R. & I Re, 2718
(10,207)
A.R.C, Technicel Roport

Wi 3wt A T RET Y
HATIONAL A y

MINISTRY OF SUPPLY

AERONAUTICAL RESEARCH COUNCIL
'REPORTS AND MEMORANDA

Velocity Distribution on Straight and Swept-
back Wings of Small Thickness and
Infinite Aspect Ratio at Zero
- Incidence

By
S. NruMaRrg, Tecun.Sc.D., A.F.R.AE.S.

Crowsn C oﬁyrfz'ghﬂ- Reserved

LONDON: HER MA}ESTY’S STATIONERY OFFICE
, 1952
PRICE 10s 64 WNET




r- Py g I W R IS NTT
NATIONAL AEROHAGTICAL ESTABLISHMENT
08 D A R4
[1(.,, Ej h} i“'“\, /1y L’\ il

Velocity Distribution on Straight and Swept-back

Wings of Small Thickness and Infinite Aspect™ %
. . 2,

Ratio at Zero Incidence =
S. NEuMARK, TecEN.Sc.D., A.F.R.AE.S. ¥ ;» ln

COMMUNICATED BY THE PRINCIPAL DIRECTOR OF SCIENTIFIC RESEARCH (AIR), i ?3 ‘;'_,;
MINISTRY OF SUPPLY ;a‘?
;gﬂr———"‘”"”ﬁé;b‘

Reports and Memoranda No. 27137
May, 1947

Summary.—A solution by H. Ludwieg?, giving the velocity distribution in the central section of a thin swept-back
wing of infinite aspect ratio with a biconvex profile at zero incidence, has been found erroneous. In connection with
this problem, the approximate method of sources and sinks for determining velocity distribution on straight and
swept-back wings is critically examined, its limitations established, and proper ways of its application to three-
dimensional problems indicated. A correct solution of Ludwieg’s problem is found, and generalized to give the velocity
distribution over the entire wing. The method is further extended to cover a wide class of thin symmetrical wing profiles,
those with rounded leading edge being, however, often intractable by this particular method.

The ultimate purpose of the investigation is to provide a reliable basis for determining the critical Mach number
for swept-back wings. Further work is needed to embrace wings of finite aspect ratio and tapered wings, in particular
delta-wings., The method seems adequate to deal with these more complex cases.

1. Introduction.—It has been widely known for some time that an increase of the critical
Mach number can be obtained for a long untapered wing by setting it into an oblique position
to the direction of flight. However, the simple theory of the flow past such a wing cannot be
directly applied to the case of a symmetrical swept-back wing, because a considerable modi-
fication is brought about by the kink in .the symmetry plane where the entire flow is essentially
three-dimensional. The problem seemed to be very complex, and no attempts have been made in
Britain to solve it by a direct theoretical approach. Therefore, important progress was thought
to be achieved by a fairly recent German report by Ludwieg® who, by using a very simple and
ingenious method, has given an apparently perfect solution of the problem, at least in the case
of a wing with a simple biconvex profile (Fig. 4). Ludwieg rightly restricted his investigation
to a thin symmetrical profile at zero incidence, for, at high speed, nearly symmetrical profiles
and very small incidences only are to be reckoned with. All the difficulties of lift distribution
are thus removed, and the problem can be solved by distributing suitable continuous sets of
sources and sinks inside the wing in xy-plane, and by determining the maximum induced super-
velocity in the central section. Ludwieg simply adapted the approximate method of sources
distribution, as previously applied successfully in two-dimensional cases, to fit a swept-back
wing. He found an amazingly simple and paradoxical result that, for a swept-back wing, the
supervelocity distribution in the central section should be exactly similar to that of an unswept
wing, merely reduced proportionally to cos ¢ ; in other words, that the supervelocity distribution
in the central section should be identical with that at a section very distant from the symmetry
plane (apart from the unessential transverse components). This does nct mean, of course, that
the critical Mach number should be equal for the two sections. Ludwieg applied his result to

determine the critical Mach number as a function of sweep-back angle and thickness ratio, and
produced charts for this purpose. ‘

*R.A.E. Report Aero. 2200—received 6th October, 1947.
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Ludwieg’s work has aroused a good deal of interest in Britain and has been repeatedly quoted in
publications **. A warning, therefore, must be given that his theory is fallacious, being based
on an erroneous application of the method of sources and sinks in three-dimensional problems
with discontinuities, such as appear in the. ‘ knee’ of a swept-back wing. In two-dimensional
cases, the distribution of induced velocities along the chord may be considered, with certain
restrictions, as a limit of the corresponding distribution on the wing surface and, if the profile
is thin, the former provides a sufficient approximation to the latter. However, this is not always
so in three-dimensional problems, and, in Ludwieg’s case, the two differ quite substantially,
the difference increasing quickly with the sweep-back angle. What has been found by him is
really the induced velocity distribution along the central chord inside the wing, and this is quite
different from that at the surface. '

Ludwieg himself suggested that his results, confined to the central section only, should be
extended to cover the entire surface of the wing, especially its part near to the symmetry plane.
This was intended to be done by the present writer, and the results are given in section 5, as

" developed in detail in Appendices IT and III. Tt has been found that in the limiting case of
y — 0, 2.e., when approaching the central section, a result different from Ludwieg’s has been

obtained. The velocity distribution must, however, be continuous along the entire surface, and
this led to the conclusion that Ludwieg’s simple result must have been wrong. Apart from this,
his solution seemed improbable on purely intuitive grounds. To explain the source of error,
it proved to be necessary to examine critically the whole method of sources and sinks, and this
has been done in Appendices I and IV for straight and swept-back wings, respectively. The
analysis resulted in determining the limitations and pecularities of the method, and led to simple
formule giving the velocity distribution on straight wings, and in the central section of a swept-
back wing, with an arbitrary profile. It appears that the method gives correct solutions for sharp-
edged aerofoils, while it is likely to fail in many cases of aerofoils with rounded leading edge.
For swept-back wings, the results-always differ considerably from those of Ludwieg.

The entire theory has been limited in this report to the simpler case of infinite aspect ratio.
However, the method can be very well extended to cover the more complex cases of finite aspect
ratio and even of tapered wings, including delta-wings. There are no fundamental difficulties,
and it is hoped that the algebraical complications will not prove prohibitive and that the results
will be presented in future reports. It seems desirable to extend the theory in this direction
before proceeding to the matter of critical Mach number. There being a strong tendency to
apply wings of small aspect ratio (especially delta-wings) in high-speed design, all results per-
taining to the infinite aspect ratio must be treated as a first step only, with a rather limited
practical application.

Acknowledgements are due to Miss F. M. Ward who has done the computation and prepared
the illustrations.

2. Straight Wing (two-dimensional case)—Before proceeding to study the complex case of a
swept-back wing (Fig. 4), it will be useful to start by reviewing briefly two simpler cases, viz.:
(1) the two-dimensional case of an unswept wing of infinite aspect ratio (Fig. 1) ; (2) the case of a
sheared infinite wing (Fig. 2), where the velocity distribution is truly three-dimensional but can
be determined by a two-dimensional method.

For a straight wing (Fig. 1), assuming its profile to be thin and symmetrical with respect to
the chord, the velocity distribution may be determined approximately, to the small values of
the order of thickness ratio 4 = ¢/¢, by the method of sources and sinks distributed along the
chord. The latter distribution could be determined exactly by the method of conformal trans-
formation, should the transformation function be known for the given profile. However, even
if this were the case, the formule for both sources- and velocity distribution would be extremely
complicated for practically all types of profiles, and it would hardly be possible to extend the
procedure to three-dimensional cases. That is why, in such problems, an approximate method
has been more and more applied lately, based on the assumption that, at any point A of the
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chord, the local source intensity ¢ (per unit length of the chord) is proportional to the slope of
the profile at its corresponding point P having the same abscissa as A. Explicitly :

dz
g = Zde, .. . .. . ce .. .. (2.1)
the minus sign being due to the velocity U being directed in our figure against the x-axis. The
formula may be simply explained as follows. Assuming that the velocity of the flow, both
outside and inside a thin profile, differs little from U in direction and magnitude, the flux across
any vertical section of the profile is given approximately by 2Uz, its increments having to be
supplied by the sources. Hence the strength gdux of an infinitesimal segment dx of the source line
must be approximately equal to 2Udz.

The resultant velocity at P may be determined by adding to (—U) the velocity induced at P
by the entire source-and-sink line, which may be obtained by integrating the effect of a source
element gd%. The integration may be simplified greatly if the induced velocity v at P (small of
the order ¢) is replaced by that at A, the error committed being generally small of a higher order.

We then obtain —

L.E. (7). d ~

_ P\x) - ax

vx_-[ Salx — 7' .. . .. . .. .- . (2.2)
T.E.

and, if the equation of the upper boundary of the profile is :

then :
I L‘E.Fl_d_
vx:-—J FH.ex L2
e ¥ — £
T.L.

