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SUMMARY
A procedure is described for obtaining expansions in series of Chebyshev
i e~iaudﬂ
polynomials of the function il for all real o and all integer
w + 1) 2
0
n » 0 . Numerical values are given of the coefficients of the series of Chebyshev
polynomials obtained from a FORTRAN program. The leading coefficients are given

to twelve significant decimal digits.
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1 INTRODUCTION

In linearised unsteady aerodynamics the function Sn(u) s defined by
formula (2-1) for  n 2 1 , has to be evaluated for many values of o . Expansions
of functions in terms of series of Chebyshev polynomials may be used for rapid
evgluation of the functions. It is the purpose of this paper to use the procedure
introduced by Clenshaw1 to obtain such expansions of Sn(a) . The form of these
expansions are given in formulae (9-1), (9-2), (9-3) and (9-4). Numerical values
of the coefficients of the series of Chebyshev polynomials were obtained from a

FORTRAN program with double precision arithmetic.

2 DISCUSSION OF THE NATURE OF THE FUNCTION UNDER CONSIDERATION

In unsteady linearised aerodynamics we need to evaluate, for any real a ,
the complex function Sn(u) » n=1,2, which is defined for positive integral

values of n by means of the integral
© *
o iou
S (a) = f PN du . (2-1)
n d (u2 + ])n+
For real a > 0 we shall write

S,(0) = F (a) + i¢ (a) (2-2)

where Fn(u) and Gn(a) are real functions of o .

For real a < 0 we get, from (2-1) and (2-2),

Sn(a) = Fn(- a) - iGn(- o) . (2-3)

The function So(a) may also be defined, but since the integrand in (2-1)

is not absolutely integrable over (0, ») for n = 0 the formula

e—iau
S.(a) = 1lim f————— du (2-4)
0 Ao 9 (u2 + l)%

can be used instead.



Even though Sn(a) is used in unsteady aerodynamics only for n =1 and
2 we shall here describe a process for obtaining numerical values of Sn(a) at

all the integer values n =0, 1, 2, 3, ...

We could, of course, use the reduction formula

S . (a) + o , n
tn” -1 ° ! 4n2 -1

2n
2n + 1

S (a)

n+l

W

1 (2-5)

N R

Sn(a) +

to obtain numerical values of~ Sn(a) at all the integer values n = 2, 3, ...
from the numerical values So(u) and Sl(a) but values so obtained would not

be as accurate as those obtained directly when o 1is large.

The definition (2-1) of Sn(u) is, in fact, valid for complex values of
o with Im(a) < O , and even for n = 0 it is valid for complex values of «a
with Im(o) < O . The functions Sn(a) so defined are regular functions of «a
in the complex half-plane Im(a) < O . The domain of validity of the functions
Sn(a) can be extended into the complex half-plane Im(o) > 0 , but we must
expect a singularity on the line Im(a) = 0 because the definition (2-1) of

Sn(a) is not valid for Im(a) > O .

We can show directly from the definition (2-1) of Sn(u) that Sn(a)

satisfies the differential equation

a’s_(a) as_(a)
o T‘ - Sn(OL) - (21‘1 - 1) T = i o (2—6)
Q

This differential equation is shown, in the first place, to be satisfied only
for Im(a) < O , but by using analytic continuation we may show that it is
satisfied for all o ¥ 0 . At o = 0 the differential equation has a regular
singularity. If we confine ourselves to real o then we can show directly from
the definition (2-1) of Sn(a) that for n ¥ 0 the differential equation (2-6)
is satisfied. For n =0 we must first of allow o to have a small negative
imaginary part and then, having shown that the differential equation (2-6) is
satisfied we proceed to the limit of taking the negative imaginary part to be

ZeYo.

If we put



OB ARONE (2-7)

substitute for Sn(a) from (2-7) into the differential equation (2-6) and divide

+1

the resulting equation by o™ we get the differential equation

2 .
Q@) + = Ql(a) - (1 . %)Qn(a) - (2-8)
o4

for Qn(a) . We recognise the differential equation (2-8) as a modified form of
Bessel's differential equation with a non-zero right-hand side. This differential

equation has the general solution (see eg Ref 2)

_ 22l .
Qn(a) = zzij— w{an(a) + CnIn(m) + DnKn(a)} (2-9)

where Cn and Dn are integration constants. The functions In(a) and Kn(u)
are modified Bessel functions of order n and of the first and second kinds

respectively and Ln(a) is a modified Struve function which is related to the

Struve function fHI_n(ia) by means of the formula (see Ref 2)
_ (. 1yn.n-l . _
Ln(d) = (- 1)1 IHI_n(la) (2-10)

For small values of |a| we may write (see Ref 2)

v
o

1 fa\".
In(a) = ;T. 5) 1n(a) n , (2-11)

2r
_ 1f2\n r(n-r~-1!
Kn(Ot) = -2'(3) z - 1D y ( )

rof @

n n
» LoD (%)k (o) nzl , (2-12)



Ko@) = - [1og (%) + Y] iga) + ky(a)

and

L _ nf2 -1
Rl = (- DA &, () n

where in(a), kn(a) and 4 (a) are even integral functions of

the power series expansions

i (o)

Ii
M 8
t‘—’
~
s

=]

+ .—

in]

S
o

e
\s{\:
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kn(a) -2
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+
=
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=
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and
T
© _O_L_)
- 2
tle) = Z T(r + 3/DT(r + 3/2 - 0
r=0
s+1
1 1
where ws = = G+ D) + 7 s = 0,1, 2,
p=1
and
v = 0.57721566490153286...

is Euler's constant.

