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Summary.—Rmsons for Enguiry.—As part of a general investigation of stability problems a review of the theoretical
aspects of dynamic longitudinal stability was required. .

Range of Investigation.—A summary is given of the theory of dynamic stability in gliding flight, including an
approximate method of calculating the period and damping of the phugoid. The effects of weights and springs in the
clevator circuit are examined and compared with qualitative evidence from flight tests. Stability at altitudes is also

considered.

Results and Conclusions.—It is shown that, with positive static stability, the low degree of phugoid damping on some
modern aircraft cannot be attributed to low drag or to inadequate tail area for damping out the pitching motion, unless
there is a large loss of tail-plane effectiveness on freeing the stick. It is more probably due to too small a static margin
combined with friction in the elevator circuit. A weight moment about the elevator hinge improves static stability,
but with the assumptions} made here, it does not appear to be as efficient dynamically as an equivalent change in static
margin by an increase in tail effectiveness or a movement of the centre of gravity. A spring or inertialess weight moment
improves static stability, but may have a very unfavourable effect on dynamic stability, particularly at high altitudes.
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f Subsequent calculations have shown that, for an incompletely mass-balanced elevator or with most practicable
arrangements of inertia weights, there is no unfavourable effect on phugoid damping due to the weight moment at the
same static margin. \
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1. Introduction.—Considerable attention is being given to the problem of providing sufficient
longitudinal stability to give satisfactory flying qualities, particularly for long-range cruising,
night fighting and at high altitudes. With a large number of present-day aircraft the trouble
appears to be due to insufficient static stability under some conditions of flight, but it is not clear

how much static margin is needed and whether this alone will ensure satisfactory flying qualities
for long periods.

Preliminary investigations suggest that, although slipstream may have an important effect
on the position of the neutral point, it produces no serious change in the relationship between
dynamic and static stability, and, in general, it increases the phiigoid damping for the same static
margin. The simpler case of motion in the glide is therefore being analysed in detail, in an attempt
to explain the observed behaviour in flight and to form a basis for estimates of dynarmc stability
in future designs. The present paper gives a review of the work which has already been done

and includes some comparisons with full-scale results. The theory is summarised in mathematical
appendices. ‘

It is apparent that there is in some cases a marked difference between calculated and measured

stick free phugoids for small degrees of static stability, and it is thought that this may be due
to the effect of friction in the control circuit.

2. Theory of Longitudinal Stability in Gliding Flight—2.1. Definition of Static and Dynamic
Stability.—Static stability is positive, stick fixed, when the downward elevator angle to trim in
steady flight with a fixed trimmer setting increases with speed. It is positive, stick free, when
the pull on the stick required with fixed trimmer setting (or the downward tab angle to trim
with zero stick force) decreases as speed increases. For the cases considered here the magnitude
of the static stability margin can be defined®? as the distance of the centre of gravity in front
of the neutral point (centre of gravity position for neutral stability).

Positive dynamic stability means that after a disturbance the aircraft tends to return to the
steady trimmed speed and attitude, either with fixed elevator or with the stick left free, if there
is no load on the stick in the trimmed condition. It may either approach the trimmed position
directly from the disturbed state (subsidence) or oscillate about it with decreasing amplitude.
Departure from the trimmed position without oscillation (divergence) generally implies static
instability, but it is shown in §4.2 that in special circumstances a dynamic divergence can occur
with positive static stability. The conditions for static and dynamic stability are expressed
mathematically in Appendix I, equations (14)—(18). .

2.2. Exact Method of Solution of the Dynamic Stability Equations.—As there are differences in
notation in various published papers®-# on dynamic stability, it has been thought advisable
to summarise the classical theory in Appendix I and to develop the formulae for the derivatives
in terms of the aerodynamic characteristics which can be calculated or measured in the wind
tunnel. The non-dimensional notation adopted is based on that of R. & M. 1801° and is
summarised in the list of symbols.

On a stable aircraft with fixed elevator the solution of the stability equations gives two possible
types of motion, a heavily damped quick oscillation with a period of from 2 to 10 seconds and a
slow “ phugoid " motion with a period of from 30 seconds to 2 minutes and a low order of damping.
Typical calculated values of the period and of the time to damp to half amplitude for a stable

aircraft, given in Tables 6A and 6B, are based on model tests on the Halifax with fixed or free
elevator.

With the elevator free and mass-balanced it is usual to neglect the moment of inertia and
damping of the elevator itself and to include only the change in effectiveness of the tail plane due
to the floating angle of the elevator. The neutral point %, stick fixed is replaced by 4," stick
free, and q,, the slope of the lift incidence curve for the tail plane, by

al'zall(l—gi—g:).
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There seems to be little doubt that this method gives the phugoid damping with sufficient
accuracy, provided that there is no friction in the elevator circuit and that the whole circuit is
mass-balanced, since the motion is too slow for any appreciable lag in the elevator floating angle.
The effect of a constant out-of-balance weight moment is considered later. For the short period
oscillation it is necessary to include the elevator motion in more detail.. The short period oscilla-
tion is important in connection with manceuvrability, since it dominates the motion of a stable
aircraft immediately after a disturbance. It can be analysed approximately by neglecting the
variation of forward speed in the stability equations. The present paper is concerned only with
the phug()ld oscillation, in which Speed changes are most important.

When the static stability is nearly neutral, the solutlon of the equations gives four real roots
or subsidences, one of which becomes a d1vergence as the centre of gravity passes through the
neutral point, and one is a very rapid subsidence (see Table 6C). As the static margin becomes
more negative, the two intermediate roots combine to form a damped oscillation of slow period,
similar to a phugoid, while the subsidence and divergence represent the motion associated with
negligible changes in speed, which is of importance in the study of manceuvrability.

Typical values of the roots for a statically unstable aircraft are given for the Spitfire I in
Table 7A, (i) and (ii), where the unstable modes are underlined. The normal centre of gravity is
at 0-314¢ (B in. aft of datum), while 0-352¢ (9 in. aft of datum) gives the furthest aft position
tested. With the centre of gravity further forward at 0-25, outside the normal flying range,
the behaviour is similar to that of the Halifax. Neutral points stick fixed and stick free with
a weight moment were determined from flight tests and the effect of freeing the stick with
the elevator mass-balanced has been estimated from these values and calculated elevator
characteristics.

2.3. Approximate Method of Solution.—An approximate analysis of the phugoid motion for a
fixed or a free mass-balanced elevator was developed in R. & M. 1118% A more convenient
expression for the damping has since been developed by S. B. Gates but has not previously been
published. It is described in full in Appendix II, where it is shown that the damping factor »
can be expressed in the form

p = fCo+FC2\ o e

where f and F depend on the geometrical properties of the aircraft, mainly the aspect ratio of
the wings, and on the two fundamental stability and damping parameters,

mw We 1 a
® = — gy = 3h7 g Z(h n)* \
_”%Aﬁiﬁ ®
PT T, T 2 Sk

The effects of wing loading and altitude appear only in o, while the tail plane size affects » directly
and o through %,, if 4 is fixed. Typical curves for f and F are given in Fig. 1.

The time T in seconds to halve the amplitude is given by

T_0312J<WCL . R - |

For an unstable phugoid (1’ negative) the time to double the amplitude is — 7.

13

*This expression for o holds only when m,, = 0, see footnote on page 15.

(76172) Al
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Unless %, — % is very small, the period P in seconds is approximately

NI A )

—0-138'V\/{1—}—-2.’;#V_h)} )

and is proportional to speed, if the static stability margin and the tail plane effectiveness (a,)
do not vary with incidence. The number of cycles to halve the amplitudeis

%20'878@/,\/(14-;—;).‘ O )

The factor 7 represents the damping of a phugoid only when o is greater than a small positive
value. It has been shown already (Table 6C) that when w — 0 the phugoid increases in period
until it splits up into two subsidences. For very small positive values of w, # represents the mean
rate of decay of these two subsidences. This is illustrated in Fig. 3, which also gives a comparison

between the exact and approximate methods of calculation. The validity of the approximate
method is discussed in Appendix II.

3. Effect of Profile Dyag and Tail Size—At low values of C, the damping of the phugoid of
a statically stable aircraft is approximately » = f C,, where flies between Land §, and an average
value of 7 at high speeds is 3 C), (see Fig. 1). Thus, the cleaner the aircraft, the less the damping.
Typical calculated values of the stick free period and the damping are given in the following
Table 1 for an assumed C,, of 0-02, which represents an average value for modern fighters, but
is definitely low for bombers. For the Halifax C,, = 0-027 is a more reasonable value,

TABLE 1
N Height , W/S T P
Alrcraft Co, C, i, | " 7% Ihysq ft. | min min. TP
|

Beaufighter .. .. 0-02 0-2 10,000 0-050 31 1-1 1-2 0-9
W = 15,500 1b. 0-02 0:6 10,000 0-050 31 1-3 07 1-85
0-02 0-6 40,000 0-050 31 1-9 1-05 1-85

Halifax .. .. 0-02 0-2 10,000 0-085 48 1-3 1-4 0:9
W = 60,000 Ib. 0-02 0-6 10,000 0-070 48 16 0-85 1-95
0-02 0-6 40,000 0-070 48 2-4 1-3 1-85

There is as yet no evidence that this order of damping disturbs the pilot, since periods of the
order of -2 minutes and damping times of from 1 to 2 cycles to halve the amplitude are common
among types, such as the Havoc, which are considered pleasant to fly. Any apparent instability
of modern aircraft cannot therefore be attributed solely to their clean design.