However, in ‘this manner we introduce improper integrals, the integrand becoming infinite at
% — x, and the principal value is taken to represent a good approximation to the value of the
velocity on the surface. This gives, of course, only the x component of the induced velocity,
the z component v, to the order of 9, being simply [—U . F'(x)]. The latter component is
unessential, however, because the resultant velocity

A|:(—U +v,)% 4+ vﬁ] i

equals (—U +v,) to the order of #, and hence v, alone may represent what is called super-
velocity. ~

The entire method seems to have been found independently by several scientists in different
countries, the first to introduce it in Britain having been H. B. Squire*. In Germany it was
employed by Féttinger, Betz, Riegels?®, ¢fc., and also by Ludwieg®. But it seems never to have
been critically examined, and its region of applicability has been rather vague®. An attempt
of such a critical examination is given in Appendix I, for two-dimensional problems. It is shown
that, for sharp-edged profiles, the method works well to the required degree of accuracy over
-“almost the whole profile”; however, it fails in small regions near the leading and trailing edges,
where it furnishes logarithmically infinite values instead of the big but finite values required
for the resultant velocity becoming zero at the stagnation points (except the particular case
of a true cusped edge, in which case the results are still valid at the edge). The restriction is
not very stringent, as the most important thing is the maximum-supervelocity which occurs
far from the edges, and this can be predictéd safely by the approximate method. It must be
stressed, however, that the method may fail partly in the case of a profile with a rounded
leading edge (e.g., Fig. 20), where the maximum supervelocity occurs near to it

#Goldstein$, however, has indicated that the fundamental formula [(22) in Ref. 6, identical with equation (2.4)
above] can be derived as a first approximation from the exact theory of Theodorsen.
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The simplest case, considered by Ludwieg, and kept also as a representative example through-
out the main text of this report, is that of a profile bounded by two symmetrical parabolic arcs
(as shown in Fig. 1). Denoting the chord by ¢ = 25, and the thickness by ¢, we have :

t xz : .
w:ﬂ@:io—ga_. L (25)
dz , ot
d—x:F(x)z—-b—éx, .. . . . , . . (2.6)
, 2Ut '
g(x)=~2U.,F(x)=Fx, . .. .. . . . 2.7
thus the distribution of sources and sinks is linear. Introducing in equation (2.4) and integrating
from £ = — b to £ = +b (the principal value being taken as shown in Appendix I), we get :
o AUt xmp b 4 1 ein L€ ”
w_mﬂC@—thﬁﬁ__nm(L~gmL_E,” .. (28

& = x/b being a non-dimensional chordwise co-ordinate varying from (—1) to (41) between the °
trailing and leading edge. The graph of the supervelocity over the profile is given in Fig. 1.
It is naturally symmetrical and is a very good approximation, except very near to the edges
where v, tends to a logarithmic infinity, instead of the true, big but finite, values. - The maximum
supervelocity occurs midway, at x = 0, and is given by

4ty e @2

max T

Vx
U]

This is ~1-273 times more than the maximum supervelocity ratio for an elliptic profile of the
same thickness ratio.

d =

In a similar way, the approximate velocity distribution may be determined, and the maximum
supervelocity found, for alternative profiles, symmetrical with respect to the chord. General
formule and a few examples are given in Appendix I. A remarkable case is that of a thin ellipse
for which the integration gives v, = — U# = const., which seems puzzling. However, the true
velocity in this case may be easily found by means of conformal transformation, and it differs
from this constant value by a small term of the order of 92 (except near the edges), and thus the
approximate result is correct ; the maximum supervelocity being even exact. The method works
well for all sharp-edged profiles, while those with rounded nose are often intractable.

3. Sheared Wing.—Let us now consider a flow past an infinite wing set into an oblique position
to the direction of flight so that its leading and trailing edges make an angle ¢ with y-axis,
Two cases may be examined, vsz.: a yawed wing obtained by simply rotating the original wing in
xy-plane through an angle ¢, or a sheared wing obtained by shifting consecutive sections of the
original wing in x direction according to linear law. In the former case the chord and profile
in sections normal to the edges remain unaltered, in the latter we keep the profile unchanged in
sections parallel to x-axis, s.e., to the flight direction. In view of the subsequent application
to the case of a kinked swept-back wing, it will be more convenient to consider a sheared wing
(Fig. 2). ‘

The velocity distribution is clearly three-dimensional now but it can be determined by resolving
the flow in infinity into two components, one parallel to the wing edges (velocity U sin ¢), and
the other one normal to them (U cos ¢). The velocity component along the wing at an arbitrary

point P of the wing is then simply :
V,=Using¢, .. .. .. .. . .. .. .. (8.1)

while the normal component 7, may be determined exactly as for a two-dimensional flow past a
straight wing. We have only to consider a flow with undisturbed velocity U cos ¢ past a normal
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section which has also convex parabolic profile, the chord being now ¢ . cos ¢, the thickness
remaining unaltered ¢, the chordwise co-ordinates x, being proportionally reduced to %, cos @,
and thée non-dimensional & being unaltered. The normal component is therefore, after (2.8):

_ 4 11 ¢
Vn~—Ucos<p—nU19<l—§§1n1~§ L U ¢: X7)
Resolving along x and y-axes, we find the components V.and V,:
Voo —U-v,= V,cosg — Vysing = —U — %Uﬁcomp(l—-%flnl T 5),‘
7z 1 — ¢
4 1+ & 83)
—p = : _ = ' — lflp ——=
V,=v,= V,sing + V., cos e = - U?‘}suup(l 251111 )
The maximum supervelocity in x direction (at & = 0) will then be :
lvx|max£% Ubd cosg. .. .. .. .. .. .. .. (3.4)

It is particularly interesting, and important for the subsequent argument, that the same
results may be obtained directly by applying the method of sources and sinks. In Fig. 1, any
infinite source filament, singled out by its abscissa # and having a width d%, has a strength gd#.
Such a filament may be thought as a system of infinitesimal point sources of strength gd% 47,
uniformly distributed along the filament, the strength density being ¢ per unit area. To obtain
a corresponding source distribution for a sheared wing in Fig. 2, we must arrange the same source
elements along lines parallel to the wing edges. We then get a system of oblique source filaments
and, the total strength being unaltered, the strength per unit length in the oblique direction
will be gd% cos ¢. The total velocity induced at a point (x, ¥) in the xy-plane by a source filament
passing through the point (£, 0) is now perpendicular to the filament and expressed by

_q(%).dx.cosp q(%) . d% ‘
ov = 2an  2m{x +ytane — &) e e ot (8.5)
g(%) being still given by equation (2.7). The components dv, and dv, are, respectively :
4 ¢ Zdx
dv, = 0v.COS @ = - U?COS(px—kytanqp S

3.6)
xdx ) 3.6

" + ytan ¢ — '92
Assuming the point (x, ) to be within the wing area (i.e., —b < ¥ + tan ¢ < b), integrating

) 4 ¢t .
dv, = 0v.sing = ~ U —5sin
T c

from % = —b to & = -+b, and taking the principal values, we get :
v, v, 4 { x4 ytang b—[—(x—{—ytan(p)}
cos<p—_sin<p-v_ nUﬁ ! ¢ 1nb—(x—|—ytanzp) e (8.7)
However, in this case we have : '
%+ ytan g = bé . . . ce e . . (3.8)
and hence :
U, v, 4 14 &
= = —-Us({1—% .. . . . .
cosep sing nU (1 251111 ——§>’ \ (39)

in complete agreement with equation (3.3).

This successful result suggests that a similar method may be applied for determining the
velocity distribution in essentially three-dimensional cases, ¢.g., for finite or semi-infinite sheared
wings, and for finite or infinite swept-back wings—with a kink in the plane of symmetry.
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4. Swept-back Wing, Velocity Distribution in Central Section, after Ludwieg.—In Ludwieg’s
report, an attempt has been made to determine the velocity distribution in the knee of a swept-
back wing of infinite aspect ratio, ¢.c., along the section in the central plane of symmetry, this
section being rightly considered as particularly important (most endangered from the point of
view of shock waves appearing at high speed). The calculation was based on distributing sources
and sinks along kinked filaments, in an exactly similar way to that shown for a sheared wing
where the filaments were straight. In this case, it is necessary to express first the velocity in-
duced by a single kinked source-filament at any point B on the x-axis (Fig. 3). Supposing the
strength of the filament to be ) volume units per second per unit length, the infinitesimal velocity
induced by an element dm of the source line will be :

, Qdm _
6v=4nR2,, .. . .. . . .. .. .. (4.1)
making an angle 4 with x-axis ; the ¥ component will be : '
@ cos 4
dvx=4nR2 an . .. .. .. .. . x . (4.2)
This expression may be integrated, taking into account the obvious geometric relationships :
. cosep sin 4 ) _ cosp diA
R—xm,m—x—r(ﬂ_’_(p),dm_xc—aosz(;{‘l_qj), .. (4.8)
and we obtain :
[ g — ‘ . . '
v, =2 | dv/ :—Q—— T cosada :—Q— . .. .. o (44
. 2rx COS ¢ , Onx . : :

Hence, we arrive at the remarkable result that this induced velocity does not depend on sweep-
back angle ¢, and is the same for a straight vortex filament as for a kinked one of the same
strength with an arbitrary ¢. The formula obviously applies also when x is negative, and so.
the induced velocities at two points B and B, equidistant from origin, must be equal and opposed ;
this seems paradoxical but 1s perfectly correct. The velocity component v, will obviously be
0 at the x-axis, because of symmetry. ,

Turning now to the complete swept-back wing (Fig. 4), we have a continuous system of
infinitesimal kinked source filaments, and any one of them, singled out by the abscissa % of its
vertex C, will be of strength :
gzcosw.azdf e .. . .. (4.5)

(¢f. equation 2.7). This expression must be substituted for Q in (4.4), and x replaced by
(¥ — %) ; then we obtain the infinitesimal velocity induced at any point P of the central chord :

g(%) . d% . cos ¢ = 2U

4 ¢ £ dx
dv":;UEECOS(Px_j’ .. .. e .. (4.6)
whence, after integration :
4 1+¢
v, = —_U# cos ¢(1 — el ), (4.7)

It is seen that this velocity differs from that calculated for an unswept wing (2.8) only by the
factor cos ¢, and is identical with the induced velocity component v, for a sheared wing, as given
by equation (3.3) or (8.8). The latter formula should hold good also for a section of a swept-back
wing at an infinite distance from the x-axis. Hénce Ludwicg arrives at the astonishing con-
clusion that the v, distribution in the knee is the same as at infinity (and symmetrical with
respect to O). '
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The above result has been obtained by Ludwieg and presented as plausible, without any
reservations. He also used it for calculating the critical Mach number for swept-back wings.
However, his solution is subject to very serious doubts. Intuitively, one feels that the v, distri-
bution in the knee of a swept-back wing should differ considerably from the symmetrical one of
a sheared wing, the natural guess being that the maximum velocity in the knee should be higher
and located further backwards. Supposing Ludwieg’s solution were correct, we should obtain
a very strange picture with equal values of v, at y = O and y——> 0 on any one of the lines
parallel to the edges. In such a case there should be either minima or maxima at some specified
values of y. The former supposition seems quite improbable, the latter would mean that the
central section would not be ‘ most endangered * after all, and that the maximum supervelocity
should be sought elsewhere.

