59 (i.e., 1/o = 1-89), is given by :-
oy -0 1/8 1/4 3/8
Camber per cent 426 778 356 266

In Fig. 13, 6 is taken equal to 0-01 (C,, = 0-066 when ¢ = 0-59).

The relation between twist, camber and lift is :
Twist/camber at root — camber at § semi-span/C,, = 0-01/0-2/0-1.

(4) - Wings with camber and twist

(iii) (c¢f. equations (91) to (97)) (Fig. 14)
y = 45° M = 1-166
2 =6 [—x + 0-658%] + f(3) ;
—C,o = 1:567038[x(1 — x)(x* — y*)~% — (x* — y*)*/7]
1o  Ciro/Cro Coof (Coo’lmd)  Couf(Cro'lnA) Cpil(Cro*fmd)
1 CLO —_ O
5/4 0-66 1 2-210 3-210
3/2 0-34 1 0-895 1-895
2 0-16 1 0-677 1-677
Flat delta
wing at any 0 1 0-752 1-752
incidence
Drag coefficients at design incidence, when ¢ = 2/3 For the corresponding flat
. delta wing, at incidence
CL 0 C.DU CJJ w CDZ' CD v CD w CDi
0-025 0 00005 0-000044 0-000094 0-00005 0-000037 0-000087
0-05 0-0002 0-00018 0-00038 0-0002 0-00015 0-00035
0-075 0-00045 0-00040 0-00085 0-00045 0-00033 0-00078
0-1 0-0008 0-00071 0-0015 0-0008 0-00060 0-0014
0-15 0-0018 0-0016 0-0034 0-0018 0-0013 0-0031
0-2 - 00032 0-0028 .0-0060 0-0032 0-0024 . 0-0056. . ..
(viii) c¢f. equations (120) to (123)
" y =380°, M =1-82  (Fig. 15)

z = 6[—0-661x* + 0-505xy° — 0-044x* - 3-575x%"]

—Cyo
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1/0 CMO/CLO CDu/(CLoz/ﬂA> CDw/<CL OZ/WA) CDi/(CL oz/WA)
1 —0-244 1-333 16-030 17-363
5/4 — 0-250 1-188 11-840 13-028 -
3/2 —0-254 1-120 9-396 10-516
2 — 0-256. 1-061 6-405 7-466
Flat delta
wing at any 0 1 1-551 2-551
incidence :
Drag coefficients at design incidence, for ¢ = 1 For the corréesponding flat
‘ delta wing, at incidence
CL 0 CDv CDw Cl)i CDv CD w CDi
0-025 0-0001 0-0014 0-0015 0-00009 0-00013 0-00022
0-05 0-0005 0-0055 0-0060 0-000344 0-000534 0-00088
0-075 0-001 0-012 0-013 0-00078 0-0012 0-0020
0-1 0-002 0-022 0-024 0-0014 0-0021 0-0035
0-15 0-004 0-050 0-054 0-0031 0-0048 0-0079
0-2 0-0073 0-0883 0-096 0-0055 0-0086 0-0141
(xiii) [General solution (129), with C =4, B =3, 4 = D = E = 0]
y = 45°, M = 1-281 (Fig. 16)
2 = 6[— 3x — 0-9388x* 4 9-0553xy*] + f(v) ;
— Cpy = 4-231020[x(1 — %) (x® — ¥*)~1/* 4 2x(x® — y*)1/7]
1/(7 CM O/CL 0 CDv/(CLoz/”A) CDw/(CL o/TEA) CDi/(CLoz/”A)
1/2 : 0 6-333 3-282 9-615
1 0 1-333 1-207 2-540
3/2 0 1-066 1-179 2-245
2 0 1-021 1-195 2-216
Flat delta
wing at any 0 1 1-236 2-236
incidence '
The camber at 4 different spanwise positions, when ¢ = 1, is given by :
kY 0 1/4 1/2 3/4
Camber per cent 366 336 266 156

In Fig. 16, ¢ is taken equal to 0-01 (C., = 0-13 for ¢ = 1).

The relation between twist, camber and lift is:
Twist/camber at root — camber at § semi-span [C., = 0-029/0-155/0-1.

Drag coefficients at design incidence, for o = 1

For the corresponding flat
delta wing, at incidence

Cio Coy Coe Chi Co, Cou Cp:
0-025 0-00007 000006 (-00013 - 0-00005 0-00006 0-00011
0-05 0-00026 0-00024 0-0005 0-00020 0-00024 0-00044
0-075 0-00060 0-00054 0-0011 0-00045 0-00055 0-0010
0-1 0-00106 0-00096 ‘00020 0-00080 0-00098 0-0018
0-15 0-00239 0-00216 0-0045 0-0018. 0-0022 0-0040
0-2 - 0-0424 0-00384 0-0081 0-0032 0-0039 0-0071

28



(xi) [Generalsolution (128) with 4, =A,=A4;=0, 4,=5, 4;= — 1]
y —45°, M =1-281  (Fig. 17)
z2=20[—0 9387x + 6-978xy* — 2-8964x w2 L f(y)

