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Introduction and Summary.—-Recent advances in electronic computing devices suggest that
it may soon be feasible to attempt numerical solutions of problems involving three independent
variables. In this paper, preliminary consideration is given to the extension of the numerical
method of characteristics for hyperbolic equations to the case of three independent variables.

A general quasi-linear second order partial differential equation in three variables is first
considered, and the characteristic surfaces and curves are derived, together with the differential
relations which hold along them. It is shown that numerical integration should be possible
along the faces or edges of a hexahedral grid.

The equations are developed in more detail for two special cases of compressible flow, namely
steady isentropic supersonic flow in three-dimensional space, and unsteady flow in two
dimensions.

1. The General Quasi-linear Second-order Pariial Differential Equation in Three Independent
Variables—Consider first the general second-order partial differential equation, linear in the
second derivatives, which may be written,

Anpu + @b + AP + 2“23?23 -+ 2“31?31 -+ 2“12]512 — 1 =0,

or, using the summation convention,

1,7 =1,23
a;p; — 1 =0, { 7 ] (1.01)
where, the independent variable ¢ being a function of x,, x,, %,
3¢ 9%
i = —, Pi= etc., .. .. .. .. .. .. 1.02
? ox; b ox; 0%; ( )

and ay, {, are functions of ¢, x;, $;, only.

Consider next any surface 'in (x,, x,, #%;)-space, which may be defined, in terms of two
parameters «, 8, by

%= % («, B) ; .. .. .. .. .. .. .. .. (1.03)

and let it be supposed that the values of ¢, py, p,, P, are known at all points of this surface.
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Then, at all points on this surface, these known values must satisfy the six relations

op: ox; .
—aa—]sza—a .. - .. .. .. .. .. .. .. (1.04)
8]5,-_ 0x;

of which only five are independent. (The summation convention is used in these and subsequent
relations).

Thus any five of these equations, together with the original partial differential equation

(1.01), may be solved to give values of the second derivatives p; at all points of the surface
(1.03), in terms of known quantities.

The solution is best obtained as follows: Write,

0x; dx,

L,-:é‘,-jk?'a“a—ﬂ .. . . . .. . .. .. (106)

where ¢, is the alternating tensor, so that L,, L,, L; are thus proportional to the direction
cosines of the normal at (x,, x,, x,) to the surface (1.03). The six relations (1.04) and (1.05)
may then be written,

3 A
gjkl'pilLk:a_;:'a_ﬂ—a—ﬁsz,j say .. .. . .. (1.07)

where, it should be noted,
Xy # Xji

Of these nine relations, again only five are independent, by virtue of the four identities,

LiX;,=0 Ce e C. .. .. (108
and X,’i:O. . .. . .. .« .. .. .. . (109)

Thus, combining any independent five of the relations (1.07) with the original partial differential
equation (1.01), the solution for p; is obtained in the form,

py = =2 R ¢ B (1)

&

where, except for sign, the six 77,;’s and ¢ are the seven determinants of the sixth order of a
matrix with six rows and seven columns. Using, for example, the relations in X;;, X,s, X,
X,3, Xge, the matrix is,

0 0 0 0 L, —-L; Xy
Ly 0 0 0 —L, 0 X1
0 —L; O L, O 0 Xau

0 0 0 —L, Xup
0 0 —L, O Ly 0 Xe

ayn Qog Azs 24y 20y 2a4, 1

(1.11)
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Thus, if ¢ does not vanish, the second derivatives p; at all points of the surface (1.03) are
determined, and, proceeding in a similar manner, it may be shown that the third and higher
order derivatives of ¢ are also determinable, provided the same quantity ¢ does not vanish.
In this case Cauchy’s problem is solved, and ¢ is determined uniquely, if it is holomorphic, or,
as Kowalewski has shown, if the given values of ¢, p;, p,, $; on the curve (1.03) are analytic
and regular. (c¢f. Ref. 1).

Suppose, however, that at all points of the surface (1.03) the quantity ¢ vanishes. It follows
from (1.10) that all the I7,/’'s must also vanish if a non-trivial solution exists, and this introduces
just the one further condition necessary to make the matrix (1.11) of rank 5.

The condition, ¢ = 0, is, in full,
EZﬂijLiLj:-‘-O .. . . . . . . .. (112)

i.e., the condition that the normal (L,, L,, L,) to the surface (1.03) should lie on a cone of the
second degree, which is real, unless the quadratic form (1.12) is either positive definite or negative
definite.

