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Summary.--In Part !, the rigorous and the ' stringer-sheet' stress solutions are given for a point load applied in the 
plane of a semi-infinite sheet and at a finite distance from the boundary whmh is assumed to be free. From these are 
derived, by integration, some of tile stresses produced by distributed loads applied along lines normal to the free 
boundary ; attention is concentrated on the stresses along the line of action of the applied loads. 

The problem of finding the shear stresses adjacent to a load-carrying boom attached to the sheet and normal to the 
free edge is also investigated and integral equations for the shear stresses are derived. The integral equation obtained 
from the rigorous theory is not readily soluble, but  it is shown that, as in the stringer-sheet solution, very large shear 
stresses are present adjacent to the boom and near the free edge of the sheet. 

The required variation of boom cross-sectional area along its length to cause any particular variation of shear stress 
adjacent to the boom is also given. 

In Part  II,  a theoretical investigation is made into the problem of stiffening a sheet to relieve the high stresses near the 
free edge and adjacent to a direct load-carrying boom attached to the sheet. 

For booms of constant cross-section the stress distribution depends, with certain assumptions, on two non-dimensional 
parameters, and curves are included for determining the peak stresses in tile sheet and the loads in the stiffening structure 
over the practical range of these parameters. 

It  is shown that if a given weight of stiffening material is to be distributed uniformly along tile free edge of the sheet 
there is a particular shape of stiffener which gives lowest peak stresses in the sheet. 

The influence of rivet flexibility between boom and sheet is examined theoretically. 

PART I 

1. Introduction.--The diffusion of load from a boom or stringer into a sheet is one of the 
fundamental  st÷essing problems in aircraft engineering and has been considered by  a number of 
writers l to5 All these give approximate solutions as they employ the stringer-sheet or 
' stringer-s£ear-web-stringer 'simplifications. Adjacent to the boom and near the root these 
simplifications are not justifiable for we are concerned with a localised effect, and nearby stringers, 
if any, natural ly have an insignificant effect; this applies particularly to the shear stresses 
adjacent to tile boom. 

* Part  I, November, 1947. 
R.A.E. Report Structures 11, received 17th February, 1948. 
R.A.E. Report Structures 27, received 30th August, 1948. 
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A rigorous solution of this problem seemed necessary, but great difficulties are encountered in 
satisfying all the boundary conditions. An at tempt  to overcome these difficulties by solving the 
subsidiary problem of a point load applied to a semi-infinite sheet near to and normal to the free 
boundary was made and from it Was derived an integral equation for the shear, stresses adjacent 
to a boom of varying and arbi t rary section. This equation (containing only one variable) is not 
readily soluble, but  by choosing different forms for the shear stress it is possible to find the boom 
area to give the assumed shear stress. Since negative boom areas must be avoided in the analysis 
the correct stress function corresponds to an  infinite shear stress a t  the root.  This is not possible 
in practice, and there must be a certain amount of rivet slip or plastic yielding at the root ; this 
emphasises the importance of stiffening and careful design in the neighbourhood of the root. 
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DIAG. 1. Co-ordinate axes and position of point load P. 

Co-ordinate axes as shown in Diag. 1 above, x is measured from the free 
boundary of the sheet 

Direct tensile stress along Ox at point (x, 0) 

Transverse tensile stress at point (x, 0) 

Shear stress applied along Ox 

Strain along Ox at point (x, 0) 

Point load applied normal to the free edge 

Distance from free edge of point of application of load P 

Thickness of sheet (constant) 

Stringer-sheet thickness 

Elastic Moduli 

(Ets/Gt) 1/~ 

Poisson's ratio 

Width of panel 

Cross-sectional area of boom 

Stresses at  a point (x, y) 
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2. Rigorous Stress Solution.--2. 'l .  Point  Load Appl ied at a Distance f rom the Free Edge. 
A rigorous (stress-function) solution for this loading is obtained in Appendix I; the stresses 
Ox along are given by" 

fi  = --  2Px~{(2 + m ) X  + x} 
~ t ( X - -  x ) ( X  + x)" ' . . . . . .  . . . . . .  (1) 

+ 2 P X 2 ( X  --  rex) 
fY = ~ t ( X -  x)(X + x) ~ . . . . . . . . . . . . .  

s h e a r  s t r e s s  = 0 ,  

and these are plofted, together with the simplified stringer-sheet results, in Figs. 1 and 2. 

I t  will be noticed that  at the root 

f i = 0  
2P . . . . . . . . . . . . . .  

and f i  --  a t X '  

which is positive for all values of X provided P acts towards the free boundary. 
the root, therefore, given by 

, e ~  = ( f .  - -  mfi) /E 

- -  2raP 
~ t X E  

is always negative. 

(2) 

. .  ( 3 )  

The strain at 

. .  ( 4 )  

Expressions for the stresses elsewhere in the sheet are given in Appendix I ;  they are 
complicated and are not necessary !or the present purposes. Expressions for the stresses when 
the point load is applied in a direction parallel to the free edge are also given and they may be of 
interest to other investigators. (See also Ref. 8.) 

2.2. Distributed Load A2b2~lied by a Boom (Integral equation for the shear.stress adjacent to a 
boom). 

Sheet 

Boom 

P " '  I ~ (I ~ 
× 

Sheet 

DIAG. 2. B o o m  a n d  semi-infinii:e sheet.  

, If  q is the shear stress applied by the boom to an element of the sheet at a distance X from the 
free edge (see Diag. 2) it can be represented by a point load of 

dP = 2 q t d X ,  . . . . . . . . . .  ° . . . .  . . . . .  (5) 
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which may be integrated to give the load in the boom at a section distance x from the root 

p(x) = 2tf qdx, . . . . . . . . . . . . . . . .  (6 )  

it being assumed tha t  all the load is eventually absorbed by the sheet. 

Now from equations (1), (2) and (3) we know the strain in the sheet due to each elemental point 
load dP and hence, by integration, the strain due to a distributed point load system--and there- 
fore, to the shear stress distribution, q(x). If it is assumed that  there is no relative slip between 
boom and sheet, this direct strain in the sheet along the line of action of the applied shear stresses 
is also the strain in the boom P(x)/EA, and this condition of equality of strain in skin and  boom 
leads to the following equation for the shear stress 

t ~ q d X  + 2 ~ { r e x  ~ - -  m~X~x + ( 2 ' +  m ) X x  ~ + x~}q d X  
-A ?~ o ( x  - x ) ( x  + x)  ~ = o . . . . . . .  (7) 

As stated in the Introduction this equation is not readily soluble, but  by choosing forms for 
q we could solve for tile parameter A. I t  has been found more satisfactory to find Ee~ for given 
forms of q, i.e., to find the necessary boom stress. In section 2.3 the strain Ee~ is given when the 
shear stress is constant over a finite length from the edge of the sheet, and when it varies linearly2 

2.2.1. Functional form of q.--Fr0m equations (6) and (7) it is clear that  q will take the form 
q = (P/t)F(m, x, A/t) 

= (P/A)F(m, A/xt) . . . . . . . . . . . . . .  (8) 

from dimensional theory. 

This may be of importance when comparing different test results, though it can be shown that  
the shear stress at the root becomes (theoretically) infinite whatever the boom area. This means 
in practice tha t  in the neighbourhood of the root the shear stress will be the yielding stress for the 
material. Equation (8) will therefore be true only at some distance from the root. 

2.3. Distributed Shears At~plied to a Sheet.--By regarding 
shears applied to a semi-infinite sheet along a line normal to 
the free boundary as consisting of a large number of dis- 
tributed point loads we can obtain, by integration from 
equations (1), (2) and (4), the direct strain in the sheet along 
the line of action of the applied loads. And if the shears 
were applied by a boom to the sheet this strain would also be 
the  boom strain ; using equation (6) we can find what must 
be the boom area to produce these shears. 

The stresses and strains elsewhere in the sheet could be 
found by integrating the general expressions for the stresses, 
given in Appendix I, though this would prove laborious. 

J 

O -  

f 
Edge of 

sheet 

o 7 I 

-~ 2q o K 

2.3.1. Uniformly distributed shear.--For a constant shear 
per unit  length 2qot applied to the sheet over a distance D 
to tile free edge, as indicated in Diag. 3, the direct strain 
along the line of action of the applied shears is given by : 

E e l _  ( 3 - -  m ) ( l + m )  D 4m • D x'~ (1 + m )  2 ( 2 D + x ) D  q0 2~ lo~(+_x) ~]°g(  ÷x / +  ~(D+x/~ 
which has been plotted in Fig. 3. 

4 
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2.3.2. Linearly distributed shear.--For a linearly varying 
shear/unit length (2q0t(1- x/D)) applied to the sheet as 
indicated in Diag. 4, the direct strain along the line of the 
applied shears is given by:  

Ee~ 

qo 
(3 - -  m)(1 + m)(D - -  x) D 

2~D l ° g ( ~  + x ) -  

2qo'¢ 

o_ q 

and 

kP  I Y I 
q,v - -  2~t x 2 + k~y "+ 

where t~ is the thickness of the stringer-sheet and k 2 -= Et+/Gt. 

. . . . . . . .  (13)  

5 

=D x -~- x 
DIAG. 4. 

+ 2(1 + 4m + m~)D 2 + (5 + 18m + 5m2)Dx + (3 + m)(1 + 3m)x ~ 
=(D + x) ~ , . .  (10) 

i 

which has been plotted in Fig. 4, where it will be seen that  the strain becomes negative near the 
free edge, as it did for the uniformly distributed shear case. 

I t  is worth noting here that  since the strain becomes negative near the free edge it is impossible 
to design a boom which will feed the load in it into the surrounding sheet in the above prescribed 
manners because this would necessitate a negative boom area in this region. 

2.3.3: Other shear distributions.--The effect of parabolic and other shear distributions may be 
found by direct substitution. Alternatively, the linear distribution discussed above may be used 
as a unit load line, and other smooth shear distributions obtained from it, approximately by 
summation or exactly by integration. I t  will be seen that  all die-away forms that  are not infinite 
in value at the root will give a negative boom strain in the neighbourhood of the root. 

But if we take for example 
q = K/W/x . . . . . . . . . .  (11) 

which becomes infinite at the root, we find tha t  

Ee~ ( 3  - -  = - 2 m ) 2 K / ~ / x  . . . . . . . . . . . . . .  (12) 

which, although it is positive even near the root, now becomes infinitely large at the root • this 
would necessitate a zero boom area at the root. 

3. Simplified Stringer-sheet Solut ion.--Using stringer-sheet theory the stresses in a sheet due to 
a point load have been found in Appendix I. 

