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Summary.--A solution by H. Ludwieg a, giving the velocity distribution in tile central section of a thin swept-back 
wing of infinite aspect ratio with a biconvex profile at zero incidence, has been found erroneous. In connection with 
this problem, the approximate method of sources and sinks for determining velocity distribution on straight and 
swept-back wings is critically examined, its limitations established, and proper ways of its application to three- 
dimensional probIems indicated. A correct solution of Ludwieg's problem is found, and generalized to give the velocity 
distribution over the entire wing. The method is further extended to cover a wide class of thin symmetrical wing profiles, 
those with rounded leading edge being, however, often intractable by this particular method. 

The ultimate purpose of the investigation is to provide a reliable basis for determining the criticat Mach number 
for swept-Back wings. Further work is needed to embrace wings of finite aspect ratio and tapered wings, in particular 
delta-wings. The method seems adequate to deal with these more complex cases. 

1. Introductio~.--It has been widely known  for some t ime tha t  an increase of the crit ical  
Mach number  can be obta ined  for a long un tape red  wing b y  set t ing it into an oblique posit ion 
to the  direction of flightl However ,  the  simple theory  of the flow past such a wing cannot  be 
direct ly  applied to the  case of a symmetr ica l  swept-back wing, because a considerable modi-  
fication is b rought  about  b y  the  kink in t h e  s y m m e t r y  plane where  the  entire flow is essential ly 
three-dimensional .  The problem seemed to be ve ry  complex, and no a t t empts  have  been made  in 
Br i ta in  to solve it b y  a direct  theoret ical  approach.  Therefore,  impor t an t  progress was though t  
to be achieved by  a fairly recent  German report  b y  Ludwieg  ~ who, b y  using a ve ry  simple and  
ingenious method ,  has given an apparen t ly  perfect  solution of the problem, at  least in the  case 
of a wing wi th  a simple biconvex profile (Fig. 4). Ludwieg  r ight ly  restr ic ted his invest igat ion 
to a th in  symmetr ica l  profile at  zero incidence, for, at high speed, near ly  symmet r ica l  profiles 
and  ve ry  small  incidences only are to be reckoned with.  All the  difficulties of lift d is t r ibut ion 
are thus  removed,  and  the  problem can be solved b y  dis t r ibut ing suitable cont inuous sets of 
sources and  sinks inside the wing in xy-plane, and  by  de termining  the  m a x i m u m  induced  super- 
veloci ty  in the  centra l  section. Ludwieg  s imply adap ted  the approximate  me thod  of sources 
distr ibution,  as previously applied successfully in two-dimensional  cases, to fit a swept-back 
wing. He  found an amazingly  simple and  paradoxical  result  that ,  for a swept-back wing, the  
superveloci ty  dis t r ibut ion in the  central  section should be exact ly  similar to t ha t  of an unswept  
wing, mere ly  reduced  propor t ional ly  to cos ~ ; in other  words, t ha t  the  superveloci ty  dis t r ibut ion 
in the  central  section should be ident ical  wi th  tha t  at a section ve ry  dis tant  f rom the  s y m m e t r y  
plane (apart  f rom the  unessent ial  t ransverse  components) .  This does not  mean,  of course, t ha t  
the critical Mach n u m b e r  should be equal  for the two sections. Ludwieg  applied his result  to 
de te rmine  the  critical Mach n u m b e r  as a funct ion of sweep-back angle and thickness ratio, and  
produced  charts  for this purpose. 

*R.A.E. Report Aero. 2200--received 6th October, 1947. 
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Ludwieg's work has aroused a good deal of interest in Britain and has been repeatedly quoted in 
publications ~,~. A warning, therefore, must be given that  his theory is fallacious, being based 
on an erroneous application of the method of sources and sinks in three-dimensional problems 
with discontinuities, such as appear in the. '  knee ' of a swept-back wing. In two-dimensional 
cases, the distribution of induced velocities along the chord may be considered, with certain 
restrictions, as a limit of the corresponding distribution on the wing surface and, if the profile 
is thin, the former provides a sufficient approximation to the latter. However, this is not always 
so in three-dimensional problems, and, in Ludwieg's case, the two differ quite substantially, 
the difference increasing quickly with the sweep-back angle. Wha t  has been found by him is 
really the induced velocity distribution along the central chord inside the wing, and this is quite 
different from that  at the surface. 

Ludwieg himself suggested that  his results, confined to the central section only, should be 
extended to cover the entire surface of the wing, especially its part  near to the symmetry plane. 
This was intended to be done by the present writer, and the results are given in section 5, as 
developed in detail in Appendices II  and III.  I t  has been found that  in the limiting case of 
y - - -+  O, i.e., when approaching the central section, a result different from Ludwieg's has been 
obtained. The velocity distribution must, however, be continuous along the entire surface, and 
this led to the conclusion that  Ludwieg's simple result must have been wrong. Apart from this, 
his solution seemed improbable on purely intuitive grounds. ,To explain the source of error, 
it proved to be necessary to examine critically the whole method of sources and sinks, and this 
has been done in Appendices I and IV for straight and swept-back wings, respectively. The 
analysis resulted in determining the limitations and pecularities of the method, and led to simple 
formulae giving the velocity distribution on straight wings, and in the central section of a swept- 
back wing, with an arbitrary profile. It  appears that  the method gives correct solutions for sharp- 
edged aerofoils, while it is likely to fail in many cases of aerofoils with rounded leading edge. 
For swept-back wings, the results always differ considerably from those of Ludwieg. 

The entire theory has been limited in this report to the simpler case of infinite aspect ratio. 
However, the method can be very well extended to cover the more complex cases of finite aspect 
ratio and even of tapered wings, including delta-wings. There are no fundamental difficulties, 
and it is hoped that  the algebraical complications will not prove prohibitive and that  the results 
will be presented in future reports. I t  seems desirable to extend the theory in this direction 
before proceeding to the matter  of critical Mach number. There being a strong tendency to 
apply wings of small aspect ratio (especially delta-wings) in high-speed design, all results per- 
taining to the infinite aspect ratio must be treated as a first step only, with a rather limited 
practical application. 

Acknowledgements are due to Miss F. M. Ward who has done the computation and prepared 
the illustrations. 

2. Straight Wing (two-dimensional case).--Before proceeding to  study the complex case of a 
swept-back wing (Fig. 4), it will be useful to start by reviewing briefly two simpler cases, viz.: 
(1) the two-dimensional case of all unswept wing of infinite aspect ratio (Fig. 1) ; (2) the case of a 
sheared infinite wing (Fig. 2), where the velocity distribution is truly three-dimensional but  can 
be determined by a two-dimensional method. 

For a straight wing (Fig. 1), assuming its profile to be thin and symmetrical with respect to 
the chord, the velocity distribution may be determined approximately, to the small values of 
the order of thickness ratio ~ = t/c, by the method of Sources and sinks distributed along the 
chord. The latter distribution could be determined exactly by the method of conformal trans- 
formation, should the transformation function be known for the given profile. However, even 
if this were the case, the formulae for both sources- and velocity distribution would be extremely 
complicated for practically all types of profiles, and it would hardly be possible to extend the 
procedure to three-dimensional cases. That  is why, in such problems, an approximate method 
has been more and more applied lately, based on the assumption that,  at any point A of the 
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chord, the local source intensi ty q (per unit length of the chord) is proportional to the slope of 
the profile at its corresponding point P having the same abscissa as A. Explicitly " 

& . . . .  ( 2 . 1 )  
q =  - 2 u  " . . . . . . . . . . . .  

the minus sign being due to the velocity U being directed in our figure against the x-axis. The 
formula may be simply explained as follows. Assuming that  the velocity of the flow, both 
outside and inside a thin profile, differs little from U in direction and magnitude, the flux across 
any vertical section of the profile is given approximately by 2Uz, its increments having to be 
supplied by the sources. Hence the strength qdx of an infinitesimal segment dx of the source line 
must be approximately equal to 2Udz. 

The resultant velocity at P may be determined by adding to (--U) the velocity induced at P 
by the entire source-and-sink line, which may be obtained by integrating the effect of a source 
element qd~. The integration may be simplified greatly if the induced velocity v at P (small of 
the order *9,) is replaced by tha t  at A, the error committed being generally small of a higher order. 
We then obtain : - -  

I J~~ q(2). d2 . . . . .  (2.2) 
v+ = L=.2 (x . . . . . . . . . . .  

and, if  the equation of the upper boundary of the profile is • 

z = F ( x ) ,  . . . . . . . . . . . . . . . .  ( 2 . a )  

then • 

2 U F'(~) .d2  (2.4) 
V . . ~  - -  - . . ~ + . . • • o o • • o • 

+ x - - 2 '  

However, in th i s  manner we introduce improper integrals, the integrand becoming infinite at 
= x, and the principal value is taken to represent a good approximation to the value of the 

velocity on the surface. This gives, of course, only the x component of the induced velocity., 
the z component vz, to the order of ,9, being simply [ - - U .  F'(x)].  The latter component is 
unessential, however, because the resultant velocity 

1 . - - U  + v y ~ + v2 

equals ( - -U  + v~) to the order of .9., and hence v, alone may represent what is called super- 
velocity. 

The entire method seems to have been found independently by  several scientists in different 
countries, the first to introduce it in Britain having been H. B. Squirek In Germany it was 
employed by F6ttinger, Betz, Riegels 2, etc., and also by Ludwieg a. But  it seems never to have 
been critically examined, and its region of applicability has been rather vague*. An a t tempt  
of such a critical examination is given in Appendix !, for two-dimensional problems. I t  is shown 
that,  for sharp-edged profiles, the method works well to the required degree of accuracy over 

• ' almost the whole profile' ; however, i t  fails in small regions near the leading and trailing edges, 
Where it furnishes logarithmically infinite values instead of the big but finite values required 
for the resultant velocity becoming zero at the stagnation points (except the particular case 
of a true cusped edge, in which case the results are still valid at the edge). The restriction is 
not very stringent, as the most important  thing is the max imum supervelocity which occurs 
far from the edges, and this can be predicted safely by  the approximate method. It  must be 
stressed, however, tha t  the method may fail part ly i~n the case of a profile with a rounded 
leading edge (e.g., Fig. 20), where the maximum supervelocity occurs near to it. 

*Goldstein 6, however, has indicated that the fundamental formula [(22) in Ref. G, identical with equation (2.4) 
above] can be derived as a first approximation from the exact theory of Theodorsen. 
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The simplest case, considered by Ludwieg, and kept also as a representative example through- 
out the main text  of this report, is that  of a profile bounded by  two symmetrical parabolic arcs 
(as shown in Fig. 1). Denoting the chord by  c = 2b, and the thickness by  t, we have • 

z = F ( x ) =  1 - -  , . . . . . . . . . . . . . .  (2.5) 

dz t 
d x -  F ' ( x ) = - - ~  x . . . . . . . . . . . . . . .  (2.6) 

2 U t  
q(x) = - -  2 U .  F ' (x )  = b- ~- x . . . . . . . . . . . . .  (2.7) 

thus the distribution of sources and sinks is linear. Introducing in equation (2.4) and integrating 
from £ = -- b to £ = + b (the principal value being taken as shown in Appendix I), we get • 

v, = ~c  \ - - - c  In = _  ~4_ Uv  ~ 1 - -  ½~ln ~ - ~ / ,  . . . .  (2.8) 

= x/b being a non-dimensional chordwise co-ordinate varying from (--1) to (+  1) between the 
trailing and leading edge. The graph of the supervelocity over the profile is given in Fig. 1. 
I t  is natural ly symmetrical and is a very good approximation, except very near to the edges 
where v, tends to a logarithmic infinity, instead of the true, big but finite, values. The maximum 
supervelocity occurs midway, a t  x ----- 0, and is given by 

4 
= = - e  . . . . . . . . . . . . .  (2.9) 

m a x  Z ~  " " 

This is ~-~1.273 times more than the maximum supervelocity ratio for an elliptic profile of the 
same thickness ratio. 