Fig. 4 shows the effect on phugoid damping of a reduction in the static margin of a stable air-
craft due (1) to a change in centre of gravity position (dotted curves) and (2) to a reduction in
tail area or effectiveness (the figures on the full-line curves are proportional to S ‘a’la). As
would be expected, the damping is greater with a large tail, but over a wide range of static margin
the variation in damping is small. This is consistent with the results of flight records and pilots’
reports, which show that pilots cannot distinguish between different degrees of static stability

provided they are all markedly positive. The behaviour for small degrees of static stability is
discussed in§6.
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Negative damping may occur at high values of C; if the tail plane is exceptionally small or if
there is a large loss of effectiveness. It is clear from equation (1) that 7 can never be less than
its value at C;, = 0, provided F is positive. It is shown in Appendix III that F can be expressed
in terms of », w and the aspect ratio 4 of the wings. For any given aircraft A and » are fixed,
while » may vary over a wide range with varying centre of gravity position, wing loading and
altitude. Typical curves for F plotted against w for various values of » (Fig. 1) show that there
is a value of » for which F is a minimum-and that this minimum value of F decreases with ».
- Thus there is theoretically a minimum value of » or of effective tail size for a given design, which

will ensure that F cannot be negative whatevet the value of o (for » > 0), and that » cannot
fall below fCp. It is shown in Appendix III that this limiting value of » is given approximately
by :
zd
Vwin = {79 . .. .. .. .. . ... (6)
wn = 1791 & +/(10A + 36)]

The curve for v, against A is plotted as a full line in Fig. 2 and the corresponding values of
are marked on the curve. At all other values of w the damping is greater for the same value of ».
Seme typical full scale values of » are given below :—

S [ ’

TABLE 2
| Mini Stick fixed Stick free
Aircraft | 4 5'/S lg;f;‘;m 1ck lixe 1ek AT

: ‘ 5 ay, ’ v a,’ v
Spitfire 5-67 0-136 11 3.2 2.4 2-8 21
Halifax .. 7-85 0-179 8 3-4 2.4 2.9 21
Beaufighter 6-7 0-174 12 2-8 2.9 2:6 2.7
Havoc 81 0-209 12 3-0 3-8 2.4 3-0

This suggests that, unless there is a large loss of stability on freeing the stick, it is unlikely that
any modern aircraft with mass-balanced elevators has a value of » less than the theoretical
minimum required to give no reduction in damping with increasing C;.

A further illustration of the effect of tail size on the damping and period for a given aircraft
is given in Figs. 6 and 10 for C;, = 0-6 and 1-2. For the smallest tail the minimum damping

decreases with increasing C; and is negative at C, = 1-2. It increases very slowly with C, for
the normal or medium tail and more rapidly for the large one.

4. Weights* and Springs in the Elevator Circuit.—So far it has been assumed that the elevator
and control system are completely mass-balanced about the elevator hinge and that the stick
is also balanced independently, but this is not true in general. Also inertia weights are some-
times inserted deliberately in the elevator circuit either to increase the static stability or to
prevent the aircraft from being pulled out of a dive too quickly. Another method of increasing
static stability is to insert in the elevator circuit an initially tensioned spring which applies an
approximately constant force tending to pull the elévator downwards. These two methods of
increasing static stability have very different effects on dynamic stability.

* Tn the development of the formulae and curves of this report it is assumed that the hinge moment due to the gravity
force on the weight remains constant during the motion of the aircraft. It can be shown, however, that, for a weight
attached to an arm of fixed length, the effect of the change in gravity moment due to the change in attitude of the
aircraft, combined with the inertia moment due to the acceleration along the x-axis, has an important effect on the hinge
moment due to the weight, which should not be neglected. If the angle between the weight arm and the horizontal is
initially small and the weight is situated near the aircraft C.G., the effect of the weight on the phugoid damping is the
same as that of an equivalent C.G. movement to give the same change in static margin. The damping curves for a
weight moment given in this report are therefore pessimistic for most practicable arrangements.
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With both spring and weight the tendency of the elevator to float downwards is reduced as the
speed increases, because the weight or spring moment is independent of forward speed. This
has a favourable effect on static stability and appears as a term in mz, in the equations for dynamic
stability. The essential difference between the weight and the ‘tensioned spring is that the
weight has inertia and responds to normal and centrifugal accelerations. It therefore gives an
important contribution to the derivatives m, and m,; and 'adds to the damping effect of the tail.
The spring has no such effect. If the weight is situated far from the centre of gravity, say on
the elevator itself, it also contributes a term ,, which has the same effect as a reduction in the

apparent moment of inertia of the whole aircraft and has %ffavourable effect on the dynamic
stability.

The effects of dlfferent sizes of inertia weight on the phug01d damping are shown in non-dimen-
sional form for C; = 0-6 and 1-2 in Figs. 13 and 15, where the damping factor » for three values
of » is plotted against w, the static stability factor stick free without a weight. These diagrams
can be applied well enough to any conventional aircraft with an aspect ratio of about 6,and
can be used for predicting the effect of a constant weight moment, provided the elevator charac-
teristics are known. Similar curves for a spring are given in F1g:, 14 and 16. The same data
have been plotted in dimensional form for an assumed aircraft in Figs. 6-12. The scale in Fig. 9

has been reduced to show the large negative damping with a spring for negative values of the
initial static margin.

4.1. Weight Moment.—In Appendix IV the approximate method of calculating the damping
and period of the phugoid is extended to include the effect of a constant weight moment in the
elevator circuit. The curves of Figs. 7 and 11 compared with those of Figs. 6 and 10 illustrate

this effect for a weight inserted near the centre of gravity of the aircraft and giving a rearward
movement of the neutral point, 44," = 0-05.

If the aircraft is statically stable, stick free, with complete mass-balance (4, — 4 > 0), the
addition of a weight moment reduces the period by the same amount as if the change in static
margin were due to a forward movement of the centre of gravity (equation (83)). The effect
on damping depends on the value of 4,” — % and the tail area, but in general the weight moment
reduces the damping. This reduction in period and damping is confirmed by flight experiments
in Germany?, in which both the stick and the elevator were mass-balanced and a weight was

added in the circuit near the centre of gravity of the aircraft. It is also consistent with the results
of tests on the Mosquito in this country.

If the addition of the weight converts a negative static margin into a positive one, it improves
stability by eliminating divergence, but it gives less damping* than the equivalent change in the
centre of gravity position (equations (82) and (53)). With a small tail or at high altitudes there
may be an unstable oscillation (Fig. 7 and 11). This is because the minimum value of » required
to prevent a loss of damping with increasing C, is larger with than without a constant weight
moment (Fig. 2). If the moment is due to the unbalanced mass of the elevator itself, the effective
moment of inertia or %£,* of the whole aircraft is reduced (by about 20 per cent. for 4%,” = 0-05,

(see equation (73)) and this increases the value of » for the same tail size, but not by the required
amount.

Since it is generally agreed that it is desirable to have positive static stability with stick both
fixed and free, the only legitimate use for a weight, except as an emergency measure, is to counter-
act a loss of tail plane effectiveness on freeing the stick with a convergent elevator (b, < 0), say
one with a set-back hinge and servo tab. The present tendency towards complete mass-balancing
of elevators as a measure of flutter prevention has in fact made it more difficult to obtain close
aerodynamic balance without loss of static stability.

Although effective in preventing divergence, the constant weight moment combined with a
convergent elevator is much less efficient dynamically than a neutral elevator (b, = 0). As
shown in Fig. 2, a larger effective tail plane area (S'a,’/a,) is needed with than without a weight

~# With the assumptions made here (see “footnote on page 5).
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to ensure adequate damping at high values of C;, but the loss in effectiveness with the convergent
elevator is actually reducing 4, when the stick is free. It is therefore preferable to design the
elevator to give as little loss of stability, stick free, as is possible (@, = 4,) without a weight,
and to use the weight only as a last resource if the stability is unsatisfactory in flight.

4.2, Spring Moment.—Approximate expressions for period and damping have been developed
in Appendix IV for the case of a spring in the elevator circuit, but they are not applicable when
h,’ — h (or ) is negative. As a spring is more likely to be used when the static margin is negative
without it, a more accurate method of solution is needed for the most interesting part of the
curves for dampmg and period in Figs. 8, 9, 12. This is discussed in Appendix IV (A.4.2).