For a point load P applied at the origin and along the x-axis in an infinite sheet the stresses 
throughout are given by 

- t +  t fi" = 2~i, x ~ + k~y ~ 



3.1. Point Load Applied at a Distance from the Fr~e Edge.- -When the load is applied towards 
the free boundary 6I a semi-infinite sheet and distance X from it (as in section 2.1)" 

L 

kP x(x 2 + k2y 2 --  X ~) 

f~"--~t ,  {(x + X) ~ + k~y~}{(x- X) ~ + k~Y~} . .  . .  . .  (14) 

kP y(x ~ + k~y ~ + X ~) 
q~, - ~t {(x + x )  ~ + k ~ S } [ ( x -  x )  ~ + k~y ~} 

Along the line of action of the applied load (y = 0) these equations reduce to 

--  kPx 
f *  - - ~ t , ( X  ~ - -  x2) .  . . . . . . . . . . . .  . .  (15) 

qxy = O 

3.2. Distributed Load applied by a Boom (Integral equation for the shear stress adjacent to the 
boom) . - -From reasoning similar to that  given in section 2.2 we can derive an integral equation 
for the shear stress (q) adjacent to a boom. The equation for q corresponding to equation (7) is 

AkxI q(X) dX 
, q ( X ) d X  + ~ts J o x~ - -  x~ - 0  . . . . . . . . . .  

and if the boom area is constant the solution of this equation may be expressed in closed form in 
terms of trigonometrical functions and the sine and cosine integrals 

t . d t a n d - -  - - - / - - . d t  

which are tabulated in Ref. 9. 

q / f o -  --z&t2t~ {cos ~ Ci ~ + sin e si e} . . . . . . . . .  . (16a) 

where e = 2xtJAk and f0 the boom stress at the root. This has been plotted in Fig. 5. 

3.2.1. Estimation of shear yielding that occurs in practice.--From Fig. 5 or equation (16a) it 
will be noticed that  the shear stress becomes infinitely great when x is zero ; in fact, for small x 
the expression inside the brackets of equation (16a) behaves like log re = log x -- log (Ak/2),t,) 
where 

log r = 0. 5772 = Euler's constant. 

Using these expressions for integrating the area under the q-curve it is possible to estimate the 
proportion of load taken (theoretically) by shear beyond the elastic limit, and this has been done 
in Fig. 6. In Fig. 7 an at tempt has been made to estimate the actual shear stress distribution, 
assuming that  the boom tensile stress at the root, f0, is at the yielding point and that  the yielding 
shear stress of the sheet is fo/2. 

Fig. 7 gives an indication of the extent of possible shear yielding and suggests how much 
stiffening may be necessary. 

3.3. Comparison with the Rigorous Solution.--The broken curves in Figs. 1, 2, 3 and 4 compare 
the stringer-sheet solution with the rigorous solution for the simple cases considered there. I t  
will be seen that  agreement with exact theory is not as good as is generally believed. 6 

4. Panels of Finite' Width (stringer-sheet solution).--The solution obtained above for the infinitely 
wide sheet with single point load can be adapted to the case of a panel of finite width by a method 
of ' images '. Consider the case of a large number of loads applied as indicated in Diag. 5a. 
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DIAG. 5a. Multiple loads applied to semi-infinite sheet. 

The solution for this case can be obtained from that  for a single load by  a process of summation.  
It  is clear from s y m m e t r y  that  there will  be no shear stresses along such lines as a -a  or b-b .  
Also, under the assumptions made in stringer-sheet theory, stresses normal to these lines do not  
affect the solution. This means  that  we can cut the  sheet along lines a-a  or b - b  without  affecting 
the stress distribution, and so obtain the solution to the systems in Diags. 5b or 5c. 

s (b) 
P < 

I, 

P]2 

s (c) , 

DIAGS. 5b and c. 

T 
Equivalent loads applied to finite panels. 
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The direct stress along the line of action of the applied loads for cases (b) and (c) above, is 
given by 

P [coth I(x -- X)~ cotht  (x + X)~}]  (17) 
-- 2wt, l kw } + kw . . . . . . .  

4.1. Distributed Loads Applied by Booms (Integral equation for the shear stress adjacent to the 
booms) . - -From reasoning similar to that  given in section 2.2 we can derive an integral equation 
for the shear stress (q) adjacent to the booms (assumed to be of constant area A each) of a panel of 
finite width. 

I 

0 ~ x ~'-~q (~) 

I 

DIAG. 6. Panel absorbing load from booms. 

Regarding the loads P/2 of Diag. 5c to be elemental loads of a continuous system along the 
length of the boom-sheet junction we find that  

° ll, x--0 (18) 

the solution of which is 

c o s  (xa/kw) 
q(x) = K 1 + c¢~ coth X/2 . . . . . . . . . . . .  (18a) 

0 

where K is -- 2A(1 + 2A/wt,)/#~kw times the boom stress at the root and ~ = A/wt,. 

5. Co~clusions.--The stresses in a sheet due to a point applied at a finite distance from the free 
edge of tile sheet can be derived by the method given in this report, and from them can also be 
derived an integral equation for the shear stresses adjacent to a boom of arbitrary section. The 
method permits at tention to be concentrated on the shear stresses adjacent t~o the boom and Shows 
that  these stresses are very large: 

Comparisons with the simplified stringer-sheet theory show tha t  this simplified theory is not 
as good as is generally believed. Unlike the corresponding stringer-sheet equation, the integral 
equation obtained in the present report is not readily soluble. 

Part  II  of this report extends the present work to include the effect of a stiffening flange 
attached to the free boundary of the sheet and efficient methods of design with particular reference 
to weight saving. 
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APPENDIX I 

The stress-function solution for a point load applied in the plane of an infinite sheet is known, 
and so the stresses acting along such a line as BB in Diag. 7 are known. If the sheet is cut along 
BB, we can represent the stresses throughout by the original stresses superimposed on the stresses 
due to an equal-and-opposite ' l i qu ida t ing '  stress distribution applied along BB to the semi- 
infinite sheet-- the exact stress distribution due to loads applied along the boundary of a semi- 
infinite sheet also being known. 

In the first part  of this appendix attention is concentrated on the stresses along the line of 
action of the applied load. 

Consider now a load P applied at a point P in the plane of an infinite sheet (as in Diag. 7). 

N Y 0 

x i 

DIAG. 7. Diagram showing notation. 

I t ! O l  The dashed co-ordinates x ,  y ,  r ,  are with the origin at P. 
as in Diag. 7 above. 
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The stress-flmction solution is 7 

(1 -- m) Pr'  l o g r ' ,  cos 0 ' - -  Pr'O' O' sin , . .  
¢ =  4~ 

which satisfies the biharmonic equation and all the boundary Conditions. 

stresses (in polar co-ordinates)~ 

(a + m)P 
COS 0 I 

f i ' - ~ - - -  4~r' 

fo, (1 -- m)P ----- 4nr' cos 0' , . . . . . .  

( 1  - m)P 
q,' 0 ' =  - - - 4 ~ - -  sin 0' 

. . . .  (19)  

Equation (19) gives 

0 D 

(20) 

4 

The stress components in Cartesian co-ordinates are found from 

f~ = cos 2 0' .  f;, + sin" 0' .  fo, + q," o, sin 20' 

. .  (21) 
P cos 0' {1 m + 2(1 q- m) cos" 0'} . . . .  

4~r'  

f~, - -  sin* 0 ' .  f,, q- cos  ~ 0 ' .  f o ,  - q,'o" s in  20'  

. .  (22) 
P cos 0' 2(1 + m) sin ~ 0'} . . . . . .  = ~ { 1  - m -  , 

q,,y. = sin 20 ' .  (fo, ~ f,,)/2 + cos 20 ' .  q,,o,/2 

P sin 0' (23) = _ _ 4 ~ p - - { 1  - -  m + 2(1  + m) c o s  2 0 ' }  . . . . . . . .  

The stresses, therefore, at M (defined by  its distance x from the line BB, BB being normal to 
the direction of the applied load and distance X from it) are 

P(3 + m) 
f~ = - - - ~ x '  - -  

P(a  + m) . . . . . . . . . . . .  (24) 

- , ; ( x -  ~) ' "" 

and similarly, P(1 -- m) . . . . . . . . . . . .  (25) 
f .  = 4 - ~ ( x -  ~-~ "" 

The normal and shear stresses at points N aloog BB are found from equations (21) and (23) by 
putting r '  = ~/(X ~ + Y~), sin 0' -~ y/r  and cos = X/r ,  i.e., 

p X 2(1 + m)X~'~ . .  (26) 

2(1 + ~ )x=  h (27) p , , * * • • 

_ - -  + y - ~  

• , st li uidate fx  and qx by applying equal and opposite 
If we make BB a free boundary we m u  , q . . . . . . .  i..; . . . .  ,~,,1 and shear loads to a free 

stresses along ]3]3. We consider, theretore, the ermct o~ apv~y~,~s . . . . . . . . .  
boundary of a semi-infinite sheet. 

t0 



M 

Y 

Pn 

Normal Load applied to Boundary of Semi-infinite Sheet.- 
In Diag. 8 points M and N correspond with M and N in 
Diag. 7. The stress function solution, ¢ = (P~/z) rO sin 0 
gives a simple radial distribution: 

f,  = 2P. cos O/~r [ 
/ f o =  q~o=O 

(28) 

DIAG. 8. Normal load at sheet boundary. 

The stresses at M are, in Cartesian co-ordinates, 

2P.x 3 
L = ~ ( x  ~ + y~)~ . . . .  

and 

. . . . . . . .  . .  . .  (29)  

2P.xy ~ 
f ,  _ ~(  x~ + y~)~ . . . . . . . . . . . . . . . . .  (30) 

We are not concerned with the shear stress, because the effect of a P ,  applied to the image point 
N '  in Diag. 7 will be to produce an equal but  opposite shear stress, and when we sum the effect of 
the direct stresses applied all along BB the resultant shear stress at M will be zero. This is also 
clear from symmetry. 

M 

X 

L 

N Y 

DIAG. 9. Shear load at sheet boundary. 

Shear Load applied to Boundary. of Semi-infinite Sheet .-  
The stress function solution again gives a simple radial 
distribution" 

2P, 
f '  = :~-7 s i n  0 

fo = q,o = 0  

. . . . . .  (31) 

And ' t he  equations corresponding to equations (29) and (30) are :. 

2P'x~Y . . . . . .  (32) 
L = ~ (x  ~ + y~), . . . . . . . . . .  

2P~9 
L = ~ (x  ~ + y y  . . . . . . . . .  . . . . . . . .  (33) 

t t  is again unnecessary to calculate q~y. 