In a similar way, the approximate velocity distribution may be determined, and the maximum 
supervelocity found, for alternative profiles, symmetrical with respect to the chord. General 
formula and a few examples are given in Appendix I. A remarkable case is that  of a thin ellipse 
for which the integration gives v~ = --Uv~ = const., which seems puzzling. However, the true 
velocity in this case may be easily found by means of conformal transformation, and it differs 
from this  constant value by a small term of the order of v~ 2 (except near the edges), and thus the 
approximate result is correct ; the maximum supervelocity being even exact. The method works 
well for all sharp-edged profiles, while those with rounded nose are often intractable. 

3. Sheared W i n g . - - L e t  us now consider a flow past an infinite wing set into an oblique position 
to the direction of flight so tha t  its leading and trailing edges make an angle 9 with y-axis. 
Two cases may be examined, viz.: a yawed  wing  obtained by  simply rotating the original wing in 
xy-plane through an angle 9, or a sheared wing  obtained by shifting consecutive sections of the 
original wing in x direction according to linear law. In the former case the chord and profile 
in sections normal to the edges remain unaltered, in the latter we keep the profile unchanged in 
sections parallel to x-axis, i.e., to the flight direction. In view of the subsequent application 
to the case of a kinked swept-back wing, it will be more convenient to consider a sheared wing 
(rig. 2). 

The velocity distribution is clearly three-dimensional now but it can be determined by resolving 
the flow in infinity into two components, one parallel to the wing edges (velocity U sin 9), and 
the other one normal to them (U cos 9). The velocity component along the wing at an arbitrary 
point P of the wing is then simply : 

V,, = U sin 9 . . . . . . . . . . . . . . . . .  (3.1) 

while the normal component V~ may be determined exactly as for a two-dimensional flow past a 
straight wing. We have only to consider a flow with undisturbed velocity U cos 9 past a normal 



section which has also convex parabolic profile, the chord being now c. cos , ,  the  thickness 
remaining unal te red  t, the  chordwise co-ordinates x0 being proport ional ly reduced to x, cos ~0, 
and  the non-dimensional  ~ being unaltered.  The normal  component  is therefore, after (2.8)" 

4 ( 1 + ~ . . . . . .  (3.2) 
V,------- U c o s ~ - -  ~ U ~  1--½~ln  ~ - ~ /  . . . . .  

Resolving along x and y-axes, we find the  components  V~ and V~ " 
4 ( 

V~ = - -  U + v~ --:- V,, cos ~ -- V,,, sin 9 = - - U - -  U ~ c o s 9  1 - - ½ ~ l n ~ - - ~ / ,  I (3.3) 
4 U ~ s i n ~ ( 1  ~1 1 + ~h Vy = vy --  V,, sin ~ + V,~ cos ~ --  = --  ½era ~ - - ~ ) .  

The m a x i m u m  supervelocity in x direction (at , = 0) will then  be • 

4 U~ cos 9 . . . . . . . . . . . . . . .  (3.4) 

I t  is part icularly interesting, and impor tan t  for the  subsequent  argument ,  t ha t  the  same 
results may  be obta ined direct ly by  app ly ing  the  me thod  of sources and sinks. In  Fig. 1, any 
infinite source filament, singled out by  its abscissa 2 and having a wid th  d2, has a s t rength  qd2. 
Such a fi lament may  be thought  as a system of infinitesimal point  sources of s t rength  qd2 d~, 
uniformly dis t r ibuted along the filament, the  s t rength  densi ty being q per uni t  area. To obtain 
a corresponding source distr ibution for a sheared wing in Fig. 2, we must  arrange the same source 
e lements  along lines parallel to the wing edges. We then get a system of oblique source filaments 
and, the  total  s t rength  being unaltered,  the s t rength  per unit  length in the  oblique direction 
will be qd2 cos 9- T h e t o t a l  velocity induced at a point  (x, y) in the xy-plane by  a source filament 
passing th rough  the point  (2, 0) is now perpendicular  to the fi lament and expressed by 

= q (2 ) .  d 2 .  cos q (2 ) .  d2  
2m¢ - - - - 2 ~ ( x + y t a n ~ - - 2 ) '  " . . . . . . .  (3.5) 

q(2) being still given by  equat ion  (2.7). The components  dv~ a n d  dvy are, respectively • 

4 U cos 
dv~ = ~ v . c o s ,  = = x + y tan  9 -" 2 ..  . .  .. (3.6) 

_ 4 U t sin 9 2 d2 
d v y ~ v . s i n ~ - - - - -  ~ c2 x + y t a n ~ - -  2 

Assuming the point  (x, y) to be within the  wing area (i.e., - -b  < x + y tan  ~ < b), in tegrat ing 
from 2 = --b to 2 = + b, and taking the  principal values, we get • 

4w(  .. (3.7) 
cos ~ --  sin ~0 ~ c b --  (x + y tan  9) 

However,  in this case we have " 
x + y tan  9 ----- b~ , . . . . . . . . . . . . . .  (3.8) 

and  hence ' 

( 1 + ~h . . . .  (3.9) v~ __ %, _ 4 U ~  1 - - ½ ~ l n ~ - ~ / ,  . .  . .  
cos 9 sin ~ 

in complete agreement  with equat ion (3.3). 

This successful result suggests tha t  a similar me thod  may  be applied for determining the  
velocity distr ibution in essentially three-dimensional  cases, e.g., for finite or semi-infinite sheared 
wings, and for finite or infinite swept-back wings - -wi th  a k ink  in the plane of symmetry .  
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4. Swe2bt-back Wing,  Velocity Distribution in CeuEral Section, after Ludwieg . - - In  Ludwieg ' s  
report, an a t t empt  has been made  to determine the  velocity distr ibution in the  knee of a swept- 
back wing of infinite aspect ratio, i.e., along the  section in the central  plane of symmetry ,  this 
section being r ight ly  considered as part icularly impor tan t  (most endangered from the point  of 
view of shock waves appearing at  high speed). The calculation was based on distr ibuting sources 
and sinks along k inked  filaments, in an exactly similar "way to tha t  shown for a sheared wing 
where the filaments were straight. In  this case, it is necessary to express first the velocity in- 
duced by a single k inked source-filament at  any point  B on the  x-axis (Fig. 3). Supposing the  
s t rength  of the  filament to be Q volume units per second per uni t  length, the  infinitesimal velocity 
induced by an element  dm of the source line will be • 

~v' - -  (2 dm 
4~R ~ . . . . . . . . . . . . . . . . .  (4.1) 

making  an angle 2 with x-axis ; the x component  will be • 

dv~ (2 cos ~, 
- -  4 ~ R ~  dn . . . . . . . . . . . . . . . . .  ( 4 . 2 )  

This expression ma y  be integrated,  taking into account the obvious geometric relationships" 
) 

cos 50 sin 2 cos 50 d2 R ~ x  cos (;t -I- 50) ; m = x "din = - " . .  (4.3) cos (z + 50) ' Xcos (z + 50}, 
and we obtain • 

, (2 (2 = cos 2 d2 -- vx : 2 2~x cos 2~x . .  . . . .  (4. 
0 

Hence, we arrive at the remarkable  result tha t  this induced velocity does not  depend on sweep- 
back angle 9, and is the  same for a straight vortex filament as for a k inked one of the  same 
s t rength  with an arbi trary 50. The formula obviously applies also when x is negative,  and s o  
the induced velocities at two points B and B', equidis tant  from origin, must  be equal and opposed ; 
this seems paradoxical  but  is perfectly correct. The velocity component  vy will obviously be 
0 at the  x-axis, because of symmetry .  

Turning now to the complete swept-back wing (Fig. 4), we have a continuous system of 
infinitesimal k inked source filaments, and any one of them, singled out by  the abscissa 2 of its 
ver tex  C, will be of s t rength  • vertex C, will be of strength • 

t : .~. 

cos  50 = 2 u  cos x d e  . . . . . . . . . . .  (4 .5)  

(@ equat ion 2.7). This expression must  be subst i tu ted for Q in (4.4), and x replaced by  
(x - -  2) ; then  we obtain the infinitesimal velocity induced at any point  P of the central  chord • 

t 2 d2 
dv, = 4 _ U ~ cos 50 x -. (4.6) 

J ' ~  _ _  ~ ~ • • . . . . . . . . 

whence, after in tegrat ion • 

4 (1 1 + ~  v, --  ~ Ua cos 50 . . . . . . .  (4.7) - -  ½ - ~ l n  ~ - - ~ )  . . . .  . 

I t  is seen tha t  this velocity differs from tha t  calculated for an unswept  wing (2.8) only by the  
factor cos 50, and is identical  with the induced velocity component  v~ for a sheared wing, as given 
by  equat ion (3.3) or (3.9). The lat ter  formula should hold good also for a section of a swept-back 
wing at an infinite distance from the x-axis. Hence Ludwieg arrives at the astonishing c o n -  
clusion tha t  the  v~ distr ibution in the knee is the same as at infinity (and symmetr ical  wi th  
respect to 0). 
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The above result has been obtained by Ludwieg and presented as plauslble, without any 
reservations. He also used it for calculating the critical Mach number for swept-back wings. 
However, his solution is subiect to very serious doubts. Intuitively,  one feels that  the v, distri- 
bution in the knee of a swept-back wing should differ considerably from the symmetrical one of 
a sheared wing, the natural  guess being tha t  the maximum velocity in the knee should be higher 
and located further backwards. Supposing Ludwieg's solution were correct, we should obtain 
a very strange picture with equal values of v~ at y = 0 and y- - - -~  oo on any one of the lines 
parallel to the edges. In such a case there should be either minima or maxima at some specified 
values of y. The former supposition seems quite improbable, the latter would mean that  the 
central section would not be ' most endangered ' after all, and tha t  the maximum supervelocity 
should be sought elsewhere. 

The obvious first step to clear up the matter  is to determine the supervelocity field over the 
entire wing, i.e., for any values of x and y, satisfying the inequalities • 

- - b  < x ± y t a n ~ 0  < b, . . . . . . . . . . . .  (4.8) 

the upper sign referring to the right-hand part of the wing. In view of the symmetry,  it will 
suffice to consider this part only. A solution for other points in xy-plane, outside the wing area, 
may also be obtained but  it has obviously little practical value. The most interesting will be 
the velocity distribution in the sections near to the z-axis (as suggested by Ludwieg himself), 
as in the more distant sections it must clearly tend to that  of a sheared wing. 