— Cp = 1-410346 [(O -0387x — 3-5425x* + 2-6038x*) )—1{
+ (2-391x — 1-8154% + 2'4066y2)XJ = (x* — y*)*/?
1/o Cauo/Cr o Cpof(Cro®[mA) Cpuf(Cr o[ A) Cpi/(CrotlnA)
3/4 —0-1 1-003 1-895 2-898
1 +0-082 1-333 1-108 2-441
5/4 +0-106 1-328 1-052 2-380
Flat delta : '
wing at any 0 » 1 1-236 2-236
incidence
Drag coefficients at design incidence, for ¢ = 1 For the corresponding flat
delta wing, at incidence
CL Q CDIJ CDw CDi CDu CDw CDi
0-025 0-00007 0-00005 0-00012 0-00005 0-00006 0-00011
0-05 0-00027 0-00022 0-00049 0-00020 0-00024 _ 0-00044
0-075 0-0006 0-0005 0-0011 0-00045 0-00055 0-0010
0-1 0-0010 0-0009 0-0019 0-00080 0-00098 0-0018
0-15 0-0024 0-0020 "0-0044 0-0018 0-0022 0-0040
0-2 0-0042 0-0036 0-0078 0-0032 0-0039 0-0071

The camber at 4 different spanwise positions, when ¢ = 1, is given by :
y 0 1/4 1/2 3/4
Camber per cent 0 3-39¢ 9-056 10-186

In Fig. 17, ¢ is taken equal to 0-1 (C., = 0:25 for ¢ = 1).

The relation between twist, camber and lift is :
Twist/camber at § semi-span — camber at root/C,, = 0-08/0-41/0-1.

Three wings satisfying given conditions
In each of the following three examples, o =c¢c/d = 1, y = 30°, M = 1-442.
(xiv) (Fig. 20) '
Given conditions : Cro = 0-1, Cuo = 0.
[Other conditions could be also satisfied, ¢f. (133), (135)].

One possible solution is found by putting 4 =D =E =0, C =4, B =
solution (129). (cf. (135).) -

Cro = 0-1 gives 8§ = 0-0117277, and hence
7 = 6[ — 8x — 0-9446x® + 29-3694xy*] 4 f(v), and

3 in the general

4%:0%mw%—w%+mﬂ,xzw—@w
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Drag coefficients at For the corvesponding flat

design incidence delta wing, at incidence
Cp, = 0-00184 Cp, = 0-00138
Cp, = 0-00106 Cpn = 0-00104
Cp: = 0-00290 Cpi = 0-00242
The camber at 3 different spanwise positions is :
Y 0 1/4 1/2
Camber per cent 0-426 0-339 0-104

The relation between twist, camber and lift is : _
Twist/Camber at root — camber at £ semi-span/C., = 0-05/0-24/0-1.
(xv) (Fig. 21)
Given conditions :
(1) zero camber at the root,

(2) positive (or approximately zero) camber elsewhere,
(3) positive incidence at the root,
(4) Cpro='0-1.

Using (126), (127), (128), condition (1) gives 4, = 4, = A, = 0. The curvature of a section
parallel to the x-axis is approximately equal to 9%z/o4* = 2Ahk%®  Hence, for positive camber,
h < 0, and therefore A, << 0. . '

Condition (3) gives a < 0, or, taking. A, = — 1, 4,/ > fio

We should also ensure that the strength of the pressure singularity on a leading edge is > 0
for x < 1. This leads to a second inequality to be satisfied by 4,. A value satisfying both
inequalities is A, = 5-5 )

Cro = 0-1 then gives 6 = 0-0467782.

Hence
Cuyo = 0-012 and
7= 6[— 1-2741x -+ 22-3396xy* — 7-9396x%*] + f(v),
— C,, = 0-04232 [(1 2741x — 3-6217x° + 2'3476%4)31(—
+ (2-0482x — 1-3348x* 4 6-2832y2)X:| , X = (x* — 3yH)V®
Drag coefficients at For the corresponding flat
design incidence delta wing, at incidence
Cp, = 0-00184 - Cp, = 0-00138
Cp, = 0-00087 Cp, = 0-00104
Cp; = 0-00271 Cp; = 0-00242
The camber at 3 different spanwise positions is :
y 0 1/(2+/3) 3/(4v/3)
Camber per cent 0 | 0-387 0-435
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The relation between twist, camber and lift is :
Twist/Camber at § semi-span — camber at root/C,, = 0-07/0-43/0-1.
(xvi) (Fig. 22)
Given conditions :
(I) zero camber at the root,

(2) Cro=0-1,
(3) minimum induced drag, with conditions (1), (2), (using the solutions for # = 1, 2,
3, 4).

Using (126), (12‘7), (128), condition (1) gives A; = 4, = A, = 0. The condition C,, = 0-1
gives a relation between A, and 4,6, and hence the drag coefficient Cp; can be expressed as a
Tunction of 446 or of 4,8. It is found that C,, is least when 4,6 = 0-171378, 4.6 — — 0-023669.

For these values, Cyo = 0-013, and
z = —0-0573x 4 0-6961xy* — 0-1879x*%* + f(v),
— Cpe = 0-904725 !:(0'057317 — 0-11294% -+ 0-0556963))%,

+ (0-0638% — 0-0316x* + 0- 148'7y2)XJ , X = (x* — 3y

Drag coefficients at . Foy the corvesponding flat
destgn incidence delta wing, at incidence
Cp, = 0-00184 Cp, = 0-00138
_Cpw = 0-00085 Cp, = 0-00104
Cp; = 0-00269 Cp; = 0-00242

The total induced-drag coefficient at any (small) incidence

The total induced-drag coefficient, at any incidence, can be expressed in terms of the design
lift coefficient C,, and the lift coefficient 4C, due to additional incidence «. :

It C,, C,p are the pressure coefficients, and C,, C,, the lift coefficients at additional incidence
« and design incidence respectively, ‘

