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Summary.—The design of two-dimensional converging channels is considered, with special reference to (i) the lengths
of the channels and (ii) the occurrence or absence of unfavourable velocity gradients at the walls. It is shown that
it is not possible to have a short channel unless the velocity at the wall decreases at the beginning (the upstream end)
of the channel ; and it is further shown how a series of channels may be designed of decreasing lengths with increasingly
unfavourable velocity gradients at the walls.

Introduction.—In recent publications®®® it has been shown that it is possible to design
numerically straight contracting passages of circular section, such as may occur immediately
upstream of the ¢ working section ’ of a wind-tunnel, in such a way that the velocity along the
wall is continually increasing, or a negative velocity gradient, if one occurs, does not exceed a
certain specified amount. The aim of the designs is to avoid boundary-layer separation ; the
calculations are carried out on potential theory, and, if the design aim is achieved, such a theory
should provide a good guide, the only modification necessary in the theoretical results being
a comparatively small allowance for the displacement thickness of the boundary layer.

Contractions so designed, however, are all rather long. It is clearly desirable to be able to
design as short a contraction as possible. Three-dimensional motion, even potential motion
symmetrical about an axis, does not lend itself readily to general mathematical analysis, and
the authors who have considered these designs have all resorted to the computation of special
cases at an early stage in their work. If, however, we wish to gain any insight into the reasons
for the considerable length of these contractions, and into the possibilities of shortening them
without too great a danger of boundary-layer separation, it is clear that some quite general
mathematical analysis would be more valuable than arithmetical solutions for ‘a number of
special cases. Such general analysis is easily carried out by standard methods* for the case of
two-dimensional flow, and the general analysis of the two-dimensional case may provide at
least valuable hints on the points to be considered in the design of actual three-dimensional
contractions. Whether it can provide more, in the sense that in practice there can be devised
some simple rule for an approxiinate connection between the two- and three-dimensional cases,
at any rate sufficiently far upstream and sufficiently far downstream, remains to be considered.
Tt should be borne in mind that in actual wind-tunnels the sections of the contracting passages
are, in many cases, more likely to be square, rectangular or octagonal, than circular ; in some
cases, at any rate, calculations carried out for the case of axial symmetry would have to be applied
with considerable caution; and there will probably even be cases, for example where the con-
traction is carried out in one direction only from a square to a narrow rectangular section, where
two-dimensional calculations would be at least as applicable as calculations for the axially-
symmetrical case. ,
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Analysis for the Two-Dimensional Case—We are concerned only with a symmetrical channel.
With a usual notation

o By o oy
U= = 7", = 7 = — —

ox oy’ oy ox

w=¢—]—i1/),azsu—iv:qe*"”

a :
Q = logd—f =log g — 19

The plane of the motion is taken as the é-plane, which is shown.in Flg 1, where a, b, V, U are
defined ; clearly

aV =bU
Take y == 0 on A'B’C’, y = alV on ABC. Along the middle line of the channel y = $al.

¢ goes from —o at A and A’ to +c0 at Cand C’. In the z-plane the middle line of the channel
is taken as axis of x, and the origin at the point O on that line where ¢ == 0. In Fig. 1, B, B’
are the points on the channel walls where ¢ = 0. The corresponding region in the w-plane is
the infinite strip shown in Fig. 2, which is conformally transformed into the upper half of the
i-plane by the transformation

t = exp (nw/al)

the boundaries corresponding as shown in Fig. 3. The middle line of the channel corresponds
with the positive imaginary axis in the ¢plane, and B‘OB (¢ = 0) with the upper half of the
unit circle | #] = 1. '

The upper half of the {-plane is transformed into the inside of unit circle, with the origin at
the centre, in the {-plane, by the transformation

b
R

142
(so that =1 1—%)
the boundaries corresponding as shown (Fig. 4). The origins in the z- and ¢-planes correspond ;
the middle line of the channel corresponds with the diameter AOC (or A’OC’) along the real
axis in the {-plane and BOB’ (¢ = 0) with the diameter along the imaginary axis. Then