5. Swept-back Wing, Velocity Distribution over the Entire Surface.--We have to consider the 
same system of source and sink filaments as before, but  we must determine the induced velocity 
at an arbitrary point R (x, y) of the wing area (Fig. 4). There are obviously both v~ and vy 
components but v~ is of the first importance. An infinitesimal contribution to v, due to an 
infinitesimal source filament will be now, as found already by Ludwieg, and as deduced in Appendix 
II  (where also the component vy is dealt with) " 

4Uv~cos9 ( x - -  2) -- y~ { ( x - -  2)~-t-Y2}-~/2singsec~°2d2, .. (5.1) 
dv~ -- ~c (x -- 2) 2 -- y~ t a n ~  ° 

and it is seen that  it comes to equation (4.6) for y = 0. 
The integration of equation (5.1), and of the corresponding expression for dv~ is complicated, 

and particular care is needed to avoid mistakes when taking the principal value and finding the 
correct determination of the definite integrals. The details of the integratioII are given in Ap- 
pendix III ,  and the final result (for the right hand part  of the wing) is • 

v , - -  U~cos~0 1 - - - - l n E ~  -Y-tan~. lnE~ , .. • • 
• ~ C C 

where" 
E b + x + + x) + sin \ 

1 = b - -  x - -  W/[(b - -  x) ~ + Y~] s i n ,  . .  (5 .3)  

J E~ b + x + y t a n ~ o  ~ / [ ( b - - x ) ~ + Y ~ l + y s e e 9  
-----b-- x - - y t a n g " ~ / [ ( b + x )  2 + y ~  + y s e c g '  

all square roots meaning absolute values. Corresponding expressions for vy are given in 

Appendix I l l .  
I t  is more convenient to  introduce special non-dimensional co-ordinates ~ and v in the plane 

xy, byput t ing" y = b ~ ; x = b ( # - - v t a n ~ )  . . . . . . . . . . . . .  (5.4) 

Half the chord b is thus taken as a basic length ; v is the non-dimensional co-ordinate epanwise 
(in y direction), varying from 0 to infinity along the right hand  part  of the wing ; and ~ is the 
non-dimensional co-ordinate chordwise, reckoned from the mid-chord line positive forwards, so 
tha t  it becomes (--1) at the trailing edge, and (+1) at the leading edge. 
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The superveloci ty  dis t r ibut ion will then  be given b y '  

4 U# cos ~o ~1 --  ,}~ln 1 + ~ + (r~ --  ~) t an  ~o Vx 
k 1 - -  $ - -  (r~ - -  7) t a n  ~o 

+ + + + 2gl 
• r ~ - - ( 1 - - ~ ) s i n ~ c o s ~ + ~ c o s  ' 

where  • 
r~ = ~/[(1 + ~)~ cosY g --  2(1 + ~)~ 

= [(1 - cos  o + 2(1  - 

with  a corresponding formula  for v~. 

sin ~o cos 9 q- fl ~], 

~ sin ~o cos ~o + V 2], 

. . . .  (5 .5)  

. . . .  (s .6)  

I t  is easy to verify, and  it has been done in Appendix  I I I ,  t ha t  when  y increases indefinitely, 
expressions for v, and  v., t end  to (3.9) as they  should do, and  this is the  first check of the  accuracy  
of our results. To get a clear p ic ture  of the  dis tr ibut ion of the  induced  velocities, over the  en t i re  
wing, a single value of ~0 has been selected : 

= 53 ° 8', cos ~ = 0.6, sin ~ ----- 0.8, t an  9 = 4/3, 

and  the  values of the  ratios • 

4# cos~0 ~ and 4# sin 

t abu la t ed  as functions of ~ for several chosen values of ~7. In  Figs. 5 and  6, these vahles have  
been p lo t ted  against  ~, thus  showing the  dis t r ibut ion of induced veloci ty  components  in .several 
sections parallel to  the  xz-plane. The curves marked  ~ = oo relate to a dis tant  section (or to an 
infinite sheared wing, according to form (3.9)); t hey  do not  differ from the  superveloci ty  d iagram 
in Fig. 1 for a s t ra ight  wing, the  factors cos ¢ and sin ~ should be kept  in mind,  however.  

Considering the curves of Fig. 5 marked  ~ = oo ; 1 ; 0.5 ; 0.3 ; 0.2 ; 0.1, for sections nearer  and 
nearer  to xz plane,  we notice tha t  the max ima  of v~ do increase slowly while moving  gradual ly  
backwards .  Similar curves in Fig. 6 show a gradual  decrease of the  m a x i m a  of vy accompanied  
b y  their  moving  backwards  first and  then  slowly forwards.  I t  seems plausible t ha t  vy tends  to 
0 when  ~ - - - +  0, bu t  there  are no symptoms  whatsoever  of v, - - curves  tending  back  to the  
curve ~ = oo. 

6. Limiting Case of Central Sectio~,, a~d Correct Velocity Distribution.--The next  step is 
to s tudy  the  behaviour  of v~ and  vy for small  values of ~ tending  to 0 ; and  this has also been 
done in Appendix  I I I .  I t  appears  t ha t  v~ ----+ 0 as it  should do, while the  l imit  expressfon for 
vx becomes • 

4 [ 1 1 / 1  + ~ 1  + sin ~0,~] 
l im v~-------- U~ cos ~o L 1 -- ~ n ~ -  ~1 s ing / - j '  "" (6.1) 

~ / - - -> -  o ;7~ - -  - -  

and  is definitely different f rom (4.7). The  corresponding curve in Fig. 5 is ma rked  ~ = 0. I t  is 
seen tha t  this curve has the  biggest m a x i m u m  (in our case about  27 per cent  higher  t h a n  at 
infinity), located far thest  back  chordwise (in our case at ~,,, ~ --0.46, or approx imate ly  at  three-  
quar ter -chord) .  This result  is physical ly  not  surprising, b e i n g  exact ly  w h a t  might  have  been 
p red ic ted  i n t u i t i v e l y - - a n d  it  is c la imed to be a correct  solution. There  is, however ,  an interes t ing 
m a t h e m a t i c a l  fea ture  in the  fact that ,  while the  differential (5.1') tends to t h a t  (4.6), there  is no 
s imilar  re lat ionship be tween  the  integrals.  This question will be dealt  wi th  in the  next  section, 
b u t  we shall first examine our  final formula (6.1) in more detail. 

I t  is seen t h a t  at  mid-chord  point  O(~ = 0) we have"  
4 

v,0 = --  - U# cos 9, . . . . . . . . . . . .  . .  (6.2) 

and  hence at  this point  only Ludwieg 's  result  is co r rec t ;  it does noL however ,  represent  the  
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m a x i m u m  supervelocity. I t  is also seen tha t  the  difference between our formula (6.1) and tha t  of 
Lndwieg  (4.7) consists only in the  linear te rm : 

- -  ½~ln 1 + sin ~ _ ~gd-1~ , . . . . . . . . . .  (6.3) 
1 =- Sill 

which represents a s traight  line th rough  the  origin in Fig. 5. The ordinates of this s t raight  line 
mus t  be added to those of the  curve ~ = oo to give the  supervelocity curve for the  central  section. 
The slope of the  s traight  line increases wi th  the angle of sweep-back % according to the  march  
of the  inverse Gudermannian  function ; hence the ratio of m a x i m u m  superveloci ty in the  knee 
to  tha t  at  infinity also increases wi th  % while the  position of this m a x i m u m  recedes more and 
more  backwards.  

The superveloci ty  at  mid-chord  points in the  central  symmet ry  plane and at infinity be ing  
the  same, there  mus t  be a point  wi th  m a x i m u m  supervelocity on the  median  line, as shown in 
the  diagram (Fig. 7) where several curves of supervelocity are given for a number  of l ines  running 
parallel to the  edges. I t  is clear, however,  t ha t  this is not  the  m a x i m u m  for the  wing, nor even a 
local max imum.  A few loci v, = const. (isobars) are represented approximate ly  in Fig. 8. 

7. Exp lana t ion  of Ludwieg's  Error, and a General Solution for  Arbi trary  Profiles• T h e r e  
being no algebraic mistakes in Ludwieg's  calculation, the  error must  lie deeper, and should be 
sought  in the under ly ing principles which he has not  discussed. I t  has been si lently assumed by  
h im tha t  the  entire approximate  me thod  of sources and sinks works correctly in all two- and three- 
dimensional  cases; in particular,  tha t  the  supervelocities calculated on the  chord always agree, 
to the  order of ~, wi th  those to be found on the  wing surface. Now, calculating induced velocities 
on the  chord involves improper  integrals ; it  is not  clear a priori tha t  such improper  integrals 
are always equal to the  limits to which the  proper integrals (relating to the wing surface) t end  
when  z - - - +  0. I t  has been shown in our Appendix  I tha t  this is the case in two-dimensional  
problems with continuous source distribution. However,  when dealing wi th  three-dimensional  
problems, specially with singularities like those in the wing knee, the question must  be re-examined,  
and  this has been done in Appendix  IV. I t  is shown there tha t  the  induced velocity component  
v, in. the xz plane; due to a single k inked  source fi lament of s t rength  Q, is expressed by  : 

v '  Q x + ~/Ex ~ -F- z~ sin 9 . . . . . . .  (7.1) 
~ - 2z~ x ~ + z 2 + x ~ / [ x  2 + z2~ sin 9.' "" 

this is a generalization of the  formula (4.4), to which it is reduced when z = 0. Considering the  
entire system of k inked  source- and sink-filaments, for which Q is given by  (4.5), we obtain the  
infinitesimal supervelocity component  induced at any point  (x, z) in the  s y m m e t r y  plane by  a 
source fi lament with ver tex  at 2 :  

dv~ 4 U t c o s 9  x - - 2 +  % / [ ( x - - 2 )  2 + z ~]sin~o 2 d 2 . .  (7.2) 
• - -  ~c ~' (x --  2) 2 + z ~ 4.- (x --  2) ~/[(x --  2) ~ + z ~] sin ~0 

In tegra t ing  this from 2 = --  b to 2 = + b (there being no improper  integrals) we get : 

~v, --  1 - -  x In X/[(b + x) 2 + z2] + (b + x) sin ~0 
4U~ cos 9 c ~/[(b --  x) ~ + z ~] --  (b --  x) sin 9 

z [ t a n _ l b + x + ~ / [ ( b + x ) ~ + z 2 1 s i n 9  
c c o s  q~ z c o s  q~ 

_ 1  , / [ ( b  - -  x )  + s i n  - -  (b - -  
+ t an  (7.3) 

J 
• • • • • 

z c o s  q0 

Now, z tending to 0, the  above expression tends to :  

4 w c o s t ( l _   lnb 1 + s in , )  . . . .  (7.4/ 
c b - - x  1 - - s i n ~ 0  ' "" 
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and this is equivalent to (6.1). The differential (7.2) tends to (4.6) when z - - - +  0, but this does 
not apply to the integrals. 

I t  is seen that  ,aTe obtain the same limit values for v, whether we approach the x-axis in xy-plane 
with y ----~ 0, or in xz-plane with z ----+ 0, and the only discordant expression is that  calculated 
by Ludwieg for the points of the x-axis itself. I t  is clear that  the true quant i ty  we are trying to 
approximate is the v~ component at the surface of the wing. This is given by (7.3) when substi- 
tut ing (2.5) for z, but then we obtain values differing from (7.4) only by small quantities of the 
order of #. 2. As to Ludwieg's formula, it gives the induced velocity on the central chord inside 
the wing which differs from the true limit value. I t  is obvious that  such discontinuities can occur 
because it even happens in a very simple two-dimensional case, shown in Fig. 9, where the 
entire system consists of one discrete source and one sink, in addition to a uniform flow. The 
induced velocity on the x-axis then approximates well that  along the oval profile, but  the 
approximation fails in the neighbourhood of the source and sink. At the source itself we get 
vx = ~ co, while the limit of vx when z ----7 0 with x constant is then finite, and very close to the 
value at the contour. In more complicated cases we have to deal with continuous systems of 
infinitesimal sources and sinks of the same kind, and similar discontinuities may again occur, 
appearing as differences between the improper integrals and the limits of proper integrals. 
We are lucky not to encounter such discrepancies in two-dimensional cases with continuous 
source distribution, as shown in Appendix I, and this is connected with the symmetry  of the 
velocity field induced by a single straight source filament. In the case of a swept-back wing, 
however, the velocity field induced by a kinked source filament is no longer symmetrical, and the 
loci v,' = const, of such a field in xz-plane, according to (7.1), are shown in Fig. 10 (@ Appendix 
IV). There is no wonder that  the lucky agreement between the principal value of the improper 
integral and the limit value of the proper one no longer Occurs, and only the latter is obviously 
the correct one. There might be doubts about the correctness of our general formulae (5.2; 
5.5) which involve the principal values of improper integrals. The doubts might be removed 
by  calculating v~ at an arbitrary point (x, y, z), and then putt ing z - - -+  0. However, such an 
intricate calculation is superfluous. The entire induced vx may be split into two parts, one due 
to the portions of source filaments contained between two planes parallel to xz at the distances 
(y -- ~) and (y + e), and the other part due to the remainder of the system. The first part only 
involves improper integrals, and may cause errors. However, there has been no discrepancy 
in the case of a sheared wing (Section 3), and so there should be none for a swept-back one, 
except in the plane xz, where the present argument obviously fails ; the decisive answer must 
then be furnished by a proper procedure of determining the limit, as done by our formula (7.3) 
and (7.4). 