200 x
A4C, =C, — Cppo = — kE(x) X
2
AC=Co = Coo= s

and, for a chosen wing, the scale factor é is proportional to C,,, the relation between 6 and C,,
being given by (133).. ’ , a

.. The total induced-drag coefficient at additional incidence « is

. 4k afk 4 3
Cr = Di—I‘ACDiZ('j?J J‘(CPO—FACP)(a—;*a)dxdy

. : 2%(732 __:;92)'1/2 g ‘ 2- \ 2.
T BEGT JO x[é{A(l — %) + B(l — x)i+ D1 — %%} + a} 6_,lx

=00+ BCaACh) + po(AC, L L (47)
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where

1’1=5—“2:

Lo

o e L R Y O L0

]b‘t! 275 27z
n @f__;.néﬂz{(A 4+ B4 D) — 340 — Bo* — %Daa}}/ [A(l — o)
+ B(l — % + D(1 — 6% + 3(C + Eo)a*],

where a' = a/6, b’ = b/, etc.,

_ RE(x)  Bx
Py = % 4w

[Since (B* — Y'Y = h = kx]

(147) may also be written in the form

Co , Cid , , Cuf Cro Cro\*

CLZ—"pl CLZ +p2CL 1_ CL +]>3 1—_ CL 4 .. . (148)

The values of p,, p,, p, have been calculated for surfaces (i) to (xvi) for specified y and M ;

in each case ¢ is chosen so that the point of zero pressure on a leading edge is at the wing tip,

that is ¢ = 1, except for surface (x), where ¢ = 0-59. The resulting formulae for the induced-
drag coefficients are given below :

Surface Cp = Cp; + 4Cp,

(i) ' 0-2427C, * + 0-2995C, ((4C;) + 0-1395(4C,)®

(ii) - 0-7052C, " 4 0-6980C,(4C,) + 0-3516(4C)*

(via) . 0-2125C;* + 0-2722C,4(4C;) + 0-1395(4C,)*

(vid) 0-3628C, " + 0-3300C, ((4C.) + 0-1780(4aC,)*

(vii) 0-1247C, * + 0-2186C,4(4Cp) + 0-1172(4C,)*

(xii) - 0-1898C.* + 0-3267C,,(4Cy) + 0-1780(4C,)*

(ix) 0-3087C.* + 0-3654C,,(4C,) + 0- 1780(A Cp)?

(x) (¢ = 0-59) 0-2629C, * + 0-3586C,4(4C.) + 0-1780(4C,)*

(iii) 0-54036* — 0-08636(4C,) + 0-1395(4C,)* (for this surface
for ¢ = 1, Cpy = 0, 6 is proportional to the design incidence)

(viii) 2-3932CL,* 4 0-6938C.(4C.) + 0-3516(4C,)*

(xiii) 0-2022C, * + 0-3393C.,(4C;) + 0-1780(4C,)*

(xi) 0-1942C, * + 0-3315C,4(4Cy) + 0-1780(4C,)*

(xiv) 0-2899C, * + 0-4725C,((4C;) + 0-2416(4C))*

(xv) 0-2713CL* + 0-4542C,(4Cy) + 0-2416(4C,)*

(xvi) 0-2694C;* + 0-4505C,,(4C,) + 0-2416(4C,)*
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The above formulae hold for all (small) positive or negative values of AC,. It can be verified
that the condition p,? — 4p,p; < O for positive drag is satisfied in each case. A table of values
of Cp, and the corresponding values for the flat delta wing is given below.

The corresponding
flat delta wing
Surface Cro C; Cp=Cp, +A4C,,; Cp

@ 0-1 0-05 0-00128 0-00035
0-1 0-00243 0-00139
0-15 0-00427 0-00314
0-2 0-00682 0-00558
(i) 0-1 0-05 0-00444 0-00088
0-1 0-00705 0-00352
0-15 0-01142 0-00791
0-2 0-01755 0-01406
(via) 0-1 0-05 0-00111 0-00035
01 0-00212 0-00139
0-15 0-00383 0-00314
0-2 0-00624 0-00558
(vid) 0-1 0-05 0-00242 0-00044
0-1 0-00363 0-00178
0-15 0-00572 0-00400
0-2 0-00871 0-00712
(vii) 0-1 0-05 000047 0-00029
0-1 0-00125 0-00117
0-15 0-00261 0-00264
0-2 0-00456 0-00469
{xii) 0-1 0-05 0-00071 0-00044
0-1 0-00190 0-00178
0-15 0-00398 0-00400

0-2 0-00695 0-00712
(ix) 01 0-05 0-00170 0-00044
0-1 0-00309 0-00178
0-15 0-00536 0-00400
0-2 0-00852 0-00712
{xd) 0-1 0-05 0-00128 0-00044
0-1 0-00263 0-00178
0-15 0-00487 000400
0-2 0-00800 0-00712
(iii) 0 0-05 0-00532 0-00035
(6=0-01)| 0-1 0-00593 0-00139
0-15 0-00725 0-00314
0-2 0-00926 0-00558
{viii) 0-1 0:05 0-02134 0-00088
0-1 0-02393 0-00351
0-15 0-02828 . 0-00791
0-2 0-03439 ~ 0-01406
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The corresponding
flat delta wing
Surface Cro C, Cp=C,, + A4C,, C,
(xiii) 0-1 0-05 0-00077 0-00044
0-1 0-00202 0-00178
0-15 0-00416 0-00400
0-2 0-00719 0-00712
(x1) 0-1 0-05 0-00073 0-00044
0-1 0-00194 0-00178
0-15 0-00404 0-00400
0-2 0-00704 0-00712
(xiv) 0-1 0-05 0-00114 0-00060
0-1 0-00290 000242
0-15 0-00587 0-00544
0-2 0-01004 .0-00966
(xv) 0-1 0-05 0-00105 0- 00080 SO
0-1 0-00271 0-00242 4
0-15 0-00559 0-00544
0-2 0-00967 0-00966
(xvi) 0-1 0-05 0-00105 0-00060
0-1 0-00269 0-00242
0-15 0-00555 0-00544
0-2 0:00961 "~ 0-00966