The obvious first step to clear up the matter is to determine the supervelocity field over the
entire wing, 4.e., for any values of x and ¥, satisfying the inequalities :

—b<xtytang <0, .. .. .. .. . .. (4.8)

the upper sign referring to the right-hand part of the wing. In view of the symmetry, it will
suffice to consider this part only. A solution for other points in xy-plane, outside the wing area,
may also be obtained but it has obviously little practical value. The most interesting will be
the velocity distribution in the sections near to the x-axis (as suggested by Ludwieg himself),
as in the more distant sections it must clearly tend to that of a sheared wing.

5. Swept-back Wing, Velocity Distribution over the Entive Surface—We have to consider the
same system of source and sink filaments as before, but we must determine the induced velocity
at an arbitrary point R (¥, y) of the wing area (Fig. 4). There are obviously both v, and v,
components but v, is of the first importance. An infinitesimal contribution to v, due to an
infinitesimal source filament will be now, as found already by Ludwieg, and as deduced in Appendix

I1 (where also the component v, is dealt with) :
i, _4Udcos g (x — %) —y*{x — 29?)'2 +32)2}—1/: sin @ sec® ¢ T 5.1)
nC (x — %)* — y* tan®¢
and it is seen that it comes to equation (4.6) for y = 0.

The integration of equation (5.1), and of the corresponding expression for dv, is complicated,
and particular care is needed to avoid mistakes when taking the principal value and finding the
correct determination of the definite integrals. The details of the integration are given in Ap-
pendix ITI, and the final result (for the right hand part of the wing) 1s :

__4 % y :
vx_—;Uﬁcow@—ClnEl—Ctamp.an:z), P (: 3)

where : ' ' .
b4 xRy sing
17— x— 4/[(b— %)+ ysing

g, _btxtytang Vb= +yTdysce
P T x—ytang /[ + 2+ +yseco’
all square roots meaning absolute values. Corresponding expressions for v, are given in
Appendix III. '

It is more convenient to introduce special non-dimensional co-ordinates & and » in the plane
xy, by putting :

E
(5.3)

y=1by;x=>0( —ntang). .. .. .. .. (5.4)
Half the chord & is thus taken as a basic length ; 7 is the non-dimensional co-ordinate spanwise
(in y direction), varying from 0 to infinity along the right hand part of the wing ; and ¢ is the
non-dimensional co-ordinate chordwise, reckoned from the mid-chord line positive forwards, so
that it becomes (—1) at the trailing edge, and (4-1) at the leading edge.
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The supervelocity distribution will then be given by

__4 vo LA &4 (ra—n)tang
vx*NEUﬁCOS(p[ _iﬂnl——f—(f'z—n)tanqp
1—|—(1+§)Sln99005(p+770052¢]
T ntantp In (1 — &) sin g cos ¢ + 7 cos 29 (5:5)
where :
7y = /(1 4 E)®cos®e — 2(1 + &)y sin ¢ cos p + 77, 5.6

7, =1/ [(1 — £}?cos?’e 4 2(1 — &) 5 sin ¢ cos p + 77,

with a corresponding formula for v,.
It is easy to verify, and it has been done in Appendix III, that when y increases indefinitely,
expressions for v, and v, tend to (3.9) as they should do, and this is the first check of the accuracy

of our results. To get a clear picture of the distribution of the induced velocities, over the entire
wing, a single value of ¢ has been selected :

p = 53° 8, cos ¢ = 06, sin ¢ = 0-8, tan p = 4/3,
and the values of the ratios : '

<—~ Vs > and (~ ~ i

d9cosp U 40 sing U
tabulated as functions of & for several chosen values of 5. In Figs. 5 and 6, these values have
been plotted against £, thus showing the distribution of induced velocity components in several
sections parallel to the wz-plane. The curves marked 5 = o relate to a distant section (or to an

infinite sheared wing, according to form (3.9)); they do not differ from the supervelocity diagram
in Fig. 1 for a straight wing, the factors cos ¢ and sin ¢ should be kept in mind, however.

Considering the curves of Fig. 5 marked n = o ;1;0-5;0-3; 0-2; 0-1, for sections nearer and
nearer to xz plane, we notice that the maxima of v, do increase slowly while moving gradually
backwards. Similar curves in Fig. 6 show a gradual decrease of the maxima of v, accompanied
by their moving backwards first and then slowly forwards. It seems plausible that v, tends to

0 when # —— 0, but there are no symptoms whatsoever of v, —curves tending back to the
curve n = .

6. Limiting Case of Cemtral Section, and Correct Velocity Distribution.—The next step is
to study the behaviour of v, and v, for small values of 5 tending to 0; and this has also been

done in Appendix III. It appears that v, ——> 0 as it should do, while the limit expression for
v, becomes :

4 . £l +sing

nl_lgaov “ U0 cos p| 1—}éln (1_51_’%90] O B )
and is definitely different from (4.7). The corresponding curve in Fig. 5 is marked 4 = 0. Tt is
seen that this curve has the biggest maximum (in our case about 27 per cent higher than at
infinity), located farthest back chordwise (in our case at &, == —0-46, or approximately at three-
quarter-chord). This result is physically not surprising, being exactly what might have been
predicted intuitively—and it is claimed to be a correct solution. There is, however, an interesting
mathematical feature in the fact that, while the differential (5.1) tends to that (4.6), there is no

similar relationship between the integrals. This question will be dealt with in the next section,
but we shall first examine our final formula (6.1) in more detail.

It is seen that at mid-chord point O(¢ = 0) we have:
‘Z)xo’—-———i—UﬂCOSrp, .. . . .. . .. (6.2)

and hence at this point only Ludwieg’s result is correct ; it does not, however, represent the .
8




maximum supervelocity. It is also seen that the difference between our formula (6.1) and that of
Ludwieg (4.7) consists only in the linear term: :

l1+sing

1
o

— &gd~ 'y . .. .. .. .. (6.3)
which represents a straight line through the origin in Fig. 5. The ordinates of this straight line
must be added to those of the curve n = o to give the supervelocity curve for the central section.
The slope of the straight line increases with the angle of sweep-back ¢, according to the march
of the inverse Gudermannian function ; hence the ratio of maximum supervelocity in the knee
to that at infinity also increases with ¢, while the position of this maximum recedes more and
more backwards.

The supervelocity at mid-chord points in the central symmetry plane and at infinity being
the same, there must be a point with maximum supervelocity on the median line, as shown in
the diagram (Fig. 7) where several curves of supervelocity are given for a number of lines running
parallel to the edges. Itis clear, however, that this is not the maximum for the wing, nor even a
local maximum. A few loci», = const. (isobars) are represented approximately in Fig. 8.

7. Explanation of Ludwieg’s Ervor, and a General Solution for Awbitrary Profiles—There
being no algebraic mistakes in Ludwieg’s calculation, the error must lie deeper, and should be
sought in the underlying principles which he has not discussed. It has been silently assumed by
him that the entire approximate method of sources and sinks works correctly in all two- and three-
dimensional cases; in particular, that the supervelocities calculated on the chord always agree,
to the order of #, with those to be found on the wing surface. Now, calculating induced velocities
on the chord involves improper integrals ; it is not clear a priori that such improper integrals
are always equal to the limits to which the proper integrals (relating to the wing surface) tend
when z —— 0. It has been shown in our Appendix I that this is the case in two-dimensional
problems with continuous source distribution. However, when dealing with three-dimensional
problems, specially with singularities like those in the wing knee, the question must be re-examined,
and this has been done in Appendix IV. It is shown there that the induced velocity component
v, in. the xz plane; due to a single kinked source filament of strength Q, is expressed by :

, Q@  x+A[x 42 sing | L ay

Ve T a2 x4/[x%% + 2*]sing’
this is a generalization of the formula (4.4), to which it is reduced when z = 0. Considering the
entire system of kinked source- and sink-filaments, for which Q is given by (4.5), we obtain the
infinitesimal supervelocity component induced at any point (x, z) in the symmetry plane by a
source filament with vertex at %: '

- 4Utcos g ¥ — %+ A/[(x — %)* 42" sing

B G A e - AV ey T
Integrating this from ¥ = — bto ¥ = + b (there being no improper integrals) we get: .
70, 6, Vb4 )P+ (b A sing

“iTscosp L eV — %) + 2 — (b —w)sing
.z [tan_lzanx+«/[(b+x)2+22]sin<p

¢ COS ¢ 2COSp

n tan‘lv{w — %)? 4 2*]sing — (b — x)] .

2 COS @
Now, z tending to 0, the above expression tends to:

4 ¥ b+ x1+sing
(v")z—"’—”EU’9~C°S"”<1—clnb~x1_—sin<p’ . . . (7.4)
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and this is equivalent to (6.1). The differential (7.2) tends to (4.6) when z — 0, but this does
not apply to the integrals. .