I t  may be necessary to determine supervelocities for a swept-back wing with a symmetrical 
section differing from the simplest parabolic one. In such cases the only change consists in re- 
placing (2.5) by  an appropriate equation of the given profile, and altering (2.7) and (4.5) ac- 
cordingly. The calculation of vx and vy may then be performed on the same lines as in the previous 
special case (Section 5). For the most important  ce~#ml section, however, a simple general 
formula may be deduced, connecting the supervelocity in that  section of a swept-back wing 
with that  of a straight unyawed wing: 

I( _ _U F , ( x ) . l n l +  s i n~ l  v, = v~.)~=0 a 1 -- sin cos ~o . . . . . . . . .  (7.5) 

A proof of this formula is given in Appendix IV. Our previous result (6.1) is obviously a particular 
case of (7.5). A few further examples are given in Appendix IV, and illustrated by diagrams 
(Figs. 15 to 21). Here again, the method works well for sharp-edged profiles, but it often fails 
for those with rounded edges. ~t is clear, however, that  the maximum supervelocity in the central 
section is always located further back, and is usually greater, than for an infinite sheared wing.* 

* If  the  profile is not  symmet r i ca l  fore-and-aft ,  the  m a x i m u m  superveloci ty  in the  centrM section of a swept -back  
wing m a y  be somewhat  smal ler  than  t ha t  on an infinite sheared one, for modera te  values of ~v. 
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It  i s  seen tha t  the  approximate  me thod  of sources and sinks may  be very  well ex tended  to 
three-dimension al problems but  care is needed to avoid errors. 

8. M a x i m u m  Supervdocity over a Swept-back Wing with a Parabolic Prof i le . - -The  super- 
velocity v, in the knee of a swept-back wing with a parabolic profile can be represented,  according 
to (6.1) or (7.4), by  the  formula :  

where" 

v, == G(< 9) • cos 9, . . . . . . . . . . . . . .  (8.1) 
4~ U 

1 -~- ~ ½~ln 1 -}- sin 9 . . . .  (8.2) G(*,9)=l--½~lni_~ i - - s i n 9  . . . .  

An example of a graph of G(~, 9) against ~ was given in Fig. 5 (curve marked  ~7 = 0) for one 
chosen value of 9 = 53 deg 8 min, and the  m a x i m u m  (~-~1.27) in tha t  case was clearly seen. Fig. 11 
gives a series of such curves for 9 varying from 0 to 80 deg. I t  is seen tha t  corrections to Ludwieg 's  
curve are small only if 9 is small. For larger sweep-back angles they  are very considerable, 
e.g., up to 38 per cent for 9 = 60 deg. The significance of this correction is best  apprecia ted 
when bearing in mind  tha t  it equivalent  to an equal increase of thickness ratio. 

The most  important ,  of course, is the  product  G(~, 9) .cos  9, and the re levant  curves, for 
9 varying from 0 to 80 deg, have  been plo t ted  in Fig. 12. I t  is seen tha t  the  m a x i m u m  super- 
velocity dgcreases wi th  increasing sweep-back, but  the  rate  of decrease is much  smaller  than  
tha t  predicted by  Ludwieg (i.e., cos 9). The broken lines in Figs. 11 and 12 show the positions 
and values of the maxima.  

The m a x i m u m  value of G, and the corresponding value ~ .... may  be found analytically. Dif- 
ferent iat ing (8.2) wi th  respect to ~, we get : 

1 + ~ , , , +  2< ,  _ In 1 _ + s i n 9  
in 

1 - -  <,, 1 - -  ~ , , 2 ~ - -  1 - -  s i n  9 ' "" "" 

and subst i tut ing into (8.2) : 
1 

G m a x - -  1 _ _  ~e,2 . . . . . . . . . . .  

The equat ion (8.3) cannot  be solved explicitly for <,, ; for 9 it gives:  

4[,- 
COS 9 ~ . . . .  

cosh.1 <" ~:,,, _ _  ~,,2 + <,, sinh 1 _ _  ~,,~ 

Using (8.4) and (8.5), the  following table has been calculated ; 

(8.3) 

(8.4) 

(8.5) 

0 
--0"1 
- -0 .2  
- - 0 ' 3  
--0"4 
- -0 .5  
--0"6 
- -0 .7  
- -0 .8  
- -0 .9  
- -1 .0  

cos 9 

1 
0.98007 
0.92108 
0.82554 
0.69787 
0.54496 
0.37715 
0.21056 
0.07215 
0.00402 
0 

rad 

0 
0-2000 
0.4000 
0.5996 
0-7984 
0-9945 
1-1841 
1-3586 
1-4986 
1.5668 

~ = 1 . 5 7 0 8  

9 

deg 

0"00 
11-46 
22-92 
34-36 
45-74 
56-98 
67-84 
77.84 
85.86 
89.77 
90.OO 

Gmax 

1 
1.0101 
1.0417 
1.0989 
1.1905 
1-3333 
1.5625 
1.9608 
2.7778 
5.2632 

oO 

Gmax COS 9 

1 
0.9900 
0.9594 
0-9071 
0.8308 
0.7265 
0 - 5 8 9 3  
0.4127 
0.2006 
0.0212 
0 
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The values from the table have been plotted against ~,~ in Fig. 13, and replotted against ~ in 
Fig. 14. The curves of G,n~x show the deviation of our results from those of Ludwieg. The curve 
in Fig .  14 of 

m, ,x . . . . . . . .  ( 8 . 6 )  Gmax c o s  9 - -  (v~ max)~ = 0  . . . .  

shows the true reduction of the maximum supervelocity in the knee of a swept-back wing, in 
comparison with that for an unswept wing. This curve should be examined in coniunction with 
that  of cos 9, corresponding to Ludwieg's theory. The latter gives much too optimistic a picture. 

I t  may be noticed in the graphs that the relationship between ~ and $,, is almost linear up to 
high values of g. It is easy to show indeed that ~,~ may be developed in the following power 
series 

1 ( ,  ~5 + 2 2  (_~,7 232 15878 (~,~11 
-- ~'~ : 2 + ~ \ 2  / 315\22 + 2 8 ~ ( 2 )  ~+ 1 5 ~ \ 2 2  . . . .  ~ in radians (8.7) 

The series converges very rapidly for all values of ~, except very near to ~/2, and a considerable 
part of the curve is approximated very well by the straight line ~, = -- ½ 9. 

b 
c : 2b 

d 
El, E~ 

F(x) 
F1, Fp, Fs, F~ 

gd- 19 
h 

Ii, I2, I3, I4 
I ' , I "  

i 
K, K~, K"  

k 
In 
m 
~b 

0 
q 

R 

/ '1,  ~v2 

t 
U 
V 

V,,, 

V, 

List of Symbols 

Half-chord of the wing profile 
Chord of the wing profile 
See eq{/ation (IV.8) and Fig. 10 
Portmanteau symbols, cf. equation (5.3) 
Function determining the wing profile 
Portmanteau symbols, cf. equations (III.17) 
Function of velocity distribution in the central section of a swept 

wing (cf. equation (8.2)) with biconvex parabolic profile 
Inverse Gudermannian function 
Distance in Fig. 24 
Integrals, cf. equations (III.10, 11, 12, 13) 
Integrals, cf. equations (IV.13, 14) 
Index in equations (I.13, 14) 
Mean values of F"(x), cf. equations (I.6 ;' 1.12; IV.14) 
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Natural logarithm 
Co-ordinate, parallel to the wing edges 
Co-ordinate, normal to the wing edges 
Auxiliary variable, cf. equations (Ill.4) 
Intensity of a source filament, per unit length 
Local intensity of source distribution, p.u. 1 
Distance in Fig. 3 and Fig. 22 
Radius, cf. equations (1.28) ff. 
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Undisturbed velocity of the air flow 
Resultant velocity 
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v, 
v 

vx 
vy 
vz 

vl, v2 
X 

Y 
Z 
0~ 

 =lv,/Ulmox 

,7 = y / b  

0 
2 
# 

= (x + y tan q~)/b 

~m 
0 

(D 

=t/c  
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A P P E N D I X  I 

Approximate  Method of Sources and Sinks  in Two Dimensions 

Let us consider a continuous distribution of sources and sinks along the chord of a symmetrical 
wing profile (Fig. 1). The local intensity at ~(~) being q(~), an infinitesimal source element of 
length d~ will induce a velocity ~v at an arbitrary point P(x, z), given by : 

~v - q(~) " d.~ - . .  ( I .1 )  2zr . . . . . . . . . . . . .  

where r = PP. The induced velocity components in x and z directions will be : 

dv~ = ~v . sin 0 q(2) x --  ~ 1 
• - 2 ~  ( x - ~ ) = + z  =d~; 

. . . . . .  ( i .2)  
q(~) Z ! 

dv= = ~v . cos 0 J - 2 ~  ( x - ~ ) = + z  =d~" 

According to the main principle of the method, as explained in Section 2, we assume : 
q(£) = -- 2 U .  F ' (£ ) ,  • . . . . . . . . . . . . .  (I.3) 

and then the integral components of the velocity induced at P by the entire system .of sources 
and sinks will be:  

fb z 2F' 
U x - - Y ,  

v= = - -  (~) d~"  . .  . .  (1.4) ~,, ( x -  ~)~ + . . . . .  
--b 

u_ z F ' ( ~ )  d~  (I.S) 
v = = - - ~  - ~ ( x - - ~ ) = + z  ~ . . . . . . . . .  

We assume now that  the profile is thin, so that  t and z ---- F(x) are small compared with c. Then 
F'(Y~) and F"(~) will be also small of the same order, except in the region of the edges if these 
are rounded, where both derivatives become infinite. We exclude, of course, profiles with ab- 
normally large vertex angles at the edges, or those with abnormally large curvature locally. 
I t  is now easy to prove that ,  superposing the given velocity field on tha t  of a uniform flow with 
velocity (--U) in x direction, the profile becomes a streamline approximately, the deviations 
being small of second order. The formula (I.5) may be transformed as follows : 

=v= F ' ( x )  ~d~ I ~ F ' ( ~ )  - -  F ( x ) _ _  " 

= - F ' ( x ) . / t a n - ~ - x  +~ -zKf~ ~-x - ~ - -  ;.-_~ (~ - x)" + z = d ~  
b 

= - F ' ( x ) .  ~ - t a n - 1  b= _ x= _ ~= + ½ z K . l n ~ _ x ~ + ~ = ,  . .  (I.S) 

where K is a certain mean value of F"(x) ,  smaller than the upper limit of ]F"(x)[. The first 
definite integral obviously represents the angle LPT. We have now: 

l im ( v d U )  = - F ' ( x )  . . . . . .  - . . . . . . . .  (I.7) 
z-----~ 0 

and at the points of the contour v d U differs from this limit only by small quantities of the second 
order, q.e.d.--The leading and trailing edges are exceptional points because v= should really be 
0 at these points. This means tha t  our method distorts the shape of the profile in the neighbour- 
hood of the edges, but the distortion is very small, consisting in the stagnation points moving 

!4 



slightly forwards and backwards from L an d T, respect ively, and th e sha rp edges being replaced
by small arcs. Thi s kind of distor ti on does not occur if F ' (b) = 0 or F'(-b) = 0, i.e., when
there are true cusps at eit her of t he edges .

The entire above argument fails if either of the edges is rounded, F'(x ) and F" (x) becoming
infinite there, and t here being no upper limit of F " (x ). In this case, every particular profile
requires really a special investigation, and various singularities may occur. In most simple
cases. however, the ensuing distortion of th e profile is still small and does no t , by itself, discredit
the method.

Supposing the distor tion of the profile is tolerable, the super-velocity v... may be calculated
from (I A) which does not include improper integrals, except possibly at th e edges. It may be
proved, however, that the result will differ from th e induced velocity at t he chord:

"
U I F (i)(v.). _. = - _di
;I .r ~ x

, -. (1.8)

The integral (1.8) is an improper one , and its princi-only by small quant it ies of the second order.
pal value should he taken.