For ¢ = 1 and C, > C,,, it can be shown that C, is less than the induced-drag coefficient
Cp; of the same surface (at design incidence) designed for lift coefficient C;, e.g., for (xvi), if
Cro=0"1 and C, =0-2, C, = 0:00961 ; and if C,, =C, = 0-2, C, = C,, = 0-010786.

It can also be shown, that for C, > Cy, (¢ = 1), if p, — 2p; > 0, C, is greater than the
corresponding C, for the flat delta wing for all C, ; and if p, — 2p, << 0, C, is less than the
P+ P —

=22 (py by — pois always

corresponding C, for the flat delta Wing when C; > %
8 T 2

> 0), e.g., for (xvi), when C; > 0-185.

13. Conclusion.—Solutions of the linearised supersonic flow equations in terms of the Lamé
functions of the M-class, of degree 1, 2, 3, 4 have been found, and have been combined to give
a general solution for the velocity potential of the supersonic flow over swept-back wings, with
modified pressure singularities on the leading edges. The solutions have been chosen so that
the strength of these singularities decréases towards the wing tips. By removing the suction
peaks near the leading edges of the outboard sections of the wing, the associated adverse pressure
gradients are reduced, thereby reducing the tendency for the boundary layer to separate.

A number of examples for specified values of the apex angle y and the Mach number M, have
been worked out, and the corresponding lift, induced drag and pitching-moment coefficients
calculated. The effect of additional incidence on the total induced drag coefficient has also
been calculated (¢f. end of section 12). :

For the wings with no leading-edge singularities, the total induced drag is considerably higher
than for the corresponding flat delta wing; but for the wings with leading-edge singularities,
decreasing towards the wing tips, in some cases, for 1/o greater than some value (> 1) (that
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is a value for which the point of zero pressure on a leading edge is downstream of the wing
tip), the total induced drag is less than that for the corresponding flat delta wing (c¢f. Figs. 10D,
11b, 14b, 16b). An example is given (Fig. 22) of a wing designed for a given lift coefficient
and minimum total induced drag, with the condition that there is no camber at the root.

An attempt was made to find a solution giving a surface with increasing camber towards
the wing tips and little or no twist. Examination of the conditions required showed that this
is not possible, at any rate with the general solution so far found. But solutions giving surfaces
with increasing (or constant) camber and some twist can be found (¢f. Fig. 17).

By including solutions for higher values of n, a still more general solution could be found.
The complexity of the algebra increases with the value of #, but the basic solutions, once found,
contribute to an unlimited number of other solutions.

The examples of wings given in this report are designed, in each case, for a specified Mach
number. The effect of a change of Mach number on the aerodynamic characteristics of the
wing is being considered, and the results will be given in another report.

Acknowledgements.—Acknowledgement is due to Mr. H. B. Squire for suggesting the subject
of th%v investigation and for many helpful discussions. Acknowledgement is also due to Mrs.
¥ B.(Osman for the help she has given with the computation and for preparing most of the
drawings.

LIST OF SYMBOLS

y Apex semi-angle
Maximum chord of a triangular wing

a Chordwise distance behind the apex of the point of zero pressure
on a leading edge

ord An arbitrary length, for wings with no pressure singularities
(@), (i)
1/o =dc Chordwise distance, in maximum chord lengths, behind the apex
of the point of zero pressure on a leading edge
or 1/o == dJc An arbitrary constant, for wings with no pressure singularities
(1), (i1)) )
S Area of triangular wing
x Chordwise co-ordinate (measured downstream from the apex)
y Spanwise co-ordinate (positive to starboard)
z Normal co-ordinate (positive upwards)
x' = xafc
' — yole Non-dimensional co-ordinates (The dashes are dropped in the
y=J numerical examples)
2 = zafc
7
U ¢f. equations (1), (2)

v
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fl;f2) . '~f13
A,
A,B,C,D.E

A small dimensionless constant (proportional to the design lift

coefficient C_,)
Angle of incidence (measured in radians)
(0 — key?)
(w2 — Ry
Defines the trailing edge of the wing
Free-stream density
Free-stream velocity

Mach angle

Mach number

(M?* — 1)1

coty

(cot®y — cot® @) = (R* — g2
hik

Functions of (tan y/tan @) given in Appendices I, IT
cf. equation (126)

¢f. equation (130)

¢f. equations (127), (128)

Standard Lamé function of degree »

Lamé function of the second kind of degree #

Standard Lamé function of degree #, of the M-class

M, (u)[(p? — &)1

Complete elliptic integral of the first kind, modulus »
Complete elliptic integral of the second kind, modulus » '

A zero of P,y ,(u)
A zero of Pyy(u)
V3[(RE(x)) (in Appendix VI)

Strength of singularity in axial velocity on a leading edge

Velocity potential, ¢f. equation (3), etc.