Condition of Zero Stress along the Free Boundary.--We must now choose the magnitude and 
distribution of the P / s  and Ps's to be equal and opposite to the fx and qx of equations (26) and 
(27). For an elemental part #y of the boundary we accordingly have 

P .  = - - f x  # Y  . . . . . . . . . . . . . . . . . . .  (34)  

and 

P s  = - -  q x  ~Y  . . .  . . . . . . . . . . . . . . .  (35)  

11 



Substituting for P~ and P, in equations (29) and (32) for fi, and equations (30) and (33) for f i ,  
gives 

_ 2 x  ~ ~ y  
~f. --z~(x ~ ÷ y2)~ (Xfx + Yqx) . . . . . . . . . . . .  (36) 

2y 2 by 
~fy -- ~-(-~2 ~-y~ (xfx ÷ Yqx) . . . .  . . . . . . . .  (37) 

f x  and qx are given by equations (26) and (27), and, on substitution in equations (36) and (37), give 
on integrating along the whole of the free boundary:  " " 

Px ~ [+~ (xx + y~){(a + m)X ~ + (1 - m)y ~} 
f .  -- 2z~ j_® ( X~ + y~)~ (x 2 + y~)~ ay . . . . .  (38) 

and 

L =  P 
- - 0 0  

( x x  + y'){(3 + m)X ' + (1 -- m)y=}y ~ dy . . . . .  (89) 
(x  ~ + y~)~ (x ~ + y~)~ 

These definite integrals may be eva lua ted  using the Calculus of Residues. Denoting the 
integrals by I we have the relation 

I+:  = 2=iY, R +, . . . . . . . . . . . . . .  (40) 

where ZR + is the sum of the residuals of the integrand at its poles in the upper half-plane ; the 
variable y regarded as complex. Here the poles are at y : i X  and ix, and the residual can 
therefore be found by making substitutions for y of the form y : i X  ÷ A and ix + A and 
summing the coefficients of 1/A in both cases. 

Performing this integration gives 

f .  = P{8x ~ ÷ (3 + m)(X  ~ + 4 X x -  x~)}/4z~(X + x) ~ 
and 

f i  ---- P { S X  2 . (1 -- m)(X  ~ -  4 X x -  x~)}/4z~(X + x) 3 . (41) 

Equation (41) represents the stresses at a point M, as indicated in Diag. 7, due to the liquidating 
stresses applied along the free edge BB, they must be added t o t h e  stresses, given by equations 
(24) and (25), due '  d i rect ly '  to P. Adding and simplifying gives 

and 

- -  2Px2{(2 + m ) X  + x} . . .  (42) 
L = ~ ( x -  x)(X ÷ x) ~ . . . . . . . . .  

2 P X  2 (X --  rex) . . .  (43) 
fY = ~ ( X -  x ) (X  + x) 3 . . . . . . . . .  

Complete Stress Distribution (see also Ref. 8) . - - I t  is clear tha t  the stresses elsewhere in the sheet 
may be found by a simple extension of the above analysis. Denoting by f,,, fyy and q,y the 
stresses at a point (x, y) in the plane of an infinite sheet, we have from equations (21), (22) and (23) : 

L =  

q~y---- 

- -  P ( X  --  x){(3 ÷ m)(X -- x) = ÷ (1 -- m ) y  2} 
4={(x - ~)~ + y~}= 

e ( x -  .){(1 - m ) ( X -  x) ~ -  (1 + 3m)y ~} 
4z~{(X --. x) 2 + y~}~ 

-- Py{(3 + m ) ( X  --  x)* + (1 -- m ) y  ~} 
4z~{(X -- x) 2 ÷ y~}~ 

(44) 
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This may  be regarded as corresponding to equations (24) and (25), for it gives the stresses due 
directly to the applied load P. 

If Yl represents the ordinate along the boundary BB the ' unliquidated ' stresses there will be 
given by equations (26) and (27) with yl substituted for y. (This distinction between the y 's  was 
previously unnecessary.) 

The stresses due to normal and shear loads applied to the boundary of a semi-infinite sheet will 
now be given by equations (29), (30), (32) and (33) with y replaced by (y~ -- y). Expressions for 
the shear stresses will als0 be needed. 

Proceeding along these lines and ensuring that  the boundary BB is free from stress we find that  
the complete stress distribution, due to a concentrated load P applied towards a free boundary 
and distance X from it, is given by :  

(1- 4x: l 
+ 

4 r - - V -  + R ~ R 4 /A . . . . . . . . . .  
(4S) 

fyy-----~ 2 r '  = + R'  + R '  

+ ( 1  - + 
4 r 2 + R ~ R ~ ]J  . . . . . . . . . .  

q~y-- z~t ~ 2 r ~= -~ R ~ + R6 

1 1 4x(x + + ( I  - -  m) ( r~  R ~ + R ~ X ) ) ]  . . . .  (47) . • * , , , , 

where 
r ~ - ( x - X )  ~+y~,  l (48) 

I ° * ° • ¢ ¢ • ° " " * ° " 

R ~ =  ( x + X )  ~ + y ~ .  / 

Load applied Parallel to the Free Edge (see also Ref. 8) . - -For  completeness the stress distribution 
is given below for the case where the load is applied parallel to the free boundary. The proof is 
similar in all respects to tha t  given in this appendix. 

f " - ~ t  ~_: 2 r ~ + R ~ + ~ / 

( 5(1 . (,o) 
4 

ps.[(l+~?(Z+:+8,x+6x, 8xX(, + x~: 
: ~ , - ~  2 J \ r  ~ R ~ + n ° ) 

3 4x(x + X) 
+ + )1 . . . . . . . .  

q" : ~7 P ..[(I +2 m](y2(x # X> + (x + X)(2XXR 4 + Y~) -- 8xXg(XR 6 + X)) 

+ 4 r '  ~ R 2 - -  R '  , . . . . . . . .  (51)  

where r and R are given by equation (48). 
13 



Stringer-sheet Solution.--The fundamental  equation may be  written in the form 

~2U ~2¢t 
ax--~ + ~(ky)~ = o ,  

where u is the displacement in the x direction and k" EtJGt. 

Point Load Applied in Infinite Sheet.--There is a direct analogy between the displacement, u ,  
and the potential function, $, which occurs in irrotational flow and which satisfies 

~x12 ~y~ -- O .  

The potential due to a point source is given by 

$ oc log r~ 

oc log (xl ~ + yl  ~) 

and from the analogy, noting tha t  we can write x~ -- x, y~ = ky, we take 
I 

u = K log (x 2 + k~y ~) 

as the solution. I t  can be verified that  this equation satisfies the conditions of equilibrium. If 
the applied load is P, integration of the direct or shear stress along any line gives 

K = P/4zc~/(EGtt~). 

Point Load applied near Free Edge of Sen~i-infinite Sheet 

Y, 

0 - - X  I I- 

X 

° 

s 

i 

DIAG. 10~ 

This corresponds to two point sources as indicated abo'ce, in which case ttie potential is, by 
addition 

~ ~,((~1 -- X) ~ +yl~} + log {(x~ + X) ~ + yl~}. 

and accordingly 

The 

u = K[log { ( x -  X) ~ + k~y ~} + log { (x q -X)  ~ + k~y~}] 

direct an d shear stresses are given by 
~u ~u 

f , ,  = E - ~  and e,y = G ~ .  

14 
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PART II  

6. Introduction.--The diffusion of a concentrated load into a stiffened sheet is one of the 
fundamental problems of design and stress determination in aircraft engineering. Of the many  
writers n to 17 who  have examined this problem, only H. L. Cox TM has considered it from the 
standpoint of efficiency. He effected the diffusion by an ' in tegra t ing  structure ', the sole 
function of which was to transform a concentrated load into a uniform loading over a given width 
of sheet, and he compared the weights of a variety of such structures with the same length of 
sheet. (See Diag. 11.) 

c oncentro*~dl I • 

Load I Integrotln 9 ] ~ E ~ Panel of 

I l--- ~ o Sh~ 

I I ---.~- 
L _ _  I 

DIAG. 11. Diagrammatic represen!ation of Cox's integrating structure. 

The excess weight of these integrating structures over the weight of the same length of 
stiffened sheet was very considerable, the main reason lying in the assumption tha t  the sheet was 
unstressed in shear, that  is to say it did not itself contribute to the redistribution of load. The 
concentrated load is in practice usually applied through a boom which does not terminate at the 
junction with the sheet (as it did in R. & M. 17801~), though its cross-sectional area may decrease 
as it extends into the sheet because of the load taken by the sheet. 

Here we consider the diffusion of load from a continuous boom into a sheet which is capable of 
.taking shear. Unless additional stiffening is present the shear stresses in the sheet are very high 
m the neighbourhood of the boom and the free edge of the sheet. The additional stiffening 
commonly employed is either a patch-plate (called here a shear-stiffener) or a flange or beam 
attached to the free edge of the sheet (called here a bending-stiffener), or both. A shear-stiffener 
is defined here as a stiffener whose bending flexibility is negligible compared with its shear 
.flexibility (i.e., no deflection due to bending), and a bending-stiffener one whose shear flexibility 
is negligible compared with its bending flexibility. 

These are illustrated in Diags. 12 and 13. 

Beam 

pQ:Chp ii 
Load-z ~ . ~ B o o m  

Load z I 

S h e  e'2, 

DIAG. 12. Shear-stiffener. DIAG. 13. Bending-stiffener. 

7. Statemeut of Problem.--The diffusion of load is dependent on boom, stiffener, and sheet and 
the structure must, therefore, be considered as a whole. The present report is concerned with 
the determination of stresses in such a combination of boom, stiffener and sheet and the design 
of stiffeners of least weight. 

17 
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Because of the simplicity of the assumptions tile complete stress distribution depends only on 
a few parameters ; for tile special cases of constant boom area, which are treated in detail, the 
distribution depends on two fundamental, non-dimensional parameters. I t  is, therefore, 
comparatively easy to plot, or give formulae for, any single function of the stresses (say the peak 
shear stress in the sheet or the load transferred by the stiffener) over the complete range of possible 
types' of structure. 

7.1. Assumptions.--The stringer-sheet method ls'15 is used and the following assumptions are 
additional to those implicit in this method : - -  

(i) The sheet is flat. 

(ii) The shear and bending-stiffeners are attached to the edge of the sheet and are at right 
angles to the boom and stringers: the bending-stiffener is unbroken by the presence 
of the boom and each part on either side of the boom may, therefore, be regarded as 
built-in to the boom. 

(iii) The sheet is infinitely wide and long and the shear and bending-stiffeners infinitely long. 
I t  is shown in Appendix II  tha t  the results are still useful for sheets with finite 
dimensions. 