It is seen that we obtain the same limit values for v, whether we approach the x-axis in xy-plane
with y —— 0, or in xz-plane with 2 —— 0, and the only discordant expression is that calculated
by Ludwieg for the points of the x-axis itself. It is clear that the true quantity we are trying to
approximate is the v, component at the surface of the wing. This is given by (7.8) when substi-
tuting (2.5) for z, but then we obtain values differing from (7.4) only by small quantities of the
order of #* As to Ludwieg’s formula, it gives the induced velocity on the central chord inside
the wing which differs from the true limit value. It is obvious that such discontinuities can occur
because it even happens in a very simple two-dimensional case, shown in Fig. 9, where the
entire system consists of one discrete source and one sink, in addition to a uniform flow. The
induced velocity on the x-axis then approximates well that along the oval profile, but the
approximation fails in the neighbourhood of the source and sink. At the source itself we get
U, = - oo, while the limit of v, when 2z —— 0 with % constant is then finite, and very close to the
value at the contour. In more complicated cases we have to deal with continuous systems of
infinitesimal sources and sinks of the same kind, and similar discontinuities may again occur,
appearing as differences between the improper integrals and the limits of proper integrals.
We are lucky not to encounter such discrepancies in two-dimensional cases with continuous
source distribution, as shown in Appendix I, and this is connected with the symmetry of the
velocity field induced by a single straight source filament. In the case of a swept-back wing,
however, the velocity field induced by a kinked source filament is no longer symmetrical, and the
loc¢iw,” = const. of such a field in xz-plane, according to (7.1), are shown in Fig. 10 (¢f. Appendix
IV). There is no wonder that the lucky agreement between the principal value of the improper
integral and the limit value of the proper one no longer occurs, and only the latter is obviously
the correct one. There might be doubts about the correctness of our general formule (5.2 ;
5.5) which involve the principal values of improper integrals. The doubts might be removed
by calculating v, at an arbitrary point (x, y, 2), and then putting 2z ——> 0. However, such an
intricate calculation is superfluous. The entire induced v, may be split into two parts, one due
to the portions of source filaments contained between two planes parallel to xz at the distances

(v — ) and (y + ¢), and the other part due to the remainder of the system. The first part only
involves improper integrals, and may cause errors. However, there has been no discrepancy
in the case of a sheared wing (Section 8), and so there should be none for a swept-back one,
except in the plane xz, where the present argument obviously fails ; the decisive answer must

then be furnished by a proper procedure of determining the limit, as done by our formulz (7.3)

and (7.4).

It may be necessary to determine supervelocities for a swept-back wing with a symmetrical
section differing from the simplest parabolic one. In such cases the only change consists in re-
placing (2.5) by an appropriate equation of the given profile, and altering (2.7) and (4.5) ac-
cordingly. The calculation of v, and v, may then be performed on the same lines as in the previous
special case (Section 5). For the most important central section, however, a simple general
formula may be deduced, connecting the supervelocity in that section of a swept-back wing
with that of a straight unyawed wing :

. .
o =[@dyeo — = F(). S0

27 1 —sin g

osp. .. .. .. .. (7.5)

A proof of this formula is given in Appendix IV. Our previous result (6.1) is obviously a particular
case of (7.5). A few further examples are given in Appendix IV, and illustrated by diagrams
(Figs. 15 to 21). Here again, the method works well for sharp-edged profiles, but if often fails
for those with rounded edges. Itis clear, however, that the maximum supervelocity in the central
section is always located further back, and is usually greater, than for an infinite sheared wing.*

* If the profile is not symmetrical {orc-and-aft, the maximum supervelocity in the central section of a swept-back
wing may be somewhat smaller than that on an infinite sheared one, for moderate values of g.
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Tt is. seen that the approximate method of sources and sinks may be very well extended to
three-dimensional problems but care is needed to avoid errors.

8. Maximum Supervelocity over a Swepi-back Wing with a Parabolic Profile—The super-
velocity v, in the knee of a swept-back wing with a parabolic profile can be represented, according
to (6.1) or (7.4), by the formula :

TV
5T = G(&, @) . cos o, .. .. . .. .. .. .. (8.1)
where :
14-¢ 1 - sing
—1_1 ) Tl el
G(&, 9) ‘ A — bélng g . . . . (8.2)

An example of a graph of G(£, ¢) against & was given in Fig. 5 (curve marked » = 0) for one
chosen value of ¢ = 53 deg 8 min, and the maximum (~1-27) in that case was clearly seen. Fig. 11
gives a series of such curves for ¢ varying from (¢ to 80 deg. Itisseen that corrections to Ludwieg’s
curve are small only if ¢ is small. For larger sweep-back angles they are very considerable,
e.g., up to 38 per cent for ¢ = 60 deg. The significance of this correction is best appreciated
when bearing in mind that it equivalent to an equal increase of thickness ratio.

The most important, of course, is the product G(¢, ¢).cos ¢, and the relevant curves, for
¢ varying from 0 to 80 deg, have been plotted in Fig. 12. It is seen that the maximum super-
velocity décreases with increasing sweep-back, but the rate of decrease is much smaller than
that predicted by Ludwieg (i.c., cos ¢). The broken lines in Figs. 11 and 12 show the positions
and values of the maxima. :

The maximum value of G, and the corresponding value £,, may be found analytically. Dif-
ferentiating (8.2) with respect to &, we get:

1 fm ZE{:m 1 ! SiIl :
ity TSR L 83)
1 - §m 1 - Em 1 — SIn (p
and substituting into (8.2): ’
1
Gmax :: 1 _ é:mz ¢ (84)
The equation (8.3) cannot be solved explicitly for &, ; for ¢ it gives:
\/|:1 - Emz:l
cos g = z : (8.5)
cosh—2— £ sinh —*—
1 - Emz _I_ 1 - é:mz
Using (8.4) and (8.5), the following table has been calculated ;
@
g, COoS - Gmax Grmax COS
rad deg
.0 1 0 0-00 1 1
—0-1 0-98007 0-2000 11-46 1-0101 0-9900
—02 0-92108 0-4000 22-92 1-0417 0-9594
—0-3 0-82554 0-5996 34-36 1-0989 0-9071
—04 0-69787 0-7984 45-74 1-1905 0-8308
—0-5 0-54496 0-9945 56-98 1-3333 0-7265
—0-6 0-37715 1-1841 67-84 1-5625 0-5893 .
—07 0:21056 1-3586 77-84 1-9608 0-4127
—0-8 007215 1-4986 85-86 2-7778 0-2006
- —09 0-00402 1-5668 89-77 5-2632 0-0212
—10 0 7= 1-5708 90-00 o 0
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The values from the table have been plotted against £, in Fig. 13, and replotted against ¢ in
Fig. 14. The curves of Gp,, show the deviation of our results from those of Ludwieg. The curve
in Fig. 14 of

U3 max .
Gpax COS @ = = — .. .. .. .. .. .. (8.6)
( % max)qo =0 ’
shows the true reduction of the maximum supervelocity in the knee of a swept-back wing, in
comparison with that for an unswept wing. This curve should be examined in conjunction with
that of cos ¢, corresponding to Ludwieg’s theory. The latter gives much too optimistic a picture.

It may be noticed in the graphs that the relationship between ¢ and §&,, is almost linear up to
high values of ¢. It is easy to show indeed that £, may be developed in the following power
series

232 ;p\0 | 15878 ;g\t
— =y 15Q>'+$5Q>+2&5Q>+dﬁmﬂi> ¢ nTadians (8.7)
The series converges very rapidly for all values of ¢, except very near to = /2 and a considerable
part of the curve is approximated very well by the straight line ¢, = — 1 ¢.

List of Symbols

b  Half-chord of the wing profile
¢ = 2b  Chord of the wing profile

d  See equation (IV.8) and Fig. 10
. Portmanteau symbols, ¢f. equation (5.3)

%)  Function determining the wing profile
F,, F, F,, F, Portmanteau symbols, cf. equatlons (I11.17) :
) Function of Veloc1ty distribution in the céntral section of a swept
wing (¢f. equation (8.2)) with biconvex parabolic profile
gd~'¢  Inverse Gudermannian function :
Distance in Fig. 24

I,,1,,I;,1, Integrals, ¢f. equations (I11.10, 11, 12, 18)

I', 1" Integrals, ¢f. equations (IV.13, 14)

1 Index in equations (1.13, 14)
K, K,, K" Mean values of F'’'(x), cf equations (1.6 ;' 1.12; IV.14)
Parameter in equations (1.23) ff., also in equatlons (I.41) ff.
In  Natural logarithm :

Co-ordinate, parallel to the wing edges
Co-ordinate, normal to the wing edges
Auxiliary variable, ¢f. equations (II1.4)
Intensity of a source filament, per unit length
Local intensity of source distribution, p.u.1
Distance in Fig. 3 and Fig. 22 -
Radius, ¢f. equations (I.28) ff.
Portmanteau symbols, ¢f. equations (5.6) and (III.18)
Thickness of the wing profile
Undisturbed velocity of the air ﬂow
Resultant velocity -
Component of the resultant velocity, parallel to the wing edges
Component of the resultant velocity, normal to the wing edges
.x-component of the resultant velocity
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y-component of the resultant velocity

Induced velocity

x-component of the induced velocity, called supervelocity

y-component of the induced velocity

z-component of the induced velocity

Components of the induced velocity in Fig. 24

Chordwise co-ordinate, positive forwards

Chordwise co-ordinate of the source filament

Spanwise co-ordinate, positive to starboard

Vertical co-ordinate, positive upwards

Angles in Fig. 22 and 24

Angle in Fig. 22 and 24

Angle in Fig. 22

Maximum supervelocity ratio

A small quantity

Non-dimensional spanwise co-ordinate on a swept or unswept wing,
¢f. equation (5.4) ‘

Angle in Tig. 1

Angle in Fig. 3 and 22

" Fraction denoting the position of the maximum thickness, inequations

(I.19) ff. "

Non—dilnensional chordwise co-ordinate on a swept wing (x/b on an
unswept wing), ¢f. equation (5.4)

Value of & corresponding to maximum supervelocity

Radius-vector in Iig. 10

Sweep-back angle '

Angle in Fig. 10

Auxiliary variable, ¢f. equation (1.37)

Thickness ratio of a wing profile
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APPENDIX I