To prove the assertion, we shall consider t he following t ran sformations :

' I" i - x - I" F(.i) - F (x) - -
U = F (x ) (~-)' , dx + (_ )' , (x - x) dxx -x +z x -x +z

~ -6 ~ _6

:IV ...

'., (b + x) , + z' J F (i) - F (x ) - -
=- ! F(x). ln(b ) ' . + (_ )' ,(x -x) dx-x +z x-x +z-. (1.9)

r
' -e

(=.) - F (x) _d.i +J F (i ! - F (x ) d ." .
U ._e X X X X

• -6 _ 6

(1.10)

In (I. 10), only th e first integral is imp roper ; t he principal va lue is found :

I
,' di 1"-' di J" di e b-x b -x-_- = -_--+ -r- -= In - - + ln-- = In - - ,

x-x x-x x -x b +x e b +x
• - b • _b ...+.

and hence :

'.mi. = _ F (x) . In b + x + I F' (~) - F (x ) di
U b-x x -x

, -. (1.1 1)

(LI 2)

Subtracting now (1.9) from (1.11), we get :

"

(=.) _ =. _ IF(x ) In 1 + z'f (b + x )' "j F' (.i ) - F' (x) di
U ._. U - - . 1 + z'/(b - x )' + - i -x (i - x )' + z '-.

' F '( )I I + z'/(b +x)' x ( . , 2hZ)
= ! • x . n 1 + ztj(b _ x )1 + z l :I - tan h' _ X ' _ Z l . ,.

where K 1 is aga in a certain mean value of F"(x), smaller than the upper limit. It is seen th at the
first term in (1.12) is small of t he th ird order, the second one sma ll of th e second order.
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The supervelocity v~ may now be calculated for any given profile from (I.8); or often better 
from (1.21) where the only improper integral has been determined once for all. I t  will be often 
convenient to expand (I.21) in a series, putt ing" 

F ' ( ~ ) -  F ' (x)_  F"(x)-t ~ -- x ( ~ -  x) ~ 
- -x  -- 2! F ' . ' (x)+ 3 ~ F f f x ) + " "  

~ ,  ( x -  x),-1 
= i = i  i! Fi+I(x) , • . . . . . . . . . . .  ( 2 . 1 3 )  

which gives" 

~ V ; v .  

U 
b + x  2)'+1 l(x)~(x + b ) ' - ( x -  b),} F ( x ) . l n b _  ~ +  ~ ( -  F'+ 

~=i i!i 

_ _  _ 2bxF"'(~) - -  F'(x)'lnbb-- x + x + 2b. F"(x) 21 

_F~(x) FV(x) 
+ 2b (x ~ + ~ b  ~) 3! 2b (x" + b~x) 4! 

+ 2b (x ~ + 2b~x ~ +-~b 4) FVX(x) 
5! 

- 2b (x 5 +~°b~x '~  + b°x) FV~ffx) 
6! + . . . . . . .  

. .  ( 1 . 1 4 )  

If F(x) is a polynomial, the series becomes finite, and theI1 the formula (I. 14) is to be recommended 
to determine the velocity distribution in the most straightforward way. This is practically 
always the case for all sharp-edged profiles, i t  must be stressed that  the first term in (I.14) 
assumes logarithmically infinite values (always positive) when x tends either to (--b) or to 
(+b). The method thus formally breaks down in small regions near theedges,  where the profile 
gets distorted. The true value of v~ at the edges should be (+  U) so that  they become true stag- 
nation points. This does not mean any serious fault from the practical point of view. The theory 
dealing with the supervelocities assumed small of the order ~ ---- tic in comparison with U, there 
is no wonder that  it yields infinite values where v~ equals U. Tile regions near the edges, where 
the formula are unreliable, are very narrow. In particular, the restriction practically never 
affects the calculation of the maximum (negative) superveloc#y which generally occurs far from 
the edges. 

I t  may be mentioned that,  if F'(b) = 0 or F'(--b) = 0, one of the edges is a true cusp. In such 
a case the method is still valid at the respective edge, and the induced velocity at the edge is 
finite and small (positive). 

One simple conclusion from the theory is that,  for thin sharp-edged profiles, the supervelocity 
(in particular the maximum supervelocity) is proportional to the thickness ratio #, the function 
F(x) and all its derivatives containing this ratio as a factor. 

/ 

All the above arguments again fail for profiles with one or two rounded edges. There being 
no upper limit of F"(x), the mean value K1 in (1.12) need not necessarily be small of the order ~. 
Nevertheless, the general formula (I.8) often gives quite satisfactory results, at least outside 
the region of the rounded edge(s). A general analysis of this case seems to be very complex and, 
at present, we are only able to produce a few examples. I t  has proved more expedient in this 
case to use (1.8) rather than (I. 11) or (I. 14), and to avoid infinite series. An interesting feature in 
all examples examined thus far is that  the calculated induced velocity v, remains finite (usually 
negative) right up to the rounded edge(s), while it becomes infinite (and positive) only at t h e  
edge itself. If the maximum negative v, occurs far from the edge, it seems to be quite a satis- 
factory solution. I t  happens, however, especially for profiles with ' b l u n t '  edges (large radius 
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of curvature) ,  t ha t  the  calculated negat ive  v, increases up to the  edge(s) ; then the t rue m a x i m u m  
of v~ occurs quite near  to the  edge and cannot  be determined at  all, more so as the  component  
v, becomes large in this  region, and m a y  affect the  m a x i m u m  resul tant  superveloci ty  in an 
unpredic table  way.  In  such cases there  is even no reason to expect the max imum supervdocity 
to be proportional to 4, and the entire theory  breaks down. 

Example I. Biconvex profile bounded by two symmetrical parabolic arcs (Fig. 1). 

In  this  simplest  case, the  equat ion of the  upper  arc is" 

t (I.15) z =  F(x) = ~ 1 - -  , . . . . . . . . . . . .  

and  the successive der iva t ives '  

t x .  t (1.16) F'(x) = -- ~ ,  F"(x)  = --  b--~ ; F " ( x )  = 0, etc . . . . . . . . .  

The half  ver tex angle at  bo th  edges is t an-1  24. The sources and sinks dis t r ibut ion is linear, as 
shown in Fig. 1. The superveloci ty dis t r ibut ion is obta ined from (1.14) in the  simple form" 

_b + x ' ~ _  4 (1 ½~ln 1 + ~,~ 4 U t ( 1  _ X ln  U 4  - -  (1.17) 
v , = - -  ~ ~ ~ b - - x /  ~ i - Z X / '  "" "" 

and is represented b y  the graph in Fig. 1. The m a x i m u m  superveloci ty rat io is" 

v, m~x --  - 4 ~ = 1"2734 . . . . . . .  . .  . .  . .  (1.18) 

Example I I .  Profile bounded by two arcs of cubics (Figs. 15 and 16). 

Assuming tha t  the  m a x i m u m  thickness is again t, and corresponds to the  abscissa x = ttb, 
the  only possible cubic sat isfying the obvious geometrical  conditions, is given by  the equat ion" 

1 -  a . '  x' . . . .  (i 9) 
z ----- F ( x )  = 2 ( 1  - -  f, 2) 2 ( 1  - - ~ 7 ) ( 1  + 1  - -  3/~ 2 ' "" 

wi th  successive derivat ives" 

- - - b ( 1 - f , = ) =  e -  1 + 3 / ,  ; 

F"(x)  = --  b= (1 --/~ 

6t, t 
F ' " ( x )  - -  (1 - -  ~ ) ~  b ~ - -  c o n s t .  

The ver tex  a n g l e s ,  and  T' at leading edge and trai l ing edge are given respectively by"  

, '  2(1 --  3/,) (1.21) ~: 2(1 q- 3/*) v~ • t an  --  ~ . . . . . . .  
t a n 2 - - ( l _ / ~ ) ( 1  + t* )  ' 2 ( l - - t *  ~ ) ( 1 - ~ )  

I t  is seen t ha t  ~ m a y  only va ry  between (+1)  and (--½), there being cusps at  leading edge or 
t rai l ing edge in the  l imit ing cases. If ~ = 0, we come back to the  parabolic profile of the  previous 
example.  The superveloci ty in the  general case is again obta ined from (1.14) • 

4Uv~ [ 1 + ~-] (1.22) v.----- --  =(l  _ #=), 1 - - 3 ~  = + 3 / * ~ - ½ ( ~ - ~ ) ( 3 t * * +  1) ln~----~_j . .  
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Two par t icu lar  profiles of this kind, for/~ ---- { and ½, thickness ratio 0.2, are shown in Figs. 15 and  
16 toge ther  wi th  sources and superveloci ty  distr ibution.  I t  is seen tha t  the m a x i m u m  super- 
veloci ty  increases wi th  the  m a x i m u m  thickness moving forwards,  the  former being located ahead  
of the lat ter .  

For  ~ = ½, the  formula (I.22) still holds at the cusped trail ing edge, whe re '  

27 
vx ---- 16~-- U0 =: 0.537 UO . 

Example I I I .  Profile boutcded by two arcs of symmetrical quartics (Fig. 17). 

This is another  general izat ion of the biconvex profile of the Example  I. 
upper  arc is" 

X = 
. . . . . . . . . . .  = F ( x )  = 

and  hence • 
X 2 

F'(x)=--~ 1--k+2k~ ; F"(x)=--b- ~ 1 - - k + 6 k >  ; . .  (I.24) 

12kt 12kt 
F'"(x) = -  b4 x; F~V(x) = -  b~ --const .  

The half ver tex  angle at bo th  edges is t an  -1 2(1 + k) 0. 

The supervelocity,  from (I.14) becomes"  

, = - [1 _ + _ k + . . . . .  

or, expanded  for small ~ " 

4 [ k l + S k  ] 
v. = - - -  UO 1 (1 --  3k)~ = # (I.26) 

= , 3 3 . . . . . . . . .  

The m a x i m u m  superveloci ty  ratio (for ~ ---- 0) is • 

Vx 

4 0 ( 1 - - 3 ) -  . . . . . . . . . .  (I.27) 
~ g , m a x  - -  2"C ~ " " 

but  this is only t rue  if k ~< ~, ~ and then,  for positive k, the m a x i m u m  superveloci ty  is smaller 
t han  for the  parabolic profile. The smallest ~ is obta ined  for k = ½, and  it amounts  to : 

32 
~m~,~ = 9~ 0 = 1.1320, 

which is still 13 per cent  higher  than  for an ellipse. 

If ½ < k < 1, the  profile is still smooth and  convex, wi th  b lunter  edges and  flatter in the  centre,  
bu t  the veloci ty  dis t r ibut ion becomes disadvantageous,  wi th  a m i n i m u m  at ~ = 0, and two Sym- 
metr ical  m a x i m a  nearer  to the edges. For  k > 1 the  profile itself becomes concave in its centra l  
par t .  

For  negat ive  values of k, the  ver tex  angles diminish (the profile becomes concave near  the edges 
when  k < --  0.2), and d increases. In  the  ext reme case k = --  1, there  are two cusps at  bo th  
edges, and then  the  formula  (I.25) holds for the  entire profile. I t  is t h e n '  

a = ~ = 3 ~  ~ ' =  1.6980; --  = ~=t 3= 0 0'8490. 

A few i l lustrat ive graphs are given in Fig. 17. 
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where"  

and hence" 

E x a m p l e  I V .  

The equat ion  of the  circular arc is : 

z =  F ( x )  = V [ r  ~ -  x 2] - r + {4,  

c2 + t ~ 
r ~  

4t ' 

B i c o n v e x  pro f i l e  bounded by two circular arcs. 

. . . . . . . .  ( 1 . 2 8 )  

E x a m p l e  V.  E l l i p t i c  pro f i l e  (F ig .  18). 