Jw — aVdt 2aV  d¢

_ w1t x 117
But :
dz = e dw.
Hence ' ‘ ‘ :
| M:%Vﬁgﬂg.. O

and for the point on the boundary corresponding with ¢ = exp (¢6)

v 26!17 J»exp(ie) e—-.Q
T 0
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. We thus have a formula for the. co-ordinates of the. points of the channel boundary. for any
assumed relation between @ and ¢. Actual computations near the middle of the channel are
most easily carried out by the method used by Lighthill, by integrating from B along the circle.
In the integrand in equation (2) put ¢ = exp ¢ (jn — «), so : )
‘ ’ ' . da '
1 —22" 2cosa

and , _
i aV exp (i?) du«
g =20 2V TR
@ g cos o
aV (=% cos & da aV ("*% sin 9 da
¥ — Xp = — . y Y —Yp=—| - - ,
7w Jy g cos o 7 g g COS a

where log ¢ and --¢ are the real and imaginary parts of the function Q of ¢ for ¢ = exp (Lmi—ui),
and ¢ is negative along ABC. ‘ '

For the present, however, we are more concerned with the rapidity of the approach of y to
its final values @ and b, 7.e., with asymptotic expressions for v in terms of x as { tends to 1 and
—1 along the circle. : ‘

To join computed values with these aéymptdfic expfessions, it may be useful to note that

. Xp =

. Zani sinz?dn Y = 2aV J’1 cos ¥ dn
w7 o4y 77w JLogll4n)

where log g and —¢ are the real and‘imagihar;v parts of @ for { = .

'We remark that ¢ = 0 élong the middle line of the channel; which .cdrresponds with the real
axis in the Z-plane, so Q is real for real . ‘ ‘

When ¢ =1,at Cand C', ¢ =U, % =0, Q =Jog U; when { = — 1, at A and A’, g=1YV,
% =0, 2 =log V. Along ABC ¢ is negative and the imaginary part of @ is positive. Hence
if we write ' '

Q—1log UV = KZ, . .. .. . .. e e (3)
where ‘ ' ' - ‘
and' o | ‘ _ ‘ o ' , | ‘: N
Z = f(L), O .. .. o (5)
then f is a 1eal function, ' - o o A -
F)y=1, f(=1)=—1, O (¢)

and the curve in the Z-plane which corresponds with the unit circle in the ¢-plane passes through

Z — 41, and is symmetrical about the real axis of Z. If the velocity ¢ is continually to increase

along the walls, this curve, which has tangents parallel to the imaginary axis at Z = 4-1, must

" have such ¢ vertical ’ tangents at no other points: the real part of Z is-a maximum at 1 anda
minimum at —1, and must have no other stationary values on the curve (Fig. 5).

It will usually be advisable to restrict | ¢ | to be not greaterﬁthan 72 iflarger values occur
we have a re-entrant channel, which; without suction, seems undesirable not only.on the grounds
of difficulty of manufacture but because in such a channel boundary-layer effects near the

5 .
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re-entrant portion are difficult to predict, and may cause an appreciable depal'ﬁlre from potential
flow in the sense that, if the re-entrant portion lies entirely in the boundary layer (Fig. 6), the
effective shape of the channel will be very different from the design shape.

When we substitute the value of © from equatiron (3) into equation (2), we find that
261 V 1/2 rexp (i) e——KZ dé_
@,

p= T—z

_ 207 [ exp [ K S @14

- . i — ¢ . N .. . (7)
Suppose now that 0 <6 < =/2, so that equation (7) gives. the co-ordinates of any point on BC.
For the point on AB corresponding with ¢ = exp [

, i(n — 6)] = — exp (— #0), we have, by
changing the sign of ¢ in the integral, that : - 7 -

2 (ab)” few(—im exp [K F (2)] de | | o 9
2o ey

z:_‘
where ' ' ‘ : ,
F(0)=—f(—10). .. .. .. e .. .. 9

If /is an odd function of ¢, i.e., if the curve in the Z-plane is symmetrical about the imaginary
axis as well as about the real axis, Jand F are the same function. In such a case, the expression
for z/(ab)'” at the point on AB corresponding with (% -— 0) is minus the conjugate of the expression
for z/(ab)" at the point on BC corresponding with 8, with.the sign of K changed; <.c., the
expressions for x/(ab)"?, y/(ab)"* on AB are obtained from the corresponding expressions on
BC by changing the sign of K (and changing the sign of x). If fis not an odd function of ¢ we

‘must also change f into F, where F is given by equation (9). " ' o

_ These results may also be obtained from physical réasoning, since the pofential motion along
.the channel is reversible. . o ‘ ‘ - : ' )

The simplest example in which q increases éontiriﬁally" along the walls is that worked out by
Cheers, in which the curve in the Z-plane is a circle, so that .