If there is a small positive static margin initially, the addition of the spring reduces both
period and damping apprec1ab1y and the damping may become negative (¢f. Figs. 6 and 8,
10 and 12). ]

For an initial negative static margin the damping is compared in Fig. 9 (C, = 0-6) with the
negative damping (or rate of growth) of the divergence, which occurs without the spring.
It is seen that at best the divergence is replaced by an unstable oscillation, and there
'may even be a dynaniic divergence, although the static stability is positive. This means
that, although the pilot must push on the stick to hold it at the diving speed when it is
trimmed for level flight, he will have to pull to keep the aircraft from going into too steep a dive
until the speed has increased to the diving speed. The spring gives static stability because the
floating angle of the elevator changes with speed, but at qonstant speed the aircraft is still un-
stable stick-free. In a manoeuvre the speed changes relatively slowly and, if at the level flight
speed the trimmer is set correctly for the dive and the stick left free, the aircraft will diverge
before the stabilising effect of the speed change has had time to have any effect. This may not
be important in practice because the pilot will take control during the manoeuvre. A device
like the weight moment, which adds to the damping in pitch as well as to the static stability, is
much more effective dynamically, as is shown in Fig. 7, although still not as good as a larger tail
plane. :

Even a small spring moment has a large effect on the minimum value of » or effective tail plane
size required to prevent a loss of damping with increasing C, (Fig. 2). The method used for
calculating these curves breaks down for larger values of w,, but it is clear from Figs. 8, 9, .12
that no practicable size of tail plane can prevent instability with a larger spring (o, = 10 at
10,000 ft. and 30 at 40,000 ft.).

The loss of phugoid damping with a spring has been observed in tests on the Mosquito and
the Beaufighter, and is confirmed by the more systematic German tests referred to aboves.
Calculated values for the Spitfire with a spring moment of 5-5 lb. ft., giving 44,” = 0-05, are
given in Table 7A (iii) at the end of the report, and Fig. 5 shows an appreciable loss of damping
for the Halifax due to a spring giving only 0-007 for 4%,’, which is equivalent to the unbalanced
weight moment of 17 Ib. ft. on the production aircraft.

The calculated effect of an allowance for the extensibility of a typical spring, as used on the
Hampden, has been found to be small but unfavourable on the Spitfire. In Germany?, apparently,
elevator oscillations have been set up by a flexible spring, but no such case is known to have
occurred in England.

5. Effect of Altitude—Theoretically the static margin in the glide is unaffected by altitude
and this is consistent with results of full-scale tests on the Spitfire. -

When the control system is mass-balanced and frictionless, the effects of altitude on dynamic
stability are not very marked. If the static margin is negative, the rate of divergence becomes
more rapid as the altitude increases (Fig. 9). The minimum damping of the phugoid for a given
C. or indicated air speed, if expressed in non-dimentional units or in terms of the number of
cycles to damp to half amplitude, is independent of height, but it occurs at a further aft

centre of gravity as the height increases. If expressed as the reciprocal of the time in seconds
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to halve the amplitude, the minimum damping is reduced with increase in height, except at high
C. and with a very small tailplane (Figs. 6 and 10). At a given static margin the damping (1/7)
is reduced by an increase in height, except with a small tailplane over a limited range of C.G.
position. The period corresponding with the minimum damping increases with height at the
same indicated air speed (Figs. 6, 10), but it is unaffected at the same true speed (equation (4))
unless the tail-plane effectiveness varies with C,. The period of the short period oscillation
(Table 6) decreases with increasing altitude.

A weight or spring moment gives the same increment 44%,” in the static margin at all altitudes,
but the effect on dynamic stability becomes more severe as the height increases. With a constant
weight moment in the circuit, a larger tail is required at the higher altitude to prevent a loss of
damping with the increasing C,, since o, in Fig. 2 is proportional to 1/p. Even with the large
tail of Figs. 7, 11, the damping with the weight moment falls to a very low value.

With a spring the effect is even more marked. For a large initial static margin the effect of
altitude is favourable, (Figs. 8, 12), but for small positive values a rapidly growing oscillation
may occur at 40,000 ft. If the aircraft is statically unstable without the spring, the rate of
growth of the oscillation or divergence increases with altitude and at 40,000 ft. is almost as large
with as without the spring, (Fig. 9), in spite of the increase of 0-05 in the static margin. The
estimated increase in instability with altitude for the Spitfire is shown in Section (iii), Tables 7A,
7B. Calculations for the Halifax (Fig. 5) show that a relatively small spring may cause a large
loss of damping at 40,000 ft., while at 5,000 {t. the effect is comparatively small.

6. Comparison with Flight Tests—Attempts have been made to compare estimates of dynamic
stability with phugoids measured with free elevators in flight. The results are far from conclusive
owing to the inadequacy of model and flight data, particularly on the positions of the neutral
points with free elevator. In general, however, if there is an ample margin of static stability,
the period and damping of the phugoid are in quite good agreement with estimated values.
The main discrepancy lies in the region of small margins of static stability. Here theory (Fig. 3)
would indicate increased damping as the centre of gravity moves aft, followed by a subsidence
which changes over to a divergence as the centre of gravity passes through the neutral point.
Such behaviour is observed in some cases and a subsidence or very mild divergence is usually
considered satisfactory by the test pilot. In many cases, however, unstable phugoids appear
as the centre of gravity moves aft, followed by very erratic behaviour, such as a brief oscillation
followed by a divergence or an oscillation of such large amplitude that the pilot takes charge
almost immediately. These may be genuine divergences for small disturbances within the order
considered by the theory, and they are certainly undesirable. Apparent divergences, however,
may occur with nearly neutral static stability if the aircraft is not exactly in trim at the
equilibrium speed.  With the centre of gravity still further aft, no oscillation is possible and there
is a definite divergence indicating serious static instability.

The position of the neutral point stick free is rarely measured in flight, and the accuracy of the
tests when available is not high, so it cannot be stated definitely on which side of the neutral
point the unstable phugoids occur, but they appear to be on the stable side, and in some cases
there are signs of a dynamic divergence with positive 4, — 420, On theoretical grounds such
unstable phugoids would be expected only with a very small tail or for a normal tail with a large
loss of effectiveness on freeing the stick (large ,/8,) or with a spring in the elevator circuit, while
divergences can occur with a positive static margin only with a spring.

Unpublished tests on the Halifax prototype (L.7244) may be quoted as giving an example of
a disagreement between estimated and measured phugoids, while a production aircraft (..9505)8
gives good agreement. The estimated and measured values are compared in the following
Table 3 and the estimated values are shown as points * in Fig. 4.
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TABLE 3
Period Cycles to halve amplitude
Aircraft No. w h, —h C,
Measured Calculated. | Measured Calculated
1..7244 33 | 1. 32, Unstable 2-0 43300 | 0-065 1-12
1..9505 -’-:40‘ ' 39 =2 0 1-9 53,000 0-053 0-9

The elevator nose of the 1..7244 was subsequently modified to a shape adopted for the production
type, but the firm’s model tests indicate little change in tail-plane effectiveness with free elevator
due to the modification, and the calculated values are based on the National Physical Laboratory
tests with the original elevator nose shape. Also Fig. 4 shows that the estimated damping varies
little with tail plane effectiveness ; the figures marked on the full line curves give the ratio of
a,’ (stick free) to a, (stick fixed). Another possible explanation was a change in the degree of
mass-balance of the elevator, but Fig. 5 shows that this effect cannot be large. The weight
nmoment on the production elevator is about 17 Ib. ft., but this is relatively small for such a large -
arrcraft and gives an estimated 4%,” of only 0-007. Measurements of neutral points in gliding
flight should throw some light on the problem but this is no longer possible on the L.7244 with
the original elevators.

Tests on the Spitfire at various altitudes? show a change from a neutrally stable oscillation
at 6,000 ft. to an unstable one at 30,000 ft. As the elevator is not completely mass-balanced,
such a change can be explained qualitatively by the theory (see Fig. 7). TFrom quantitative
estimates (Table 7), based admittedly on inadequate flight and model data on elevator
characteristics, a stable phugoid would be expected at either height. In this case Dr. Neumark
has pointed out that the calculated movements, which change neutral stability or a divergence
with stick fixed into a stable phugoid with stick free and a weight moment on the elevator, are so
extremely small that they would be prevented or considerably modified by friction in the elevator
circuit. The relative amplitudes for the phugoid motion, based on an assumed value for #,
are given in Table 4 below. The equivalent value of the hinge moment is shown to be small
compared with the moment required to overcome the static friction on the ground.

TABLE 4
V (T.AS.) Assumed _ H, = Friction moment
m.p.h. % 0 7 byn % p V23S, ¢, on ground
at 40,000 ft. m.p.h. 1b. ft. 1b. ft.
. |
240 12 3-6° 0-05° 0-09 | 1-6
I

It is generally assumed that friction in the elevator circuit gives a phugoid intermediate between
the estimated phugoids for stick fixed and stick free, but it may be more unstable than either.
If the effect were similar to that of an initially tensioned spring, which applies a nearly constant
moment about the elevator hinge, it could easily account for the existence of unstable phugoids
or even divergence with positive static stability and for a deterioration in dynamic stability with
altitude. In this connection the spring is typical of any device whose effect on static stability
depends only on the variation of forward speed (through m,) and which provides no damping
of the p1tch1ng motion.
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7. Summary of Conclusions.—(1) In modern aircraft the period of the phugoid is of the order
of 4 to 2 minutes. Its damping is essentially small. The phugoid problem is to avoid conditions
in which this small damping falls to zero.