If we put the expression (2-9) for Qn(a) into (2-7) we get

o

=]
\Y

(2-13)

(2-14)

which have

"%

A\

(2-15)

(2-16)

(2-17)

(2-18)

(2-19)



2n—1n! nf.
Sn(oe) = )] O {1Ln(o;) + CnIn(oc) + DnKn(a)} . (2-20)

The constants C and Dn still have to be determined and their values
- depend on the branch of the function log (%—) used in (2-12). We shall take the
branch of log (—%) to be one which is real for real positive o . The branch

line of 1log (.;_‘) from o = 0 must not enter the complex half plane Im(a) < O

because Sn(a) is regular for Im(a) < O .

If we use the expressions (2-11), (2-12), (2-13) and (2-14) for I,(0),
Kn(oz) , Kb(oz) and Ln(oc) in (2~20) we get

So(oc) = %w[ﬁiuﬂ,o(a) + Coigla) + Dokq (@) = Do[log (%) + Y]io(agl (2-21)

and
n 22n_]n! n 2n
Sn(OL) = %TI’ (" 1) —Z—z';l—)"— (im)ln(d) + (Zn)! o, in(OL)

+ (- l)nﬂ—-— ok (o) + (- 1P —D“— «?P |10g ARN vli (@)
2n) ! n (2n)! 2 n

on-1 ool 2r

2 ! - -1

e S ]
r=0

Directly from the integral representation (2-4) for So(oc) and (2-1) for

Sn(oz) » we can show that, for small real positive a ,

Sg(a) = - [1og (%) + Yy + 321] + 0(a) (2-23)
and

Sl(u) = 1 —-dig + %uz [log (%) + v + _127_r_ - :l + 0(&3) . (2-24)



By comparing (2-21) and (2-23) we get immediately

Cg = -1 (2-25)
and

Dy = = . (2-26)

By comparing (2-22) for n =1 and (2-24) we get immediately

Cl = i (2-27)
and
2
D, = = . (2-28)
If we use the expansions (2-21) and (2-22) for Sn(a), n.x0 in the
reduction formula (2-5) and compare the coefficients of u2n+2 log -% and
o20+2 respectively on the two sides of the formula, we get the equalities
Dn+l = - nDn + (n + l)Dn_] nszl (2-29)
and
n+l
Cn+l ARy Dn+1{w0 * lpn+1 - ZY}
— - n —-—
= nc, + 4 D% fu 4 v, - 20}
n-1
+ (n + I)Cn__l +3¢=-1D (n + l)Dn_]{w] + q;n - 2y} n >l
aoeses (2=30)

By using the starting values (2-25), (2-26), (2-27) and (2-28) for CO, DO’ C],

D1 in (2-29) and (2-30) we get

c = (- ™ (2-31)



and

. 2 -
D = = . (2-32)

The formula (2-20) for Sn(a) therefore takes the final form

_ 2n—1n! nf2 . n+1
5 () = ok {F @) + i@ (@) + (- 1) In(oz))} : (2-33)

The functions Fn(a) and Gn(oz) of formula (2-2), which are real for real
positive a are obtained from (2-33), by using the formulae (2-11), (2-12), (2-13)
and (2~14) for In(oz), Kn(oc), Ko(oc) and Ln(oz) » in the forms

n-]

2n-1 2r
= 2 _~n! _pra-r-n!{
F_(a) oY Z - 1) = (2)

r=0

(- D™ o a .
+ ————-———(zn)! o [log (-5) + ‘Y]ln(a)

n
* -((-5;1-)1%- a*™k_(o) nzl , (2-34)
Fola) = - [log & Y]iom) + k(o) (2-35)
and
2n-2 n+l
- (- R 2 D™ 7 o, )

Gn(oc) = (- 1) Gmy 'rrocln(oc) + o | 3 o 1n(u) nzo (2-36)

For later use we note that
in(O) = 1 nz0 (2-37)
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and
k(0 = vy
n+l
S N S S (2-38)
(o + 1) p) P n z 0 o
p=l
We may deduce from the definitions (2-1) and (2-4) of Sn(u) for
n=0,1, 2,3, ... the following asymptotic expansions for Fn(a) and Gn(a)
of formula (2-2) for large real positive o . With the integer p 2 0 arbitrary
we get
P = 2ol nge -’I-{F () + =5 (o) > 0 (2-39)
n (2n) ! 2o U'n,p ™ T P “nyp "z
and
- -1 .
¢ () = 3 an’p(oc) + " Sn,p(a)g nz0 , (2-40)
where Fn,O(u) = ] s (2-41)
P T
1 2 2
F () = 1+ e 4n” - (25~ 1) p > 1 (2-42)
feP r! (8a)®
- s=1
and
: @2r)! al ) !
' ! 2r) - 1
6 (a) = £)_n.ifn * >0 . 2-43
n,p L 22rr! 2n) ! (n + v)! OL2r P ( )

The remainder functions 6n p(a), € p(u), for any p 2 0 have the behaviour
b b

Gngp(a) = o(l) (2-44)
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and

€ (@) = o(l) for a >+ o , k2-45)

The asymptotic expansions (2-39) and (2-40) for Fn(u) and Gn(a)
respectively may be deduced also quite easily from the differential equation (2-6)
provided that we use the knowledge that Fn(a) + 0 and Gn(a) -+ 0 as real
o >+ o , This latter knowledge is obtained from the integral representations
(2-1) and (2-4).