Approximate Method of Sources and Sinks in Two Dimensions

Let us consider a continuous distribution of sources and sinks along the chord of a symmetrical

wing profile (Fig. 1). The local intensity at P(#) being ¢(%), an infinitesimal source element of
length d% will induce a velocity év at an arbitrary point P(x, z), given by :

%) . d¥
67):q~(—:2)~77, O

where 7 = PP. The induced velocity components in x and z directions will be :

_ L qE)  x—x
dvx_av.smﬁ_zﬂ (x_@z_'_szx, 1

_ O S S P J
dv, = 6v.cosf = o (x—ﬁ)z—}—zzdx'
According to the main principle of the method, as explained in Section 2, we assume :
g(%) = — 2U . F'(%), .. . .. L ... (L3

and then the integral components of the velocity induced at P by the entire system of sources
and sinks will be :

b .
U — % s e
%:-;j(xf£;+%JW@Mﬁ S ¢ )
—b )
b
U z pr o -
mz_;J%w_xy+ﬁmew e 1)

We assume now that the profile is thin, so that ¢ and # = F(x) are small compared with ¢. Then
F'(x) and F"(%) will be also small of the same order, except in the region of the edges if these
are rounded, where both derivatives become infinite. We exclude, of course, profiles with ab-
normally large vertex angles at the edges, or those with abnormally large curvature locally.
It is now easy to prove that, superposing the given velocity field on that of a uniform flow with
velocity (—U) in x direction, the profile becomes a streamline approximately, the deviations
being small of second order. The formula (I.5) may be transformed as follows :

b b
w, , _ 2d% F'(%) — F'(x) ,_
U - F (x)j_b(x — %) 2 zjlb(x — %)% 4 zzdx.

b -
+b £— 2% _
*—‘=~b_ZKJ_b_—_.<’E_x,>2+zZ ax

2
— ——F'(x)(n — tan—? (F#——Z?‘)—{_ %ZK .In

X —x

= — F'(x). {tan=*~ p

b+ 2)° +2°
b—m)tfz

where K is a certain mean value of F "(x), smaller than the upper limit of | F"(x)|. The first
definite integral obviously represents the angle LPT. We have now :

lim @U) =~ F@, .. .. . . (1)

and at the points of the contour v,/U differs from this limit only by small quantities of the second
order, g.c.4.—7The leading and trailing edges are exceptional points because », should really be
0 at these points. This means that our method distorts the shape of the profile in the neighbour-
hood of the edges, but the distortion is very small, consisting in the stagnation poirts moving
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slightly forwards and backwards from L and T, respectively, and the sharp edges being replaced
by small arcs. This kind of distortion does not occur if F'(b) = 0 or F'(—b) = 0, 7.e., when
there are true cusps at either of the edges.

The entire above argument fails if either of the edges is rounded, F'(x) and F"'(x) becoming
mfinite there, and there being no upper limit of F”(x). In this case, every particular profile
requires really a special investigation, and various singularities may occur. In most simple
cases, however, the ensuing distortion of the profile is still small and does not, by itself, discredit
the method.

Supposing the distortion of the profile is tolerable, the supervelocity v, may be calculated
from (I.4) which does not include improper integrals, except possibly at the edges. It may be
proved, however, that the result will differ from the induced velocity at the chord :

U ) -
(2)ie0 = — 2 e F dx - o .o s ‘s 23 (I.8)
7] :
only by small quantities of the second order. The integral (I.8) is an improper one, and its princi-
pal value should be taken.

To prove the assertion, we shall consider the following transformations:

s gy ¥ __{_1 E = " {")_ r(i) T
U = ..[-f'—.ﬂ’-'—:’d'k*‘ (% — x)* :‘(1 Ay
sh
 irm s [ FO-F@ o o
= —F(¥).Inp = ln iy Fo®dE .. (19
E) — F'(x) HEL ‘ £ — () di (1.10
U /o S T arh B=a 5 i y 5 W 9)

b f—= b

dx dx dx o b—x b—x
J .e_}-‘-l el I b R S
—b b (U S o
and hence :
i) b g;.__ "(#) — F'(x) ,.
Y = —F(x).In +ﬂ. A= g . o . @I

Subtracting now (1.9) from (I.11), we get:

AR EMEETEE

" F(®)— Fy)  dE

X — x (# — x)* 4 2*

1+ 2Y(b + 2)*
_.—1i(h-_1}

‘ J;l(.-;—tan—l o ) (L.12)

bt — x* — 22

= l; ('t] II]

where K, is again a certain mean value of F'(x), smaller than the upper limit. It is seen that the
first term in (1.12) is small of the third order, the second one small of the second order.
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The supervelocity », may now be calculated for any given profile from (I.8); or often better
from (I.11) where the only improper integral has been determined once for all. It will be often
convenient to expand (I.11) in a series, putting:

= gy o B
:é:l(f —i!X>i—1Fi-+1(x) ) .. . .. .. .. .. | (1.13)

which gives:

v, , b+ x < (— 1) Fivl(x) ; ;

g = e > il {(’““’) ‘(x_b)}
B b« ., F'" (%)
= — F(x).In3—— + 2. F'(x) — 23—,

2 (x* + 39 —Fg(”) — 2 (x° + b%%) -——FZ(I")

2 (0 4 2w 304 T

FVII
_zb(x5+l3%2x3+b4x)»6,(’“)+... L (114

If F(x)is a polynomial, the series becomes finite, and then the formula (I.14) is to be recommended
to determine the velocity distribution in the most straightforward way. This is practically
always the case for all sharp-edged profiles. It must be stressed that the first term in (I.14)
assumes logarithmically infinite values (always positive) when x tends either to (—&) or to
(+0). The method thus formally breaks down in small regions near the edges, where the profile
gets distorted. The true value of v, at the edges should be (4-U) so that they become true stag-
nation points. This does not mean any serious fault from the practical point of view. The theory
dealing with the supervelocities assumed small of the order # = #/c in comparison with U, there
is no wonder that it yields infinite values where v, equals U. The regions near the edges, where
the formule are unreliable, are very narrow. In particular, the restriction practically never
affects the calculation of the maximum (negative) supervelocity which generally occurs far from
the edges. .

It may be mentioned that, if F'(b) = 0 or F'(—b) = 0, one of the edges is a true cusp. In such
a case the method is still valid at the respective edge, and the induced velocity at the edge is
finite and small (positive).

One simple conclusion from the theory is that, for thin sharp-edged profiles, the supervelocity
(in particular the maximum supervelocity) is proportional to the thickness ratio #, the function
F(x) and all its derivatives containing this ratio as a factor.

All the above arguments again fail for profiles with one or two rounded edges. There being
no upper limit of F''(x), the mean value K, in (I.12) need not necessarily be small of the order 9.
Nevertheless, the general formula (1.8) often gives quite satisfactory results, at least outside
the region of the rounded edge(s). A general analysis of this case seems to be very complex and,
at present, we are only able to produce a few examples. It has proved more expedient in this
case to use (L.8) rather than (I.11) or (I.14), and to avoid infinite series. Aninteresting feature in
all examples examined thus far is that the calculated induced velocity v, remains finite (usually
negative) right up to the rounded edge(s), while it becomes infinite (and positive) only at the-
edge itself. If the maximum negative v, occurs far from the edge, it seems to be quite a satis-
factory solution. It happens, however, especially for profiles with ‘ blunt ’ edges (large radius
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of curvature), that the calculated negative v, increases up to the edge(s) ; then the true maximum
of v, occurs quite near to the edge and cannot be determined at all, more so as the component
v, becomes large in this region, and may affect the maximum resultant supervelocity in an
unpredictable way. In such cases there is even no reason o expect the maximum supeyvelocity
to be proportional to ¢, and the entire theory breaks down.

Example I. Biconvex profile bounded by two symmetrical parabolic arcs (Fig. 1).

In this simplest case, the equation of the upper arc is:

¢ %2
z=F(x)=§<1‘—ZE)A, L (L)
and the successive derivatives :
¢ ¢
F'(x) = — b—f‘; F"(x):—b—zg F" (%) =0,etc. .. . . .. (L1e)

The half vertex angle at both edges is tan=* 29. The sources and sinks distribution is linear, as
shown in Fig. 1. The supervelocity distribution is obtained from (I.14) in the simple form :

14 ¢

AU w by 4 1
v,_—m(l—clnb_x>_ nUﬁ(l 3 172) (1.17)
and is represented by the graph in Fig. 1. The maximum supervelocity ratio is:
Ul 4ty .
ézﬁmw—nﬁ_lﬂ&ﬁ. e .. . . . .. (L.18)

Example IT1. Profile bounded by two arcs of cubics (Figs. 15 and 16).

Assuming that the maximum thickness is again ¢, and corresponds to the abscissa x = ub,
the only possible cubic satisfying the obvious geometrical conditions, is given by the equation :

VRN Sk A ST _ % ¥
Z——F(x)——z(l_[uz)2<1 b2><1+1_3ﬁb), L Loaa)

with successive derivatives:

P = -+ D)
() = — % (Tfljf)'z (1— 8"+ 60 3); r (1.20)
F''(x) = — (_l—fﬁ#)_z Z_th = const. J

The vertex anglés z and ¢ at leading edge and trailing edge are given respectively by :
T o = w21

Tt is seen that u may only vary between (-+3) and (—%), there being cusps at leading edge or
trailing edge in the limiting cases. If u = 0, we come back to the parabolic profile of the previous
example. The supervelocity in the general case is again obtained from (1.14):

4UH 1
([1— 807 Bt — 3(e — ) @t + 1) I 2

b —— — (1.22)
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Two particular profiles of this kind, for x = ¢ and %, thickness ratio 0-2, are shown in Figs. 15 and
16 together with sources and supervelocity distribution. It is seen that the maximum super-
velocity increases with the maximum thickness moving forwards, the former being located ahead
of the latter.