(2) A good approximation to the damping factor in aerodynamic time is fC,, -~ FC,?, where
f 1s roughly constant at about % and F has large variations with o (static stability) and » (tail
damping), (see Fig. 1 and Appendix II).

(3) The order of the damping is governed primarily by Cp,, which fixes its value at high speed
at about ¢ C,,, and excludes an increasing oscillation in that region.
(4) F increases with » at all values of w and may be negative if » is small enough: v, or

I*S’|k %S, is therefore the chief secondary factor in determining the damping ; the larger the tail,
the better.

There is a value », for which the minimum value of F is zero. If »is greater than », the damping
is never less than fC,,. If » is less than », the damping falls below fC,, for some values of w
and may become negative at high C, (Fig. 15, full lines). An average value of », is 1-5 (Fig. 2,
full line), corresponding to a tail volume of about 0-3, which is well below the values now in
common use. Accordingly, an increasing oscillation in the glide should be rare, unless it is caused
by an unexpectedly large decrease in tail effectiveness on freeing the stick.

(5) At low values of C, the damping is nearly independent of static margin, provided it is
positive, while at high values an envelope curve for the flying range of wing loading and altitude
would show little change in damping with static margin (see Fig. 10). Thus choice of static margin
cannot be dictated by a logical argument from damping. The lower limits now being recom-
mended (0-02 to 0-06 according to type) are governed by wider considerations, and may fall
on either side of the minimum damping, according to size of tail. They avoid the critical region
from 0 to 0-02, where factors (e.g. friction) not included in the theory may have a powerful
adverse effect on the damping.

(6) Increase in altitude has no effect on the static margin, but if this is negative it increases
the rate of divergence. If the static margin is positive, it moves the point of minimum damping
nearer the origin (Fig. 10). Unless the tailplane is exceptionally small the time to damp to half
amplitude is increased by an increase in altitude over the whole range of static margin, but the
change is likely to be most pronounced with a small static margin.

(7) A deficiency in stick free static margin can often most easily be made up by putting a
weight or a long spring in the elevator circuit. These affect the damping in different ways,
since the effect of the weight, unlike that of the spring, depends on changes in acceleration as
well as changes in forward speed.

(@) A weight is in general an effective remedy. If applied at a negative static margin, it con-
verts a divergence into a damped oscillation, although this may become unstable at high altitudes
(Fig. 11), but, if applied at a small positive margin, there may be an appreciable decrease in
damping* (Fig. 13).

(b) A spring is in general an ineffective remedy. At a negative margin it makes the margin less
negative without producing stability ; at a moderate positive margin it produces an increasing
oscillation (Fig. 14). Its adverse effects increase with altitude.

(8) Application of the phugoid analysis to flight records shows that the agreement is reasonably
good when the static margin of the experiment is definitely positive, but when it is small and
uncertain in sign the theory is a less reliable guide. In particular it fails to account for the fre-
quent occurrence of increasing oscillations, mainly at small static margins. It is clear from the
analysis itself that the region between small negative and positive margins is a critical one in
which factors such as friction, which are not included in the theory, may have large effects.
Further experimental and theoretical work is in progress to clear up these discrepancies.

(9) As this analysis ignores thrust and slipstream effects, no comprehensive rules can be given
for design against negative damping. The following rough guides can however be given :—
(a) The static margin, both stick fixed and stick free, should never be less than 0-02.

(6) In working to a given margin, it is better to use a large than a small tail ; in general the
tail volume should not be less than 0-5.

(c) If an easy remedy is needed for a negative margin, stick free, a weight should be used,
not a spring.

* See footnote on page 5.
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APPENDIX I
Summary of Theory of Longitudinal Stability in Gliding Flight
A.L.l. Equations of Motion and Solution.—The system of axes and the notation are based on
R. & M. 18015 with some modifications suggested by Dr. Neumark. The origin is at the centre
of gravity of the aircraft. The x-axis is forward along the wind direction in the equilibrium
condition and is fixed in the aircraft during the disturbed motion. The z-axis is downwards

in the plane of symmetry of the aircraft and perpendicular to the x-axis, while the y-axis is to
starboard. Only motion in the xz-plane is considered here.

In the equilibrium condition the aircraft is moving with velocity ¥V, along the #-axis, which is
inclined at an angle y, to the horizontal ; (y, is positive in the climb and is denoted by 6, in
R. & M. 1801%). In the disturbed motion the component velocities are V' + « along the x-axis,
w along the z-axis and an angular velocity ¢ about the y-axis, where #, w, 6, g are so small that
second order terms can be neglected. The aerodynamic force has components X, Z along the
x- and z-axes, and produces a moment M about the y-axis.

During a disturbance the x-axis is inclined at an angle (y, + 0) to the horizontal, where

db/dt = g, the angle of climb is (y, + 0 — w/V,) and the angle of incidence (a, + w/V,), where
#, 1s the incidence in the equilibrium condition.

The gravity forces are 4 mg cos (y, + 0) = -+ mg cos y, — mgh sin y, along the z-axis and

— mg sin (y, 4+ 0) = — mg sin y, — mgl cos p,
along the x-axis.

The accelerations in the disturbed motion are 4% along the x-axis, & — V,q along the z-axis and
¢ about the y-axis, the corresponding forces and moment being — ma, — m(@w — V,q), and
— B¢, where B is the moment of inertia of the whole aircraft about the y-axis.

The acrodynamic forces may be expressed in the form
X:XZ—I—XMM—[—wa—{—qu', ’ .
LZ=Z, +Zu+Zw+2Zq, | .. . .. (7)
M=M,+Mu+Muw-+Mg + Mgp+ My , |

where X,, Z,, M, are the values of X, Z, M in the equilibrium condition, and X, efc. represent
0X/ou etc. Strictly, X, Z, M should include acceleration terms due to #%, w, g, but M; is the
only one which is sufficiently important to be included. M, represents the moment applied by
the elevator in controlled motion, where 4 is the elevator angle measured from its value in the
equilibrium condition. The corresponding forces X, or Z,y are negligible.

By equating the sum of the inertia, gravity and aerodynamic forces or moments to zero and

subtracting the terms for the equilibrium conditions which are themselves zero, we get the
equations

— m(n +-gbcosy,) + Xu+ Xw+ Xg=0 ]
—mw —Vgtgisiny)+Zu+Zw+Zg=0 ;.. .. .. ®)
— B+ Mu+ Mw+ Mg+ Myw + My =0 l

These can be expressed in non-dimensional units in the form*

N u woo. N ¢ \

b=ty .9=iT=73, o . .. . . 9)

pm _VECL_}N/E,CL 10)
where t_pSV,,* % g (S Z)) . . . .. .. (10)

and £ seconds is the unit of aerodynamic time <.

*In R. & M. 18015 the non-dimensional forms are u, (#/V,), uy (w/V,), fq (rg in the notation of R. & M. 18015).
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The first two equations are then multiplied by 1/pSV? and the third by p,/pSIV 2, where
iy = Bjmi* = (ky/l)?, ky is the radius of gyratlon of the aircraft and p, = m/pSI and represents

the relatlve density of the alrcraft Also 4, @, ¢, 0 are expressed in the form

4 = Uer, o = Wer, g = Qe”, 0 = 0" = % ,

where 1 is given by the roots of the determinantal equation

__’b_&_ _EU; ) I »}.)‘f 1;6, ; 7
I,/»/ Ve f P 3
; : : : : -
A — x, — %, — /1 ¢ 4 2k ‘ 0
s(’ I Ml 2
S P 2 ;Z_z;_ln)ij 0
T 1 . 2 -
vt | — ey A — e, —m," A+ 22 — pam,)’
‘where .
x - X /PSVe 2 zu = Zu/PSVe 4
x, = X, [pSV, , 2, =Z,[pSV, ,

%, = X [pSV I,

m, = igm, = M,[pSIV, ,
m, = igm, = M,[pSIV, ,
My = igm,’ = M,[pSIV? .

The equation for 4 is
2 Bat 4 Ca: 4+ D+ E, =0
where, w1th fixed elevator (n = 0) and %, = 0,

<1+M1>M1 ws

—> MIM/L —I_ (x + zm)

2, =Z,/pSV] ,

wm* = tgum,’ = M, [pSE,
my = igm, = M,[pSEV, ,

Bi——(n,+a)—m
Clz‘(xz-—xz —(1
+M1m [(1+ +Stany,]
D, = uum, [u<1+#1 —{—CLtany:I

+ |- (142

» Cr
2

VB, = %L Lum,' (2, — %, tan p,) — pym,” (2, — %, tan y,) ] .

+‘ _gL] — ’WLq’ (xuzw - xwzu)

+M1m ( u—xu ta‘n ye) )

(11)

(12)

(13)

(14)

(15)

It is shown later that these equations apply also to the case of a free elevator if appropriate

values are used for the derivatives.