(iv) The stiffeners have constant properties along their length. 

(v) Ordinary bending theory applies to the bending-stiffener, i.e., the bending moment is 
proportional to the curvature. 

(vi) The shear stress in the shear-stiffener is assumed to be constant over its width. (Separate 
approximate allowance is made for variations in shear stress over the width whenever 
it is important.) 

(vii) When both bending and shear deflections of the stiffeners are taken into account the 
deflections are additive. (as in ordinary engineering theory). 

8. No Edge Stiffener; Boom of Varying Cross-section.--The complete stress distribution in the 
sheet is determinable if the strain in the boom is known, and.it  has been shown 1~ tha t  unless the 
boom strain is zero at the root the shear stress there will be theoretically infinite. This means 
tha t  for all booms of finite cross-section the shears become theoretically infinite at the root. 
However, the effect of rivet flexibility is to make the actual peak shear stress finite and such tha t  
it is reduced as the magnitude of the theoretical shear is reduced; a reduction in theoretical 
shear stress occurs if the boom area is increased, and so an actual reduction will occur also. 

I t  has been considered worthwhile to investigate more fully the effect of varyin.g the boom 
cross-sectional area in order to get some quanti tat ive values for the stresses with various degrees 
of allowable rivet slip, and to suggest what increases, if any, should be made to the boom area 
when other stiffening is present. 

I t  is shown in Part  I (section 3.2) tha t  an integral equation exists giving a relation between the 
boom crossCsectional area and the shear stress adjacent to the boom. This equation may be 
written in the form 

e ( z )  d x  . . . . . . . . . . .  

Jo X 2 _ _  

where q(X) is the shear stress at the point x = X. 

If we prescribe a given form for q(X) the necessary boom area is given immediately by equation 
(52). 
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8.1. Exponential  Shear S tress . - -A suitable form for q(X), which admits of easy analysis, is the 
simple exponential decay expressed by 

~(x )  = ~oe - o ' ,  . . . . . . . . . . . . . .  ( 53 )  

where ~ is some arbitrary constant. 

This distribution of shear stress implies a boom area given by 

.2F = 2=ts/k~{Ei c~x -- e 2°~ Ei (-- ex)} . . . . . . . . . .  (54) 

and a boom stress of 

~- {e -'~ Ei ex -- e °" Ei (-- ~x)} (55) ~ : ~  " • • • • • • • ° ° • 

The boom area has been plotted in Fig. 8, and ±he boom strain in Fig. 9. 

These results are not practical because of the need for an infinite boom area at the root. But 
if we plot the boom displacement, obtained by integrating the boom strain, we obtain the distri- 
bution given in Fig.10, and we can now remove the difficulty of zero boom strain at the root by 
st ipulating a finite and, for convenience, constant strain over a small interval of boom length in 
the neighbourhood of the origin. This does not alter the boom displacement elsewhere and, from 
physical considerations, will not seriously affect the prescribed shear stress distribution. 

If it could be arranged that  the rivet slip exactly accounted for the difference between the 
modified boom displacement curve and the theoretical boom displacement curve, (i.e., the 
displacement of the sheet adjacent to the boom) the shear-stress distribution would be exactly 
as prescribed. 

8.1.1. Opt imum value for cz for  lightest s tructure.--The volume of material in the boom, obtained 
by integrating equation (54), varies as (1/~) ~ and is therefore least when ~ is greatest. The 
value of c~ is limited by the strength of tile structure, and this depends on tile shear stress at the 
root. If P is the applied load, the shear stress at the root is given by 

~P 
q o -  2 t '  . . . . . . . . . .  (56) 

and so the greatest value for ~ will occur when qo equals q,, .... the maximum allowable shear stress. 
This gives 

= 2t%_~/P 

The weight of the modified structure is now limited by the maximum allowable relative displace- 
ment  (that is to say, rivet slip) between boom and sheet, which occurs at tile root. 

Suppose that  this displacement is e, then in Fig. 10 we can fix the point K~ on tile vertical axis, 
which determines the relative displacement between boom and sheet at the root. (It will be 
noted that  the vertical scale factor ~kG/qo is now equal to 2~/(EGtt , /P) .  From tile point K, a 
tangent may be drawn to the main curve (any other straight line would meet the main curve at 
an angle, which would necessitate a sudden change of stress and hence of boom area). We are 
assuming that the rivets are such that  their slip is everywhere represented by the difference 
between the curve and the tangent line. This means that tile rivets are most flexible at the root 
and have graded flexibilities down to zero at the point K, beyond which they remain with zero 
slip. It  will be seen that  if the rivet slip factor is constant along the whole length of boom to 
sheet connection very little relief is afforded to the shear stresses in the sheet without a prohibitive 
increase in boom area at the root. 

The boom area correspbnding to this particular value of e has been drawn in Fig. 11. Only 
the boom area between the root and the point K differs from the theoretical ' no-slip'  values. 
The volume of boom material is now finite and equal to 

~P~ ,~ 
1.7 ( ~ (57) 

%_oJ . . . . . . . . . . .  
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8.2. 'Flatter'  Shear Stress.--We consider now another family of shear stress distributions. 
These have been chosen because they have a ' flat ' shape compared with the exponential distri- 
butions just considered, and they admit of ready analysis. 

The shear stress is given by 

q ' (x)  = qo'(1 +  'x)e , . . . . . . . . . . . .  ( s8 )  

which implies a boom area given by 

2F=2~.t,(2+ot'x)/kot'{(1 +~'x)  Eio:'x--(1--,o:'x)e2~'~Ei(--c~'x)} . . . .  (59) 

and a boom stress of 

qo t 
~ {(1 +c,.'x) e-~"Eicdx--(1--~'x)e~'XEi(--~ 'x , )}  . . . . . . .  (60) 

The boom area has been plotted in Fig. 12 and the boom strain in Fig. 13. We can overcome the 
difficulty of infinite boom area at the root by plotting tlie boom displacement, as was done before, 
and stipulating a constant boom strain over a small length of boom in the neighbourhood of the 
root. This is done in Fig. 14. 

8.2.1. Optimum value for ~' for lightest structure.--The weight of the boom is least when c~' is 
greatest and the greatest value for ~' is again limited by the shear stress at the root. We find 
tha t  the greatest value of c~' is 4tq,,_~/P. 

If we assume tha t  the maximum allowable relative displacement between boom and sheet i's 
again ~ we can fix the point K~ in Fig. 14. The tangent K~K to the main curve determines the 
modified boom area,which is shown by one of the full lines in Fig. 11. 

The necessary rivet slip factor, which is proportional to 

distance between tangent line K,K and curve OK 
shear stress at same position 

will again be greatest at the root and sharply graded down to zero at the point K. This is 
indicated diagrammatically in Fig. 14. 

The volume of boom material is now equal to 

1.3 I 
;p2 

l 

This is 26 per cent less than tha t  designed to give an exponential shear stress distribution, and 
this suggests that  a design which gives a flatter shear stress distribution is more efficient. 

8.3. Summary of Seclion 8.--Section 8 indicates how the strength of a diffusion structure can 
be increased without prohibitive increase in weight, and without the use of shear and bending- 
stiffeners. 

The conclusions are: 

(i) Shear stresses in the sheet depend solely upon the strain in the sheet along the line of 
at tachment  to the boom ; high shear stresses occur if this strain is not kept small n e a r  
the root. For booms of equal weight/strength ratio the best will be the one whose 
Young's-modulus/weight ratio is the highest. 

(ii) A boom designed to give a flat shear stress distribution is lighter than one designed to 
give an exponential shear stress distribution. 
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(iii) ~ In  all such load-diffusion structures in which there is no stiffener along the  free edge of the  
sheet, the  boom area must  be increased considerably in the  neighbourhood of the  root 
if the  sheet is to be sufficiently strong in shear. 

(iv) A line of rivets a t taching sheet to boom will not  appreciably relieve the shear stresses in 
the sheet if the rivet slip factor is constant  along the  line. Considerable relief may  be 
expected if the  rivets are very  flexible at the  root and have  graded flexibilities down to 
zero a short distance from the root. Rivet  flexibility some distance from the  root will 
t end  to increase the shear stresses at the  root, where they  are already highest. 

9. Edge Shear-stiffener," Boom of Varying Cross-section.--In deriving equat ion (52), use was 
made  of the  stress distr ibution in a semi-infinite sheet due to a point load dP applied in the  plane 
of the  sheet and normal  to the  free boundary.  The corresponding problem when there is a shear- 
stiffener along the free edge of the sheet l~as been solved in Appendix  III .  

Areo = R~ ~ ~ ~ ~  

S't i'f'f ¢n¢  r ~ 

x 

/ / / 1  

DIAG. 14. 

t~ ~S 

Using the  notat ion of Diag. 14 the  direct stress along Ox, the line of action of the  applied load, is 

f~ = (6P/~[~R) J,(x~, XI) , 

where x~ = xt/R, X~ = Xt /R  

2 1  
and J,(xl, X1) -- xl~ _ X 2  --  e I~l+xl) Ei  {--(xl + X1)} . . . . . . . . . .  (61) 

from which it follows tha t  the  boom area necessary to give a chosen shear distr ibution q(x) is 

2F(xl) = ~ . . . . . . . . . . . .  (62) 
fo q(X ) Z(x , xl) 

We shall confine our a t ten t ion  to the  solution of this equat ion for constant  boom area, i.e., we 
find q for a given F,  and not  the converse as was done in section 8.1. 

9.1. Particular Case : Boom of Constant Cross-section.--The complete stress dis tr ibut ion for 
this case is given in Appendix  V. The results are given in the form of definite integrals, but  the  
shear stress adjacent  to the  boom is expressible in terms of tabula ted  functions s, sine, cosine and 
exponent ia l  integrals : 

2kfo { e x / ~ E i ( - - x / ~ ) + ~ ( s i n x C i x - c ° s x s i x )  q ( x )  - + 

- (cos c i  + sin si . . . . . . . . . . . .  (63) 
where, fo is the  direct stress at the root and ¢ = [~R/F. 

These distr ibutions are drawn in Fig. 17 for various values of ¢. 
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The greatest shear stress occurs at the root and may be obtained from Fig. 15. This root stress 
is necessarily the shear stress in the shear-stiffener, from which it follows that  the proportion of 
direct load transferred immediately from the boom to the sheet by the shear-stiffener is 

( 21og ) <o4) A - - 1 + C 2  C - - ~  , • . . . . . . . . . . . . .  
a function of C alone. 

This proportion has been plotted in Fig. 16. 