The power series (2-15), (2-16) and (2-17) for in(a) . kn(a) and zn(a)
respectively have to be truncated at finite values of r in order to be able to
evaluate from them numerical wvalues of the functions in(a) N kn(a) and Qn(a) s
and these finite values of r will depend upon the accuracy to which the
numerical values of these functions are required and on the value of o under con-
sideration. If we work numerically to a given number of significant figures, the
accuracy with which we can evaluate the sums of the truncated series will decrease
as real o increases. Thus, although these power series expansions are conver-
gent for any finite value of |a| , they cannot be used to give accurate numerical
values of the functions in(a) » kn(a) and ln(a) when real o becomes
indefinitely large if we are limited in the number of significant figures used in
the arithmetical operations. When working with a given number of significant
figures there is a maximum value of real o , for each n , for which formulae
(2-34) and (2-35), with in(a) and kn(a) obtained from the power series
expansions (2-15) and (2-16) respectively, can be used to obtain Fn(a) to within
some prescribed e > 0 . Similarly there is a maximum value of real a , for
each n , for which formula (2-36), with in(a) and zn(a) obtained from the
power series expansions (2-15) and (2-17) respectively, can be used to obtain
Gn(a) to within the accuracy ¢ . The smaller real o is, the fewer terms, in
general, will be needed in the truncations of the power series expansions (2-15),
(2-16) and (2-17) for in(u) ’ kn(a) and ln(a) to obtain Fn(a) and Gn(a)
from formulae (2-34), (2-35) and (2-36) to within the accuracy e .

For very large values of real o we can use the asymptotic formulae (2-39)
and (2-40) to evaluate the numerical values of Fn(a) and Gn(a) . Because of
formula (2-39) we can, for given € >0 , and given n and p , find

ul(n,p,a) > 0 such that



12

_2%a! 1n -q ’n
Fn(a) oY o e o Fn’p(u) < g (2-46)
whenever
o > al(n,p,e) . (2-47)

If we take a](n,p,e) for fixed n, p and e to be the minimum quantity for
which (2-46) is true under the condition (2-47), then al(n,p,e) for fixed n

and e decreases, in general, as p is increased from zero up to a certain

value of p and then increases as p 1is increased beyond this certain value.

The minimum value of ul(n,p,e) for fixed n and e , and all values of p , is
then the minimum value of o for which Fn(m) may be obtained to within accuracy
e from formula (2-39). This accuracy may be somewhat reduced if we work
numerically to a given number of significant figures. The higher o is, beyond
the minimum value, the smaller will the value of p need to be, in general, for
(2-46) to be true.

Likewise, because of formula (2-40) we can, for given € > 0 , and given n

and p , find az(n,p,s) > 0 such that

1
Culad + 5 G ()] <e (2-48)
whenever

a > 0y(n,p,e) . (2-49)

ain, there is a minimum value of o for which G _(a) , for each n , may be
a y

obtained to within accuracy € from formula (2-40).

The maximum values of real o for which Fn(a) and Gn(u) can be
evaluated to the given accuracy from formulae (2-34), (2-35) and (2-36) with
in(u) s kn(a) and Zn(a) obtained from the power series expanéions (2-15),
(2-16) and (2-17) respectively, depend strongly on the number of significant
figures used in the arithmetic, whereas the minimum values of o for which
Fn(a) and Gn(a) can be evaluated to the given accuracy from formulae (2-39)

and (2-40) are hardly dependent on the number of significant figures used in the
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arithmetic, provided that this number is greater than the number of significant
figures required in the numgrical values of the functions, The functions Fn(u)
and Gn(a) cannot be evaluated to the given accuracy e , for all o in (0,®),
using formulae (2~34), (2-35), (2-36), (2-39) and (2-40) as described above, if
the number of significant figures used in the arithmetic is not sufficiently
high. In other words, if we work to a given number of significant figures, then
€ must be greater than a certain lower bound in order that Fn(a) and’ Gn(a)
may be evaluated in the above manner to the given accuracy e for all o in
(0,*). If e 1is less than this lower bound then some other means of evaluating
the functions Fn(a) and Gn(a) must be used, at least over the ranges of a

for which the above method does not yield the required accuracy e .