FO=0 L

In this case the maximum value of |4 | is K, and if this maximum value is not to exceed
«/2, the contraction ratio a/b (= e*) must not exceed 23-14. On the other hand, for values
of K less than =/2, shorter channels may be obtained by increasing the maximum value of | 2] .
Thus for K < /2 we want to be able to take, as the curves in the Z-plane, a series of ovals with
maximum ordinates greater than 1, and for K > /2 a series of ovals with maximum ordinates
less than 1. (This latter series will necessarily lead to longer channels than the circle does,
but not to re-entrant channels, such as will be obtained from the circle.) A suitable trans-
formation for the former series is. . : , , - .

tan'al I 14+ 2al , .
Z=[(f) = tan~! « _21'tan‘1oc10g1 — 2ol e o o (11)

where « is real and 0 <a<1. -Since

& 1

f,((:);tan‘loc A

7/7(¢) has no. 7e10s or singularities inside the unit circle | £ | =1, and the transformation is
- conformal. On the boundary ¢ = e*, ’ oo
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S . - K:'iio 2acos
o ‘ IOgQI%IOgUV+mI—tan”1W’
9 K 1 1+ 2asin b +4- o
o __41'-311_1 81— 2asn 6 1—0(

g continually increases along ABC. The oval in the Z _plane is, in fact symmetrlcal about both
axes. The maximum value of | ¢ | is

K 1 1 —I— o _x tanh™ «
Ttan Lo 8 T — tan™' «

and so, by a proper choice of «, may have any Value greater than K (corresponding with a« = 0).
If we abandon the restriction | 9 | < =, we see thatasa—1 —0, | ¢ | .. —; asa—1—0,
the relevant region in the Z-plane becomes an infinite strip” bounded by the parallels to the
imaginary axis through Z = +4-1 (Fig. 7) ; the velocity on AB becomes constant and equal to V,
and on BC becomes constant and equal to U. We thus recover the case considered (as an
expanding channel) by Hughes®. For « = 0 we have again the case of the circle, and as « increases
from 0to 1 we have a sequence of ovals between the circle and the infinite strm

It is unlikely that contraction ratios greater than 2314 will be required, so the second series of
ovals mentioned above will probably not be needed. If it is, it can be obtained from

_tanh'wl 0 1 14wz .
F) = toh—a Ztanhllogl_ﬂc, .. .. co e . (12)

with « real and O < a< 1.

- Here, too, f'(£) hasno zeros or singularities for | £ | <1, and:the transformation is conformal.
=20 agam corresponds with a circle in the Z —plane On the boundary ¢ = €,

K 1—}—2ac056—|—oc

log g = 10€UV+4tanhl 1001 20.¢cos 0 -4 o’
K L, 2asing.
0= gt A T

The oval in the Z -plane is again symmetrical about both 1ts axes ; g continually increases along
ABC and the maximum value of | ¢ | is :

tan '«
tanh—t¢

and so, by a proper choice of «, may have any value Iess than K

K——

Simpler transformations than equatlons (11) and (12) may, of course, be found in special cases,
but they are all subject to somewhat narrow restrictions and are not by any means as general
as equations (11) and (12). For example, symmetrical ovals with maximum ordinates greater than
1 may be obtained by putting

flo =5

with « positive, but a< % is necessary if the transformation is to be conformal, and «< §if g is
continually to increase along ABC. The max1mum value of | 19 ] is -

1~|—oc
1—7'06

5 - N

b
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Similarly, asymmetrical ovals with maximum ordindtes’ "greater than 1 are obtained by putting

J@)=¢—%o(l -2
with « positive. The transformation is conformal for o < 1, but « < & is necessary if g is
continually to increase along ABC. For o = 1, the maximum 'value of | ® |is 1-101K.