9.2. Particular Case : No Boom.--This load diffusion case may be regarded as a limiting case of 
that  discussed in section 9.1, as F tends to zero, or as that  in section 9 as X tends to zero. 

Sheor 
Stiffener 

DIAG. 15. Diagram showing notation. 

General expressions for the stresses in the sheet may be found easily in terms of definite integrals ; 
the stresses along the line of action of the applied load and those adjacent to the shear-stiffener 
are expressible in terms of known functions as follows. 

- -  P e -v' E i  (-- xl) . . . . . . . . . . . . . .  ( 6 5 )  
(fxx),=o ~kR 

-- P (cos yl Ci Yl + sin yl si y~) . . . . . . . . . .  (66) 

P (siny~ Ciy~ -- cosy1 sly1) .. . (67) . . . . . . . . . .  

These distributions have been plotted in Figs. 18, 19 and 20. The direct stress in the sheet 
becomes, theoretically, infinite at the origin, and this suggests that such a method of load diffusion 
would not be efficient in practice. 

10. Edge Be~di~cg-stiffe~er • Boom of Varying Cross-seet~o~¢.--As in section 9 we first consider 
the stress distribution in a semi-infinite sheet due to a point load bP applied in the plane of the 
sheet and normal to the free boundary. This has been done in Appendix IV. 

J 

IJL 
DIAG. 16. 

x 
0 

Bending 
St i ' f lener  

~P 
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The direct stress along the  line of action of the applied load, obta ined by put t ing  y zero is 

where 

and 

~P 
f .  _ ~;< jo(x~, x~)  

x~= x/kZ, X~ = X/kZ 

= (kf / t~)  1/3 

j b ( x ~ , x ~ ) =  Xo f l  e-~X~-+~~° 
x2 ~ - ' X 2  2 +  1 + 0 a dO 

(68) 

from which it follows tha t  the boom area required to give a prescribed shear stress dis t r ibut ion 
q(x) is 

z~ ts q(X2) dX~ (69) 
2F(x2) - -  ~ . . . . . .  . . . . . .  

~0 q(X2) J/~2, x~) dx~ 

This equat ion is of a more complex character  than  the  corresponding equat ion (62) for the shear- 
stiffener case because the  function J~ cannot  be expressed in terms of known functions. 
Accordingly we shall confine our a t ten t ion  to the  special case of constant  boom area. 

10.1. Particular Case : Boom of Constant Cross-sectio~¢.--The complete stress dis tr ibut ion for 
this case is given in Appendix  VI. The results are given in the  form of definite integrals which 
are not  expressible in simple form. The shear stress distr ibution adjacent  to the  boom is o f  
practical importance and these distributions are p lo t ted  in Fig. 21 for various values of the  
non-dimensional  parameter  7, which is equal to "(kIt))l/a/F. I t  will be not iced tha t  the  shear 
stress is zero at the  root and rises to a m a x i m u m  value and then  dies away slowly. From s t rength  
considerations the  peak values of this shear stress are impor tan t  and these may  be obtained from 
Fig. 22. 

10.1.1. Exam2ble.--Suppose tha t  this form of stiffening is to be employed and the  peak shear 
stress adjacent  to the  boom is to be l imited to 0.6f0. How stiff raust the  bending-stiffener be ? 

Suppose the  rest of the  s tructure is specified by 

2F  = 8 in3 

t = 0" 05 in. 

ts = 0" 08 in. 

G / E = 0 . 4 .  

= ,v/(Gts/Et) = 0 . 8 .  

qmax/kfo 

This means tha t  

Therefore, we require an / for the  bending-stiffener to give an ~7 corresponding to 
= 0 .6/0"8 = O. 75 ; and from Fig. 22 we accordingly take 

= 0" 075 
_= (kIq)~/~/F. 

This is an equat ion for I ,  which may  be solved to give 

i = (0"075F)a/kt? 

= 2- 2 in. 4 
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10.1.2. Loads in the s t i f femr . - -The  greatest bending moment  in the stiffener occurs at the root 
and is given by 

P F  I-(2=/3 V3) + , ? ) -  ½=v - logv 1 
Mo = t, L ( 4 ~ / 3  v / 3 ) ( 1  - -  ,?)h? ~ + ~ , ?  + 2 l o g  v -~ '" (70) 

which has been plotted in Fig. 23. 

In the numerical example considered above, in which the moment of inertia of the bending- 
stiffener was taken to be 2.2 in. ~ and v = 0.075, the maximum bending moment will be 0.012 
foF2/t~ from Fig. 23. If we limit the maximum stress in the stiffener to f0 we can determine the 
depth of the bending-stiffener from the simple engineering formula. This gives the total depth 
of stiffening beam 

2It, 
- -  0. 012F 2 

= 1.84in. 

The proportion of direct load transferred immediately by the bending-stiffener is a function of 
alone, 

3 8~  4~  
3 V a  '? + l ° g ' 7  

A =  
= 2~(1  - -  ,?) 

~l 3 +  3 ~ 2 ~ / 3  + l o g , ~  

which has been plotted in Fig. 24. 

4(1 - 
377 ~/3 log ~7 

(71) 

In the example considered earlier, in which ~7 = 0. 075, the proportion of load transferred is 
0.17 and this means that the direct stress in the boom at the root, but on the sheet side of the 
stiffener, will be (1 -- 0.17)fo = 0"83f0. 

We have previously implied that  the boom cross-sectional area was the same on either side of 
the bending-stiffener, but, without changing the analysis given here, we can increase the efficiency 
of this form of load-diffusion by altering the boom areas on either side of the bending-stiffener in 
the ratio 1:(1 -- A). This would make the direct stresses on each side of the stiffener the same. 
A similar scheme could have been employed for the shear stiffener. 

10.2. Particular Case • No Boom.- -  

p 

DIAG. 17. 

y 

Diagram showing notation. 

This case may be regarded as a limiting case of that  discussed in section 10, as X tends to zero, 
or as that  discussed in section 10.1 as F tends to zero. The structure is of interest in that it can 
be compared with one discussed by Cox TM in which it was stipulated that  the sheet should be 
unstressed in shear, a somewhat drastic requirement which led that  author to the conclusion 
that  a bending-stiffener was not an efficient form of load distributor. 

The stress distribution is readily found from Appendix IV by putting X zero. The stresses 
are obtained in  the form of definite integrals which are not expressible in terms of .known 
functions. 
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The direct stress along the line of action of the applied load is shown in Fig. 27, and the shear 
stress ad] acent to the bending stiffener is shown in Fig. 28. 

The maximum shear stress, occurring adjacent to the stiffener, is 

0 .21kP 
qmax - -  (k Its2) 1/3' . . . . . . . . . . .  (72) 

and the maximum direct stress in the sheet, which occurs at the root, is 

0. 385P 
fm~x = - ( k l U ) I / ~  . . . . . . . . . .  (73) 

As k is usually less than uni ty the sheet would, therefore, be expected to fail first in tension at 
the root. 

The greatest bending moment in the stiffener occurs at the root and is given by 

2 k I )  ~/3 . 
M0 = ( ~ 3 )  p (  ~ . . . . . .  (74) 

If we assume that  the bending-stiffener is symmetrical about its own bending axis we can 
calculate the overall depth of the stiffener to ensure tha t  the maximum stress in the stiffener will 
not exceed a prescribed amount. A reasonable value for this maximum stress will be tha t  given 
by equation (73), since this makes sheet and stiffener equally strong. Such a scheme gives a total  
depth of bending-stiffener of 

( I )~/~ . . . .  (75) 2 . . . . . . . . .  

If we limit our choice of stiffener to one of rectangular section such as shown in Diag. 18, we 
can obtain a relation 

W 

L 

i 
A r e o  = 

A 

i 

DIAG. 18.--Section of bending-stiffener. 

between Z and w (or between l and A, etc.), which is equivalent to equation (75). With the 
notation of Diag. 18 we have 

2A 
l - -  3k~t , . . . . . . . . . . . .  (76) 

and equation (73) now becomes" 
fm,x = 1 . 1 6 k P / A  . . . . . . . . . . .  (77) 

We shall defer this question of design of stiffeners until  the next section where both bending 
and shear stiffnesses of the stiffeners are taken into account. 

11. S h e a r  a n d  B e t i d i n g  S t i f f e n e r "  B o o m  on C o n s t a n t  C r o s s - s e c t i o n . - - T h e  t reatment given in 
sections 9.1 and 10.1 has been necessarily only approximate, because in considering the shear- 
stiffener we ignored its bending flexibility and in considering the bending-stiffener we ignored its 
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shear flexibility. These two cases may be regarded as upper and lower limits of the type of 
structure likely to occur in practice. To fix ideas let us consider a stiffener of rectangular cross- 
section, like that  in Diag. 18. The shear stiffness of this section is proportional to the area (i.e., 
to w/) and the bending stiffness is proportional to wP. If, therefore, we let 1 become large, keeping 
wl unchanged, we have a shear-stiffener, since the stiffener has finite shear stiffness and infinite 
bending stiffness ; and if we let l become very small, keeping wP unchanged, we have a bending- 
stiffener, since the stiffener has finite bending stiffness and infinite shear stiffness (as the shear 
• stiffness is now inversely proportional to I2). 

0 

In considering the detailed design of such a stiffener it is clearly necessary to take account of 
both the bending and the shear stiffnesses of the stiffener, and this has been done here. From 
the analysis given in Appendix VI it appears that  the complete stress distribution depends 
primarily on the two non-dimensional parameters ~ and ¢. 

The shear stress in the stiffener at the root, which is also the shear stress in the sheet at the root, 
has been plotted in Fig. 29. The practical ranges of ~ and ~ have been covered. 

The proportion of load transferred to the sheet by the stiffener is shown in Fig. 30. 

The bending moment in the stiffener at the root is also a function of ~ and ~ alone and has been 
plotted in Fig. 31. The lines ¢ = oo shown in Figs. 30 and 31 correspond to the bending-stiffener 
case considered in section 10.1. 

11.1. Shear Stresses Adjacer~t to the Boom.- -The  strength of a load diffusion structure, such as 
that  considered here, depends usually on the shearing strength of the sheet and rivets adjacent 
to the boom. The maximum value of this shear stress is therefore of practical importance. 
Moreover, as we are interested in the design of a stiffener of least weight, it is reasonable to 
consider a series of stiffeners of equal weight (i.e., equal cross-sectional area) but with differing shear 
and bending properties. If we now find that  the peak shear stress in the sheet has a minimum 
value for a particular set of stiffnesses, then we can conclude that  the stiffener material has then 
been used to the best advantage*. 