Velocity potential, ¢f. equations (17), (27), and sections 5, 6, 7

Velocity potential, ¢f. section 9, etc.
Velocity potential, ¢f. section 8, etc.
Velocity potential, ¢f. equations (126), (129)

Pressure on an element of the upper surface of the wing

Pressure coefficient
Design pressure coefficient

Spanwise lift distribution
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Cp,
Cpw=Cpi— Cp,
AC,

AC, = Cp—Cuy
AC,

D1, Do Ps
Co=Cp;+4Cp;
P

No. ‘ Author

1 A. Robinson
2 -A. Robinson
3 E.W. Hobson

4 W. F. Durand (editor)

5 H. Glauert

6 G. M. Roper

Local spanwise lift coefficient at design incidence

Lift coefficient (based on area)

Design lift coefficient

Pitching-moment coefficient

Pressure integral

Suction force at leading edge

Total drag due to lift (induced drag), at design incidence

Total induced-drag coefficient, at design incidence, based on area
Vortex drag coefficient, at design incidence, based on area

Induced wave-drag coefficient, at design incidence, based on area

Pressure coefficient due to additional incidence «

Lift coefficient due to additional incidence «

Total induced-drag coefficient due to additional incidence «

cf. equation (147)
Total induced-drag coefficient at (additional) incidence
¢f. Appendix VIL
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APPENDIX I

The functions fi(tan y/tan 3), fy(tan y/tan ), ............ fis(tan y/tan g).

®* = 1 — (tan®y/tan® g) ; K, E are written for K(x), E(x).

Solutions in which the functions occur are given in brackets [ 1.

i = {2 — 1)E + (1 — »*)K}/(2%°E)

fo = {2 — #)E — 21 — «)K}/(2:E)
fo= {1 — 232 — 5x)K — 2(1 — 8x* — «")E}/(2°E)

fo = {22 — DE + (1 — #)K}/(22E) = f,
fs = 3{(1 + »)E — (1 — »*)K}/(2xE)

fo = {(1 = #3(2 + 3K — 2(1 + »* — 3x")E}/(24°E)
fio= {2 — 3%2 + wYE — 2(1 — #})2K}/(2%°E)

|

fo = {(8 — 3x* — 2YE — (1 — »*)(8 + #})K}/(6x°E)

Jo = {(1 — »*)(8 — 13x* 4 2K
— (8 — 17% + Tn* — 4x5E}[(24°F)

fo = {201 — (1 + 20K — (2 + 3%* — 8+ E}/(2+'E)
fu = 3{2(1 — «* + »NE — (1 — #3(2 — x%)K}/(2+'E)

fo = {1 — #)(8 + 7x* + 12*)
— (8 - 3x* 4 Tut — 24x°)}/(64°F)
fis = {(8 — 11%* + »* 4+ 24°E
— (1 — #¥)(8 — 7»* — «"K}/(2%°E)
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APPENDIX II

The Functions fi, fa, «vvvnn.. fis. Numerical Values

tan ¥ %? S fa /s fa s e fr Js fs J10 fu fra fis

tan ji '
0 1 0-5 0-5 3-0 0-5 3-0 1-0 0 0-5 3-0 1-5 3-0 1-0 (VI
0-1 0-99 0-5135 | 0-4781 2.9552 | 0-5185 | 2-9600 | 1-0624 | 0-0048 | 0-4711 | 2-9602 | 1-5751 | 2-9744 | 1-1040 | 0-0142
0-2 0-96 0-5390 | 0-4396 | 2-8655 | 0-5390 | 2-8831 | 1-1774 | 0-0176 | 0-4234 | 2-8850 | 1-7163 | 2-9358 | 1:2929 | 0-0508
0-3 0-91 0-5690 | 0-3977 | 2-7570 | 0-5690 | 2-7929 | 1-3093 | 0-0359 | 0-3742 2'7992 1-8786 | 2-9002 | 1-5044 | 0-1010
0-4 0-84 0-6000 | 0-3571 9.6428 | 0-6000 | 2-6999 | 1-4429 | 0-0571 | 0-3287 | 2-7185 | 2-0430 | 2-8713 | 1-7148 | 0-1578
0:5 0-75 0-6300 | 0-3197 | 2-5298 | 0-6300 | 26097 | 1-5703 | 0-0799 | 0-2884 | 2-6332 | 2-2007 | 2-8495 | 1-9123 | 0-2163
0-6 0-64 0-6585 | 0-2861 9.4217 | 0-6585 | 2-5247 | 1-6894 | 0-1030 | 0-2532 | 2-5603 | 2-3476 | 2-8338 | 2-0944 | 0-2735
0-7 0-51 0-6845 | 0-2566 | 2-3206 | 0-6845 | 2-4463 |- 1-7969 | 0-1257 | 0-2234 | 2-4951 | 2-4817 | 2-8235 | 2-2583 | 0-3284
0-8 0-36 0-7085 | 0-2303 | 2-2270 | 0-7085 | 2-3743 | 1-8952 | 0-1473 | 0-1972 | 2-4381 | 2-6038 | 2-8167 | 2-4066 | 0-3786
0-9 0-19 0-7300 | 0-2080 | 2-1408 | 0-7300 | 2-3093 | 1-9820 | 0-1685 | 0-1760 | 2-3850 | 2-7125 | 2-8146 | 2-5365 | 0-4306
1-0 0 0-7500 | 0-1875 | 2-0825 | 0-7500 | 2-2500 | 2-0625 | 0-1875 | 0-1562 | 2-3437 | 2-8125 | 2-8125 | 2-6562 | 0-4687