- Asymptotic Expressions for v for Large Vozlues of | # | .—To study the approach of the ordinate
 of a point on the channel wall to its final values as ¥—>0 we write equation (7) in the following
form for x>0.

ab)'? 2 o 0 9 exp [ K ]—e * (1+¢
) {_e_%g(l_ew b el {(_)_ 1) )
b exp (i) Zex K 1— —1—¢
 With S -
C(t 2exp {K[1—f(¢ ]} l—t : ' SR . ,
D=] = oL )
we have |

. ‘ exp(zﬂ)z KIl— 1 . o .
T g1 _ew)jLDJrJ exp [1—fcz 1] Cd L (14

| Simihrly, for x < 0,

T log (1—e™) —

e () 9 exp (— K1 L 1-¢ e
x E—J p{= [1 pAELIIS az, .. -(15)
where o | - "
PZexp (KA} —1—4 . '
E:fo Pkl f(t ) A (18

[See the remarks following equation (9).]

The loganthms are defined by

J exp (i0) ‘d—é- di—

R - i - exp [i(z—0)] 4
log (1—~ = , log (1—e™%) :fo , 1+¢°

so on ABC
log (1—¢”) = log (2 sin % 6) — @ (§m—-36),
log (1— —“’)--— log (2 sin 1 0) —{— 1. (dn—16 )
Now vsupp,osAé to start with .;that near { = il, f, () is expansible in the forms
S =14a ((—=1)+e -1+ ..., '
FEO = —=1+b(C+1) + b (C+1) 4+ .. .,
where a, = f' (1), a, = 9] Sl _f(——l) b, ~—2—!f (-1, ...,

the dashes denoting derivatives.
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Tn the integrand in equation (14) for large values of #, 7.e., for small values of 6, write -

C;:éia
S0 ‘
’ ic do
1_&-  Zsma’
1 —¢=—ta-+4 O,
1 F(0) = @ (1—8) — @y (1=0)* 4 ... = — da o+ O(cs),

2exp{K[1—fO)} —1—¢=—10—2iKa o+ Ofa?),
and the integral in equaﬁon (14) is

[+ iKa + O@)] da = ?29 FiKay 6 + O(67).

The term'in 62 i3, in fact, real and

:'—Zbic — D = —log (2 ein %—0) -+ 0(62) —— IOg 0 + 0(02),
T — — 30 410 + Ka + 009,
’Hence f -— D e~ + O(e—anx/b) | .
and vy — 3b :~@ "(1) eP e~ 4 O(eg=*®, .. .. .. .. .. .. .. (17)
, - _

In exactly the same way from equation (15), or by the remarks following equation (9), for large
negative values of x,

1, Ba g qyemenistio L Q=121 .. .. . .. .. (18)
2. 7 _ .

“The approach of y to its final-value is, therefore, as was to be expected, exponential : but whereas
'y — 1b becomes very small downstream as soon as zx is fairly large compared with b, {a — %
does not become very small upstream until = | x| is fairly large compared with ¢, and @ is
Jarge compared with b, the ratio a/b being the contraction ratio. We see that, if there is to be
. no reverse velocity gradient at the walls, the beginning of the contraction will appear to bevery
gradual compared with those designed by current practice. Measured from the section where,
say, the velocity on the axis is the geometric mean of the exit and entry velocities, or from any
section near that one, the upstream length will be greater than the downstream length roughly
in the ratio of the entry to the exit widths, the exact circumstances depending slightly on the
constants in equations (17) and (18), whose values will be considered later for a few typical
cases. :

The only way in which these conclusions may be modified is if f '(— 1) =0. Iff'(—1) =0,
we may suppose that, near { = — 1, '

Z=f)=—14+ 0+ p), m>0, p(—1)#0.