The simplest shape of stiffener to consider is that  of rectangular cross-section, and the weight 
of such a stiffener varies as the cross-sectional area--as does the shear stiffness. This means that  
' equal weight ' is the same as ' equal shear stiffness ', and this in turn means that  we can consider 
a series of stiffeners with varying ~ but constant ¢. 

There is, of course, ali infinite number of possible shapes from which to choose, but for purposes 
of analysis it is convenient to regard all those in whict~ the sectional area is in a fixed proportion 
to the shear stiffness as belonging to one group in which ¢ will be constant. This means, for 
example, that  all 1-beams for which the ratio of flange area to web area is constant belong to one 
particular group. 

The shear stress adjacent to the boom has been plotted in Fig. 32 for a number of values of 
keeping ¢ constant. The value of ¢, 0.3, is typical of current practice. 

Over the upper range of ~7, that  is to say ~7 > 0. 247, the stiffener may be said to behave like a 
shear-stiffener in that  the shear stress in the sheet adjacent to the boom has a peak value at the 
root and decreases steadily along the boom. This peak value is also the shear stress in the 
stiffener and, as ~ is constant, this will be proportional to the direct load transferred by the 
stiffener, which dearly becomes less if ~7 becomes less. This accounts for the drop in the peak 
shear stress as ~ drops to 0.247. It  will be further noticed that  the two curves for values of 
~7 = 0. 247 and '7 = oo, cross each other some distance along the boom, since the higher the root 
shear stress the lower is the proportion of load to be transferred by the shear stress along the 
b o o m ,  

* Subject, of course, to the assumptions made which may  restrict our scope of design somewhat : the most serious of 
these restrictions is probably that  of constant stiffener properties along its length. 
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- The range from ~ = 0.247 to ~ ~ 0.1 must be regarded as a transition from a predomlnantly 
shear- to a predominantly bending-stiffener. For all values of ~7 less than 0.247 the shear stress 
increases in magnitude along the boom to a maximum value and then decreases steadily. As 
~7 decreases from 0. 247 to about 0.15 these maximum values decrease steadily to a minimum. 
From ~7 = 0.15 to ~ = 0 these maximum values increase steadily in magnitude. 

It is possible to plot the peak (or maximum) values of the shear stress as ~ varies. This has 
been done in Fig. 33 for these values of ~: 0.2, 0.3 and 0.5. An efficiently designed structure 
would have values of ~? and ¢ lying close to the broken line of Fig. 33 which is drawn through the 
minimum values of peak shear stress. 

These curves of peak shear stress plotted against ~7 are of considerable interest and one such 
curve (¢ = 0.3) has been re-plotted in Fig. 34 to show how the curve is composed of two distinct 
analytic parts, and to show the asymptotes. 

11.2. Effect of Variation of Shear Stress across Width of Stiffener.~We have hitherto assumed 
that  the shear stress was constant across the width of the stiffener. This is approximately true 
for the bending-stiffener as tile w i d t h  will usually be comparatively small, but for the pre- 
dominantly shear type of stiffener there will be an appreciable variation in shear stress across the 
stiffener. And in the limiting case in which the shear-stiffener has become very wide, and can be 
regarded as merely a slight thickening of the sheet, the structure degenerates into the no-stiffener 
class. 

Any at tempt  to estimate accurately the increase in the peak shear stress due to the variation 
in shear across the stiffener width demands a knowledge of the dimensions of the stiffener flanges 
(from the point of view of local bending) and the method of at tachment of the stiffener and sheet 
to the boom. 

In Figs. 35, 36 and 37 the broken curves of constant ~ show the theoretical variation of the 
peak shear stress as the width of stiffener varies. Each figure applies to one particular value of ~ 
(n = total flange area of stiffener/total web area of stiffener), and these figures are accordingly 
on a strictly equal weight basis. The full lines are attempts to include the effect of shear variation 
across the stiffener width, which makes the minima o f  these curves more pronounced. 

The connection between these curves of constant ~, in which the variable is the width of the 
stiffener (l), and the fundamental curves of Fig. 33 in which the variable was ~ may be expressed 
as follows : 

F ~ / G  1278 ,]11~ 
l + ( ~  E )  = ( (3n  + 1)¢/  . . . . . . . . . . .  (78) 

In Fig. 38, a curve of peak shear stress plotted against it is drawn where the stiffener weight is 
kept constant and the stiffener width is at its optimum. It will be seen that  the peak shear stress 
is lowest when n is zero, though in practice the peak shear stress does not increase greatly with 
~z if ~¢ is small. 

The optimum width of stiffener has been plotted in Fig. 39 with ~t as the variable. The curve 
is practically independent of the stiffener section area. 

11.3. Final Remarks.--In the discussion of section 11 it was shown that  if we limit our choice 
of stiffener to one with constant lengthwise properties we find that  there is an optimum shape for 
this stiffener. It  is not intended that  a designer should handicap himself by such a restriction 
but rather that  the theoretical results presented here should provide a sound basis for design. 
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In the accompanying diagram the shaded area represents an intelligently designed stiffener 
based on the theoretical results shown by the broken line. 

DIAG. 19. 

12. Conclusions.--A theoretical investigation has been made of ways in which a sheet can be 
relieved of the high stresses which occur near the free edge of the sheet and adjacent' to a direct 
load carrying boom attached to the sheet. 

The following conclusions of practical importance are drawn. 

If no stiffening of the sheet is present: 

(i) The shear stresses may be reduced by reducing the boom strain' in the neighbourhood of 
the root : for booms of equal weight/strength properties the most efficient is one whose 
Young's-modulus/weight ratio is the highest. 

(ii) A boom designed to give a fiat shear stress distribution is lighter than one designed to 
give an exponential shear-stress distribution. 

(iii) A line of rivets attaching sheet to boom will not appreciably relieve the shear stresses in 
the sheet if the rivet slip factor is constant along the line : the shear stresses at the root 
will be reduced if the rivets are very flexible at the root and have graded flexibilities down 
to zero a short distance from the root ; rivet flexibility some distance from the root will 
increase the shear stress at the root. 

If there is a stiffener attached to the free edge of the sheet and the boom area is constant : 

(iv) Fo r  a given weight of stiffener material there exists a particular shape of stiffener which 
gives the lowest peak stresses in the sheet. 

(v) This optimum shape of stiffener is such tha t  the stiffener acts as a bending-stiffener rather 
than a shear-stiffener ; the section area of this stiffener (assumed to be unaltered along 
its length) is about 20 per cent of the total boom area, and is in the form of a deep beam 
with small flanges, if any. 

I ,  
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Structure Properties: 

2F 

t 

t, 

R 

I 

1 
za 

A 

E , G  

Parameters: 

Scales: 

LIST OF SYMBOLS 

Main boom area 

Thickness of sheet 

Stringer-sheet thickness (total equivalent thickness capable of taking 
direct load) 

Section area of stiffener resisting shear 

Moment of inertia of stiffener 

Width of stiffener in direction of main boom 

Thickness of stiffener of rectangular cross-section 

wl 

Elastic moduli 

Maximum allowable rivet slip 

~4 

k =  

(kI/t,) 
Ratio of total  flange area of stiffener/total web area of stiffener 

(Et,/Gt) ~/2 

(Gt,/Et) 1/2 
.non-dimensional parameters 

 R/F 
(kSt,")l/8/F 

Ox, Oy Co-ordinate axes such that  Ox. lies along main boom 

X Distance of concentrated applied load from free edge; 
value of x 

xl, X1 = xt/R, X t / R  

Yl = yk t /R  

x,,, X2 = x/k~, X/k~ 

y~ = y/~ 

x ' =  xt,/kF 

y '  = yt /F 

Stresses and Loads: 

P 

q,y 

fmax, qma.  
q,q'  

qm--a 

a ' t ravell ing'  

Applied load 

General expression for direct Stress in sheet 

General expression for shear stress ill shee t  

Maximum values of these stresses 

Shear stress ad jacen t to  boom 

Maximum allowable value of q 
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Functions." 

f 
fo 

7 0 +  

A 

M0 

J ~  

Ei x, si x, Ci x 

E i  x = 

s i x  = 

Ci x = ~  
oo 

LIST OF SYMBOLS--continued 

Direct stress in boom 

Root boom s t ress=P/2F 

Direct stress in main boom at root on sheet side of stiffener 

Proportion of direct load transferred immediately by stiffener 

Bending moment in stiffener at root 

Arbitrary constants 

Defined in equation (61) 

Defined in equation (68) 

Exponentials sine and cosine integrals and are defined as follows TM : 

f 
- x  e - 0  

. -O -dO 

y sin 0 
0 dO 

cos 0 
~ -  do 

Additional Symbols used only in the Appendices." 

u Displacement in the x-direction 

~,/.,.,., ~.~y Values of these functions when no stiffener is present 

Independent variables 

m 0 

9 0 

0 I 

O D 

m 

Constants of integration 

° ° 

30 

P I 

• ° 

i 

I 0 4 t 

I t O p 

Ur~ Usj Ub, 

r 

0 

R(r) 
R'(r) 
¢1(o) 
 2(o) 

Z 

C 

C_1 

Co 

T, U V W  

N 
i 

• • 

Q D 

D a 

P g 

Q 

I 0 

First introduced in : 
equation (131) 

equations (83)(94) 

equation (91) 

equation (101) 

equations (106) (130) 

equation (83) 
equation (94) 

equation (106) 

equation (106) 

equations (114), (130) 

equations (119), (139) 

equations (120), (140) 

equation (143) 

equation (146)} 
equation (146) et supra 

equation (147) 

equation (148) 
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APPENDIX II 

Justification for assumi~cg that the Stress System has a Zocalised character 

Comparison with Pamls of Finite Width.--The high stresses which occur in the unstiffened 
sheet near the boom-sheet junction are localised and are not appreciably affected either by the 
presence of further booms attached' to the sheet or by changes in the width of the sheet. The 
presence of stiffening elements lowers these high stresses but also lowers their rates of die-away, 
though neither change is so great that  the stresses are seriously affected by the presence of nearby 
booms, etc. This means that  for the purpose of calculation a sheet of finite width and length 
can be regarded as semi-infinite. 

Justification of a quantitative kind is given here for this assumption. We shall compare the 
bending moment  in the bending-stiffener and the proportion of direct load transferred by the 
bending-stiffener for the infinitely wide sheet and for panels of finite width. These latter values are 
taken from R. & M. 266515 , where the general arrangement was as in Diag. 20. 

P/2  -',, t < F 

B~ndln9 

stlf"fen~r Sheet 

P/2 ~ ] -¢ F 

DIAG. 20. 