We shall expand the functions Fn(a) and Gn(a) for real o > 0 in
series of Chebyshev polynomials rather than in powetr series. Although e will
still have to be greater than a certain lower bound in order that Fn(a) and
Gn(u) may be evaluated to the given accuracy € , this lower bound should be
less than the former lower bound, thus rendering the procedure involving expan-—
sion of functions in series of Chebyshev polynomials of wider application than
that involving expansion of functions in power series. It may be true that with
the number of significant figures available on a particular computing machine,
functions may be evaluated to a sufficient accuracy for some appiications from
power series, but it would seem to be good practice to use another procedure

which is capable of giving superior accuracy and is no more difficult to apply.

The power series (2-15), (2-16) and (2-17) for in(a) . kn(a) and zn(a)
are valid for all complex values of o and the asymptotic expansions (2-39) and
(2~40) are also valid for complex values of o . On the other hand, the series
of Chebyshev polynomials are valid only for real o . Accordingly we consider
the differential equation (2-6) only for real o and split it up into its
separate real and imaginary parts using (2-2) for real o 2 0 to get the two

real differential equations

dZFn(oz) aF_(a)
o —_AT" - Fn(Ol) - (2n - ]) —-—-d-&--— = 0 (2"50)
[s4

and
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2
d Gn(a)
o
do

We wish to evaluate Fn(u)

0 <a<», We split the range

oz %@

o

dGn(u)

- (2n - 1) i

]
—

and Gn(a) for real o in the range

at o = A and use different methods of

evaluations for 0 <o € A and for A< a < = ,

3 THE CHEBYSHEV POLYNOMIALS

The Chebyshev polynomials Tp(z) are polynomials in =z of degree p

defined by the formula

TP(Z)

The properties of Tp(z) which we need for our development are easily

cos (p cos—lz) P

deduced from the definition (3-1) and are as follows:

TP(+ 1)
Tp(- 1)
TZP(Z)
Ty(2)
zTO(z)

zTP(z)

TO(Z)

T, (2)

1]

1 pz20

(- »HP pz0
2

T (22" - 1) p=0

p

1

T,(2)

%Tp—l(z) + %TP"'](Z)
Té(z)
Ti(Z)

4T, (2)

W
[

(2-51)

(3-1)

(3-2)
(3-3)
(3-4)
(3-5)
(3-6)
(3-7)

(3-8)

(3-9

(3-10) -
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and

T () T (2)
_ p+! - p-1
B R A

pF1 . (3-11)

The dash on the function T;(z) indicates differentiation of Tp(z) with

respect to z .

4 EXPANSION OF A FUNCTION IN A SERIES OF CHEBYSHEV POLYNOMIALS

If £(z) 1s an even function of 2z defined for z real in the range

-1 £ z £ 1 then we can express f(z) as a convergent series of Chebyshev

polynomials

oy

(D - ) 51,0 (41
=0

provided £(z) satisfies some simple conditions, such as that it is continuous
and of bounded variation for z in (-1,1). The dash on the summation sign in
(4-1) indicates that the r = 0 term must be multiplied by } before being

inserted into the series.

By using the properties (3-6) and (3-7) of the Chebyshev polynomials Tr(z)
We can easily show that

28(z) = & Z (Fepopy * 26, + £, 0T, (2) . (4-2)

r=0

By using the properties (3-6), (3-7), (3-8), (3-9), (3-10) and (3-11) of
the Chebyshev polynomials Tr(z) we can easily show that

[

£1(z) = zz £V, (2) (4-3)
r=0
1)

where the coefficients fi are related to the coefficients fr by means of

the formulae
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- b
fr = ——S—r'*'——— ‘1' > 1 (4"4)
By differentiating formula (4-3) with respect to z we get
~N
e a N L
" _
£z = j{: fr TZr(z) Tz EE'ZE: fr TZr(z)
=0 =0
> 2 VL
- _EE: £V1, (2) + 2 ZE: £21, (2) (4-5)
r=0 r=0

where the coefficients £ are related to the coefficients fil) by means of

the formulae

(2) (2)
S R S
r 8r

rz1l . (4-6)
Then, on using formulation (4-2) for the second term on the right-hand side of

(4-5) we get

[ -]

f'(z) = ZE: {fil) + %é1§53|+ 2f§2) + fiﬁ{)}TZr(Z) . (4=7)

r=0

The infinite series on the right-hand side of formula (4~1) must be
truncated to a finite series in order to carry out a numerical evaluation of the
function £(z) . There will then be a small error in the evaluated numerical
value, but by taking the number of terms retained in the truncated series to be
sufficiently high this error can be made as small as we like. The numerical
evaluation of the truncated series is easily and conveniently capried out by

using the scheme described by Clenshawz. Let

v
3
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p 1]
) = ) LT, G
=0
p ]
= frTr(x) (4-8)
r=
2
where x = 2z" -1 . (4-9)
Then Clenshaw's scheme is to put
bp+2 =0
(4-10)
bp+] =0
bp—r = 2x:bp_r+1 - bp—r+2 + fp—r’ r = 0,1,2,...,p . (4-11)
Then
£(z,) = by = by) (4-12)
as may be shown by application of properties (3-5), (3-6) and (3-7) of the
Chebyshev polynomials Tr(z)
If g(z) is a function of z defined for z real in the range
-1 § z< 1 then we can express g(z) as a convergent series of Chebyshev
polynomials
oo'
g(z) = Z g,T,(2) (4-13)

r=0

provided g(z) satisfies some simple conditions, such as, that it is continuous

and of bounded variation for =z in (-1,1).