Near ¢ = — 1, arg[f(¢) + 11= (1 +m) arg (1--2¢) (p(— 1) is real), and as arg (14 ¢)
changes by = as we go round { = — 1 along the inside of the circle in the z-plane, arg (1 -+ Z2)
changes by (1 -+ m). The curve in the Z-plane is therefore re-entrant, as shown in Fig. 8.
If £ (Z) is analytic at { = — 1, with m = 1, we have a re-entrant cusp, but in any case we see
that we cannot have a vapid approach of v to ils final value wpstream unless the velocity at the wall
‘decreases at the beginning of the channel. ‘
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We shall, therefore, consider the approach of v to its final value upstream in some: cases in
‘which ¢ decreases at the beginning, as in Fig. 8. Before passing to the case of a re-entrant cusp
(m == 1), we may briéfly set out the circumstances for a ffactional value of m. We therefore'put,
near { = — 1, f({) = — 1 + (1 + ¢)1+» o +b(1+8)+ ..} 0O<m<l b 0).
In the integrand of the integral in equation (I5) we now put ¢ = e, and expand the integrand
in powers of «, as before. It will be found that

ac o da

1T— & _ZSin.oc
and . - ,
2€Xp {_K[l -l_f(_ C)]} —1— ¢ — i — Kbl elani o m —i_ z: __I_ O({;C1+m)\ ’
. , 2 sin o 2 4 , ‘
whence » o _
il 1 (1, ; 1 Kb i " 62' ! .
—= log(2sin§ 0) + i(}n — L6) — E <4~ 146 — ——1—{—74;6% 6+ .—}— g+ Q(@Hm)’
— 2% 1og 6 — B 4 Ofgrm,
so that
f = ef g=nlxlia -+ O(e—(2+m)n|'x|/a)),
and
) 5 Kb m —
—7%:%_1—}—;14,COS (dmm) 01+ 4 O(92+™), B
so A . o -
| 1g—y= _Ka by cos (I w)ed +mE g~ +mulxlje | O(e—(z+n»)5z'1x|}a)). o (19)
: 4 R (X +m) : S '

The approach of y to its final value {4 is certainly more rapid than before, because of the factor
1 4~ m in the exponential. The gain, however, is not very large. Thus if m =: {, the exponential
term is now as small as that in equation (18) when |#| has two-thirds of its previous value. .
Thus, although such cases may be fairly simply worked out in detail, for example by putting

J@ =214 —1, - .. L. e -0 (20)

we shall proceed at once to the case of a re-entrant cusp. ' o

This case is studied in the same Way by pﬁtting near { = 1
FO=—=14b 1+ b (142 +. ..

Proceeding in exactly, the same Way, we find that

b

124

T =log(2sing 0) illr —40) — E 4360+ 2 (144 K D)

o

— O by 4 00",

3 .
whence : :
H — eE e EAN + O(e—3n |xl/a);

‘%;y:%ﬁ@;@é%mww+owwwdﬁ‘, R e

8



The. approach of the exponential factor ~‘to zero is now three times as rapid.
li,"‘fj’lz.‘heiéimplest example of this casé‘ié obtained by putting b, = %, by=by=...=0, |

T P ¢
for which | - S

q
— 9 = K(} sin 2 9 + sin ).

. . . . 84/3 . .
|#] is 2 maximum when 6 = }=; the maximum value is L—’L— K, which does not exceed iz if -

2 _q1.008 2_Ucria

< 574 = <
34/ b V
The minimum value of log ¢, namely log V' — § log (U[V), occurs when 6 = 2r/3. For large
values of |x|, 7.e., for values of 6 near to =, ‘
log g = log V — % g2 g lxlle | O(e—4n[x|/u),
but this formula will not provide a good approximation all the way to 0 = 2=/3, and numerical
computation will be necessary to determine the adverse gradient of ¢. '
We note next that the coefficient of y in equation (21) vanishes if b, = ;. If we carry out
the analysis with this condition we find that

_Ka
5n

énd the approach of the exponential factor to zero is now five times as rapid as before.

fa—y (B 2 by - by) SFeslslo L O (e ™1ele), L (23)

I

The simplest example of this case is obtained by putting b, == by = %, b, = b, = . . . =0,
f@)=% (442 +5.—4), .. . . . . . oo (24)
for which

log g ==} log UV'—l—{G{— (90536+400526+5c050—14), '

— 9 =% (sin"30—1,—4sin26—}—5sin 6).