The stress distribution in such a system is identical with that  of Diag. 21, where the sheet is 
infinitely wide and there are infinitely many booms attached to it. 

p 

I ),4,. 2 r 

] 2 F  

I 

DIAG. 21.  M u l t i - b o o m  s t r u c t u r e .  

The discrepancies which exist in the values of maximum bending moment and proportion of 
load transferred by bending-stiffener in the two cases of ' single-boom ' structure (as represented 
by the simplified structure considered in this report) and the ' mul t i -boom'  structure (as 
represented by Diag. 21) may be regarded as due to the relieving effects of the loads in all the 
booms Oil either side of the one under consideration. The greatestrelief is, of course, afforded 
by the two booms immediately adjacent to the one under consideration. 

The results of this comparison are shown graphically in Figs. 25 and 26, where a panel width 
parameter has been introduced. The discrepancy in both cases is of the order of 5 to 10 per cent 
for most practical cases, and it is unlikely to exceed 20 per cent. These facts are regarded as 
sufficient justification for assuming that  the stress system has a localised character. 

A further comparison can be made by comparing the maximum shear stress adjacent to the 
boom. We should expect these to be more widely differing because the peaks occur some way 
from the root section where the presence of adjacent booms wouldnatural ly  have a greater effect 
on the ' local '  stress pattern. 

For the numerical example considered in section 10.1.1 the peak shear stress was 0.6f0 whereas 
for a panel of width 100 in. the peak is 0-5tf0. 
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A P P E N D I X  I I I  

Point load in semi-infinite sheet with shear-stiffener 

Y 

G h c a r  

..<: 

× 

DIAG. 22. 

f 

Diagram showing notation. 

W h e n  there  is no stiffener the  displacement  u in the  x-direction is given by  11 

P 
u = 4~ ~/(EGtt,) log {(x -- X) ~ q- k~y~}((x q- X) ~ q- h29} 

= ~, say, 

and the  corresponding direct and shear  stresses in the  sheet  are 

and  

(79) 

_ k P  x(x2 + k~Y~ - x~)  (81) 
l~x -  ~t, {(~ + x )  ~ + k~y~}{(~- x )  ~ + @~} . . . . . . . .  

hP y (x  ~ + k~y ~ + x 2) 
G - ~ t  {(x + x )  2 + k~y~}{(x- x )  ~ + @2} . . . . . . . . .  (82) 

I n  considering the problem when the  stiffener is present  it is convenient  to search for a solution 
in the  form 

u = ¢2 + R(r) e -*x/~ cos ry .  dr ,  . . . . . . . . . . . .  (83) 
o 

which can be differentiated once wi th  respect  to x and  once wi th  respect to y. 

Equa t ion  (83) satisfies the  str inger-sheet  equat ion  

32u 1 02u 
~x--~ + ks ~y2 --  O, . . . . . . . . . . . . . .  (84) 

the  equi l ibr ium condit ion obta ined  by  in tegra t ing  along any  closed contour  round  the  applied 
load P (since the  ~g t e rm accounts  for this and the  other  t e rm contr ibutes  nothing) and  the condit ion 
t ha t  u(y) = u ( - -  y) ; and the  equi l ibr ium of the shear  stiffener will now be considered. 
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Differentiating equation (83) with respect to x and multiplying by E gives the stress in the 
x-direction" 

.f,.~ = / , ,  -- (r) e -~'n° cos ry.  dr 

EF~rR(r  ) cos ry.  dr along X = 0 

But the direct load per unit length, t, f,,~ is also given by 

(O~u~ 
- -  G R  \ ~-~22 ,=0 . . . . .  

from considerations of equilibrium of the shear stiffener. 

(85) 

(86) 

. . . . . . . . . .  (87) 

Multiplying equation (86) by t, and equating to (87) gives, on integrating with respect to y" 

- R G  ( ~ ) ~ = o - - - -  - - -  fo n ( , )  s i n r y ,  d~" 

- - P R  y 

Equation (88) is true for all values of y and R(r) is therefore determinable. ~o 
Y __ e-,XlJ~ (X/k) "~ + Y= o sin ry . dr 

and R(r) is accordingly given by 
e-,Xll~ 

P R  
R ( r ) - - ~ E # s  1 + ~ r 

If we write 
o = r k R / t , l (  

X1 = X t / R  non-dimensional) 
xt = xt /R 

y~ = yk t /R  

. . . .  ( ss )  

We observe that* 

. . . .  (89) 

. . . .  (90) 

. . . .  (91) 

the expressions for the stresses become, 

_ P ~ oe -o(*l+x') cos OYl dO 
L~ = L,  ~ R  o 1 + o  

(92) 

P f ~ oe  -°l*1+xl) sin oYl de (9a) 

* See, for example, Copson's Functions of a Complex Variable. Page 130. 1944. 
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A P P E N D I X  IV 

P o i n t  load i n  s e m i - i n f i n i t e  sheet  w i t h  bend ing - s t i f f ener  

Bending 
stiffener 

J 

o 

i t  
f 

Y 

r 

DIAG. 23. 

p 

_I 
1 

Diagram showing notation. 

Once again we search for a solution in the form 

u = a + R'(r) e -'/k cos r y .  d r ,  . . . . . .  
0 

where the barred term represents the displacement when there is no stiffener. 

... . .  (94) 

Along:x ---= 0 the direct and shear stresses are given by 

E g-x .=o = - -  -k o r R ' ( r )  cos r y .  dr  . . . . . . . .  . . . .  (95) 

Ou P y 
G ( ~ ) , = o - - ~ f f t ( ( X / k ) ~  + y 2 ) -  G f o r R ' ( r ) s i n r y . d r  . . . . . . .  (96) 

Considering the equilibrium of the bending-stiffener we therefore have 

f o _ - -  t~ r R ' ( r )  cos r y .  d r  . . . . . . . .  (97) 
- - k I  o " "" 

Integrating equation (97) three times with respect to y gives 

~=0 = k-I 0 r ~ sin r y .  dr  + terms which are zero by virtue of tile fact tha t  ~-~ 

is zero for large values of y . . . . . . . . . . . . . . . . .  (98) 

This expression for the slope of the bending-stiffener may be compared with that  given by equation 
(96), i.e., 

P Y 
oo  

+ ~--~ ) sin r y .  dr  . . . .  . . . . .  (99) 
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T h e  f u n c t i o n  of y in t h e  b r a c k e t s  in e q u a t i o n  (99) m a y  be  expressed  in t h e  fo rm of a F o u r i e r  s ine 
in t eg ra l  a n d  we have"  

fOo Y = e -'xjk sin r y .  dr . . . . . . . . . . . . .  (89 bis) (X/k) ~ + y 3 o 

E q u a t i o n s  (99) a n d  (89 bis) d e t e r m i n e  R'(r)"  

P I  ( r 2 e-  'x/k 
R'(r)  

= ~ G t t , \ l  + (kI/t ,)r3J 

I f  we wr i t e  

a n d  

a n d  

(kI71/. 
£ = \  t s /  . . . .  

¢ = r~ (non-dimens ional )  . . . .  

. . ~  . .  (100) 

X~ = X / k Z  (non-dimens ional )  . .  . . . . . . . . . .  

x~ = x/k2 (non-dimens ional )  . . . . . . . . . . . .  

Y2 = Y/Z (non-dimensional )  . . . . . . . . . . . . .  

we  can  n o w  wr i t e  

(101) 

(102) 

p :o ¢3 ) e -(x~+~)¢ . . . . .  ~ : . 

fi~ = / ' ~  - -  n P- (kZt'3)-l/3;o 1 + ¢3 e-(X'+'~/* cosy3¢ ,  de . . . . . .  (104) 

) q'Y = q'Y - -  ~ o 1 + ¢3 e -¢x'+'.)* sin Y26. d¢ . . . . . . .  (105) 
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A P P E N D I X  V 

Constant area boom and shear-stiffener 

p . , (  

\ \ \  
\ \ \  

\ \ \ 

\ \ \ 

\ \ x .  

x x 

Sheor 

s't i f?~ n¢  r 

R 
/ 

y 

> 
0 

M o ( n  b o o m  

DIAG. 24. Diagram showing notation. 

~F  

- ¢  

We consider that  part of the structure for which  y is posit ive  and search for a solut ion in 
the  form fo 

u = [¢1(0) cos Oy + ¢~(0) sin Oy] e -°~tk dO . . . . . . . . .  (106) 
0 

which satisfies the stringer-sheet equat ion  

~ x  ~ + k ~ ay~ - -  0", . . . . . . . . . . . .  (107) 

and  which  diminishes  s teadi ly  as x and y increase. A relat ionship between  ¢~ and ¢2 will  now be 
obta ined  which satisfies the  condit ions  along the  boom-to-sheet  connect ion  (y = 0). 

Consider the equi l ibrium of an e lement  of skin adjacent  to the boom,  as in the diagram below. 

t qxy bx 

F" f X X  

6x 

Boom 

DIAG. 25.  

F fx:~ + F bt"x'x ~,x 
bx 

We see that  for equi l ibrium 

tq~y + F ~--~ = 0  

i.e.~ 

Gt ~ + E F  ax--~* = 0 I I 

. .  (108) 

. .  (lO9) 
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Subs t i tu t ing  from equat ion (106) and observing t ha t  expressions for all the  derivat ives of u 
exist  provided x > 0, we find tha t  

Gt o 0(~2(0) e -°*/~ dO + ~ o 0~(~(0) e-°*/~ dO = 0 . . . . . . . .  (110) 

for all values of x. 

Dropping the  in tegra t ion  signs, and using the fact t ha t  k 2 = Et,/Gt, gives a relation between 
$3(0) and $.~(0) • 

OF 
ts  1(o) . . . . . . .  

Equa t ion  (106) can now be wri t ten  in the  form 

f~o(  OF )e_O.~/~ u =  o cos 03,--  t---f sinOy ¢1(0) dO 

which m a y  be fur ther  simplified by  pu t t ing  

oF~t, = o I 
! 

y '  = y t , / F  }(non-dimensional) 
/ 

x' xts/kF I 
which gives 

. . . . . . . .  ( 1 1 1 )  

. . . . . . . .  (112) 

. . . . . . . .  (113) 

DIAG. 26. 

Equilibrium of the element gives 
aq 

R~-~ + ts/= = O, . . . . . . . . . . . . . . . . . .  (115) 

where q is the shear stress in the  shear-stiffener, which is also the  shear stress, from compat ib i l i ty  
of displacements,  in the  adjacent  sheet. 