Defining
1 = A,
Ay = | ay Gy
b
A2y Aag
and the Hessian,
Ay = | @y Ay dys
d21 6l22 “23 y .. “ ) . . .. . (1.13)
Q31 Az Qg3

the quadratic form (1.12) is positive definite if, [¢f., for example, Ref. 2]

4,>0, 4,>0, 4,>0, .. . . .. .. .. .. (1.14)
and negative definite if,

4, <0, 4, <0, 4, <0. .. . .. . .. .. .. (1.15)

Thus, if either of these sets of conditions is satisfied at any point by the coefficients a;, the
cone (1.12) is imaginary and the original partial differential equation (1.01) is said to be elliptic
at the point; if the quadratic form (1.12) is a perfect square at any point, the cone (1.12) reduces
to two coincident planes, and the original equation (1.01) is said to be parabolic at the point;
and otherwise, (1.12) gives a real cone of possible normals and the original equation (1.01) is
said to be hyperbolic at the point in question.

Restricting consideration henceforth to the hyperbolic case when the cone given by (1.12)
is a real cone, it follows that, if the normal (L,, L,, L;), at any point (%, %s, %3, to the surface
(1.03), lies on this cone, then the tangent plane at (%9, %s, %s), namely

Ly (% — %10) + Ly (%2 — %ap) -+ Lg (%5 — %g) = 0 .. .. .. (1.16)
has an envelope, which may be shown to be the real quadratic cone,
A,](x,-—x,o) (9{,“%1):—0 . P , . ‘e .. N (1.18)



where A is the co-factor of g; in the Hessian,

ds = |an an ap
A1 Azp gy
Az Azp Az

The cone (1.18) is called the characteristic cone at the point (x,,, %5, %3), the coefficients 4; being,
of course, constants, with values appropriate to the point (¥, ¥s0, ¥s).

Similarly, any displacement (dx,, dx,, dx;) along the surface (1.03), satisfies, in the limit,
lexl _|— de.xZ ‘{“ L3d%3 - 0; .« .. » e o s .. (1.19)

and it follows that, if (L,, L,, L;) lies on the cone (1.12), there is also an envelope of such
displacements, given by,

A,del(lx]:: .. .« .o » e « e . .« (120)

This differential relation (1.20), in which the coefficients are, in general, functions of x;, x,, s,
defines a ‘ curvilinear cone’, whose curvilinear generators are tangent at the vertex to the
generators of the characteristic cone (1.18) with the same vertex. The curvilinear cone (1.20)
is called the characteristic conoid at the point.

The nature of the characteristic surfaces, in the case of three independent variables, now
becomes evident. The general characteristic surface has the property that, at any point, its
normal (L,, L,, L,) lies on the local cone (1.12). The general characteristic surfaces which pass
through any point all touch an envelope, the local characteristic conoid (1.20) which is thus a
special type of characteristic surface associated with a point. The curves along which the
general characteristic surfaces touch the characteristic conoid are called bi-characteristic curves.

Thus the characteristic conoid may also be regarded as generated by the bi-characteristic curves
through a point, its vertex.

Alternatively, there is a characteristic conoid (1.20) associated with each point in (x,, s,
x3)-space. The characteristic conoids associated with the points of an arbitrary curve have
an envelope, consisting in general, of two sheets. Thus two general characteristic surfaces pass
through any arbitrary curve in (%, %,, ¥3)-space.

The relations between the general characteristic surfaces, the characteristic cones, conoids,
and the bi-characteristic curves, are illustrated in Fig. 1.

The condition that all the /7;’s should vanish simultaneously with ¢, is given by the vanishing
of any one of these quantities, e.g., by

Iy = a,L, X3 — a5 L, X5 + ﬂ33(L2X32 — LaXn)
“'i‘ 26l23L2X22 i 2@31L1X11 _I'" L]_Lzl‘ _ O' .. . .. « . (1.21)

This differential relation, which holds along any characteristic surface satisfying (1.12) at
every point, is sufficient, with (1.12), in the hyperbolic case when the characteristic surfaces
are real, to develop a numerical solution starting from a given open boundary surface along
which the conditions of a problem are known.