* It should be noted that in this notation gm,, is independent of\u, (see equation 36).
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For complete dynamic stability all the coefficients B, — E, must be positive and also, if there
is to be no unstable oscillation, the Routhian discriminant

R = B,C,D, — D;* — B.*E, .. .. .. .. . .. .. (18)

must be positive. Static stability is positive if E, > 0. In general there can be no divergence
(positive real root of 1), unless E, < 0, as E, is usually the first of the coefficients to change sign.
It is possible, however, in special cases (see Appendix IV) for C, to become negative before E,.
There may then be two positive real roots of 4 and a dynamic divergence can occur with positive

static stability. Before C, changes sign, in this case, R < 0, since C, is small, and there is an
unstable oscillation (see Figs. 8 and 9). *

A more usual form for the static stability condition is

dC, _ aC, da | 3C, 2V
E—WE+W8_-CL>O’ . .. .. . .. .t (17)

where 9V [0C, is given by the relationship
CLoViS=W.

This is equivalent to

myz, — mgz, >0, .. . .. .. .. . .. .. (18)

which is approximately the same as E, > 0.

The roots of the stability quartic can be determined by a method of successive approximation
described in R. & M. 1118%  In general there are two pairs of complex roots, of which one pair,
given by 4 = — R - i], represents a strongly damped oscillation of relatively high frequency,

and the other, 1 = — 7 4 4, represents the phugoid motion of low frequency. The phugoid
period in seconds is K

P:Zn;seconds .. . . .. .. .. .. .. (19
and the time to damp to half amplitude is

T = Zlog‘ﬁseconds . .. .. .. . .. .. .. (20)

When 7 is negative this means that the time to double the amplitude is — 7.

For a subsidence or divergence the time to damp to half amplitude is

_ { log ?

T — . . .. . .. .. . .. .. (20a)

With decreasing static stability (— ,) the short period motion splits up into two subsidences,
one of which remains heavily damped, while the damping of the other one decreases with #,,
With a further decrease in stability the phugoid is also replaced by two subsidences, one with
increasing and one with decreasing damping, which becomes negative as — m, passes through
zero. As the static margin becomes more negative, the two intermediate roots combine to form
a damped oscillation of slow period, similar to a phugoid, and the heavily damped subsidence
and the divergence persist. The behaviour is illustrated in Table 6C.
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A.1.2. Expressions for the Derivatives—The derivatives in equation (11) can be expressed in
terms of aerodynamic characteristics which can be calculated or derived from wind-tunnel tests.
The equilibrium conditions are

L=Wcosy |,
D= —Wsiny, , @1)
o Ca ) .. .. .. .. .. .. .. ..
?Z = — R -
i';CL: Cd iy Y

In disturbed miotion due to #, w, 0, ¢ i g

r.ow oC ) E
X =4pS (V. + u)?[Cop — D(a + V)] —Wsin(p,+8) .. .. (22
and therefore
X,=pSV,(—Cp) and x,=—C;, . .. .. .. .. .. (28)
o . _aC, L/~ 2C, :
o Xw_szVe<CL E),xw—2<CL 3;). L@
Similarly
1 2 CL .
Z — 1S (V, + ) [— (o, + V) } + W cos (y, +6) . (25)
and therefore
Z, = SVe(——C,_), . z,= —Cp , . .. .. (26)
—1 _ — _1(%C,
Z—2p5V< T Co) z, = 2(_8_0?4—6,3). @)
Also _
o[ 0C -
M:%PSC (Ve+%) [—ﬁ% <O(‘e+ %>— V (alaT_l_aZ (77e+77) +a3ﬂ):| ’ . (28)
_ w _ de w
where ap = o, + 7 + Ny Iu <oce + T/—) )
) 2
Cute = Cotuwuan = Coo + C (b — ho) +  (Con — && (29
and % is the distance of the centre of gravity below the*wing chord. In the equilibrium condition
0C o _ |
8;4 o, — Via (o, + 1y — ¢) + o, +a;p] =0 .. .. (30
and therefore M, = 0, m, = 0.
With the stick fixed, # =0,
. 1 ' oC,,, R _ de ]
M, = tose?, B — 7, (1- %)
oC,, 9
:%pSchgo?—szVe CL(h—hn),. . . . .. .. (31)
0
and me=1%7 C —3a s (h—h) (32)

* It should be noted that m,, can be expressed in terms of (# — 4,) only when, as in the case considered here, C,, is
independent of speed (m, == 0). Slipstream effects, for instance, introduce a term in 8Cm/dV in the expression for
dC,,/dC, in equation (17), in which case 8Cm/da is no longer -proportional to static margin.



16

The derivatives with respect to the angular velocity ¢ can be measured on a whirling arm.
Of these x,’ is negligible. Theoretical values of z; and m, due to the wings have been calculated
by H. Glauert and are given in R. & M. 121612 . The most important part of m, is due to the
change of incidence Aw«, = lg/V, on the tailplane. Thus

M, (tail) = }pScV ? (— Vaé) ;

(33)
. S’
m, (tall) - ‘% S a .
Similarly
2, (tait) = MJL,
Zq(tm.l):-—%%al. .. . .. .. .. (34)

The term z; is small and can be neglected in general, but m, .. represents the main contribution
to the damping of the pitching motion.

The importance of the term M arises from the fact that the tail plane at time ¢ is influenced
by the vortices which were cast off by the wing at a time (¢ — //V,). Thus, when o = o, + @w¢/V,

£ = g.; { o, -+ %(t — V%)’ . Therefore, at time ¢t = 0,
5 de 1 :
M; = $pSeV? |~ Va, %17?} O 1 5)
a, S’ de de
and hm,, == — 71 -S“ %ﬁ == My (tait) 628(, . .o . . . .. (36)

The term 1s not sufficiently important to warrant a closer approximation.

The above formulae apply strictly to the stick fixed condition, but they are applicable to the
stick free case when elevator, stick and control circuit are completely mass-balanced, provided
that

a,’ = a a—-2bl
1 1
b,

is substituted for @,. This is shown by equating the.hinge moment coefficient to zero,

Cop=tbio + b (5, +7) - 0:8=0 .. O £ 7))

and substituting for », + % in equation (28), with

w [ de w Wl .
o(T:o(g—]—V—l—nT+Iq7—6“Z—OL(OLE+V“I72>. . .. .. (38)

[3 €
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The formulae are summarised below :—

TABLE 5
Stick Fixed Stick Free
Xy —Cp —Cy
oC oC
w e | e w)
2y —Cy - C,
S — 3 {a+ Cp) —3{a+Cp)
B SI S’ ,
2y (baib — 3% 5 y —3% < 1
My 0 0
¢ 0C, 160Ch, _
o 3 I %o 27 9a
b3 e — b bra(h— i)
.S s,
My (tasin . —23 * —®3 a4
S d S’ ds
oy “%“g‘h;{; %"5-“1@

AL3. Modified Formulae for Amalysis of Stability Quartic—A more convenient form for
computational work, suggested by Dr. Neumark, is obtained by the following substitutions,

with their appropriate values for the gliding case :—

o, me A
W = — M, ——PSszz(hn )%,
= —pum, =0,
, 4 S P
v=—mq£§—§E§ ,

if the part of #,” due to wing and body is neglected, |

X = =5 w0

[

\

* See footnote on page 15.

(76172) ,
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a 3
Nl:_(xu+zw):Q+QCD’
C C dC N -
Py =%z, —5z,= 5 (aH CD)—|—7Z—L<CL—0L%
— 2 *gl. — (3 _Z_ ﬁg
QL = Xy, (1 +/;1> 5 tan y, Cy (Q +M: ZCD ,
RI:—_%" (2, — x4, tan y) = 3 (C;2 + Cp) , o (40)
c, . AN ac, z
SIZQ*—xze(l—}—/;l)gI:CL—(CL—-{/ZE><1—}—‘IZJ
' . adC,
—2dC,
C C C, dC
T1=—f(zw—'xwtanye)zaf[l—l—c—fd—clj,

The constants N, and 7, depend mainly on the condition of flight and to a lesser extent on the
geometry of the aircraft. The fundamental qualities of the aircraft which determine its stability
characteristics are o, depending on the static stability and relative density p,, » which defines
the damping in pitch, and x which depends on the damping and the downwash.

The coefficients in the stability quartic become (from (15))
= %
Bi=Ni+»+(1+ ),

Clzpl+w(1‘+§f>+va+le,

D1:Q1W+P1’V+R1X*51” ,
E, = Row — T1,» .

(41)

Here B, represents the total damping and is independent of the static margin, while E, is
proportional to the static margin and is unaffected directly by the damping.
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APPENDIX IT
Approximate Theory of Phugoid Damping

If, in the stability quartic
’ M4 BB +CAt4+ DA+ E =0,

C; is large compared with D, and E;, the phugoid roots are given approximately by

D B.E E
22 Al — L Jun R .. .. .. Q.
+<cl Clz)+cl 0, |
or A= —r—+415,

where 7, the damping of the phugoid motion, is given by

D, B.E
— 1 (P Difn
7_2<cl C.E

and 7, the frequency, is given by
- E,
= it R S I
7 «/ (cl )
If #* is small compared with E,/C,, the non-dimensional period is approximately
5 — 2 e
=2 \/ 2

A closer approximation,

is needed when o is small.

For further simplification only theA‘ important terms in B,, C,, E,, D, are retained.