For u = 4, the formula (I1.22) still holds at the cusped trailing edge, where :

27

Example IT11. Profile bounded by two arcs of symmetrical quartics (Fig. 17).

This is another generalization of the biconvex profile of the Example I. The equation of the
upper arc is:

¢ x? x?
z:F(x):§<l—§é><1—’r-kz;z>, O e %)
and hence :
) = BN g — L R
F(x)_~bz<1——k—|—2kb2>,F(x)_-bz<l——k+6kﬁ>, -
i) = — lg—ft % FlV(x) = — 1;1% — const.

The half vertex angle at both edges is tan=* 2(1 4- &) 9.
The supervelocity, from (I.14) becomes :

4 Eoger L=k, N 1te
v,,_~n(m[1—3+2k5 ~<—~2—§+k§)ln1—_—5], (1.25)
or, expanded for small &:
4 R 1+ 5%
vx:_;w[l—g—u-%)ng . s] ... (L26)
The maximum supervelocity ratio (for ¢ = 0) is :
v, 4 k '
azimax_ﬂﬁ@—é), O 874

but this is only true if £ < 4, and then, for positive %, the maximum supervelocity is smaller
than for the parabolic profile. The smallest ¢ is obtained for 2 = %, and it amounts to :

6min - §g'ﬁ' - 1'132’19‘,
9%

which is still 13 per cent higher than for an ellipse.

If § < & < 1, the profile is still smooth and convex, with blunter edges and flatter in the centre,
but the velocity distribution becomes disadvantageous, with a minimum at ¢ = 0, and two sym-
metrical maxima nearer to the edges. For 2 > 1 the profile itself becomes concave in its central
part.

For negative values of %, the vertex angles diminish (the profile becomes concave near the edges

when & < — 0-2), and ¢ increases. In the extreme case 2 = — 1, there are two cusps at both
edges, and then the formula (I.25) holds for the entire profile. It is then:
s 16 (Y 8
=G| =3, 0=16%80; <U)£=1 = 5 0 = 0:8499.

A few illustrative graphs are given in Fig. 17.
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Example IV. Biconvex profile bounded by two civcular arcs.

The equation of the circular arc is:

2= F{x) = [r? — 2% — 7 4+ ¥, . . .. .. .. (1.28)
‘ ] ettt
where : ¥y = T
and hence : »
Mg) = o
F(x) = T = .. .. . . - . . (1.29)
_ The supervelocity can be found from (I.11), after a slightly laborious transformation, in the form :
w, . Lox P =bx A= % P -0 bt
7 = 4 tan~' 9 + Vi =1 .11172 For b — A — b b — s (1.30)
and the maximum supervelocity ratio will be :
(v, . 4} 1
6_5max_ntan #, .. . .. . .. . .. (1.81)

which differs from (I.18) only by small terms of third order in #.

This case is particularly interesting because an exact velocity distribution may be determined
for such a profile by means of conformal transformation (Karmén and Trefftz)®. The true

maximum velocity is:

Vmux == ) U 2 (1.32)
1+ 4% (1 - 2tan’lﬁ 2
{  ten0)
and hence, expanding in power series :
Vo = U _ 4 12 ) |
6 = _nﬁ—!—<ﬂz——1>ﬁ—.... PO ¢ £ )

which differs from (1.31) only by terms of second and higher order in 4.

No graphs are given for this case, as they would be hardly distinguishable from those in Fig. 1
for the parabolic section. As a matter of fact, the equation of the circular arc (1.28) differs
itself from that of the parabolic arc (I1.15) only by small terms of higher order in #, and hence,
from the point of view of the first order theory, the two profiles are equivalent.

Example V. Elliptic profile (Fig. 18).
The equation of the upper arc is:

t
z=F(x)=%\/[bz—x2}, .. .. .. .. .. .. (1.34)
and the first derivative :
P A
F(x)__Qb\/[bz—x”’]’ .. .. .. .. .. .. .. (1.35)

the strength of the sources becoming + o> at the ends of the chord.
- The velocity v, is best found directly from (L.8):

s [ % d
v”:_?er(f——x) \/[62—932] .. - . N .. (1.36)
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by means of the substitution :
% =>bsin®, x=>bsino, .. e .. . .. o (1.37)
which gives: '

/2 . 7/ 2 - :
vxz_-@f .—f’”l-“—’—.——-dcaz—gi?[wrsinwj @ } (1.38)
—n/2

7 Sin w — SN @ T /251nw — SiIl w
-_n

The principal value of the improper integral is found to be zero for any w, except 4-#/2, and hence:

v, = — U8, O ¢ )

except at the edges where v, = . This result seems paradoxical, the superveloc1ty obtained
being constant along the entire proﬁle However, in this case the exact velocity distribution
can be determined by means of conformal transformation, the result being:

V:U(1+ﬁ)\/[1_1(1”_’5;2)52}, L (4o

and it is seen that it differs from U(1 + #) only by small terms of the order 9%, except near the
edges. A graph of the exact supervelocity is given in Fig. 18.

The remarkable fact is that the true maximum supervelocity is U#, being exactly equal to
that given by (1.39). It seems to be the smallest maximum supervelocity obtaindble for a profile
with a given thickness ratio #. The maximum supervelocity for the parabolic profile in Example I
was 1-273 times larger, that in Example II—still higher. In Example III, it has been proved
impossible to reduce the ratio below 1-13.

Example VI. Modified symmetrical profile with rounded edges (Fig. 19).

Assuming :
2
z‘.—:F(x):Qt—b[bz——xﬂ”"’ (I+r5), (14
we get : -
, 1 — 2k)b® + 3kx®
F(x) = zba( [b2~)— PEEE > }
| . (1.42)
_ 4 2 e
o) — — (L= 200 4 ORD* &* - Bt

55 5% — a%yore

The profile becomes an ellipse when 2 = 0. For 0 < %2 < 4 we obtain convex oval curves fuller
than an ellipse, for 0 > & > —0-1 convex oval curves with sharper edges, and for —0-1 > 2 > —1

partly concave curves, until at 2. = —1 the edges become cusped. The supervelocity may be
found as in the previous example :
v, = — U#(1l — 1k -+ 3kE?. . . .. .. .. .. (1.43)

If % is positive then the supervelocity at £ = 0 may be smaller than U#, but in this case it does
not represent a maximum but a minimum. This is an example of blunt edges, the calculated
v, increases right up to the edges, and the true maxima cannot be found. For negative & the maxi-
mum supervelocity occurs in the middle, and it is larger than U4#. It is clear that the maximum
supervelocity must exceed U# in all cases.

The case of a cusped profile (# = — 1) is interesting. We have then:

rio- -]
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and
'Ux = - % U?? (1 - 252):

the supefvelocity being (—1-5U#) at the summit, and (+1-5U%) at the cusped edges.

Example VII. Two simple profiles with rounded leading edge and pointed trailing edge (Figs.
20 and 21).

One such profile is given by :

Z=F(x)=%\/6.t[l_ﬂ1/2<1_1_’[_§)’ 1
| ' | (L.44)
F'(x) = 1% 4/6 . 9(1 — 3¢) (1 — &-42, J

the maximum thickness being located at & = %, i.e., at 33 per cent chord. The supervelocity
becomes :

94/3 3t —1 V2 + /[l —§]
U (1 I | s
4 TeyRI— 8] vE—vil—al (143)
except at the leading edge where it is infinite. The graph is given in Fig. 20, and it is seen that
v, is not maximum at & = § but it increases right up to the leading edge.—Our method clearly
fails to provide the maximum supervelocity in this case, the rounded leading edge being too blunt.

U, = —

Another profile of this kind, with a rounded but comparatively sharp nose is represented by :

= r = w137 (1+5) (1=15). L a4
F(x) = 10(58% — TE) (1 — &)

the maximum thickness is located at mid-chord. The formula for the supervelocity is :

_ U/ 76 — 56 V24 4/(1 = £)]
b=~ o [(3 5¢) v/2 4 e Rbv; e w2/
The graph in Fig. 21 gives a clear maximum at about § = — 0-1, and 6 == 1-2. The method

works well in this case.

APPENDIX II
Velocity Induced by Finite or Infinite Straight and Kinked Source Filaments of Constant Strength

In Fig. 22, AB is a finite source filament of constant strength @ per unit length. An infini-
tesimal velocity &v’, induced at any point P by a source element of length dm, is :

,  Qdm
o =1 R . . . . . . . .. (ILIL)
Taking into account the obvious relationships
m=mntand;dm =mnsec?Adi; R=mnseci, .. .. .. .. (I1.2)
we get :
.9
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The components of ov’ parallel to the axes m and # become *

dv,' = — ov' .sin A = 9 sin 4 d4 ,
4 dnn
(I1.4)
dv,’ = &v' . cos A =—~Q cos A dA ,
dnn
and hence, integrating from B to A :
ro 9
v, = o {cos & — cos B), ,
0 (I1.5)
U, =47%(s1n « -+ sin B).

The component »," of the induced velocity in an arbitrary direction, making an angle y with the
#n-axis, thus becomes :

v, ==, siny + v, cosy = 47% {sin-(oc + y) + sin (8 — y)} .. (I1.6)
For a semz’ﬁ'%fim'te source filament « = =2, and then :
R S ) in 8)
v, = —47mcos/3, v, _47m(1 + sin 8) ; .. .. . . (I1.7)
v':_Q_{COSy+sin(ﬁ;y)} L )
4mn ) ' T
Finally, for a source filament extending to infinity both ways, « = § = =2, and then :
Y SR '
v,,,_(),v,,—zn%, .. .. . .. .. . .o (IL9)

in agreement with the familiar formula for an infinite source filament.