APPENDIX III

dat
I k2)1/2 (tz . k2)1/2

M,(u) = (|u* — &*|)/*P,(s) is a solution of Lamé’s equation, and it is easy to show that
the differential equation satisfied by P,(u) is

A [P,OFF

Integration of I = J

ot = Yt — 1) 7+ et — 90— 1 2L
(Rt + R e (% + n—2uTP =0. .. .. .. (L)

The roots of P,(u) = 0 are all real and unequal, and not equal to -4 or -4 (Ref. 8), therefore
P,(u) can be expressed in the form

Pp) = Paylp) = I (u*—c), it misodd, .. .. .. .. .. . (I
where the ¢,’s are real and unequal ; and
Py(#) = Py — ﬂN;Z (* — ), if n is even, L )
where the d,’s are real and unequal, N being a positive integer.
Substituting (I11,2) in (I11,1), and putting x* = ¢,, it can be shown, after some simplification,

that
1 n 3k* N 1
Q-C,{S+Cy-h2+cr—k2}+2s§1<;—cs> :O . e (111,4)
s £ 7.
Similarly, by substituting (IIL,3) in (III,1), and putting 4 = d,, it can be shown that
1 7 3r*
2d{7+d——k2+d, }+22<d—d>—0 .. .. (II1,5)
For n = 2N41,
| S 1 . 1
PO~ Pora@ ™~ i _
N Az
=X 7 — —csl<c~c J sFEv .. . .. (IIL,B)
where 4, = 1 the dash indicating differentiation with respect to the

Poyyd(c)
argument ¢,, and Pyy,4(¢,) = [Pavi1(f)]o.

Therefore

_uf,. e 1 dat
(I)n=2N+1 - rgl [Ar J; dt <t(t2 _ C,,)z(tz — ]’&2)1/2> (?f2 —_— k2)1/2
N/ A, “d 1 dt
ECICE U , (o= ") k2>1/2H

N 2 N As
Eml[A,z{lJrZIzs:l(c_c->H, sEL L (L)




To evaluate I, and I,, we put ¢ = % ns u, where ns « is a Jacobian elliptic function of modulus
hjk, and write kjk = %, c,[k* = &2 The first and second complete elliptic integrals, with modulus
x, are denoted by K, E respectively.

It can be shown that

g sn®u | s
7 == — _
R, = JO ,du[(l — a,zsnzu)zdnu}cnu du
K(x)
— SN . sn’u
B Jo (1 — e*sn*u)* cno [ cnudn w(l — s*sn’u)? :quK
“ g
w
= — _1( + 2__1 >\[01—8,25H2M
2e e — ) o (1= ) et
<25r2( ot — D — (e — o ) Bt deser —ap s o UILY)
and
0 q sntu snu
5 _— — —
= JO du [(1 — & snzu)dnu] cnu d

. :
sn*u du .sn°u 1
(1 — &} sn®u)cn®u cnu dnu \ 1 —¢’sn’u/| .
. -

.
1 du 1 1
T eier— 1) J [ etsnin e Dh T na—w & LY

Substituting (I11,8), (IIL,9) in (II1,7), the coefficient of

K
AP au . . .
Fe e — 1) L [ ereniu’ in the expression for 7, is
”® 2 v A,
r2___1+ —%Z>+A,S§16—~C (3#7’)
1 3k?
=—k2[26<5+ et >+2z< )}

= 0, by (II1,4).
Hence it can be shown that

1x 1 8 — 20,(h* — ¢,
Dmiwir = 7 2, [[PzN_H'(C )]2{2520,@2 oy —c) £

e A G G GaD)]

S FE 7
) k"‘ﬂz 2¢,(h* —¢,) 5
1 [PZNJrl .17 2c, kz—c ¢,) (B —c,)

st ) A )]
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using the relation (III,4).

For »n = QN,
| S S o
P07 Pl ™ 7 (2 — gy
Therefore v
27 N 1
2 4
Loy = 2 {B { (d i H .. 3 (I11,11)
where
Bt . _["a 1 dt
r PZN 7 > 8 — dt t3(t2 — d’)z(iZ o k2)1/2 (tZ . k2)1/2
L "
and

7. — i [ 1 dt
YT B\SE - d)E — ) [E— A

P2N d PZN(t)
[ ) ) is written for { a& ¢ oi |

Again using the substitution { = % ns#, and Writing d,/k = 8,2, it can be shown that

B, — < [ du
ST T 28582 — 1) + —1 6,2——%2 , 1 —d2sn’u
3%(25,% — 1) — 26(5.2 1
T 26,9225, — 1)° K+ (afw T A1
.
—26 4(5ﬂ . 1)2(62 _ %2) E . .. . .. « . (III,]Q)
and

k7I4 _ ”2(261’2 - 1) _ (6r2 — 1) ar2(6’2 — 1) — x? K

W30 — D)L — %) = T utA(aE— 1)

54(52 Jl—ézsnu' O € § R )

0

Substituting (II11,12) and (II1,18) in (II1,11), the coefficient of

K
k°a,4(a,2 ) L = 6,2 nin in the expression for 1, is

,—x>"2 52—52> SFT
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Hence it can be shown that
1

Do = (p@ i(wfz =y

SR — 24) + 24,8 — )
T 2drE — d) (k - d)> E A — )’ K
h? -+ d, (R
+2d< +d T XWZkz—d K
e — 2d) — (F — d)
e