B1:N1+”+X s
Ci=Nyv+ o,
D1201W+P17’+R1X )
E, = Ro ,
where, if Cp = Cpy + sC,%, \
{
a
NIZQ >
a s C,?
Py =5 (Cp, + sC2) + _QL“ (1 — 2as) |

Cpy + sC.? ,

<
Il
O Bt

~

e
I
)

(42)

(43)

(44)

(45)

(48)

These are

(49)

(51)
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The damping » then becomes

r = fCpy + FC,;* , . . .. . . . .. .. (52)
.Where 2f:1+27%)—-'a—v ) |
(B —av)s a{w—v(v 4+ x)}
2F = Qo Far) 2o + ary . . . . - .. (83)

The non-dimensional period P is approximately

p_Z”CYZJ(1+%>, U - ¥)

or more accurately for small values of o

P‘:%/\/(aj"if—;v—w). L (55)

In dimensional units the time 7T in seconds to halve the amplitude is

0-69315f  0-312 /(W C,
r— LI 03 J(§7> N )

and the period P in seconds is

P_,,gp:z;-o\/[gzc%L(“F%ﬂ

(57)

wC 2 A
When #* = 2;};)4_'%&; , the period P becomes infinite (from equation (55)), and, as » decreases, .
the phugoid splits up into two subsidences given by
: o \
L= — .4 A e e
7l '\/<7’ 20 + av> ’ (58)

and 7 represents the mean damping of the two subsidences. It is seen from Fig. 3 and Table 6C
that this happens over a very small range of o or 4,” — %, and it cannot be shown on the scale
of the diagrams of Figs. 6 and 10. When o passes through zero one subsidence changes sign and
becomes a divergence,; with static instability.

In the approximate values for the coefficients B,, C,, D,, E;, (equations (49), (51)), it is assumed
that

C, €vora, . .- .. .. (989

Crt<gClxar, ‘
Z, <P J *
The order of error introduced by these assumptions and by the approximate method of solution
of the quartic is shown in Table 8 for positive values of w or (h, — %). The error at high values
of C, is due to the first of the assumptions in equation (59), but the order of accuracy is quite
good enough for practical purposes. The approximate values of the coefficients of the quartic
given in equations (49) and (51) may therefore be assumed to hold up to.C,,,,, with flaps clpsed.



21-
The approximate niethod of solution of the quartic given by equation (43), or more completely
by
' D B,E E
2+ Bi+0) [ 42 (B - B Bleo. .. . .
@+Bi+0) [2+a(g—T5)+ 2 (60
is not valid for negative values of w, but it does hold remarkably well down to quite small positive
values, as is shown in Fig. 3. When o is negative, C; becomes small and an exact solution of
equation (42) is required to give the four roots. A curve for the real divergent root can be
obtained quite quickly, as in Figs. 6, 9, 10, by assigning values to 2 and calculating o from the
equation :
At + Blls -+ (Cu + Clzw)‘ﬂz + (Du + D12w) -+ (En -+ E12UJ) =0. .. (61)
The behaviour when C, is small or even negative, while E, is positive, is discussed in A.1.1
and more fully in Appendix IV. .

APPENDIX III
’ Minimum Tail Size requived for Phugoid Damping
It is clear that # can never fall below its value at C, = 0 so long as I¥ « 0, where

sBo —ar) _ a{o — (v + x)) . (69
20 + av) (2w + av»)? ' .

F is positive when o = 0 and when o is «, and can be negative for some’value of w only if
F(o, ») = 0 has two real roots in w. But F is always positive i

2F =

6sw® — o (@ — sav) + {av(v + x) — sa**} >0 . .. .. (83)
for all values of . This is true if
(@ — sav)* < 24s'a™? ’ié%lf —1), e (e
where V—L-X:I—}—g—;.
Thus pmng_IH, P 5 13)
where _53.2224 H";%)_l] . 88
as .

d . .
The quantities a, s and i are functions of aspect ratio 4, and the generalised curve for »,,
against 4 in Fig. 2 is based on the following assumptions :—
b7 _1-2 de 2

C={19A°5T 24 ° dC, =4
and therefore ’
de 4 &2
Pl s?leA—}—SG.
The minimum value of » is therefore
zA
o = TE T T0AF 30 - N )

(76172) o
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APPENDIX 1V
The Effect of a Weight or Spring in the Elevator Circuit on the Phugoid

AIV.1. Stability derivatives—The increment ng in the floating angle of the elevator due to a
constant® weight moment K about the elevator hinge is given by

0= Hy = 3pSye, (V. + uf by + K (1 - W — V;f’ + M) N 1)
where /, is the distance of the weight from the centre of gravity of the aircraft. The increment
M in the pitching moment is therefore

My = 3pScV?( — Vﬂz’?x)

)

= 1pScV [“'_z 7aC, { 1 —o% O—=Vg+ kil J N v
b, Vv, g J
KS
where n WSy, (71)
The rearward movement 4%, of the neutral point is
, ac,  a, -
and the derivatives are
2 , ¢ ,
M, = V‘WC ah," muzchAhn ,
AMW == O s Amw = O 3
We , ¢ ’
AM, = Vi ah, ‘ Amia:/“l[ ahr,’ - .. (73)
weV, c .., '
AMq == = _'g Ahn Amq = My Z Akn 4
43 = — I—z—/c/,{ an,’ Aig = — CZLZK ah," .

If i, =0-08, Iy =1, ljc = 3, 4%," = 0-05, the effective moment of inertia is reduced by 21 per
cent.

Since a spring has no inertia, all the increments in the derivatives vanish with the exception
of m,.

AIV.2. Approximate Formulae for Phugoid Damping and Period with a Spring.—The
approximate method of Appendix II can be applied to a spring, if the terms in the coefficients
D, and E, due to m, are included. Let o, = (a/2C,) uy m,’

®

me a h,'

:méﬁhn’:wa,_h (74)
Then 4D, = ggi‘ Siw, = 2sC% w,,
El:w%i sz_g' (1)5292[42(/05’ .. .. .. .. (75)
Af =0,
ONF — zwﬁﬁ)sm _ w_s(o(zz-wl— —2|-v(/l—7t—)22X) ’ N ¢ 5)

* See footnote on page 5.
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and

w
=1+t
(8o —av + 4w)s
2F = 20 + av

_afo —v(v+ x)}+ o, (@4 2v 4 2)
(20 + av)? ’

(77)

where ‘w and » have the same values as without the spring. The non-dimensional period is
approximately

\
5 C, 2%\/2J av — 2o,
P_an/Fl“T (1+2(w+ws)), )
as compared with
- 275\/2.\/‘ av
P T (1+m) O (1)

if the increase in static stability is produced by moving the centre of gravity instead of by adding
the spring.

The above formulae hold only when o > 0, 7.e. when there is a positive static margin without
the spring. Tt will be noticed that C, is unaffected by the addition of the spring and is still
approximately (from equations (49) and (51))

Clz%z‘!‘w

As o increases negatively, C, becomes small and eventually negative, while E, is still positive
so long as @, > — w. Even for positive values of o, C, may not be large enough compared with
E, and D, to keep R = B,C,D, — D,* — B;*E, positive. This shows that the spring is likely
to give unstable phugoids for small positive and negative values of w and may even give
divergences for larger negative values, while the static stability margin is still positive because
of the stabilising effect of . This is illustrated in Figs. 8, 9 and 12 and discussed in §4.2.
For very small positive values and for all negative values of w it is necessary to solve the quartic
equation exactly and not by the approximate method of equation (62).

AIV.3. Approximate Formulae for Phugoid Damping and Period with a Constant Weight
Moment.*—I1f the weight is near the centre of gravity of the aircraft, ¢, is unaltered and the
effect of the term m, on D, and E, is the same as for the spring. In addition, if

w, = wdh/l(h —F) ,
2
Av:A(—fmq')zzlww, ]
, 9 e .. .. .. .. (80)
Ay = —pdm, = — — o, ,

* See footnote on page 5.
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and the values of B, — E, become

Bi=5+v+x,
. ar + 2 (o + w,)
C, = 3 ,
3 2 C,* 8D
D, = (Cpy +5C,Y g('iv_—kig__‘i:;?)i”) + ZL (v + x — 2asv),
C,2?
El = ﬂQL (w + ww) y

where o and » have the same values as without the weight, and the effect of the weight is
represented solely by the terms in . -

The damping 7 is given by
r=fCm+FCS,
where

W

V=1 it F o)

. {30) + 20, — (/lv}s o Cl{(u + o, — v (v + X)}
=0 T o) F o Pw Loy Lavp - e (82

If the weight is some distance [, away from the centre of gravity, say on the elevator itself, these
formulae still hold if 7, is replaced by

. F.c
iy -— ~; ah,’ .

The non-dimensional period with a weight moment is approximately

- /C, 05 4/2 ;\/ ) av
s _2.,, oy TS e — T ————— .. .. . ..
P i '\/E] C, <i T 2w + ww)> ’ (83)

and has the same value as if the static stability were increased by moving the centre of gravity aft.

In this case C, depends on the static margin with and not without the weight and the
approximate method is still valid for negative values of o, provided (o 4+ o,) is not very small
or negative. The effect of the weight is shown in Figs. 7, 11, 13, 15.