In  terms of the  displacement  u equat ion (115) m a y  be wri t ten  

R G  ~2u 
~-~2 + E t ,  ~-~ ~=o = 0 . . . . . . . . . . .  (116) 

This gives on simplifying and rearranging 

~(0)(1 + ¢0)0 cos Oy' dO - -  ~b(0)(1 + ¢0)0 2 sin Oy' dO = 0 . . . . . .  (117) 
0 0 

where 
= [~R/F . . . . . . . . . . . . . .  (118) 

and is, therefore, a non-dimensional  measure of the stiffness of the  shear-stiffener. 
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Rq . . ~ m  

f 
oo 

u ----- ~(0) e -°'e (--  cos Oy' + 0 sin Oy') dO . . . . . . .  . .  (114) 
0 

~(0) will now be determined by  the  condit ions of equil ibrium of the  shear-stiffener (x = 0). 

Consider an elemental  par t  of the  shear-stiffener as represented in the accompanying  diagram. 

~,. Rq -+- R __6q by  
\ \ \ \  S.y 
\ \ \ \  ~- 
\ \ \ \  ,, 
\ \ \ \  
,. -. ",. -, u t ¢  g x  x by 

X. \ \ "-, 

\ \ \ \  



The above equat ion for ¢(0), which is t rue  for all values of y' ,  may  be solved as follows: 

Denot ing the  first integral  by  Z the  equat ion can be put  in the  form 

~Z (119) z + ~ , = o  . . . . . . . . . . . . . . . . . .  

the  solution of which is 

Z = C e - '  . . . . . . . . . . . . . . . . . .  (120) 

where C is some constant.  

Now C e -y' can be expressed as a Fourier  integral, 
poo  

co 0 , 
C e -~" = 1 + 0 ~ dO 

0 

= -- ~ 1 + 0 ~ dO 

i 
oo 

Equa t ing  the  first of these to Z, or the  second to OZ/Oy', and dropping the  o 

S . . .  0 sin Oy' dO operators gives the  following equat ion for ¢(0), 
0 

2C 
¢(0) = =0(1 + ~0)(1 + 0 ~) . . . . . . . . . .  

where C is ye t  to be determined.  

This form for ¢(0) gives the  stresses in the  following form: 

Oct 
L , =  Eo-- x 

. . . .  (121) 

• cos Oy' dO and 

. . . .  (122) 

:? ; 

L 

5 

..= 

g. 

E- 

i: 
i':2 
.!~ 

2CEts [,o~ (cos Oy' -- 0 sin Oy') e -°'' 
--  ~ J o  ( 1 +  ~ 0 ) ( 1 + 0 2  ) 

d O  . 
(128) 

and q,, = G a-~ 

2CGts~ °~ (sin Oy'@O COS Oy')e -°x' 
--  ~ F  Jo (1 + CO)(1 + 02) 

d o  • ° (12,4) 

At  the  origin these become 

2CEt, [~® 
fo + _ i ~ - - ~  j o  

do 
(1 + ~0)(1 + 0 ~) 

. .  (125) 

and 

2CGt~ [,~o 

q o -  ~--F Jo 

odo 
(1 + ~o)(1 + o ~) 

. .  (126) 
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If now w6 make a small rectangular cut through the boom and shear-stiffener, as in the diagram 
below, 

qoP ~ 

DIAG. 27. 

we have for equilibrium of the element of boom cut out at the origin, 

P / 2  = fo+F + qoR . . . . . . . . . .  . . . . . .  (127) 

• -o o 
---- ~ V(EGtt~)  o (1 + $~i] + 0') + ~- ~/(EGtt,). o (1 + ~o)-~ + 0') 

2C (1 + ¢0)dO 
---- - ~  ~ / (Ee t t , )  o (1 + $0)(1 + 03) 

i.e., 
---- C~/(EGtt,) 

C --- P / 2  ~/(EGtts) 

(128) 

• . . . . . . . . .  ( 1 2 9 )  

This value of C substituted in equations (123) and (124)determines the complete stress 
distribution throughout the structure. 
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Sheet 
ond bcnding~'~-~ 
stlf?¢ncr 

APPENDIX VI 

Constant area boom and shear + bending stiffener 
x,_ 

l 
y 

> .  X 

t l  

I 

DIAG. 28. Diagram showing notation. 

As in Appendix V we search for a solution in the form 

f° u = o ¢(0) e -°~' {-- cos Oy' + 0 sin Oy'} dO 

J 

--______/ 

~F 

and hence : 

which satisfies the conditions of equilibrium adjacent to the main boom (y -- 0). x'  and y '  are 
defined by equation (113), and equation (130) is again assumed valid for positive y ' .  

4(0) will now be found to satisfy conditions adjacent to the stiffener. 

I t  is convenient here to regard the deflection u, of the stiffener as made up of two parts, u, due 
to shear deflection affd ub due to bending, i.e., 

u, --- (u)~=o because of compatibility of displacement, 

~'~ ~ s  "-~ Ub . . . . . . . . . .  

2¢~ r t s  2 oo 
~y~ -- ~ fo O~¢(O)(c°s Oy' --  0 sin Oy') dO 

- -  3y~ + 3y~ . . . . . .  

Considering now the deflection due to shear alone 

~us Et, ~u 

as in equation (116), 

from equation (130). 

--Et,*jOOO¢(O)(co Oy' --  0 sin Oy') dO 
--  k R G F  o 
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. .  (132) 

. .  (133) 

. . . . . .  (134) 

Q O . .  (135)  
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Considering the deflection due only to bending gives 

~4u b t, ~u 
0y4 -- ~ (~-~),=0 as in Appendix IV 

t,  5 r °~ 
-- k F I  Jo 0¢(0)(cos Oy' -- 0 sin Oy') dO . . .  (136) 

Integrating this equation twice with respect to y gives 

~Sub 
0y 5 -- k f  ~(~ (cos Oy' 0 sin Oy')dO 

o 

+ terms which are zero because ~2u,/Oy2 is zero for large values of y . . . . . . . . .  (137) 

Equations (135) and (137) in (133) give an equation for determining ¢(0) ; on simplifying and 
rearranging we have 

I~6(-(00) { 1 + n 3 0 ~ ( 0  + ~ ) } c o s O y ' d O - - f : ¢ ( O ) { l + n 3 0 ~ ( O - C - ~ ) } s i n O y ' d O = O  .. (138) 

which 'is true for all values of y ' .  

This equation may be solved by a method similar to that  used in Appendix IV. Denoting the 
first integral by Z the equation can be written in the form 

0Z 
Z + Oy--~ = O, . . . . . . . . . .  (139) 

the solution of which is 

Z=_Ce-Y '  

where C is an arbitrary constant. 

C e -y' can be expressed a s a  Fourier integral, 

1 + O 5 dO 

- -  1 + 05 dO 
0 

Now we also have the relation that  

Oe. e-y' 
e - y '  ~ - -  • . . . 

. . . .  I $ 

. .  ( 1 4 o )  

.. (141) 

. .  ( 1 4 2 )  

and we accordingly take the most general form for equation (141) and write 

2~ ~ ZC,~O ~" cos Oy' 
C. e - " = ~ j ~  1 + 0 ~  dO 

. . . . . . . . . . . .  (143) 
2 ~  °~ '~Cno 2n+1 s in  Oy t 

-- ~ - -  1 ~ 05 do 
Jo  

where the C,, are arbitrary constants which will be determined part ly by the overall equilibrium 
of the system, part ly by the fact that  there is no change of slope due to bending at the root, and 
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partly by the fact that  expressions for the stresses are necessarily everywhere convergent. (We 
could have used these more general expressions in Appendix V, though we should merely have 
found that  the other C's were all zero.) 

Equating the first of equation (141) to Z, or the second to -- OZ/Oy', and dropping the 

f ~ . . . c o s  Oy' dO and F " " " 0 sin Oy' dO operators gives the following equation for ¢(0), 
0 0 

2XC,~ 02'~+1 . ..  (144) 

= t 1)} . . . . . . .  ¢(o) ~ ( 1 + o  2 ) 1 + ~ o  ~ ( o +  

and the stresses, obtained by differentiating u, will be integrals containing the functions 

0¢(0){-- cos Oy' + 0 sin Oy'} or 0¢(0){sin Oy' + 0 cos Oy'} 
which are only convergent if all the C~ except C_1 and Co are zero. (This is best seen by 
considering the behaviour of au/ay along the line x = 0.) 

C_I and Co will now be determined from the fact that  the stiffener is built-in at the root (since it 
is continuous there), and from overall conditions of equilibrium. This first condition may be 
written as 

a__u at root = slope due entirely to shear in stiffener 
ay 

= slope due to t, f2 (fi,),=o dy. 

Oy RG ( . . . . . . . . . . . . . .  

Substituting from equations (130) and (144) and rearranging gives 

f l  (OC-I + 03C°) dO f l  [7 (C-l + O~C°) (cos Oy' -- O sin Oy') dO dy' . .  (146) 
¢ (1 + 0~)(1 + v~02(0 + 1/~)) = , (1 + 0~)(1 + v~02( 0 + 1/~)) 

This relation between C_t and Co can be simplified by employing the notation" 

f 
l 03 d° 

T = (1-+- 02){1 -b-v~02( 0 + 1/~)} 

f l 02 dO 
U ----- (1 + 02){1 -1- ~a02(0 + 1/~)-} 

fl . . . . . . . .  V = (1 + 02){1 --b-~a02( 0 + 1/~-)} 

fl W = (1 + 02){1 + r/"0~(0 + 1/¢)) 

:z ~ U  
- ~2 - -  r/sT - -  ¢ 

. .  (147) 
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This gives 

Co ~7 8 ¢ V 
C_~ -- ~ :U q- ~T -- N, say .  (148) 

The condition of overall equilibrium is the same as equation (127) of Appendix V, i.e., 

P/2  = fo + F + qoR . . . . . . . . . . . .  

2Ets 2RGt, 
-- ~k (WC_I q- UCo) q- ~ f  (VC_I-k TCo) 

(149) 

2 
- -  ~¢/(EGtt,){(W q- ~/7)C_1 -7[- ( U  --~ ~T)Co} 

i.e., 
--= ~/(EGtts)C_l, using equations (147) and (148) 

c_1 = P/2 ~/(EGtts) . . . . . . . . .  (15o) 

The values of C_1 and Co given by equations (150) and (148) give the following expressions for 
the stresses in the sheet, 

2 (1 + NO ~) e-°~'(cos Oy' -- 0 sin Oy') dO 
f~ = ~fo (1 + 0-~){1 -+- ~30~(0 + 1/¢)} ' 

0 
. .  ( 1 5 1 )  

f 
oo 

2 (1 + N0 2) e-°x; (sin Oy' + 0 cos Oy') dO 
q~, = ~  ~f° (1 + o~){1 + ~?o~(o + 1/~)} . .  (152) 
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