The  equat ion of the  upper  arc is: 

z = F ( x )  = ; v / [b  ~ -  x2], . . . . . . . . . . . .  (1.34) 

and  the  first der ivat ive  : 

t x 
F ' ( x )  = --  2b ~/[b ~ --  x~] ' . . . . . . . . . . . . . .  (I.35) 

the  s t rength  of the sources becoming 4- co a t  the  ends of the  Chord. 

The veloci ty  v~ is best  found direct ly  from (1.8) : 

L U4 2 d2 (1.36) 
v ~ - -  ~ (~ - x)  v/[b~ - ~ ]  

! 9  

x . . . . . . . .  (I.29) 
F ' ( x )  = - -  v / E r 2  x2 ] . . . . . . .  

The superveloci ty  can be found from (I.11), after  a sl ightly laborious t ransformat ion,  in the  form" 

r 2 - -  b x  + v / [ r 2  - -  x ~] V E r  ~ - b~] • b + x 
~v, 4 t an  - I  ~ + x . ln . .  (I.30) 
U - -  ~ /[r  2 - -  x ~] r ~ + bx + ~¢/[r ~ - -  x ~] ~¢/[r ~ - -  b ~ ] ' b  - -  x '  

and  the  m a x i m u m  superveloci ty  ratio will be" 

'~max 4 (131) = = - t an-1  ~ ,  . . . . . . . . . . . . . . .  
7C 

which differs f rom (I. 18) only by  small  terms of th i rd  order  in ~. 

This case is par t icu lar ly  in teres t ing  because an exact  veloci ty  dis t r ibut ion m a y  be de te rmined  
for such a profile b y  means  of conformal  t ransformat ion  (K~rm~n and Trefftz) s. The t rue  
m a x i m u m  veloci ty  is" 

U 
(i . . . . . . . . . .  II.  l 

(1  + 42) --  - t a n - l a  

and hence, expanding  in power  series • 

~ Vm~x-- U 

V ~ ' " . . . . . .  

which differs from (I.31) only by terms of second and higher order in O. 

No graphs are given for this case, as t hey  would be ha rd ly  dist inguishable from those in Fig. 1 
for the  parabolic section. As a m a t t e r  of fact, the  equat ion  of the  circular arc (I.28) differs 
itself from tha t  of the  parabolic  arc (1.15) only by  small terms of higher  order  in a, and hence, 
f rom the  point  of view of the  first order  theory,  the  two profiles are equivalent .  



by  means of the  subst i tut ion : 

= bsin &, 

which gives : 

U~ [ " /~  

x = b sin to, 

sin c5 
sin ~ --  sin ~o 

. . . . . . . . . .  (I.37) 

. . . .  (I.41) 

t x  (1 - 2k)b = + 3 k x  = 
F'(x)  

2b ~ [b ~ - -  X2]:/~ , | 

• I . . . . . . . .  (1 .42)  t ( 1 - - 2 k ) b  ~ + 9 k b  ~x  2 + 3 k x  ~ 
F ' ( x )  = - 2b  ~ (b"  - x ~) 3/~ 

The profile becomes an ellipse when k = 0. For  0 < k < } we obtai.n convex oval curves fuller 
than  an ellipse, for 0 > k > --0.1 convex oval curves with sharper edges, and for --0.1 :> k > --1 
par t ly  concave curves, unti l  at k. = --1 the  edges become cusped. The superveloci ty may  be 
found as in the  previous example :  

v, = -- Ue(1 - -  ½k + 3k~ =) . . . . . . . . . . . . .  (1.43) 

If k is posit ive then  the  supervelocity at  ~ ----- 0 may  be smaller than  U*9, but  in this case it does 
not  represent a max imum but  a minimum.  This is an example of b lunt  edges, the  calculated 
v, increases r ight  up to the  edges, and the  true max ima  cannot  be found. For negat ive k the  maxi- 
m u m  superveloci ty occurs in the  middle, and  it is larger than  U*9. I t  is clear tha t  the  m a x i m u m  
supervelocity mus t  exceed UO in all cases. 

The case of  a cusped profile (k = --  1) is interesting. We have then  : 

F'(x)  = -= 3 tx  [1 x'~ 

2O 

t 
z =  F ( x ) = ~ [ b  2 -  x']'/' l + k >  , 

M o d i f i e d  symmetr ical  prof i le  wi th  rounded edges (Fig.  19). 

we get : 

E x a m p l e  V I .  

Assuming : 

The principal value of the  improper  integral  is found to be zero for any  ~o, except -4-~/2, and hence : 

v, = - -  U~,  . . . . . . . . . . . . . . . . .  (1.39) 

except  at  the  edges where v, = oa. This result seems paradoxical,  the supervelocity ob ta ined  
being constant  along the  entire profile. However,  in this case the  exac t  velocity distr ibution 
can be de te rmined  by  means of conformal t ransformation,  the  result being : 

4 V U(1 + (I.40) 
- -  1 - -  ( 1 - - 7 ) ~ ) ~  6 ' " . . . . . . . . . .  

and it  is seen tha t  it differs from U(1 + #) only by  small terms of the  order .9 2, except near the  
edges. A graph of the exact superveloci ty is given in Fig. 18. 

The remarkable  fact is tha t  the t rue  m a x i m u m  supervelocity is U,9, being exactly equal to 
tha t  given by  (1.39). I t  seems to be the  smallest m a x i m u m  supervelocity obtainable for a profile 
wi th  a given thickness ratio ,9. The m a x i m u m  supervelocity for the  parabolic profile in Example  I 
was 1.273 t imes larger, t ha t  in Example  I I - - s t i l l  higher. In  Example  I I I ,  it has been proved 
impossible to reduce the  ratio below 1.13. 

(1.38) r + sin co sin ~ --  sin "" 



and 

v ,  = - ~ U e  (1 - 2 ~ ) ,  

the  superveloci ty  being (--1-5U#) at the  summit ,  and ( +  l 'SUv ~) at  the  cusped edges. 

Example VII .  Two simple profiles with rounded leading edge and pointed trailing edge (Figs. 
20 and 21). 

One such profile is given by"  

3~¢/6 t 1 - -  1 +  
z = F ( x )  = ~ . ' ~ . . . .  ( 1 . 4 4 )  

! F'(x) = ~ ~ / 6 .  ~(1 -- 38) (1 --  8)-1j~, 3 

the  m a x i m u m  thickness being located at  ~ = -~,1 i.e., at  33 per cent chord. The superveloci ty 
becomes • 

[ V/2 + x / [ 1 -  ~]] . .  (I.45) 9V'3U~,  1 +  3 8 - -  I In . .  
v , = - -  4 ~  6%/[2(1--  ~)] ~ / 2 - - ~ [ 1 - - ~  ' 

except  at  the  leading edge where it is infinite. The graph is given in Fig. 20, arid it  is seen t ha t  
v, is not  m a x i m u m  at  ~ --  ½ but  it increases r ight  up to the  leading edge.--Our method clearly 
fails to provide the maximum supervelocity in this ease, the rounded leading edge being too blunt .  

Another  profile of this kind, wi th  a rounded but  compara t ive ly  sharp nose is represented by"  

= = - ~ ' . .  . .  ( I . 4 6 )  

F'(x) = ¼ ~ ( 5 8 2 -  78)(1 -- 8)-1/2 ; 

the m a x i m u m  thickness is located at  mid-chord. The formula for the superveloci ty  is • 

Uv~ [ (  58) %/2 78 --  58 ~ V'2 -+- ~/(1 --  8)] . (I.47) 
v~ : --  2~ ~_G _ + 2%/(1 _ ~) in %/2 --  x/(1 - -  8)J" 

The  graph in Fig. 21 gives a clear m a x i m u m  at  about  ~ ---- --  0-1, and ~ -"- 1.2. The method  
works wel l  in this case. 

A P P E N D I X  11 

Velocity Induced by Finite or Infinite Straight and Kinked Source Filaments of Constant Strength 

In  Fig. 22, AB is a finite source fi lament of constant  s t rength  Q per uni t  length. An infini- 
tesimal  veloci ty  ~v', induced at any  point  P b y  a source element of length din, is • 

Qdm . . . . . . . .  (II.1) 
~v '  = 4 ~ R ~  . . . . . . . . .  

Taking  into account  the  obvious relat ionships ' 

m = n t a n ~  ;dm = n sec ~ ~ d~ ; R = n sec 

we get" 

. .  (11.2) 

~ v ' -  Q d~ . . . . . . . . . . . . . . . . .  ( II .3)  
4~n 
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The components  of ov ~ parallel  to the axes m and n become '. 

dv,,' - -  - -  Ov'. sin ~% = --  Q sin ,~ d;t 
4~n 

dv,'  ~ Ov'. cos 2 = 7 i £ c o s  2 d a ,  

and  hence, in tegra t ing  from B to A • 

1 (11.4) 

' Q (cos  ~ -  cos  a) v,. - -  4~n 

J v~' - -  4~nQ (sin ~ + sin fl). 
(11.5) 

The component  v(  of the induced veloci ty in an a rb i t ra ry  direction, making  an angle y wi th  the  
n-axis ,  thus  becomes • 

' ' ' Q ~ s i n  (~ + ~) + sin (~ - r ) )  v~ --  v~ sin r + v. cos ~, - 4~n 

For  a semi- in f in i te  source f i l a m e n t  c~ -~ ~/2, and then • 

(11.6) 

v,,' - -  Q ' Q (1 + sin fl) • . .  . .  (11.7) ----4=~c°s/~; v~ --4=n . . . . .  

v ' -  Q ~ c o s ~ , + s i n ( $  y ) ~  . .  (11.8) 
4=n . . . . . . . . .  

Final ly ,  for a source f i l a m e n t  extending to i n f i n i t y  both ways,  ~ -~/~ ~ ~/2, a n d  then" 

Vm' = O" V,,' - -  Q . . . . . .  (11.9) 
' 2 z ~ n  . . . . . . . . .  

in agreement  wi th  the  familiar  formula for an infinite source filament. 

I t  is possible now to find the  components  of the  veloci ty  induced at  an a rb i t ra ry  point  A in 
xy-plane by  a k inked  source f i l a m e n t  o f  constant  s~rength Q wi th  a sweep-back angle 9 (Fig. 23). 
The x-component  due to the r ight  hand  par t  of the  fi lament wilI be obtained from ( I I .S)  by  pu t t ing  
n - - x c o s g + y s i n g ; y - - - - - - 9 ; s i n ( f l - - ~ ) = s i n ( f i + ~ o ) = y / N / ( x  ~ + y2) : 

v / l :  Q (1 + Y 9 )  (II.10) = 4a(x + y t an  ~) ~/(x . + y~) sec . . . . . . .  

Replacing in (II.10) 9 by  (a --  9), we find the corresponding contr ibut ion of the left hand  par t  of 
the  f i lament • 

= 4~(x - ~ tan ~) Y ~) sec ~ )  . . . . . . .  (II. 11) 
V ( x  ~ + y 

Summaris ing  (II.10) and (II.11), we get the  total x-component"  

' -- Y ~ sec" ~o) .. 
+ (II.12) 
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In  a s imi la r  way ,  t he  p a r t i a l  y - c o m p o n e n t s  of t h e  i n d u c e d  ve loc i t y  m a y  be  found ,  b y  p u t t i n g  
7, = ~/2  - -  cp ; sin (/~ - -  ~,) ---- - -  cos (/~ -}- 9) = - -  x/~¢/( x2 + Y~), a n d  t h e n  r ep lac ing  9 b y  (~ - -  9) " 

,°°" Q t a n  9 sec 9 , 
4a (x  + y t a n  9) ~ / ( x  2 + yy) . . . .  ( I I . l a )  

/° Q t a n  9 sac 9 , 
= - 4~ (x - -  y t a n  9) %/(x 2 4- y2) 

a n d  hence  t he  total y -compomnt  ' 

Q y t a n 9  ( x ) (II .14) 
v , ' = 2 a ( x , _ y y t a n y ~ o )  v/(x~ + y ~ S e c  ~ - t a n  9 . . . . .  