It is possible now to find the components of the velocity induced at an arbitrary point A in
xy-plane by a kinked source filament of constant strength Q with a sweep-back angle ¢ (Fig. 23).
The x-component due to the right hand part of the filament will be obtained from (I1.8) by putting
n=%Co8@+ysing;y=—¢;sin (f —y) =sin (8 + ¢) = y/4/(x* + y? :

A° Q y -
0_4n(x+ytan(p)(1+V(x2+y2)seC¢). ... L. (L10)

vx

Replacing in (I1.10) ¢ by (= — ¢), wefind the corresponding contribution of the left hand part of
the filament :

" Q y
i = rayrrrewe (1 /7 Se(:<p> : oL (ILIY
Summarising (I1.10) and (I1.11), we get the total x-component :
r Q . yz 3 2
v, = S (x® — y* tan’g) (x VD sin ¢ sec (p> .. e (IT12)

22




In a similar way, the partial y-components of the induced velocity may be found, by putting

y=n/2 —¢;sn(f —y)=—cos(f+o) =— x4/ (%% 4 y?), and then replacing ¢ by (= — ®):
1 Q tam o — X
Yl T dn(x + v tan ¢) (Lan T Va4 Y See ‘77> ’
Y 0 e .. (11.13)

Uy

x
e dx(x —ytane) (tanqo B \/(x2—!—y2)seC(p>’ J
and hence the fotal y-component

. Qytang ( %
YT 9 (x® — y? tane) \4/(x® + ¥7)

The above formule are valid in the entire xy-plane, provided the square roots are always considered
as positive. It is easily verified that the induced velocity becomes infinite only along the source

filament.

v sec<p—tanqa>. oo . (I114)

In particular, for y = 0, we get :

Y R A L)

in agreement with (4.4).

. , - APPENDIX I1I
Details of Calculating the Velocity Distribution over a Swept-back Wing with a Payabolic Profile

Let us consider a swept-back wing of infinite span with a parabolic profile (Fig. 4). The strength
of any one of the infinitesimal source filaments, the abscissa of whose vertex is again denoted by

#, will be, according to (4.5) :
Q_”:qdﬁCOSq?:SUTzCOS(p.?Ed?E. . . . .. .. (IILT)

We now obtain the infinitesimal components of the velocity induced by this source filament,
replacing in (I1.12) and (I1.14) % by (¥ — %), and introducing (I1I.1). Thus we get :

) — oy 72 W21 —1/2 o3 2
v, — 4U9 cos ¢ . (x — %) — y*{(x - Zc) + 9y} sin g sec®y o o (IT1.2)
me (x — %)* —y*tan®¢
ol - R\ 2\ —-1/2 —
dv, — 4U9 sin ¢ . y(x — %) { (x — %) -—|—y }2 secp —ytan g i di. (ITL.3)
. 7c (x — £)* —y*tan® ¢
and these expressions must be integrated from £ = — b to £ = + b. The integration does not

present any fundamental difficulties but is rather complex. It will be convenient to introduce
an auxiliary variable :

b=%— %, PR ¢ § B )
and integrate from p = — (b + %) top =0 — x. It is sufficient to consider positive v only,
and then the only value of  which makes both integrands become infinite 1s :

p=ytang .. . (II1.5)
(for p = — v tan ¢ both integrands have finite values).

After a somewhat laborious transformation, the formule (II1.2) and (IIL.3) can be reduced
to the following form :

__me dv,  x4ytaneg P+ x
Tocoss 3= p—yians by tan g ey secp (I11.6)
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e dv, x4 ytang

e A4 4 px + y*tan g Y sec @
4Udsing " dp  p-—ytang

]52 -l—_y” _l__y(Pz +y2)1/28ec¢""(]52_l_y2)1/2’

where only the first simple terms become infinite at p = y tan ¢, and all other terms are always
finite. We then get:

(111.7)

ne

Wocosy= "¢~ @tytany) Litytang. [i+x.1, .. .. (L8
e ' ‘
Wosng» = Wtytane) Li+xl. 4 ytang. I, —yseco. I, .. .. (IILY)
where : |
b—x
= __ 4 _ b+ x +y tan ¢ (the only improper
b —_J_(H )lb —ytang =~ b—x—ytang integral) -+ (I1L.10)
b—x
Pdﬁ ' ’ b—zx
I, = =1 2 2
2 J—éb-kx)pz + oyt ‘I‘}’(Pz“l‘yz)l/zsectp n(4/[p*+y ]—j—ysec@ Coin
VIb+ %)+ ¥ +ysecy
=1 ; .. (IIL.11
n\/[(b_x)z—l—yz]—[—ysec(p (IIL.11)
I — " ytang |y _Pcose +ysing -
T P Y Y (B0 ) P secy b+ +y) sing|
_ ot ry—ytang b — x4 [(b— %) 4 y*]"*sing
— 1nb — x—i—ytan(p . b_l_x___ [(b—{— x)z _|_yz]1/z Sil‘ltp’ . (III.IZ)

Y TR
I4 - J \/[PZ +y2] - In ['\/(? A+y ) 25]

— ) —(b42)

VIO + %)® 4+ 5*] + (b + %) :
= Ay ) - - - (IL1Y

It may be noticed that the formula for the improper integral (II1.10) is only valid within the
right-hand part of the wing avea (— b — ytan ¢ < ¥ < b 4 y tan ¢) ; it becomes infinite at both
leading and trailing edges. All remaining integrals are valid in the entire right hand part of the
xy-plane and are always finite. This applies also to I; in which the numerator and denominator
become simultaneously zero and change sign when crossing the extended trailing edge of the left-
hand part of the wing (x = — b + y tan ¢). However, the entire fraction under the sign of
logarithm always remains finite and positive.

Introducing (III.10, 11, 12, 13) into (II1.8) and (IIL.9), rearranging and simplifying, we finally
get the following formule for both components of the induced velocity :

o, % bt et [+ w) +y ) sing

T 4Ubcosep ¢ b—x—[(0b— %)+ yHsing

y b+x+ytang [(b— x)* 4+ y*]*/2 4- ysec ¢

— ctanq)'lnb'——x——ytanq)" (6 F 27 + y*7* + ysecp (ITI1.14)
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b+xtytang A/[(b— %)+ v+ yseco

v, X
4Udsing ¢ lnb—x—ytanqo A0+ %)y yseco
y b4 x4+ [(b+ %)* 4 y*]Y?sin g
+ctan(p'1nb—x—[(b——x)z—{—yzjl/zsin(p
vl VG + %)+ v+ (0 + )
p Secq)'ln\/[(b——x)?—[—yzj—(b—x) . .. - .. (IIL.15)

For numerical computation and discussion, it is more convenient to introduce special non-
dimensional co-ordinates & and 7, as defined in section 5 (form 5.4). The formule (III. 14, 15)
can then be brought to the form :

sy 1 1 |
109 cos ¢ 1—3élnF,+4iqntang.In Fy,
(I11.16)
)
iUTSyin—(;D:%ntangv.1nF2+%—§lnFg——%nsqualnF4, J
where : -
o :1—{—§—|—(71—n)=tan¢
YT l—&—(rp—n)tang ’
71+ (1 + &) singcosg 4 ncosle
F2:7' — (1 — &) singcosp + ncosg ’
* Y 1 § 88 )
Ia :]‘l‘g.yz’i"?
? 1—¢& 7ri+1n’°
7 i+ (1 4+ §&cosp —nsing
Py — (1 — &) cosgp —nsing’
and : i
v =+/[(1 + &%cos®p — 2(1 + &) ysingcose + 47, h
e (I11.18)

7o =4/[(1 — §)*cos’ + 2(1 — &) ysingcosg + 5. J
The first check of our results may be obtained by letting # tend to infinity, whereupon the
formulae should reduce to those applying for a sheared wing. Developing for large » we get :

2 I
71:n—(1+£)sinqacos<p+<i;_—n§l cost ¢
3
—I—(lg—:icosws‘sinzp...
. 7 ‘ 1 &) . (I11.19)
7o, =15+ (1 — &) sin g cos ¢ -+ 277‘ cost ¢
. E\B
——%COS(}ﬁSintp...
1+ &  singcos 3¢ . ” )
1nF1=1n1_§+ L ¢+§F sin®¢p cos’yp ...
3 1+ 3¢ .
1nF2:;7—2005290—I— ——2773—cos3qum<p...
lee 1. > (I11.20)
In F3=71r'11 i— E—i—‘n—smqocow —ﬁi—;cosHp(Q—Ssinzgv_) -
2 2t . 14 3¢
In F, = %—COSq) -+ e sin ¢ cos® e + -:3 d cos®y (3 —cos®yp)
J
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and finally :

i 8 3
4U» <1 1¢1n 1+ ¢ SlIl(pCOS(p.”)

v, = — —COSQD 1_ : 4772
4T 4 2p(2 — 3sin’p) (IT1.21)
_ Y 1 ' _ CoS8"p(a—osin‘y
v, = - Sll’l(P(l gélnl_g 12 )

For n — oo, these formule become identical with (3.9).

It is also easy to examine the induced velocities in the central section (symmetry plane), and
in the neighbouring sections. Putting v = 0 in (IIL.14, 15), or n = 0 in(II1.18) we get at once :

. __é_{ s 1+ &1+ sing :
)0 = 05 (0,0 U cosp(1—4¢n = -0y, L (1IL22)
(see 6.1). For small y, it is seen dlrectly from (II1.14) that v, differs from (II1.22) only by small
terms of the order y?, and this shows that the lines v, = const. (approximate isobars, ¢f. Fig. 8)
_ cut the x-axis at right angles.