APPENDIX IV

The values of @1 — @2 @P1 — "iPs, GiP1, — ZaPa, when w —k, for n =3 and n = 4.
(Cartesian co-ordinates x, y, z)

For n = 3, when p —— &,

Ve
@ — @5 = — m (x® — RMH32 L. .. .. .. o (IV,1)
* Vs 2 24,2\ (42 2,,2\1/2 y
APy — AP — — mékaE(%) (4.96 — ky )(x — ky ) .o . .. (IV,Z)
Ve 2 2 2\ 1,2 (2 2,,2\1/2
A9 — APy = — W%E(%) [296 — (2]3 + 3h )_’y ](x — ky) e - (IV,3)
For n = 4, when g —> £,
by s = e A — R (V.4
1 2 3B HRE () .. . .. .. .. ,
Aoy — B0y = _.—_Va_._ (sz __ kzyZ)(xz . k2y2)1/2 ) (IV 5)
2P1 192 TBdRE (%) .. o .. . ,
—Vé '
[4x? — (3h2 + 452)y7) (x? — kzyz)l/z. . . (IV,G)

1 — P = Q1 GRRE (x)
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APPENDIX V

0 0 ¢
The values ofé; (01 — @a), Y (2201 — a195), 5 (91 — ao09,), when p ——> k, for n = 3 and n = 4.

(Cartesian co-ordinates x, v, 2)

For n = 3, when y — &,

% (<p1 — (pz) = ﬂzﬁ%gm [{(2}7,2 _ k2)E(x) - [)’ZK(%)}xz

— {( + WE() — M(x)}kﬂ

) V6
P (B9 — ay95) = 108" E () [{2/32(21@2 + E)K(x)

— (2R + BB — SIVE(x)}x* + {Y2k* — B)K(x)
— ok — EhE h4)E(x)}k2y2J

) Ve
5z (% = @) = Jagegag

[35 Ja? — {2(4k® + WA)E(x) — 582K (» }yJ

Forw =4, whenuy — &,

0 Ve

N (@r — og) = WE [{2/3 B* + 21°) K () + (8%* — 3h*k* — 2kYE (%)} #°

— 3{BM* — 2K (%) + 2k — B + KE(x)} hxy? ]

f) B Vs
57 (Be01 — @) = A28 WK E (

+ (48%° — 167K — OB*R* — BR)E ()} ° + B{BSE" — W*k* — 43 K ()

[{ﬁ 24kt + 135k - 8AYK ()

— (8F® — BRE® — Bl Sh“)E(x)}/ezxsz

0 : Vé
EY (o1 — ax0y) = 146°dHE (

+ {9k — MK (%) — (9 L MR - 4h4)E(x)}xy2] .

[{5,321{ ) + 5(2h — F)E(x)} #°
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Basic solutions for n = 1, 2, 3, 4, (5, 6).

APPENDIX VI

VL,X

H =735

Non-dimensional co-ordinates, x' = xo|c, eic.

(The dashes are dropped)

(xz _ k2y2)1/2’ Py h/k

ok 4 2CE).
. CorFo(p)Es(v) 6, = HX -z _ox
1 Co*Fy(u) Ey() by = HxX xX_a + X —Sf
2 Cor*Fy(u) Es"(v) ¢t = Ha*X % + 2% X —0(3fex® — frR*2y”)

8 = Hyx ¥ R

2 C*F (i) E(v) ¢t = Ha*X ’}i; + 3%°X —0(3f1e¥" — 3/ 1ek"%"Y7)
pe—myx (3 X) | R - )

3  CPFM(u)E () ¢t = HoX 3‘); + 40X
$s° = Hxy?X ¥ <§—; 4+ 2X>
¢ = Hy'X 24




9%

Basic solutions for » = 1, 2, 3, 4, (5, 6). H=

APPENDIX VI—continued

Vs
EE(x)
(The dashes are dropped)

Nomn-dimensional co-ordinates, x' = xo/c, etc.

L X = (x* — B2, % = hfk

olutions o () 2%
3 Ce*Fo*(u) Es*(») st = Ha'X ’iXG 1 BerX
¢e: = Hx*y?X x? y2<9§ |- 3X> .
¢ = Hxy'X y4<§_; + X>




APPENDIX VII

Formulae for the Local Spanwise Lift, the Total Lift, the Induced Drag, and the
Pitching-Moment Coefficients for the Surfaces Shown in Figs. 6 to 17

The numbers (i), (i), ...... of the surfaces correspond to those in the text (section 12).
Non-dimensional co-ordinates x’ = xofc, ¥’ = yofc, 2/ = zo/c. The dashes are dropped.
. 46
. — . _ 1/2 3/2 :
i Cro = 35 (L= WP (1 + 1) (Fig. 6)
3nd —2 #d
Cro= 9RE(x) ’ Coo="g RE (%)
Copl(Cri’lmd) = $E(#)(12/s — f3)
Cpo =10 ; ¢ = Cp,[(Cro’nd) = %
i) Clo = o (1 — Ryp (1 + hy)s (Fig. 7)
T RE(x) Y ‘
3o 2
— —_ — 1
Cro 2RE () Caro * RE(x)
Copl(Cri’lmd) = T5E(%)(30 fro — 7 fun)
Cpe=0 , Coof (Crd’md) = §
: 46 o+ RN ) s .
(vi) Cio = RE() \o — ky> (1 — A&7 (Figs. 8, 9)
276 7
—_ 1.2 — _2_ 2
CL() - kE(%) (1 Y ): CMO — 15 kE(%) g
Copl (Crofnd) = 2E(x)[1 — ( — 3 /o + 1 /a)0" — (§/2 — $/a)0"] /(1 — 17
k2 g2)1/2
Col(Cesnd) = F=BIE (1 gt 44y (1 — g0
Coof/(Crllmd) = e = 1 + 30*/(4 — 0?)*
.. 46 /o + Ey\"* \ .
(vi) Co= 780 o kﬁ) (1 — ok®y?) (Fig. 10)
276 7
= — 148 — 1
CLO - kE(%) (1 40 ): CIVIU — 12 kE(%) 03
oGty — 25 L= =Rt EAI — (oafy = Guf)o"
(=5
. B2 g2\1/2
Co(Cafmd) = ¢ Ll (1 — g0 4 o)1 — o