In place of the characteristic grid, familiar in hyperbolic problems with only two independent
variables, there are now two possible types of network along which numerical integration may
be carried out—a hexahedral network of general characteristic surfaces, or a hexahedral network
of bi-characteristic curves. In each case, the known solution of the problem, already determined
at three points, P;, P,, P;, leads to the solution at a fourth point P,.  The ‘ units ’ of such net-
works are shown in Figs. 2 and 3.
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In Fig. 2 the rear branch of the characteristic conoid at P, cuts the plane P,P,P; in a curve
inscribed to the triangle P,P,P,, and the three faces P,P,P;, P,P,P,, P,P,P, of the tetrahedron
P,P,P;P, are segments of general characteristic surfaces, which, in a sufficiently small ‘ unit’
may be taken as plane sections. Associated with each of these faces there are two relations,
corresponding to (1.12) and (1.21), i.e., six relations in all, and these six relations, together with
the known conditions at P,, P,, P, are sufficient to determine the three unknown space co-
ordinates of P,, and the values of P;, P,, P; at P,. There are three other ‘ units’, similar to that
in Fig. 2, associated with the three points P, P,, P;, given by the points P, whose characteristic
conoids intersect the plane P,P,P; in curves escribed to the triangle P,P,P;.

In Fig. 3, the rear branch of the characteristic conoid at P, cuts the plane P,P,P; in a curve
circumscribed to the triangle P,P,P;, and the three edges P,P,, P,P,, P,P; of the tetrahedron
P,P,P;P, are segments of bi-characteristic curves, which, in a sufficiently small ‘ unit * may be
taken as linear segments. Again, associated with each of these three edges there are two
relations corresponding to (1.12) and (1.21), 7.e., six relations in all, and these are sufficient
together with the information known at P;, P,, P;, to determine the six essential unknown
quantities at P,.

In theory then, it should be possible to integrate numerically in a progressive manner, along
a hexahedral grid of one of the above types, starting from the known conditions of a problem
on an open boundary surface. The complexity of such a numerical process, hitherto beyond
contemplation, may become tractable soon by the rapid computational facilities afforded by
new electronic machines.

2. Steady Supersonic Compressible-flow in Three-dimensional Space.—With cartesian co-
ordinates (¥;, %,, %;), let the components of fluid velocity be wu,a,, u.a,, usa, respectively, where
a, is a constant speed, and consider the case of adiabatic irrotational flow. Then a velocity

potential ¢ may be defined so that,

0
== 2. e ey

The speed of sound, aa,, is given by

dﬁ yp 2,2 |

= = L — g%, .. .. .. .. .. .. .. 2.02

dp P (2.02)
and Bernoulli’s equation, obtained by integrating the equations of steady motion of the fluid,
gives

tal (P + P + P8 + a’al/(y — 1) = constant

_ y +1 2
=g et .. (209)

if the constant speed a, is chosen to be the local speed of sound in the fluid when the velocity
is sonic; i.e., p;* + Pt + P = 1 when a = 1.

Thus P pR b pE—at = (L — a2 .. ... (204
where p=t—Y_q . @20
y + 1
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The equation of continuity reduces to the potential equation

Z(pt — a®) Py + 2% popspes = 0. .. . .. .. .. (2.08)
Hence, by (1.12) the normal (L,, L,, L;) to a characteristic surface satisfies

Z(pt — @) L 4 2% popsLoLy = 0. .. . .. . .. (2.07)

The conditions (1.14) and 1.15) that this should be a definite quadratic form, and thus represent
an imaginary cone, reduce to

P - Pt Pt < ad

and it thus follows that the equation (2.06) is elliptic at points where the flow is subsonic,
parabolic where the flow is sonic, and hyperbolic where the flow is supersonic.

In the hyperbolic case of supersonic flow, the Mach angle 4 may be defined by

a2

2l ol P ol

and it may easily be seen that the cone (2.07) is a circular cone whose axis is in the direction of
the flow, (p1, P2, Ps), and whose generators are inclined at an angle (=/2 4 ) to the axis.

sin® p = (2.08)

The characteristic cone (1.18) at the point (x,o, %z, %3 1S
Z(pt + Pt — a®) (%, — %0)® — 22 Paps (Ko — Xao) (5 — %g) = 0 .. .. (2.09)
2.¢., the circular cone with vertex (%10, %s, %30), aXiS (p1, P2, £s) and semi-angle «, the Mach angle
And the equation of the characteristic conoid is
2(p? + P — a®) (dx,)? — 2% pops dx, . dxy = 0. .. . .. .. (2.10)
The differential relation I7,, = 0, (¢f. (1.21)) is
Iy, = (p* — @*) LiXyy — (P2 — %) LiXos + (ps" — @°) (LoXs — LsXy))
+ 2papsloXee — 2p3p LiX = 0. .. .. .. .. o (2.11)

Fig. 4 illustrates the characteristic geometry of this particular flow. Now from (2.07) the
normal (L,, L,, L;) to any characteristic surface satisfies

Ly + Ly + tsL)® = a*(L? + L+ L) .. .. .. .. (212

Thus if (1, 1,, I;) are the actuial direction cosines of the normal direction which makes an angle
(/2 + p) with the direction of flow, then

Uy - woly + uds = — a. .. .. .. .. .. . .. (2.13)

This merely expresses the physical fact that the component of fluid velocity, normal to the
characteristic conoid, is equal in magnitude to the speed of sound.