It may be useful to expand the complicated formule (III.16, 17, 18) into power series in 7,
to show the behaviour of the induced velocities near the central section. We get:

-

_ _ 7’ 1
;= (14 &) cosg 7781n¢p—|—2(1+§>COS¢+2(1+§)ZSH’1§0
n 7t 4sin®e - cos?y
8(1 4 &)® oS ¢ B
. , > (I11.23)
:(1—E)COS¢+nSin¢+ﬂiTQCOS¢_QH_- 5)"25in‘7’
X 7t 4sin®p — cos’y
8(1 — ¢&)® oS @ B
14 &1 +sing 2n R
lnFI—lnl—-E l—Singv_l———Eztan(p
7t Sln(p
+(1_§2) cost ( + &% 4 4¢£ sin ¢) .
. l—l—El—i—smzp__Zn &+ 2sin ¢ o
In Fyln g g gl USSR E (I1.24)
2n & --sing 277 sing 1 4 &2 —i—2§smcp
In Fy g .
T 1— £® cosq (1 — £3) cos?p ’
_{-‘2
nF,—2ln 2V =81 260 0o
n 1'—‘52 ~
and hence :
oz v, 1 1ie .1+ ¢&1+sing &y tan g 7
419Ucos<p_1 3(¢ 77tan(p)lﬂl—--g§1——sinqo 1 — g2
_ L. aSing 3§ — £5 4 4sing
277 COS2(p (1_52)2 c e ey L
T v, o 24/[1 — &7] ‘ : (IT1.25)
—_—— = n
49 Usin ¢ cos 7 .
14 &1+ sing & &+ sing sin ¢ 3&—&%42sin
1 L2 ?...
2’7ta“"’<1n1—51—sm¢ sing 1— 22 /)" Tcosty (1 £
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APPENDIX IV
Velocity Distribution in the Symmetry Plane of Swept-back Wings with Arbitrary Profiles

Let us consider a kinked source filament of constant strength ) per unit length in wy-plane,
with its vertex at the origin O, and an arbitrary point P (x, z) in the symmetry plane (Fig. 24).
It will be required to find the component v,” of the velocity induced by the filament at P. This
component will obviously consist of two equal parts contributed by the two parts of the kinked
filament, so let us consider the right hand part (0, 4+ ) only. Drawing a plane I through that
part of the filament and the point P, the total velocity »; induced by that part will lie in 77, and
its two components v, (parallel to 0, 4+ «) and v, (perpendicular to 0, + ) may be found as in
Appendix IT (formule 11.7) :

vlzg};cosﬁ; v2=17—z%(1—sinﬂ), .. .. .. .. (IV.)
there being obvious changes in signs.
The component v, may be resolved into two sub-components v," and v,
v, =v,siny; v, =uv,C08Y, .. .. .. .. .. .o (IV.2)

where y is the angle between the planes xy and ZZ. The two components v, and v,” now lie both in
a plane parallel to xy, and hence (Fig. 24a) :

30, = bn’ CoS ¢ -+ vy Sin ¢ = 4%& {(1 — sin ) cos y cos ¢ + €os ff sin (p} . ‘(IV.S)
Using the obvious geometric relationships :
h® = x2cos®p -+ 2% cosy =xCZS¢ ,
‘ ) (IV.4)
cosf=— T sinp—-rSmE
(2% V(x® 4 27)”
we finally bring v,” to the form : ‘
,_Qx(xz—I—zz)”zcosch—}—zzsinqp (
Ve = oy (%2 + 232 (2 cos®e + 27) ° IV.3)
or, simplifying :
, 9 ¥+ (2* + 2% sing
U = on a2 422 L ox(x? 4+ 2%t sin g (1V.6)

(cf. 7.1). TFor z = 0, we get v,) = Q/2mx, whether x is positive or negative, in agreement with
the result found earlier in section 4. It is obvious that the velocity distribution in the xz-plane
is not symmetrical with respect to the z-axis. This distribution may be examined most con-
veniently in polar co-ordinates. Putting ¥ = ¢ cosy, z = ¢ sin y, we get :
2_nv, 1 cosy +sing
Q" eol-+sinpcosy’
and hence any locus of v,/ = const. will be represented by the equation :

. cosy +-sing 0
o= dy ot [d_vax'J' ¢ A

(IV.7)
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Reversing the sign of 4 will also reverse that of v,’. Two such loci are represented in Fig. 10:
and all other loci will be curves similar to the given ones, except the locus »,” = 0 which consists
of two semi-infinite straight lines y = 4 [(#/2) 4 ¢]. If ¢ = 0, the formula (IV.6) becomes simply :

Q%

U T on mT T 2
and the lociv,” = const. become circles, the induced velocity field being symmetrical.

It is now possible to deduce a general formula for the velocity distribution in the central section
of a swept-back wing with an arbitrary symmetrical profile, following a method similar to that
used in Appendix I for unswept wings. The strength of an infinitesimal kinked source filament
(Fig. 4) will be : : , ' :
Q=gq(®)dxcosp = —2U . F'(%) .d¥cosgp, .. .. .. .o (IV.9)

where z = F(x) is the equation of the profile. The infinitesimal velocity induced by the filament
at a point («, 2) is, after (IV.6) : .

x— %+ [(x — %)+ 2% %sin ¢ _ :
(=2 2+ (r— ) [s — B + 2T rsmg 0 0 WO

and we have to integrate this expression'from £ = — b to £ = + 5, and let z tend to zero affer-
wards. One example of such an integration has been given in Section 7 for the parabolic profile,
and it suggests a method to be used in the general case. It will be convenient to compare the

induced velocity on a swept-back wing with that on a straight wing, as given in Appendix I
by (I.4). We get 7 :

dv, = — g F'(%) . cos g

1

cos <pv” = (oo ,
b ’ .
U x— %+ [(x — %)% + 2*]'/%sin ¢ X% Vo 7=
- nJ— [(x_£)2+zz + (x___x) l:(%_~~ 92)2 - 22]1/2 Sin(p (x_ 93)2 + Zz:|F (x) az, (IV'II)
which may be brought to:
1 . _ g ! [ g_% 1% ' -
Coslpvx—(vx)mzo-————ﬂF(x)I —~ I, .. . . . .. o (IV.12)
where :
7 ' 2?sin g d%
- L =2+ 23 (VI — %) +2*] + (x — %) sing}

~b

xX—Xx -
ln{l + (x—__m Sin (p} -,

B b+ x . _ _ b—x .
_ln{1+\/[(b+x)2+.22] SlIqu} ln{l '\/[(b—x)2—|—22]5m(p}’

(IV.13)
and : |
o F' (%) — F' () , | _
" J_b{(x— A7+ 23 {V/I(x— 2 + 2]+ (x — P singy S0 - 4
= K" i (§—x) zsin g d% . - ‘
=K J_b{(x At VI — D 2+ (x—%)sine) (IV.14)
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where K’ is a certain mean value of F’/(x), smaller than the upper limit of | F*'(x)|. The integral
in (IV.14) can be determined as follows :

. . = 2 2 = b
tant (T % cos) +‘coi¢ta“_1 =242 L p - "] , .. (IV.15)

r_d
K" |lcosg z T ztang

and it is seen to tend to a finite limit when z — 0. The entire second term in (IV.12) is thus small
of the second order in 4 and may be neglected. We then get :

U U 1 1+ sing

x==b

i — =— —F im I’ = — = F' (). - .
lim [v,sec ¢ — (9,) y—ol- — F' (%) zh_r)_rt I ~ F' (x).1n | —sing’ (IV.16)
and finally : '

- g ’ 1+ Sin(}’
0, = [(@oms — 2 F () In g0 Jcos (v.17)

This surprisingly simple formula gives the velocity in the central section of a swept-back wing
with an arbitrary profile, once that of an unswept wing with the same profile has been determined,
as shown in Appendix I. The formula (7.4) is obviously a special case of (IV.17).

The above argument again fails generally for sections with rounded edges, although it may
work satisfactorily in particular cases, especially if the rounded edge is comparatively sharp.
In some cases the method fails for unswept wings, while it works well for swept wings, or vice
versa. A few curves showing the velocity distribution at a sweep-back angle ¢ = 53 deg 8 min
are given in Figs. 15, 16, 18, 20 and 21.

It is seen from the diagrams and from (IV.17) that the maximum supervelocity for a swept
wing is always shifted backward when compared with that of a straight wing. The second term
in the bracket of (IV.17) always causes the supervelocity to decrease ahead of the maximum
thickness, and to increase behind it.
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Fic. 3. Velocity induced on x-axis by a kinked source
' filament in xy-plane.
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Infinite swept-back wing.
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v, distribution over a swept-back wing with biconvex parabolic
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FiG. 6. v, distribution over a swept-back wing with biconvex
parabolic profile,
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F16. 7. v, distribution along lines parallel to wing edges (&-parallels).
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F16, 8, Isobars on a swept-back wing with biconvex parabolic profile,

5= [-275

G=1-25
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Fic. 9. Velocity distribution on a profile with one source and one sink.
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F16. 10. Loci of constant »,” in xz-plane induced by a kinked source
filament in xy-plane.
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F1c. 11

Graphs of the function G(&, ¢) for different
sweep-back angles.
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F1c. 12. Graphs of the function G(£,¢) cos g for different sweep-back angles.
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F1c. 18, Maximum supervelocity and its location,
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T1c. 14. Maximum supervelocity against angle

of sweep-back.
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Fic. 15. Profile (1.19) with g = }. Sources and supervelocity distribution.
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Fic. 16. Profile (1.19) with 4 = 4. Sources and supervelocity

distribution.
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F16. 17. Profiles (1.23) with 2 = 0-6 and £ = — 1-0. Supervelocity

distribution.
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Fic. 18. Elliptic profile.

Sources and supervelocity distribution,
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Frc. 19.

Profiles (1.41). Superveloéity distribution,
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TF16. 20.  Profile (1.44). Sources and supervelocity distribution..
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Profile (I1.46). Sources and supervelocity distribution.
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F1c. 22. Velocity induced by a finite source filament.
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Fic. 23, Velocity induced in xy-plane by a kinked source filament in Fics. 24 and 24a. Velocity induced in sz-plane by a kinked

xy-plane, source filament in xy-plane. .
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