AIV.4. The Effect of a Spring or a Weight on the Minimum Tail Size requived for Stability of
the Phugoid.—The minimum tail size required to ensure that # does not fall below its value at
C, = 0 can be found by the same method as in Appendix III for any value of o, or w, over the
. range of values of o for which the approximate method of solution of the quartic is valid.
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For the spring the method of Appendix IIT applied to equation (77) for F gives

‘Av* —2Bv +C >0 .. . . . .. (84)
B B C ’ :
v>ZiJ<ZZ—Z), L )
where 'A =a? (2 — 5% , l

B = —as (a + 16s0,) + afw, , S .. .. .. (86)
C=— (64s*w? + Sasw, + a*) . l

If the vlaue of o corresponding with the minimum » is negative, this formula no longer holds,
because the expression for » on which it is based is not sufficiently accurate. The curve for
o, = 5 in Fig. 2, however, does give an indication of the destabilising effect of the spring and
of the increase in tail area which may be necessary to avoid oscillatory instability at-high C,.
It is shown in Figs. 8, 9, 12 that no practicable size of tail is likely to be adequate with larger
effective spring moments, (in these figures w, = 10 at 10,000 ft. and 30 at 40,000 ft.).

For the constant weight moment, equation (82) for F gives

2 JE-9).

where A=a®(&—5s%, l
B = —as(a— 10sw,) , ( (87)

., C=—(a+ 2s5m,)*. t
In this case the approximate method of solution holds well enough down to w = — w,, and the

curves for »,,, in Fig. 2 give a reliable indication of the loss of damping due to the weight. This

loss is considerably less than with the spring, but is still appreciable and it reduces the value of
the weight as a stabilising device.*®

* See footnote on page 5.
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TABLE 6
Estimated Damping and Periods for the Halifax

6A. 10,000 ft.
(i) Stick fixed (%, = 0-433) (i1) Stick free (mass-balanced elevator)
Short period : Short period :
oseillation Phugoid oscillation Phugoid
w ) C, B,
Time to . Time to . Time to . Time to .

3 ampl. Period 1 ampl, Period 3 ampl. Period 3 ampl. Period
- 37,000 0-227 0-2 0-26 1-77 60-32 63-85 0-27 1-83 60-56 64-06 0:418
0:6 0-45 3:07 75-21 36-85 0:49 3:30 78-01 37-10 0-403
10 059 396 62-47 2856 0:-64 4-39 68-34 28-85 0-393

0-350 0-2 0:32 3-44 65-74 74-33 0-33 3-87 66-55 76-94

0-6 0-55 5:97 86-44 42-94 0:59 7-83 82-98 46-72

1-0 £0-71 7-71 74-88 33-42 0-78 11-52 60-61 38-21

60,000 0-248 0-2 0-25 1-52 74-00 78-65 0-26 1-58 74-24 78-91

0:6 0:43 263 83-94 45-37 0-47 2-86 85-89 45-69

1-0 0-57 3-40 64-21 35-15 0:62 3-83 67-59 35-50

0-333 0-2 0-30 241 77-91 84-31 0-31 2-62 78-73 85-70

' 0-6 0:-52 4-17 94-16 48-64 0:56 5-07 08-17 50-60

1-0 0-67 5-39 75-97 37-73 0-74 7-14 81-29 40-11

6B. 40,000 ft.

37,000 0-227 0:-2 0-45 1-66 97-59 | 102-70 0-47 1-71 97-77 | 102-84 0-418
0-6 0-79 2-87 107-04 59-24 0-84 3-11 108-98 59-38 0-403
1-0 1-01 3-70 79-81 45-84 1-11 4-11 83-10 46-00 0-393

. 0-350 0-2 0-56 3-06 104-46 | 109-45 0-57 3-41 106-04 | 111-23

' 0-6 0-96 5-30 133-54 6314 1-02 6-75 150-28 65-74

1-0 1-23 6-87 113-95 48-89 1-34 9:77 153-27 52-31

60,000 0-248 0-20 0-43 1-42 121-97 | 129-14 0-45 1-48 122-14 | 129-32

0:6 0-75 2-45 127-50 74-52 0-81 2-69 128-92 74-71

1-0 0-97 3-17 901-82 57-68 1-08 3-59 94-05 57-88

0-333 0-2 O;‘SZ . 2-20 125-51 | 132-63 0-54 2-39 126-35 | 133-53

06 0-90 3-80 138-46 7652 0-97 4-57 145-68 7775

1-0 1-16 4-91 103-79 59-23 1-29 6-42 11660 60-73




Halifax at 5,000 ft.; W = 53,000; C, = 1-23 (see¢ Fig. 3) stick free, mass-balanced elevator

TABLE 6C

Stability Roots for Small Static Stability

w b, —h Ay Ay Ag- Ay
‘ —1-50 —0-010 " —4-8107 —0-7400-4-0-5778: +0-2702
—0-30 —0-002 —4-4654 —0-9549 —0-:6793 +0-0792
0 0 —4-3660 —1-2198 —0-4347 0
+0-15 +0-001 —4-3135 —1-3148 —0-3314 —0-0610
+0-30 -+0-002 —4-2590 —1-4023 —0-17964-0-0782¢
+0-75 -+0-005 —4-0798 —1-6520 —0-14444-0-25337
+1-50 -+0-010 —3-6907 —2-1118 —0-10904-0-3676¢
Stable Oscillation
Subsidence Divergence
® hy —h Time to Time to
1 1. Ti . 1.
3 amp %g‘nrﬁ I’)clo . Perod 2 amp
—1-50 —0-010 0-50 3-28 38-11 8-98
Subsidence Subsidence 5
Time to Time to ‘
3 ampl. 4 ampl.
—0-30 —0-002 0-54 254 3-57 30-64
0 0 0-56 1-99 5-58 0
Subsidence
| Time to
4 ampl.
+0-15 +0-001 0-56 1-85 7-32 "39-78
Stable Oscillation
Time to .
3 ampl. Period
+0-30 +0-002 0-57 1-73 13-51 281-59
+0-75 --0-005 0-59 1:47 16-81 86-93
+1-50 +0-010 0-66 1-15 22-26 59-90
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TABLE 7A

Estimated Damping and Periods for the Spilfire

10,000 ft.

(i) Stick fixed (%, = 0-310) °

Short period oscillation

Stable phugoid

w h C; _ _
'}“mle to Period ’flme to Period
1 ampl. 4 ampl.
5,270 0-25 0-2 0-24 2-33 53-87 9-39
5,960 0-25 1-0 0-58 5-20 59-37 27-74
Subsidence Subsidence Subsidence Divergence
Time to Time to Time to Time to
% ampl. 4 ampl. % ampl. 2 ampl.
5,270 0-314 0-2 0-15 0-72 10-04 18-12
0-6 0-25 1-40 4-58 11-89
Stable oscillation
Time to .
1 ampl. Period
1-0 0-33 2-58 47-36 11-08
5,960 0-352 0-2 0-12 14-55 33-88 1-36
0-6 0-21 8-13 23-19 1-75
1-0 0-28 6-34 20-06 1-85
(i) Stick free (5,” = 0-295) (mass-balanced elevator)
) Short period oscillation Stable phugoid
w h C,
Time to . Time t .
1 1;nnc;p]. Period 1 lzqrgpl(_) Period
5,270 0-25 0-2 0-25 2-75 54-99 61-53
5,960 0-25 1-0 0-62 6-10 64-60 28-71
Subsidence Stable oscillation Divergence
Time to Time to Peri Time to
4 ampl. % ampl. eriod 2 ampl.
5,270 0-314 0-2 0-14 2-93 43-43 4-80
0-6 0-24 3-53 25-13 3-66
1-0 0-31 3-64 2149 . 342
5,960 0-352 0-2 0-12 26-17 . 39-69 0-73
06 0-21 13-35 2440 1-13
1-0 0-27 8-88 20-22 1-31
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TABLE 7A—contd.
(iii) Spring (44,” = 0-05)

Short period oscillation

Stable phugoid

2-87

w h Cs Time to Time to
1 ampl. Period 1 ampl. Period
5,270 0-25 0-2 0-25 275 59-22 42-36
5,960 0-25 1-0 0-62 6-20 448-45 19-67
Subsidence Subsidence Unstable : :
Time to Time to Time to plg;gigad
% ampl. % ampl. 2 ampl. '
5,270 0-314 0-2 0-14 1-69 17-7 30-55
0-6 0-24 1-95 8-98 21-88
1-0 0-31 2-00 7:91 19-02
Stable oscillation Divergence
Time to ' Period Time to
4 ampl. . GI‘]O‘ 2 ampl.
i 1
5,960 0-352 0-2 0-12 50-22 109-59 ‘ 0-75
) Unstable oscillation f‘
/
Py Period
0-6 0-21 228-68 62-20 1-38
10" 0-27 "34-79 45-84 2-05
(iv) Weight moment (4%,” = 0-05)
Short period oscillation Stable phugoid
w h Cy Time to ‘ Time to
1 ampl. Period i ampl. Period
5,270 0-25 0-2 0-25 1-72 61-40 + 55-06
5,960 0-25 1-0 0-60 3:90 76-15 25-73
5,270 0-314 0-2 0-25 3:79 86-61 67-47
0-6 0-43 6-52 114-31 38-85
1-0 0-55 8-33 08-44 30-27
Subsiderce Subsidence Subsidence Divergence
Time to Time to Time to Time to
% ampl. % ampl. % ampl. 2 ampl.
5,960 0-352 0-2 0-16 0-91 8-64 0-62
06 0-28 1-99 3-36 7-13
Stable oscillation
Time to .
1 ampl. Period
1-0 0-37 39:66 6-54