The minimum value of log ¢ is now log ¥V — 0-18 log (U/V) and occurs when ¢ is about 98 deg,
so the unfavourable velocity gradient persists further along the channel than in the previous
case, as was to be expected. The mimimum value of | ¢ |, which occurs when cos 6 = 2/3, is
(504/5/81)K, and does not exceed s if

81 = a U

K < —_— * ) —_— = e < N .

1004/5 1-14 b vV 74
When the connections between |x | and ¢ have been found, the preceding expressions for y
are all easily found from : :

dy

e 19' M

| T tan &;

when || is large, ¢ is small and dy/dx is approximately equal to #; and —#/K is the imaginary
part of f (). If f(¢) is analytic at = — 1, 4"9/d6” vanishes at { = —1 when 7 1s even.

f'(— 1) == 0 is the condition that d¢/d6 should vanish at ¢ == ; when this condition is satisfied,
b, = b, is the condition that d*%/d6° should vanish; when both these conditions are satisfied,

9



the vanishing of the coefficient on the right in equation (23), namely b, — 2b, - b; == 0,.is.the
condition that 4°¢/d6* should vanish at 6 = =. At = — 6, the expansion of ¢ in powers ‘of 6.
therefore "begins generally with a term in 0: if the first condition (f'(— 1) ==0)is satisfied,
the expansion.begins with a term in ¢°: if the first two conditions are satisfied, with a term in
6°, and so on. By making more and more of the odd derivatives of ¢ vanish at § = o, we thus
obtain a series of channels, which, for practical purposes, become shorter and shorter at the
expense of increasingly unfavourable velocity gradients at the walls. :

If we were really designing a two-dimensional channel, the answer to the question which, if
- any, of the channels so far considered we would choose would depend on the purposes for which
- 1t (or rather the wind tunnel of which it may be presumed to be a part) was to be used, and on
the space and facilities available for construction. It might, therefore, be of interest to work
out details of channels designed, not only according to equation (10) as Cheers has done, but
also according to equation (11) with a suitable «, and to equation (22).

Some Numerical Results—Some rough numerical results are given in the table below. The
values of D and £ were found by numerical integration from equations (13) and (16).

K =12 a/b =11-02 K =1-5, afb = 20-09
No. F @ . :

I 19 l max D E ] ,‘9' ] max D E

1 ¢ 1-2 311, | —0-54, | 15 408, | —0-75,
—1 ’ . . .
2 % o = 0-6200, tan—la — 0-5550 | 1:568 2-91, | —0-45, not calculated.
3 %:tan—l r o 270, | —0:35, | oo 3-48, | —0-53,
4 jerti—4% 1:559 6:06g | +0-29, | 1-949 883, | +0-21;.
(> #n)

5 (24424 52—4)/6 1-656 7-93, +0-45; not calculated.

(> 4m) l

~ All the channels so far considered are theoretically of infinite length, though practically the
exponentially small slopes and differences of the ordinates from their final values become com-
pletely negligible for finite values of |x|. There is naturally a choice of definitions of the
“length ’ of each channel; for purposes of illustration we shall find the lengths between the
nearest sections where the slopes do not exceed 4, when (1) 6 = 0-003 (2) 6 == 0-03. [For other
values of 4, the ‘lengths’ are linear functions of log 6.] ‘ o '

The results are set out below, with the lengths / as multiples of the downstream breadth, 5.

Values of i/b

No. 6=0003 K=12 | 6=0003, K=15 | 6=003 K=1-2 6=003, K=1-5
1 2202 38-20 18-21 2274
2 21-45 ‘ 12-64 )
3. 20-80 36-94 1200 21-48
4 12-02 18-88 8:60 13-25.
5 10-02 7:67. L
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The only large saving in length clearly comes between channels numbers 3 and 4. The saving
is all in the ¢ upstream ’ length, and, although the choice of section from which these lengths are
measured is purely one of mathematical convenience, the results may be of some interest, and the
“upstream ’ and ¢ downstream ’ lengths (/; and /, respectively) are given as multiples of & in the
table below. (For the first three channels, the lengths are measured from the section at which
the velocity on the axis is the geometric mean of the entry and exit velocities ; in channels
numbers 4 and 5, from the sections at which the velocity on the axis is U V** and U'® [ 408

respectively.)