The bi-characteristic direction corresponding to (J;, Z,, /5) is

(aly + wy, aly + u,, als + us). .. L. .. .. .. .. (2.14)



Put now
#y = Pye= V sin 6 cos p
Uy = Py = V sin 6 sin y .. .. .. .. .. .. .. (2.15)
Uy = Py = V cos 0 '

so that 6, p are the polar angleé of the flow directibn, and

az

’uf—{—uf—{—usz::VZ:Sing‘u- .. .. .. .. .. .. {2.16)
Then, by (2.13)
lysin6 cosy -+ [,sin 6 siny + l;cos 6 = — sin u .. .. .. (2.17)

and the angle  between the diametral plane of the characteristic cone passing through the
bi-characteristic, and the diametral plane parallel to the x,-axis thus satisfies

lycos B cosy + I, cos 8 sinw — [y sin 6
COS f

cos 6 =

Ce o (218

l2 COS '1!) - ll Sin '{l’
coSs u )

sin § =

(2.19)

The relations (2.18) and (2.19), together with
W40+ 0 =1
thus enable 7, /,, /; to be expressed in terms of the single parameter 6. Hence, if the
bi-characteristic curves are chosen as the parametric curves f = constant, and their orthogonal
trajectories as the parametric curves « = constant, the following relations may be taken for
any characteristic surface § = é(«, g)
3%,/ 0 = al, + u,
axg/aazalz”i"ug . .o . .. . s .. s (2.20)
axs/ aa == al:; "I— %3
3x1/ aﬂ == les —_ %3l2
axg/ aﬁ = %3l1 —_— ulla P .- . .« . . .. (2.12)
axs/ 8ﬁ = ullg — M2Z1
Substituting these values, the differential relation /7,, = 0, and the identity (1.09), namely
Xn + X22 + Xss =0,
ultimately combine and reduce to the two relations,

20 . . d
tanu{-é—;—l—smu s1n08—}/;;~{ 7 ol 7oty ¥ =0 Lo (2.22)
7
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and

. a0 .
tan u s1np—a-(—5,—~smt9E

For 6 = 0, y = 0, these reduce to the familiar two-dimensional relations

av
—I—/.———j:tan,uda

respectively, along the characteristics

dx,
x, = an (0 £ 4

and the same reduction is obtained in the cases,
6 =0, y = xn[2

and b =mf2, 0 = =af2.

Further, (2.04) and (2.16) combine to give

V2(2? cos® p + sin® u) = 1

whence
dV. (1 — A% sin p cos u du —0
V+ A% cos? u—l—sm,u
so that
av (1 — A%) cos® p du
cot p— = (2% cos® u F sin® u)

= —dpj2 — p)
where » is an angle defined by

Atany = tan pu.

The relations (2.22) and 2.23) may then be written,

{a + sin ¢ sin aﬂ} -+ {coséa—(-%—;m

and

. 0 . ] .
{smy 'é% — sin 6 :;—ﬁ} — {sm,u cos §

aap} {sm u cos é AV
- 3B L V 9o

— sin g sin 6

/A — u
p

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

For 6 = 0, » = 0, these reduce to the familiar integrals of steady motion in two dimensions,

»/A — u 4 0 = constant,
respectively, along the characteristics

dx,
%2 = tan (0 :|: u)

(2.32)



and the same reduction is obtained in the cases,
6 =0, p = w2
6 ==x/2, 0 = =2

The relations (2.30) and (2.31) or (2.22) and (2.23) would form the basis of numerical computation
along a hexahedral grid, as suggested in Section 1.