T h e  a b o v e  formulae are va l id  in  t h e  en t i r e  xy-p lane ,  provided the square roots are always considered 
as positive. I t  is eas i ly  ver i f ied  t h a t  t h e  i n d u c e d  v e l o c i t y  b e c o m e s  inf in i te  o n l y  a long  t h e  source  

f i l amen t .  

In  pa r t i cu l a r ,  for  y = 0, we ge t  • 

, Q . . . . . . . .  ( I I . 1 5 )  
(v,),=o = o  ; (v/)~=o = 2 ~ x '  " . . . . .  

in  a g r e e m e n t  w i t h  (4.4). 

A P P E N D I X  I I I  

Details of Calculating the Velocity Distributio~¢ over a Swept-back Wi~g with a Parabolic Profile 

L e t  us  cons ide r  a s w e p t - b a c k  w ing  of inf ini te  s p a n  w i t h  a pa rabo l i c  profile (Fig. 4). T h e  s t r e n g t h  
of a n y  one  of t h e  in f in i t e s imal  source  f i l aments ,  t he  abscissa  of whose  v e r t e x  is aga in  d e n o t e d  b y  
2, will  be, a cco rd ing  to  (4.5) " 

Q = q cos 9 = 8 U  ( I I I .1 )  - cos 9 • 2 d2 . . . . . . . . . . .  
c 

W e  n o w  o b t a i n  t he  in f in i t e s imal  c o m p o n e n t s  of t h e  v e l o c i t y  i n d u c e d  b y  th is  source  f i lament ,  
r ep lac ing  in (II .12) a n d  (II .14) x b y  (x - -  ~), a n d  i n t r o d u c i n g  ( I I I .1) .  T h u s  we ge t  • 

dv~ 4Uv Q c o s 9  (x --  2) -- y Y { ( x  -- 2) 2 +?¢2}  -~/2 sin 9 s ec29  2d2 ,  (111.2) 
• = ~c ( x -  2) 2 - - y ~ t a n ~  9 

dv =4UO. s in9  y ( x - - 2 ) { ( x - -  2 ) 2 + y ~ } - ~ l ~ s e c g - - y t a n g _ ~ d y ,  ( I I I .3)  
~c (x - -  2) 2 - -  y~ t a n  2 9 

a n d  these  expres s ions  m u s t  be  i n t e g r a t e d  f r o m  2 = --  b to  2 = + b. T h e  i n t e g r a t i o n  does  n o t  
p r e s e n t  a n y  f u n d a m e n t a l  diff icult ies  b u t  is r a t h e r  complex .  I t  will be  c o n v e n i e n t  to  i n t r o d u c e  
an  a u x i l i a r y  va r i ab l e  ' 

fl = e -  x, . . . . . . . . . . . . . . . .  (111.4) 

a n d  i n t e g r a t e  f r o m  p = - -  (b + x) to  p = b - -  x. I t  is suff ic ient  to  cons ide r  pos i t ive  y only ,  
a n d  t h e n  t he  o n l y  va lue  of 15 w h i c h  m a k e s  b o t h  i n t e g r a n d s  b e c o m e  inf ini te  i s '  

p = y t a n  ~ . . . . . . . . . . . . . . . .  ( I I I .5)  

(for p = - -  y t a n  9 b o t h  i n t e g r a n d s  h a v e  f ini te  values) .  

Af t e r  a s o m e w h a t  l abo r ious  t r a n s f o r m a t i o n ,  t h e  f o r m u l a  ( I I I .2)  a n d  ( I I I .3)  can  be  r e d u c e d  
to  t h e  fo l lowing  f o r m  • 

~c dv~ x + y t a n  9 p + x , . .  ( I I I .6)  
_ - -  1 + y t a n g ~ b  ~ + y ~ + y ( p ~ q _ y y ) ~ / ~ s e c 9  

-4U,~ cos 9 dp p --  y t a n  9 
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=c dvy x + y t an  ~0 + p x  + y~ tan  9 _ y see 9 
4U#sin~0 " d p - -  p - - y t a n 9  p 3 + y ~ + y ( p 2 + y 2 ) l 1 2 s e c 9  (p3+y3)113,  (111.7) 

where only the  first simple terms become infinite at  p = y tan  9, and all other  terms are always 
finite. We then  get" 

~ 6  

4U# cos q, 
v, = --  c --  (x + y tan g) I i + y t a n g .  I~ + x .13 ,  . .  (III.S) 

7~C 
vy = --  (x + y tan  ~0) 11 + x 12 + y tan  9. I3 - -  y sec 9. I4, 4U# sin ~o 

where  • 

(111.9) 

Ib 
- - x  

11 = dp - -  In 
-(b+') p - - y  tan  

y -"  p d p  
1 2  ~ . 9~ 

_(~+,~P + 9  + Y  (P~+Y2)I/2sec~o 

= In W/[(b + x-)-2 + y2] + y sec ~o. 
V[(b --  x) 2 + y~] + y sec ~o' 

f b-. y tan  
I 3 =  + 3 - - i - - -  

_ (b+ . )p  2 y + y ( p  +y~)~/~sec~o 

b + x + y tan_9 (the only improper  
b --  x - -  y tan  9 integral) . .  (111.10) 

= _ ln(x/[p~ + y 3 ]  + y  sec t )  

. . . . . . . . . .  (111.11) 

= l n p  + (p~ +y~)1/3 sin 9 

__  . __  _ ]_  2 1/2 in b _ + x  y t a n 9  b x + [ ( b - - x )  ~ y ]  s in~ .  
( II1 .12)  x + y t a n ~ o  " b + x - -  [(b + x) ~ +y2] l /2s in~0 '  "" I @ 

_ q =  dp ~-, 

= in  ~ / [ (b  + x)3 + y 2 ]  + (b + x) 
~ / [ (b  - -  x) 2 + y~] - -  (b - -  x) . . . . . . . . . . .  (111.13) 

I t  may  be not iced tha t  the  formula for the improper  integral  (111.10) is only valid within the 
right-hand part of the wing area (-- b --  y t an  9 < x < b + y tan  ~o) ; it becomes infinite at  both  
leading and trail ing edges. All remaining integrals are valid in the  entire r ight hand  par t  of the  
xy-plane and are always finite. This applies also to la in which the  numera tor  and denomina tor  
become simultaneously zero and change sign when crossing the  extended trailing edge of the left- 
hand part of the wing (x = --  b + y t an  9). However,  the  entire fraction under  the sign of 
logar i thm always remains finite and positive. 

Introducing (III.10, 11, 12, 13) into (111.8) and (II1.9), rearranging and simplifying, we finally 
get  the  following formula, ~ for bo th  components  of the  induced velocity : 

z~v~ _ l _ X l n b + X + [ ( b + x ) 2 + y 3 1 1 1 ~ s i n ~  
4 U # c o s 9  c b - - x - -  [(b - -  x) 3 + y31113 sin ~0 

- -  -Y tan ~o. In b. + x + y tan  ~0 . [(b - -  x) 2 + y211/2 + y sec ~ ..  . . . .  (111.14) 
c b - - x - - y t a n 9  [ ( b + x )  3 + y ~ l  1 / ~ + y s e c 9  
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x b + x + y t a n 9 0  ~ / [ ( b - - x )  = + y ~ ] + y s e c 9  
v~ - -  - in 

4 U 4 s i n ~ 0 - - c  b - -  x - - y t a n ~ 0  " V ' [ ( b +  x) 2 + y ~ ]  + y s e e 9 0  

t a n  9 .  in  b + x + [(b + x) ~ + y~]]~/= sin 9 
+ c b - -  x - -  [(b - -  x) 2 + y  ~l/~sin90 

y sec 9 . 1 n  ~/[(b + x) = + y = ]  + (b + x) . . . .  (111.15) 
- 7 ~ / [ ( ~  - ~)  ~ + y ~ ]  - (~ - x )  " 

F o r  n u m e r i c a l  c o m p u t a t i o n  a n d  d iscuss ion ,  i t  is m o r e  c o n v e n i e n t  to  i n t r o d u c e  spec i a l  n o n -  
d i m e n s i o n a l  c o - o r d i n a t e s  ~ a n d  7, as def ined  in sec t ion  5 ( form 5.4). T h e  formulae ( I I I .  14, 15) 
can  t h e n  be  b r o u g h t  to  t h e  f o r m  • 

=v~ = 1 - - ½  ~ l n F ~ + ½ ~ t a n 9 0 . 1 n F ~ ,  
4Uv~ cos ~o 

whe re  • 

and • 

=% --  ½ ~ t a n  ~o. in  F~ -~- ½ ~ in Fa  - -  ½ ~ sec 90 in F~, 
4 Uv ~ sin 90 

1 q- ~ + (rl - -  7 ) . t a n  9 
F I =  1 - - ~ - - ( r 2 - - 7 )  tan90 ' 

r l  + (1 + *) s in 90 cos 9 + ~ cos 2 90 
r ~ - - ( 1 - - ~ ) s i n g c o s ~ 0 + ~ c o s 2 9 0  ' 

1 + ~  r ~ + , ~  
F a - -  1 - -  ~'r1+ ~ ' 

r ~ + ( 1  + ~) cos 90 - -  T sin 90 
.~2 4 ~..~ 

r ~ - - ( 1 - - ~ ) c o s ~ - - T s i n ~ 0 '  

r l  = ~/[(1 - /  ~)2 cos 2 90 _ 2(1 q- ~) ~ s in 90 cos 90 q- 75] , 

. .  (111.16) 

J 

. . . .  ( 1 1 1 . 1 7 )  

. .  (111 .18)  

s i n g c o s 9 0 +  3 ~  sin = ~ c o s  ~ 9 0 . . .  ] 
7 2~] ~ [ 1 q-3~ ~ 

27 ~ cos ~ ~o sin 9 0 . . .  

. ( I I I . 2 0 )  

-- 2-~- ~ cos ~ 90 (2 -- 3 sin ~ ~) . . . I 

J 1 + 3 ~  2 
, ~  c o s ~  ( - ~ - c o s 2 ~ )  . . .  

COS ~ 

COS 4 9o 
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. .  ( 1 I I . 1 9 )  

r i = ~ - -  (1 + ~ ) s i n ~ c o s 9  + 2 ~  

+ (1 + ~)~ 
' c o s 9 5 s i n g . . .  

2~ ~ 
( 1 - , )  ~ 

r 2 = 7  + ( 1 - - ~ ) s i n ~ c o s ~ - ~  
27 

( 1 - - , )  3 
cos ~s sin ~ . . .  

272 

1 + *  
In F~ = in  - -  + 

1 - - ~  

In F= = -~  cos=~o + 
7 

1 + , _1 sin ~o cos l n F a = l n .  1 ~ + 7  

In F4 2 2~ --= --7 cos 90 + ~-~ sin ~ cos = 90 + 

(1 + t)~ 

r~=  %/[(1-- ~)~cos~~o ,4- 2(1-- ~)~singcos~ + ~ ] .  
T h e  first  check  of ou r  r e su l t s  m a v  be  o b t a i n e d  b y  l e t t i ng  fl t e n d  to  inf in i ty ,  w h e r e u p o n  t h e  

f o r m u l a e  s h o u l d  r e d u c e  to  t hose  aptSlying for  a s h e a r e d  wing.  D e v e l o p i n g  for  la rge  7 we  ge t  • 



and finally ' 

For ~ -~ oo 

v ~ =  - - - - c o s 9  1---o-~ ~ l n -  + 
• . ~  " 1 - -  ~ 4 ~  ~ " ' "  ' 

4U# ( c o s ~ ( 2  3sin~9) 
v~ . . . . .  s i n ~ o \ l - - ~ l n l +  $ 

' - 1 --  ~ 12V ~ 
, these formuke become identical  with (3.9). 