6=0-003, K=12 6=0-003, K=15 =003, K=1-2 =003 K=1-5
No. : -
Lfb A b Lfb Lo 1ofD 1o 1ofb

1 19-12 2-90 34-93 3:27 11-04 2:17 20-20 2-54
2 18-68 2-77 10-60 2:04
3 18-18 2-62 34-00 2-94 10-11 1-80 19-27 2-21
4 7-23 4-79 13-14 574 4-54 4-06 8-24 5-01
5 4-54 5-48 : 2:93 4-74

Channels of Finite Length—As we have remarked, all the channels so far considered are
theoretically (though not practically) of infinite length. Channels which are theoretically of
finite length may be designed by assuming that # = 0 over finite intervals of § near § = 0 and
6 = = (or near § = = only if we seek only a finite length in one direction). From any assumed
of # on the unit circle |[¢| = 1, the imaginary part of f(¢) is known on that circle, so f(Z) may be
found at all points in and on the circle by Poisson’s integral. (Even if the analysis cannot easily
be carried out, the real part of f(¢) on the unit circle, and hence log ¢, may be found numerically,
and the values of the co-ordinates of points on the channel walls computed from the general
formulae for ¥ — %z, v — yp.) Channels so designed will be shorter, and will have greater
unfavourable velocity gradients at the walls, than others considered in these notes.

The connection between x and 6, for large values of | x |, will be simlar in such cases to those

previously found, but since the imaginary part of /() will vanish near & = 0 and near 6 = =, the
asymptotic expressions for y — b, 3 — y will be identically zero.
" As an example, let us take —#/K to be an odd function of 0, zero for 0 <8 <0, and forn — 6,
<0< =, and proportional to sin ¢ —sin 6, for 6, <0<« — 0,, so that it is continuous. The
factor of proportionality is found from the conditions that £(¢), whose imaginary part is — #/K,
is 4-1 when ¢ = 1 and — 1 when { = — 1. From Poisson’s integral it is found that

£%sin 26,
1 — ¢*cos 28,

1—-¢

{m — 26, + 2sin 6, log tan § 0.} f() = " tan—t

. ‘ 2
1—2¢tcost, +¢ + (m — 26) L,

+sm6110g1 T3¢ cos b, + &

and the first term on the right is the same as
1 - 1o 1 — 2exp (—2:6))
257 61— (Texp (%)
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The arguments of the various factors 1 4 ¢ exp (4-16,) are all determined at all points inside and
on the circle [{| == 1, except at { = + exp (440,), by taking them zero at the origin { = 0.

Then

K
m — 20y - 2sin 0, log tan §

log ¢ — L log UV = 0{@—2@0%0
) 1

]
J

sin
sin

(0 + V)
(6 — )

-+ sin 6, log | tan b1 ; b tan 2 Z)I‘— 6' - sin § log

[y

— 9 =0for0 <0 <8, andform — 6, < 0 <a,

K i )
- : sin § — s 6;tfor 0, <8 <n — 0,
m — 20, -+ 2 sin 6, log tan %91{ ‘ i} KO0 )

The unfavourable velocity gradient is logarithmically infinite at the point corresponding with
0 = 0,.  This logarithmic infinity does not appear in the velocity gradient if d#/d6 is continuous ;
if d8/d6 is continuous and d*9/d6? discontinuous, the second derivative of g is logarithmically
infinite, and so on. Enough has, however, been said to show how finite channels may be
considered.

REFERENCES
No. Author \ Title, elc.
1 H. S. Tsien .. .. .. . On the Design of the Contraction Cone for a Wind Tunnel. J. Aero.
Scz., 10 (1943), pp. 68-70.
2 B. Szezeniowski .. .. .. .. Contraction Cone for a Wind Tunnel. J. dero. Sci., 10 (1943),
pp. 811-312.
3 G. K. Batchelor and F. S. Shaw .. A Consideration of the Design of Wind Tunnel Contractions. A.C.A.
Report 4. March, 1944.
4 H.Lamb .. .. .. .. .. Hydrodynamics. Cambridge, 1932. Chap. IV, Sections 73-78.
5 N.J.S. Hughes .. .. . .. Stream Expansion with Discontinuity in Velocity on the Boundary.