(76172)
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TABLE 7B

Estimated Damping and Periods for the Spitfive

40,000 ft.
(i) Stick fixed (%, = 0-310)
Subsidence Subsidence Subsidence Divergence
W h C, Time to Time to Time to Time to
% ampl. % ampl. 4 ampl. 2 ampl.
5,270 0-314 0-2 0-23 2-02 8-82 13-79
Stable oscillation
'{ime to Period
g ampl.
0-6 0-41 4:70 61-98 9-52
1-0 0-52 5-26 44,05 8-69
5,960 0-352 0-2 0-16 67-59 79-77 0-54
0-6 0-28 44-71 46-55 0-92
10 0-36 27-04 36-69 1-15
(i1) Stick free (4," = 0-295) (mass-balanced elevator)
. Subsidence Stable oscillation Divergence
w h C, Time to Time to
1 : P
& ampl. }‘Jme to Period 2 ampl.
% ampl.
5,270 0-314 0-2 0-19 37-89 62-47 1-39
0-6 0-33 19-11 39-20 2-08
1-0 0-43 13-19 32-85 2:35
5,960 0-352 0-2 0-15 74-77 83-14 0-39
0-6 0-26 53-77 4824 0-67
1-0 0-34 32-97 37-71 0-85




TABLE 7B— contd.

(iii) Spring (4%, =.0-05)

Subsidence

: Subsidence Divergence Divergence
w /2 C, Time to Time to Time to Time to
, L ampl. } ampl. 2 ampl. 2 ampl.
l
5,270 0-314 0-2 0-19 \ 5-58 1-39 1-61
|
Unstable phugoid
Time to .
2 ampl.‘ Period
0-6 0-33 4-04 3-19 32-12
1-0 0-43 3:57 3-54 25-77
Stable oscillation .
| : Drlly_ergence
; ime to
’??Hel;f Period 2 ampl.
- 5,960 0-352 0-2 0-15 94-31 235-84 0-39
0-6 0-26 360-08 136-26 0-68
Unstable oscillation
: glglrﬁgf Period
1-0 0-34 318-54 105-57 . 0-90
(iv) Weight moment (44," = 0-05)
Short period oscillation Stable phugoid
w h Cr . . -
ime t . ime t .
1 ndnr;plo Period 3 ?rf,pf Period
5,270 0-314 0-2 0-42 2-99 170-80 96-76
. 06 0-73 5-16 296-28 55-66
1-0 0-93 6-67 388-45 43-17
Subsidence Subsidence Subsidence Divergence
Time to Time to Time to Time to
% ampl. % ampl. % ampl. 2 ampl.
5,960 0-352 0-2 0-24 4-45 5-91 5-81
0-6 0-42 6-07 53-42 5-35
1-0 0-55 6-05 45-43 5-06

(76172)
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TABLE §
Comparison of Exact and Approximate Methods of Calculating Phugoid Damping
Spitfire (4 == 0-25) at 10,000 ft.

4
Elevator W 1b. C,
Exact _ Approximate
!
Fixed (h, = 0-310) .. . . . . 5,270 0-2 0-0141 0-0141
Iixed (4, = 0-310) .. . . . . 5,960 1-0 0-0304 0-0351
Free (mass-balanced) (%,” = 0-295) .. . 5,270 0-2 0-0138 0-0138
Free (mass-balanced) (,” = 0-295) . . 5,960 .10 0-0279 0-0317
Free with spring (44, = 0-05) . . . 5,270 0-2 0-0128 0-0128
' 5,960 1-0 0-0040 0-0076
Free with weight (44,” = 0:05) .. .. .. 5,270 0-2 0-0123 0-0124
5,960 1-0 0-0237 0-0261 :
Halifax W = 60,000 Ib., elevator fixed
7
Height ) I, h C, /
Exact Approximate
40,000 ft. .. .. . .. 0-433 0-333 0-2 0-0156 0-0155
0-6 0-0244 0-0245
1-0 0-0421 0-0423
10,000 ft. .. .. .. . 0-433 0-333 0-2 0-0144 0-0144
0-6 0-0207 0-0212
! 10 0-0331 0-0346
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LIST OF SYMBOLS

A = aspect ratio (except in equations 86, 87).
a = 9C, /o« for the complete aircraft.-
a, = 08C, '[0ay for the tail plane with fixed elevator.

a, = a, — “Z—b , effective value of 8C,'/dur for the tail plane with free elevator.

a, = oC,'[on. :
= moment of inertia of aircraft about the lateral axis.

B

B,  (See Equations (14), (15)).
b, = aCH/aOCT

b, = 0Cy/om.

C,  (See equations (14), (15)).
Cp = D[%pV?S.

Cp, = value of Cp, at C, =0.
'Cy = H|}pV?S,c, due to aerodynamic forces.
C,= L/%pV“’S.
€. = L'[LpV?S". h
C, = M|spV?Sc.
C,. = value of C, without tail.
C,, = valueof C, at C, = 0.
¢ = mean wing chord.
¢, = mean elevator chord.
D = drag of complete aircraft. -

D, (See equations (14), (15)).
E, (Secequations (14), (15)).
F  (Sec equations (52), (53)).
f  (See equations (52), (33)).
- g = acceleration due to gravity.
H = moment about elevator hinge.

H, = H due to moment K.
he = distance of the centre of gravity aft of leading edge of mean wing chord
h, = value of % for neutral static stability, stick fixed.
h,' value of A for neutral static stability, stick free, without Welght or spring.
Ah,  increment in %,” due to weight or spring.
ip BlmlP = k5P
J  large roots of quartic (equation 14) are — R 4 ¢].
4 -small roots (phugoid) of quartic are — # - 7.
K  static moment about elevator hinge due to a weight or a spring. Assumed
independent of altitude of aircraft.
kc  distance of centre of gravity below mean wing chord.
ks  radius of gyration of aircraft about the lateral axis.
L Iift on complete aircraft.
L’ lift on tail plane.
!  distance from aircraft centre of gravity to mean }-chord point of tail plane.
I  distance from aircraft centre of gravity to inertia weight or elevator centre of
gravity.
M pitching moment on complete aircraft.
"My  pitching moment due to K (equation (70)).
~m = W/g = mass of the aircraft. :
m,, M, ¢tc.  (See equation (18) and Table 5).
m,’, m,’, elc.  (See equation (13)).
N,  (See equation (40)).
n = KS/WS,c,.
P period of phugoid oscillation in seconds.
P period of phugoid oscillation in non:dimensional units (P = ¢P).
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P, (Seeequation (40)).
Q. (See equation (40)).
g  angular velocity (radians per second) of the aircraft in pitch.
(} == 1g. :
R large roots of quartic (equation 14) are — R 4- 7].
R (See equation (186)).
R, (See equation (40)).
v small roots (phugoid) of quartic are — # :|: 7.
S gross-wing area.
S’ gross tail-plane area.
S, (See equation (40)).
S, elevator area.
s (See equation (50)).
T"  seconds to halve amplitude (equations 20, 20a).
7T, (See equation (40)). ‘
£ time in seconds.
¢t = m[pSV = unit of aerodynamic time.
u  increment of velocity along the x-axis in dlsturbed flight.
% = u/Ve.
V' resultant velocity of aircraft in disturbed flight.
V., Velomty of aircraft in equilibrium condition.
V = §'l/Sc tail volume ratio.
W all-up weight of aircraft.
w  increment of velocity along the z-axis in disturbed flight.
w  w/Ve.
X  aerodynamic force along x-axis.
X, X, etc. = aX/Bu BX/aw ete.
%  axis fixed in the aircraft in disturbed flight in direction of motion in equilibrium
_ condition.
X %o, X,  (See equation (12) and Table 5).
Z  aerodynamic force along z-axis.
Zu Zay %, (See equation (12) and Table 5).
«  wing incidence measured from zero lift.
%,  value of o in equilibrium condition.
ap  tail-plane incidence to relative wind.
f  tab angle relative to elevator.
y. anglé of climb in equilibrium condition.
¢  mean downwash angle at the tail.
i increment in elevator angle during disturbed ﬂlght
n.  elevator angle in equilibrium condition.
nx  increment in elevator floating angle due to K.
nr  tail setting relative to zero lift line of wing.
0 angle of rotation of x-axis from equilibrium condition.
%z (See equation (39)).
4 (See equation (11)).
uy = mfpSl.
v (See equation (39)).
& (See equation (66)).
p  air density.
o air density/standard air density at sea level.
v aerodynamic time = zf/tA
x  (See equation (39)).
o (See equation (39)). ,
o, = odh,'[(h,’ — h), where 4%," is due to a spring in the elevator circuit (See
also equation (74)).
w, = wdh,'/(h,' — h), where 4%, is due to a weight moment.
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