By using the properties (3-6) and (3-7) of the Chebyshev polynomials Tr(z)

we can easily show that
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[

zg(z) = %—:E: (glr_1| * 84107 (2) (4-14)
r=
and
2 1
z°g(z) = '% ZE: (g[r—Zl * 28, * g )T () . (4-15)
=0

By using the properties (3-6), (3-7), (3-8), (3-9), (3-10) and (3-11) of
the Chebyshev polynomials Tr(z) we can easily show that

[+ ]

]
' _ (1 -
g'(2) = Z g, T.(2) (4~16)
=0
and
WD)
" — -—
g'(z) = j{: g, Tr(z) (4-17)
r=0
where the coefficients gil) are related to the coefficients g, by means of
the formulae
(1) _ (D
Br-1 Er+l
8, = — r » | (4-18)
and the coefficients giz) are related to the coefficients gil) by means of

the formulae

(2) (2)
(n Br-1 7 Byyg
& R

5T r 2z 1 . (4-19)



[N P

19

The numerical evaluation of a truncated series of Chebyshev polynomials for

g(z) 1is carried out by the method of Clenshaw in exactly the same way as des-

cribed earlier for f£(z,p).

5 EXPANSTION OF Fn(a) for 0 <as A

We introduce the variable 2z by means of the formula

(5-1)

3]
l

>

The range 0 < a A of o corresponds to the range 0 <z s 1 of =z .

In conformity with the expressions (2-34) for Fn(a) » n 21 and (2-35)

for Fo(u) we put

-1, B 2r
F (a) = 2(2 )1." z (- pF 2z r o D} (%)
r=
_ 1yntl
+ izzi%T__ azn{ﬁn(z) log (z) - pn(z)} n>1 (5-2)
and
Fo@ = = {ig( log () - po(2)} (5-3)

where the jn(z) and pn(z) » N 20 are even functions of z.
If we substitute for Fn(a) from (5-2) or (5-3) into the differential

equation (2-50) we get, after simplification, the equation

(2n + 1)

- jé(z) - Azjn(z)} log z

ZZ{j;(z) +

- ZZ{P;(Z) + Q—n—g——ll p;(z) - Azpn(z)}

+ szé(z) + 2njn(z) -2n = 0 . (5=4)

Since equation (5-4) is valid for all 2z in (0,1) we must have
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inz + 282D 516 - a3 () = 0 (5-5)
and
2{pha) + Bl gy - A% (- 2250(2) - i @+ = 0 . (56)
We know, from (2-34), (2-35), (5-2) and (5-3) that
§p@ = 1 (5-7)
and
n+l
P(0) = ‘Y‘“%%)“mﬁ*%Z% ~ (5-8)
p=1

The conditions (5-7) and (5-8) are sufficient to ensure that the even functions
jn(z) and pn(z) that satisfy the pair of differential equations (5-5) and (5-6)
are unique. We shall seek approximations to the functions jn(z) and pn(z)

which are also even functions of 2z .

We denote the approximation to jn(z) by jéa)(z) and express it as the

series of Chebyshev polynomials

IO Z CTyr(2) (5-9)

where C = 0 r>M + 3 (5~10)

and M) is some positive integer. This approximation will be taken to satisfy
a differential equation which is a slight modification of the differential
equation (5-5). The precise form of this modified differential equation will

appear later, equation (5-30),

We can write the first and second derivatives of jéa)(z) with respect to

z 1n the forms



-4}

2@ = P

r=0
and
i 1
.(a)" _ (1 (2) (2) , (2
i (z) = c.~ + 1 C(r—l) + ZCr + Cr+1 TZr(z)
r=0
where
D o o 3 M o+ 2
r 1
C(z) = 0 r2>2M + 1
r 1
(n _ (D
C = Cr‘l Cr+1 r >l
T 8r
and
2) _ (2
C(1) Cr-l Cr+1 s 1
r 8r “
By using the expansions (5-9), (5-11) and (5-12) for jia)(z) R
. 1t
and jéa) (z) respectively we get

i@ Znr D @7, 328,

_ UYL @
- Z{%(Clr-ll

r=0

+ 20(2)
r

21

(5-11)

(5-12)

(5-13)

(5-14)

(5-15)

(5-16)

i@

+ cif%) + 2(n + 1)c§1) - Azcr}TZr(z)
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Let us put
(2) (2) (2) )y _ .2 = -
, ,{(C|r._1|+2Cr +Cyi) * 2+ Do ATC 0 0srsM -1
..... . (5-18)
Then the differential equation (5-~17) becomes
.(a)" 2n + 1) . ! 2,
7@ + B2 1) @7y 2@ ()
_ @ (2) (1 _ 2
4(ch _p] * 20y ) + 2(n+ 1)Cy ATCy $T, (2)
1 1 1 1 1
(2) (1 _ ,2 '
+ %CM + 2(n + l)CM ACy 10 Ton +2(z)
1 1+1 1 1
- A% T (z) (5-19)
M +2°2M 4 5
If we use (5-16) to express Cé%% in terms of Cil) and Ciiz for
r 21 in relations (5-18) we get the equivalent relations
(2) (2) (1) _ .2 - - -
%6%: + Cr+l + 2(r + n + l)Cr A Cr = 0 Ogrs M] 1 (5-20)

which are a little more convenient to use than are the relations (5-18). The

relation (5-20) for r = 0 1is exactly the same as relation (5-18) for r =0 .
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We now proceed as follows:

Put 1(423-1 = 0
from (5~15) determine (]) = 8M, + 2)
: M1+1 1 CM1+2
from (5-16) determine C(z) (1)
M, = 8(M1 + 1)C
M]+1
from (5-15) determine ¢ o g, 4 1)
M] 1 cM1+1
" """ ]
, }
| p = 1(HM
!
' ‘ (2) (D (2)
! from (5-16) determine CMI‘P = 8(M1 -p+ l)C M,-p+l + CM]_p+2
i
I from (5-15) determine C(l) = 8(M, - p + 1)C + C(l)
[ Ml—p 1 Ml-p+1 M]-p+2
§
1
y from (5-20) determine CM - = *15 { (21 (21 +1
1P oa” (M7P My7p
' {
'
- + 40, +n—p+])C(]) .
] -p
ceenes (5-21)
(D (2) 1y .(2) (1)
In this way we obtain in turn CM1+1’ M] s CM1 R CMl 1° CM] 1 CM -1°
2 1 2 1 2 . . .
C( )2, Célzz, CMI-Z’ ey C( ) C§ ), Cl’ Cé ), Cél), CO’ as linear combinations
of C

, C s C
M] M1+1 Ml+2 .

A solution jéa)(z) of the differential equation (5-19) is therefore

. (a)

known in terms of C

M. CM +1° CMl+2 . The function J (z) so obtained is

1 1

arbitrary insofar as the coefficients C, , C

M C are arbitrary.

3
1 M]+l M1+2



Because of the condition (5-7) we shall impose the condition
- (a) =
i, o)y =1 . (5~22)

By using the formula (5-9) for jéa)(z) we get

M1+2
1 =
j{: CrTZr(O)
' r=0
M1+2
Y e
r=0
M1+2
= j{: - b . (5-23)
r=0
F la (5-2 i i i i
ormula (5-23) is a linear relation connecting CMI, CM1+1’ CM1+2 from
which i
ch we can express CMl in terms of CM1+1 and CM1+2 .

The coefficients Cv +1° Cy 4o are still arbitrary. We can choose them as
1 1

(a) " (a)""
we wish and we could choose them so that jn (0) and jn (0) have imposed
values. However, we prefer to choose these coefficients so that the right-hand
side of the differential equation (5-19) reduces as much as possible. This is

achieved by taking

Cysp = O (5-24)

and

CM]+2 = 0 . (5-25)

It then follows (5-15) and (5-16) that

(n
a -
CM +1 0 (3-27)

1

-
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{2 - ¢ (5-28)
(5-29)

The conditions (5-24), (5-25), (5~26), (5-27), (5-28) and (5-29) extend the
conditions (5-10), (5-13) and (5-14).

We can now determine uniquely all the coefficients C. in the definition
(5~9) of the function J( )(z) . The differential equation (5-19) satisfied by
(a)(

z)

reduces to

(a)"(z) + (2n + ]) (a)'

Z

(z) - A2 éa)(z) - - Asz]T2M1<z) . (5-30)

The differential equation (5-30) is a slight modification of the differential

equation (5-5) if A2CM is a very small number compared with unity and if this
i

. . .(a . .
18 so then the function Jé )(z) can be expected to be a good approximation to

jn(z) . The quality of the approximation depends on the smallness of the number
A"Cy . It is found, in practice, that this number rapidly decreases as the

1
positive integer M; is increased.

We shall take the approximation péa)(z) to p(z) to be given by the

formula
2 @@ = @+ 3@ (5-31)

where qéa)(z) is any even function of z that satisfies the differential

equation

zzgqﬁa)"(” + 221D - %P0 >%

- ZZJ(a)'(Z) - 2nj§a)(z) +2n = 0 (5-32)

and the number XA is chosen to satisfy
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Then
quéa)(z) - 71? z (qlr-I[ * qu * c1r+1)T2r(z) (5-42)
r=0
SCRCIEE DY CRNPERRPH He
r=0
and

2"

1
)=
Mg

2+ + B

1 N @ (2) (2) 2 . @
+ T z (qlr_zl + 4q| l + 6qr + 4qr+] + qr+2>T2r|z|

From (5-11) we get
(a)" } IE, (1) 1y . (0 _
Z_]na (z) = Z (Clr_ll + 2Cr + Cr+])T2r(Z) . (5-45)

r=0

By using the expan51ons (5-42), (5-43) and (5-44) for =z q( )(z) s

r<1a) (z) and =z q(a) (z) respectively and the expansions (5-9) and (5-45) for
jr(la)(z) and er(1) (z) respectively we get
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ZZ,qéa)"(z) + (2n + 1) q(a)'

z 19!