va/(CL Jlrd) =¢ =14 304 _ o%)?
47



(xii) ’ y = 45° , M = 1-281 (Fig. 11)
. 45 o —}— y

[0 7085(1 — %) — 0-2604(1 — o)

+ (0-6317 — 0-24074)(c* — 9%)]

Cro = 22“5) [0-4481 — 0-23470® + 0-07996
2nd
Cora = = 5y [0-062605° — 0-02662]
Copl(Crotlmd) — 11-3448P/C*, where :

P = 0-7085P, + 0-6317P, — 0- 2604P, — 0-2407P;

P, = 0-11208 — 0-199250* + 0-028960° -+ 0- 087220 — 0-031034°
Py = 306°[0-02801 — 0-014540* -+ 0-0051707]

P, = 0-11203 — 0-087220* — 0-08307¢* + 0-087226° — 0-031684°
Py = ¢°[0-08402 — 0-048610¢% - 0- 015840

__E(#)
C= Omd -0
O 6
Co/(CLilnd) =

+ 0-1673240* — 0-1054170° + 0-0169490°]

3(0-1579250* — 0-0601650%)2

Codf(Crdfnd) = e =1 + (0-44812 — 02347250 + 0-0798850°)?

(ix) y = 45° — 1981 (Fig. 12)
46 /o -
c,OEE—;Q_i) (1 — o) +0-4597(1 — o?)
+ 0°56824(1 — o7) + (23796 -+ 2-75000) (s — 3?)]
2md
Cro = 55y [0-02794 4 o - 1:3250* 4 1-494267)
Couo = 220 [ 35— 0-3533340* — 0- 4980820
Mo _E(%) 60' " — {e}
Copl(Cro’lmd) = 11-3448P/C?, where :
P = — P+ 0-4597P, + 23796 P, + 0-5682P, + 2-7500P,

1 = 0-00697 + 0-22920¢ — 0-091240® — 0-076370° — 0- 331880*

P
P, = 0-00697 + 0-236170 -+ 0- 167480 — 0-080655° — (- 34890*
— 0-424126°
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Co s/(CL oZ/nA)

Cpof(Crtfmd) = ¢

(x) ¥

CZO—

Cro=

CMO =

CDP/(CL 02/7“4)
P
P,

Py = 30%0-02337 + 0-07085¢ + 0-029085* + 0-2172307%
P, = 0-093847 4 0-23617¢ — 0-348900* 4 0-54374¢®> — 0-295216*

Ps

C =

Cpo/(CLofmA) =

Cpof(Cr?frnd) = ¢

= 30%[0-00174 + 0-070856 + 0-116300* + 0-139654°]
= 0-00697 + 0-236170 4 0174456 4 0-195780° — (- 29521s*

— 0-39874¢° — 0-493295°

= ¢°[0-00523 + 0-221410 +4 0-386280* + 0-4729307]

_E )

Cro

— 0-3804615° — 0-3083850* + 0-1492694° + 0-0807245°]

— 14+ cﬁé (0-59490% + 0-68750%)*

= 45° ,
46

[O 000781 + 0-037253¢ + 0O- 4871560

M = 1-281

(6-17 —0- 85990)(02 — 3]

2?5) [0-3732 + o — 0-08320% + 2-692507]
2m8 - 15 1092190 4 0-89750°]
E(x) - °

— 11-3448P/C?, where :

= — P, + 4-7107P, -+ 6-17P; — 3-3375P, — 0-8599P;
= 0-09347 4 0-14270¢ — 0-614590* 4 0-881440° — 0-78444¢*
P, = 0-09347 + 0-23617¢ — 0-44237¢* + 0-35381¢® + 0-17445¢*

— 0-88960¢s°

+ 0-124616° — 0-968494°

= ¢°[0-07011 + 0-221410 4+ 0-12461¢* 4+ 0-71052¢%]

E(x)
276 Cro

06

- [0-139308 + 0-4976530 — 1-2582200*
- — 2:7720216° + 9-6218710* — 8-9838700° | 2-7846505°]

3
=1+52(1

- 54256 — 0-21500%)2
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(1 — o) + 4-7107(1 — 6% — 3-3375(1 — o°)

(Fig. 13)



(id) y = 45°, M =1-166 (

[

E(x)\o — v
2nd 7d
Raustet — 1

Cro E(%) (1 0) » CMO = 3 E(%) o
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F16. 5a. Notation for surfaces (i) and (ii) (Figs. 6 and 7).
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Z=z6lc

Figs. 5b, 5c and 5d. Notation for surfaces (iii) to (xvi) (Figs. 8 to 22).

Note : In Figs. 6-22, %', 3’, 2/, are written %, y, z.
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