3. Unsteady Compressible-flow in Two Dimensions.—With cartesian co-ordinates (x, v) and
time ¢, let the components of fluid velocity be u, v, respectively, and again consider the case of
adiabatic irrotational flow. Then a velocity potential ¢ may be defined so that,

0

pl frmem g; = U

_ 9 _
P2 = 3y T v

3 u? 4+ v fd]b] . {u2 -+ v® a?
m“ﬁ—“‘z + ) = -+ AU %113

where the speed of sound « satisfies

G _ e (309

e p
The equations of motion are then automatically satisfied, and the equation of continuity reduces
to the potential equation,

(?12 — a?) Pu + (P — %) Pa2 + Pas + Lpepa + 2?1]513 + 2p1p0 P12 = 0. .. (3-03)
Hence, by (1.12) the normal (L,, L,, L;) to a characteristic surface satisfies
(0 — a®) L* 4+ (v* — a®) L + L + 2vl,Ly + 2ul,L; + 2uvl,L, = 0. .. (3.04)

The conditions (1.14) and (1.15) for this to be a definite quadratic form are never satisfied, and
it reduces to a perfect square only when ¢ = 0. Thus the pntential equation (3.03) is always
hyperbolic at every point.

The characteristic cone (1.18) at the point (x,, ¥, %) is,
(* — %)* + (¥ — 20)* + (1 + 0" — @) (¢ — 4)°

‘ — 2u(x — %)(t — &) — 20(y — yo)(t — &) =0 .. .. (3.05)
which has the property that it cuts the plane
P =1 + =

in the circle,
( — x%g — ur) 4+ (y — ¥ — vr)? = (ar)®
whose centre is the point (x, + uz, y, + vz, 4, + 7) and whose radius is ar.

The equation of the characteristic conoid is,
(Adx — u di)? + (dy — v dt)* = (adib)®.. .. .. .. .. (3.06)
9



and the differential relation 77,, = 0 is,
Iy = (1 — a®) LiX,s — (v* — @) LoXy + LoXsw — LX),
A+ 2L, X,, — 2ul,X,; = 0. .. .. .. .. .. (3.07)

IFig. 5 illustrates the characteristic geometry of this particular flow. Now, from (3.04) the
normal (L,, L,, L;) to a characteristic surface staisfies

(uL, + vL, + L3)* = a®*(L® + L% .. .. .. .. .. (3.08)
and may, therefore, be expressed parametrically by
L L, _ — I, .
sind coso wusind - wvcosd -+ a o o o o o (3.09)
The corresponding bi-characteristic direction is,
(# -+ asinéd, v+ acosd, 1) . . .. .. .. .. (3.10)

Hence if the bi-characteristic curves are chosen as the parametric curves § = constant, and the
curves of intersection with the planes / = constant, are chosen as the parametric curves
« = constant, the following relations may be taken, for any characteristic surface 6 = 6(«, )

0x/ 0w = 1fa + sin 84

|

|

0v/[da = vfa 4 cos d ¢ . . .. . .. . .. (3.11)
ot 9o = l/a J

and dx[3f = cos
dy[3f = — sin & . .. .. .. .. .. ..o (8.12)
atjop =0 .

Then
L, = sin é/a
L, = cos é/a . .. .. .. . (3.’13)
L, = — (#fasin é + v/a cos é 4 1).

Substituting these values, the differential relation /7, = 0 ultimately reduces, for this choice
of the parameters, «, 8, to

(@ + v cos 8)(dufdu — dv/3p) — v sin 6 (dvfda + Ju[dp)
+ 2aj(y — 1).siné dajda + 2/(y — 1). (v + a cos 8) da/dp =0, .. .. (3.149)

whilst the identity (1.09)
X+ X+ Xss=0
reduces to,
cos & (dufdx — dv[df) — sin 6(dv[da + dufdp) + 2/(y — 1) -g% =
10

0. .. (3.15)



Relations (3.14) and (3.15) combine to give, finally

ou v | 2 . da dal

{m — —3—1-3-} T;j{SlHém“F C056~é-/§} -—O .. ‘. .o . (3.16)
ou 2v ‘ da . da

{—a—ﬂ + -—5&-} -+' 7’7—_——1 [COS 6 —a—; — Sin 6 8_/3} == O. . s .. .« (3.17)

These relations would form the basis of numerical computation along,a hexahedral grid, as
suggested in Section 1.

For v = 0, 0 == z(2,
or u=0, 6 = 0, respectively,

relations (3.16) and (3.17) reduce to the familiar integrals for unsteady flow in one dimension,

.. dx
uw + ” 2:1 ;= constant, along the characteristics i (v 4+ a)
2a : e dy
or v -+ 1= constant, along the characteristics 7 (v + a).
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x Y dp=0
(cos §,- s 8,0)
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N
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