) } (I l i .21)  

It  is also easy to examine the  induced velocities in the central  section ( symmetry  plane), and  
in the neighbouring sections. P u t t i n g y  = 0 in (III.14, 15), or 7 = 0 in(III.16) we get at  once:  

(v,),=o----O'(v,),,=o= _ 4 _  U#cos~o(1 __½~ln 1 4- ~ 1 + s i n e )  , . . . .  (III:22) 
) ~ 1 - -  ~ 1 -- sin ¢ 

(see 6.1). For small y, it is seen directly from (III.14) tha t  v, differs from (III.22) only by  small 
terms of the  order y ~, and this shows tha t  the lines v~ = const. (approximate isobars, @ Fig. 8) 
cut the  x-axis at  r ight  angles. 

I t  may  be useful to expand the  complicated formuke (III. 16, 17, 18) into power series in ~, 
to show the  behaviour  of the induced velocities near the central  section. We get :  

and hence • 

2 

r ~ =  (1 + ~ ) c o s ¢ - - , ~ s i n ~ + 2 ( ~ - +  ~ ) c ° s ~ ° +  

7 ~ 4sin~o --- cos~ ~ 
+- o . • , 

8(1 + ~)~ cos¢  
2 

r ~ = ( 1 - -  ~)cos~o + T s i n ~ o + 2 ( l _ ~ c o s ~ o  

~ 4sin~e _ cos 2~o 

8(1 - -  ~)~ cos 

! - F  ~ l + s i n ~ o  2~ 
l n F ~ = l n l _ ~ _ ~  1 - - s i n ~ o  1 - -  ~ t a n ~ °  

+ 

in F2 = in 

In F~ -- 1 

In F~ = 2 

~ s in~  (1-t- ~ ~ + 4 ~ s i n ¢ ) . . .  
( 1 - ~ )  ~ c o s ~  

1 + 81 + s i n ~  2/1 8 ~ 2 s i n  
1 - -  ~ 1 -- s in~  1 --  $2 cos~0 " ' "  ' 

27 ~-t-sin~0 2 v ~ s i n ¢  1 + ~2+2~s in~o  
_ ~ 2  cos cp- (1 - -  ~2)  2 c o s ~  

In 2v/J1 -- ~'~] 2 ~  + - - t a n  ~ . . .  , 
1 - - ~  ~ 

?23 

2(1 + ~)~ sin 

3 

sin 
2 ( 1  - ~)~ 

• ' ' ) t 

(111.23) 

. .  (111.24) 

V x 

4# U cos ~o 

Vy 

4# U sin 

--  1 - -½($- -7  t an~ i  in 
1 + ~1 + s i n ~  ~r/tan~o 
1 - . - ~ l - - s i n ~ o  ]- 1 - -  ~ 2 

sin ~o 3 ,  --  ~ ~ + 4 sin 
- 17~ cos'~o (1 - e~)' 

- -  + *] ln2W/[1 - -  ~ ]  
cos ~D 7 

--  ½7 tan ¢( ln  l + ~ l - t - s in_  ¢ 
1 - -  ~ 1 - -  s m  

~ + s i n ~ , ~  , ~ s i n ~ o 3 ~ - - $ 3 + 2 s i n ~ o . . .  
+ sin ~ 1 --  ~ j-r-  cos2--~ ( 1 -  ~2)~ 

(III .25) 
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A P P E N D I X  iV  

Velocity Distribution in the Symmetry Plane of Swept-back Wings with Arbitrary Profiles 

Let  us consider a kinked source f i lament of cons tant  s t rength  0 per uni t  length  in x~-plane, 
wi th  its ver tex at  the  origin O, and an a rb i t ra ry  point  P (x, z) in the s y m m e t r y  plane (Fig. 24). 
I t  will be required to find the component  v;  of the  veloci ty  induced b y  the fi lament at  P. This 
component  will obviously consist of two equal p a r t s  contr ibuted by  the two par ts  of the k inked 
filament,  so let us consider the  r ight  h a n d  par t  (0, -6 oo) only. Drawing a plane H through  tha t  
pa r t  of the f i lament and the point  P, the to ta l  veloci ty v~ induced by  tha t  par t  will lie i n / 7 ,  and 
its two components  v~ (parallel to 0, -6 oo) and v~ (perpendicular to 0, -6 oo) m a y  be found as in 
Appendix  n (formulae I1.7) : 

v - Q Q (1 - sin/3), . . . . . . . .  (IV.l)  --4~-hC°S#; v ~ - - 4 = h  

there being obvious changes in Signs. 

The component  v = m a y  be resolved into two sub-components  v / a n d  v,~' 

v f  = v o sin r ; v j  = v~ cos r ,  . . . . . . . . . . . .  ( IV.2)  

where y is the  angle be tween the planes xy and /7 .  The two components  v ~ and v,~' now lie bo th  in 
a plane parallel  to xy, and hence (Fig. 24a) : 

1 , , Q ( ( 1  - sin v. = v .  cos s o + v ,  s i n s o - - 4 ~ h  #) 

Using the obvious geometric re la t ionships  : 

~; c o s  SO 
h a =  x 2cos ~so + z  ~ , c o s y -  h ' 

h x sin 
c o s # - -  ~/(x  ~ + z 2  ) ,  s i n # - - ~ v / ( x ~ + z 2  ) ,  

we finally bring v~' to the  form : 

V x  ! _ _  

or, simplifying: 

Vx ! -- 

O. x( x= + z~)*/~ cos 'so + z=s in  so 
2~ (x ~ + z=) 1/~ (x = cos~so + z ~) ' 

O x + (x = + z=)l/=sin so 
2~ x ~ + z ~ -6 x(x  2 + z~)l/~ sin so 

cos y cos So -6 cos # sin SO) . (IV.a) 

t (IV.4) 

. . . . . . . . . .  ( i v . s )  

. . . . . . . . . .  (IV.O) 

(cf. 7.1). For  z = 0, we get v~' = Q/2=x, whether  x is posit ive or negative,  in agreement  wi th  
the  result  found earlier in section 4. I t  is obvious tha t  the  veloci ty dis t r ibut ion in the xz-plane 
is not  symmetr ica l  wi th  respect to the  z-axis. This distr ibution m a y  be examined most  con- 
ven ien t ly  in polar co-ordinates. Pu t t ing  x = e cos ~, z = e sin ~, we get : 

2= 1 cos ~ + sin so (IV.7) 
- -  j ° ° ° * • ° • ° • • . • • • 

-~  v f  ~ 1 + s in so cos 

and hence any  locus of v~' = const, will be represented by  the equat ion : 

cos w -6 sin so Id - ~ ] . . . .  
d (IV.8)  

= 1 + sin so cos W 2av.' " " " 
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Reversing the  sign of d will a.lso reverse t ha t  Of v,'. Two such loci are represented in Fig. 10: 
and  all other  loci will be curves similar to the  given ones, except  the  locus v~' = 0 which consists 
of two semi-infinite s t ra ight  lines ~0 = 4- [(~/2) + ~0]. If 9 = 0, the  formula (IV.6) becomes s imply : 

Q 
v,' - -  2~ x2 + z2'  

and the loci v,' =- const, become circles, the  induced velocity field being symmetrical .  

I t  is now possible to deduce a general  formula for the  veloci ty dis t r ibut ion in the  central sect ion 
of a swept-back wing with an arbitrary symmetrical ~rofile, following a method  similar to t h a t  
used in Appendix  I for unswept  wings. The s t rength  of an infinitesimal k inked source fi lament 
(Fig. 4) will b e :  

O = q(~) d~ cos ~ = - - 2 U .  F'(2). d2 cos ~ ,  . . . . . . . .  (IV.9) 

where z = F(x) is the  equat ion of the  profile. The infinitesimal veloci ty induced by  the f i lament 
at  a point  (x, z) is, after  (IV.6) : 

x - - Z +  [(x --  2)2 + z~]~/~sin 9 d2 (IV.i0) 
d~,, = - -~ ~ ' (~) .cos~ (x ~ ) ~ - : ~ +  ( ~ : ~ ) ~ ; - ~  ~ ~ s i n ~  - -  ' • o 

and  we have to in tegra te  this  expression from 2 = --  b to 2 = + b, and let z tend to zero after- 
wards. One example of such an in tegra t ion  has been given in Section 7 for the parabolic profile, 
and  it  suggests a method  to be used in the  general case. I t  will be convenient  to compare the  
induced veloci ty  on a swept-back wing wi th  tha t  on a s t ra ight  wing, as given in Appendix  I 
by  (1.4). We get "~ 

1 
cos 9 

- - b  

which m a y  be brought  to • 

1 U F' I' Uz 
COS ~0 7c 

where • 

and • 

x -- 2 I F  ' - ( x  ~)~ + z~ (~)d~ ,  (IV.11) 

. . . . . . . .  (IV 12) 

if_ z ~ sin 9 d2 
b {(x --  2) 5 + z ~} { ~ [ ( x  --  2) ~ + z~] + (x -- 2) sin 9} 

x --  2 s in 
In l + ( x _  2)~ + z ~ 

In l + ~ ¢ / [ ( b + x )  ~ + z  ~] s i n9  - - l n  1=-  V ' [ ( b - - x )  ~ + z  ~]s in9  , 

(IV.13) 

f ~ ( ( x  F'  ( ~ ) -  F '  (x) 
- -2)  5 + z  ~ } { ~ / [ ( x - 2 )  ~ + z 2 j + ( x - 2 )  sin g} z sin ~° . d2 

b{ (x - -  2 ) 5 +  z ~} { V [ ( x - -  2) 5 + z 2] + (x - - 2  ) sin g} ' 
J _  
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where K "  is a certain mean  value of F"(x), smaller than  the upper  l imit  of IF"(x) l. The integral  
in (IV.14) can be de te rmined  as follows : 

I"  1 tan-1 ~ - x  1 ' ( ~ - - x )  2 + z ~  ~ _  • . cos9 + tan-1 --  tan  -1 , . .  (IV.15) 
~ '  --  cos ~o " z cos ~o z tan  ~0 z ~=-b 

and it is seen to t end  to a finite l imit  when z -+  0. The entire second te rm in (IV.12) is thus small 
of the  second order in ~ and may  be neglected. We then  get : 

l im [v~ sec e --  (v,) ,=ol. = --  U F '  (x) l im I '  = --  U F '  (x).  In 

and finally : 

v ~  I(v~)~=o --  --UF'(x) In l- + s i n ~ l  
I -- sin cos q~ . 

1 + sin 
1 --  sin 9 

..  (IV.16) 

. . . . . . . .  (iv.17) 

This surprisingly simple formula gives the  velocity, in the  central  section of a swept-back wing 
wi th  an arbi t rary profile, once tha t  of an unswept  wing wi th  the  same profile has been determined,  
as shown in Appendix  I. The formula (7.4) is obviously a special case of (IV.17). 

The above a rgument  again fails generally for sections wi th  rounded  edges, a l though it may  
work satisfactorily in particular cases, especially if the  rounded  edge is comparat ive ly  sharp. 
In  some cases the me thod  fails for unswept  wings, while it works well for swept wings, or vice 
versa. A few •curves showing the velocity distr ibution at a sweep-back angle ~0 = 53 deg 8 min  
are given in Figs. 15, 16, 18, 20 and 21. 

I t  is seen from the diagrams and from (IV.17) tha t  the  m a x i m u m  superveloci ty for a swept 
wing is always shifted backward when compared wi th  tha t  of a s traight  wing. The second t e rm 
in the  bracket  of (IV.17) always causes the  supervelocity to decrease ahead of the  m a x i m u m  
thickness, and  to increase behind  it. 
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Infinite swept-back wing. 
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v~ distribution over a swept-back wing with biconvex parabolic 
profile. 
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FIG. 10. Loci of constant v~' in xz-plane induced by a kinked source 
filament in xy-plane. 
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Graphs of the function G(~, ~) for different 
sweep-back angles. 
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Graphs of the function G(~,q~) cos 9 for different sweep-back angles. 
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Maximum supervelocity and its location. 
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