R. & M. 1978. March, 1944.




_%:_P‘&P\G

Al* '\P“’-’O BI CI
F1G. 2
A te ¢,
€ ~plane :
)
!
!
1
10
|
1
s 1
N i . - A
c B AA Y ¢
(e ~00) (E==1) (=N (cgc@)
FiG.3

13



;»i«ch boBf '

(e=) A §~ (z=+)

CoB' tof

14

(96120) Wt. 14/806 K.5 8/51 Hw.

PRINTED IN GREAT BRITAIN



R. & M. No. 2643
(8495)
AR.C. Technical Report

Publications of the
Aeronautical Research Council

ANNUAL TECHNICAL REPORTS OF THE AERONAUTICAL RESEARCH COUNCIL
(BOUND VOLUMES)—
1934-35 Vol. L Aerodynamics. Ous of prin:.
Vol. II. Seaplanes, Structures, Engines, Materials, etc. 40s. (40s. 84.)

1935—36 Vol. 1. Acrodynamics. jos. (304. 74.)
Vol. I Structures, Flutter, Engines, Seaplanes, etc. 305, (30s. 74.)

1936 Vol. 1. Aerodynamics General, Performance, Airscrews, Flutter and Spinning.
405. (405. 9d.)
Vol. II. Stability and Control, Structures, Seaplanes, Engines, etc. 5os. (50s. 104.)

1937 Vol. I Aecrodynamics General, Performance, Airscrews, Flutter and Spinning.
40s. (40s. 104.)

. Vol. II. Stability and Control, Structures, Seaplanes, Engines, etc. 6os. (61s.)

1938 Vol. 1. Aerodynamics General, Performance, Airscrews. 5os. (515.)

Vol. IL. Stability and Control, Flutter, Structures, Sesplanes, Wind Tunnels,
Materials. 30s. (305. 9d.)

1939 Vol. L Aerodynamics General, Performance, Airscrews, Engines. 5os. (505. 114.)

Vol. II. Stability and Control, Flutter and Vibration, Instruments, Structures,
Seaplanes, etc. 635, (644. 24.)

1940 Aero and Hydrodynamics, Aerofoils, Airscrews, Engines, Flutter, Icing, Stability
~ and Control, Structures, and a miscglianeoys section. §os. (515.)

Certain other reporss proper 1o the 1940 wolume will mbseyumtly e
- included in a separate volnme.

ANNUAL REPORTS OF THE AERONAUTICAL RESEARCH COUNCIL—

193334 15. 6d. (15, 84.)
193435 15. 64. (1s5. 84.)
April 1, 1935 to December 31, 1936. 45. (4s. 44.)
1937 25, (25. 24.)
1938 15. 64. (15. 84.) -
1939—48 34 (35. 2d.)

INDEX TO ALL REPORTS AND MEMORANDA PUBLISHED IN THE ANNUAL
TECHNICAL REPORTS, AND SEPARATELY—

April, 1950 R. & M. No. 2600. 25. 64. (25. 74d.)

INDEXES TO THE TECHNICAL REPORTS OF THE AERONAUTICAL RESEARCH
COUNCIL—
December 1, 1936 — June 30, 1935. R. & M. No. 1850.  15. 34. (15. 434.)
July 1, 1939 — June 30, 1943. R. & M. No. 1950.  15. (15. 134.)
July 1, 1945 — June 30, 1946. R. & M. No. zo50. 15 (15, 14d.)
July 1, 1946 — December 31, 1946. R. & M. No. 2150.  15. 34. (15. 444.)
January 1, 1947 — June 30, 1947. R. & M. No. 2250. 15 34. (15. 444.)

Prices in brackets inciude postage.
Obtainable from

HIS MAJESTY’S STATIONERY OFFICE

York House, Kingsway, LONDON w.c.2 429 Oxford Street, LoNDON, W.1
. Box 569, LONDON, S.E.1
13a Castle Street, EDINBURGH 2 1 St. Andrew’s Crescent, CARDIFF
39 King Street, MANCHESTER, 2 Tower Lane, BRISTOL, 1
2 Edmund Street BIRMINGHAM, 3 80 Chichester Street, BELFAST

or through any bookseller.

8.0. Code No. 23~2643