(z) - A q(a)(z)f - 22589 (o) - 203{# (2) + 2

<]

' (2) (2) 2 2 2
- Z {f%(qlr-ﬂ * 4q| 1| 7 6a, 4 4q§_+3 * 1(:+)2)
r=0

+ 4(n + ”(qﬂ")ﬂ + Zq( ) . (iz) - }*Az(qlr-ll +2q, + qu)

- %(Cl(i”)'ll + ch,l) + ciﬂ) - 2nCr}T2r(z)

+ 2nT0(z) . (5-46)

Let us put

Y (3qé2) + 4qi? q§2)> uEIC 1)( % q§ )) - %Acho *qp)

%(C(()]) + C](I)) ~nCy+2n = 0 (5-47)

and

L (“li)?-l R ORI <2))

T+l ry2
+ l(n + 1)( (]) qil) + qéi)]) - ;'I-AZGI__] + 2qr + qr+])
_ ((”1 +2c{D 4 CIE'}')]> mC, = 0 l<rsM, (5-48)

Then the differential equation (5-46) reduces to the differential equation (5-32).

If we multiply the rth equation in (5-48) by (- ])r+l and sum the result-

ing M, equations we get

;13(3qé x 4q(2) * q§2)> + j(n + l)(qé]) * qgl)> %.A?'(q0 *q)

M,

- %(cé‘) + c}”) + 2n Z - D%, =0 . (5-49)

r=1

?
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Now, according to (5-23), together with the equalities (5-24) and (5-25),
we have

[
—
i
ot
(@]

0 (5-50)

M,

r
Z -1 C,
r=1

M,

If we substitute for j{: (- l)rCr from (5-50) into (5-49) we recover the
r=1
relation (5~47). The relation (5-47) is thus shown to be linearly dependent on

the relations (5-48) and consequently is redundant. The reason for this linear
dependence is connected with the fact that the differential equation (5-32) may
be divided through by 22 and the limit =z - 0 taken without any infinities

occurring.

(D

r—1

(2) (2)
-2 T
(1)

T+1
(5-48) we get the equivalent relations

If we use (5-41) to express

(2)

and to express q [, in terms of ¢

in terms of ¢

(2)

r

and q for r > 2

and ¢ for r > 1 in relations

6 1 ® ¢ 4@) + ke 9+ o 10+ 4 - 00

2 (D (D (D
-1 -l - =
ah (;r-l * qu * qr+1> 2(:Cr—l * 2Cr * Cr+] anr 0

1gr< M] (5-51)

which are a little more convenient to use than are the relations (5-48).

We now proceed as follows:
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s an ze e

Put

put

put

put

put

<t wm = =

(2)
qM1+]

n .

Iy +1

(N (2)

8(M1 -p+ ])qM]_P+] + qu_p+2

- (1)
8(M; - p + l)qM]_p+1 + qMI_P+2

- Zqu—p+l " O, -pe2

P L@ L, L @

AZ qM]--p qu]—pH * qu-p+2

_ (D (1)
+ 2(M1+ n-p +1)qM]_p +4(n+ l)qu_p+1

- — n _aa(D)
.'Z(M1 n p-i-])qM]_p_'_2 ZCMl_p

-4 e _g . |
ACM] -p+1 2C'Ml -pt2 8ncM-p+ 1

f‘..*zit
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1 2 2 2
In this way we obtain in turn q( )1, qé Zl’ Gy =12 qé 12, qé 12, qé 22,
1 1 1

1
ceaseay qu), qf]), 9 qéz), q?l), q; - Thus all the coeff1c1ents q, in the

definition (5-34) of the function q(a)(z) have been obtained and the resulting

(a) (z)

satisfies the differential equation (5-32).

The function péa)(z) defined by formula (5-~31) then satisfies the

differential equation

2 Plga)"(z) " 2n + 1 pr(la)'(z) - Azpr(la)(z)

4

- ZZJ(a)'(z) éa)(z) +2n = =~ AAZCM zzT2M

1 1

(z) (5-53)

which is obtained by combining the differential equations (5-32) and (5-30).

The differential equation (5-53) is a slight modification of the differen-

tial equation (5-6) if A CM and AAZC are very small numbers compared with
l

unity and if this is so then the function p( )(z) can be expected to be a good
approximation to pn(z) . It is found, in practice, that these numbers rapidly

decrease as the positive integer M] is increased.

We may write

[« 2]

pP () = Z p.T, () (5-54)
r=0

where, according to (5-31), (5-9) and (5-34)

P, = 4 + XCr r=0,1, 2, ... M1
P, = 0 r 3z M1 + 1 (5-55)
Let us now put
(0) -
p, (2) = p (2) (5-56)

and for n 2 1 , put
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42,2
(k) _ (k=1) -
Pp  (2) L1 T In - 2k + 2)(2n s s U SR € k=1,2, » B
cene. (5-57)
_ 1
where ZO = '-(—2-;1——:—1—)— (5-58)
and
z. = 2k A K=1,2, ... . (5-59)

k (2n - 2k - 1) “k~-1

Then we may replace the expressions (5-2) and (5-3) for Fn(a) by the
expression
n-+1

P = pM )+ S (o) log() mz0 . (5760)

We can use the recurrence relations (5-57) and (5-59) to obtain an

approximation p( ’a>(z) to p(n)(z) from the approximation p( )(z) to p, (z) .

We use the formula (4-2) successively to get finally the expression p(n a)(z)
in the form
(n,a) -
n’ — —
p, ~ (2) :E: d T, (2) (5-61)
r=0
where dr = 0 r: M1 +n . (5-62)

We may therefore finally write an approximation Féa)(m) to Fn(a) in the

form
Ml*f M,
(a) - o _ yn+l u
0 - Tl o Y el )
r=0 r=0

for O <ag A . (5-63)

The function Fn(a) may be written in the form
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=] [}

' 2n '
F (@) = Z Din) (A)Tzr(%> + (- 1o Y%EY" z cff‘) (A)Tzr(%) log (%)

=0 r=0

for 0 <a g A . (5-64)

The coefficients d_ for low values of r are approximations to the
coefficients Din)(A) and the coefficients Cr for low values of r are
approximations to the coefficients Cin)(A) . The value of the integer M1 mus t
be taken large enough for these approximations to be so good that Fo(a) can be
evaluated to the desired accuracy from formula (5-63). Values of Dgﬂ(A) and
Cin)A obtained by this means are given for A = 2, 4 and 8 and n=0,1, 2

in the results section 9.

6 EXPANSION OF Gn(a) FOR 0 sa< A

Again we introduce the variable z by means of the formula

(6-1)

>le

Then the range 0 < a < A of o corresponds to the range 0 g zg 1 of =z .

In conformity with the expression (2-36) for Gn(a) we put

n+l

= (- 1) T 2n, _
Cu(@) = o () + S 2 0™ (o) (6-2)
where the hn(z) and jn(z), n > 0, are even functions of 2z . The functions

J_(z), n 2 0, are the same functions that occur in formulae (5-2) and (5-3).
n

If we substitute for Gn(a) from (6-2) into the differential equation (2-51)

we get, after simplification, the equation

2%h!(z) - (2n - 3)zh! (2) - {(Zn 1)+ Azzz}hn(z)

. (22]§n+1 lr_Azn_lzer.lij;(z) + (z_n_;_l_z. jn(z) - Azjn(z)z = 1 . (6=3)
n)! 2

On separating even and odd functions of =z in the differential equation

(6~3) we find that hn(z) and jn(z) satisfy the separate differential equations
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2h"(2) = (2n - 3)zh’(2) - {(Zn 1)+ Azzz}hn(z) =1 (6-4)
and
. 2n + 1) . 2.
itz + D 51y % ) = 0 . (6-5)
Equation (6-5) is exactly the same as equation (5-5) and has the same
solution.

We shall seek an approximation héa)(z) to hn(z) in the form of a

series of Chebyshev polynomials

0

hr(la)(z) - Zer'rzr(z) (6-6)

r=

where e, = 0 r2 M2 + 6 (6-7)
and M2 is some positive integer. This approximation will be taken to satisfy
a differential equation which is a slight modification of the differential
equation (6-4). The precise form of this modified differential equation will

appear later, equation (6-36).

We can write the first and second derivatives of héa)(z) with respect to

z 1in the forms

[« 2]

héa)'(z) = z j{: eil)Tzr(z) (6-8)
=0
and
@ - Y {egw D@ 2@ }Tzrw (6-9)
r=0
where eil) = 0 T 2 M2 + 5 (6-10)
e - o ra M, + 4 (6-11)

5.,

-
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(1) (1)
e = xl_ Crel r3l (6-12)

and
RONNE)

e(l) - r—l8r r+1 rx1 . (6-13)

By using the expansions (6—-6), (6-8) and (6-9) for h(a)( ), h(a) (z) and

(a)"(z) respectively we get
zzhéa)"(z) ~ (2n - 3)zh(a)(z) - {(zn - 1) + A } (a)<z) o
) Z {1_16 el(f’)-ZI * 46&31, + 6e1(_, )4 4e(ﬂ efj%
r=0

-i(n - 2)<jlr ll + Ze(l) + e(li - (2n - l)er
- %Azélr-l' + 2er + er+l>}T2r(z) - To(z) . (6-14)

Let us put

i6 Beéz) + 4e§2) + eézi> -i(n - 2)<%él) + e§]£> - i(2n - I)e0

- &Az(eo te) -1 =0 (6-15)
and
B(e(2y) + 4 + 6 1 D+ o B)) - hn - (D 4 26D 4 L)
- (2n - l)e - —A (e - 2er + er+1) = 0 l1srsg M2 . (6-16)

Then the differential equation (6-14) becomes
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202" ) - 2n- 3D (2 - {(Zn- 1)+ A z} 08 (5 - 1

1’1
i15'<e(2) +4e(2)+6e(2) +4e (2) (2)) f(n~ 2)( (1)+2e(]) +e (])>

M2-1 M2 M2+1 M +2 M2+l M2+2

2
- (2n- De - 1A% (e, + 2e +e T (z)
M2+1 (M2 M2+] M2+2> 2M2+2
(2) (2) (2) (2) (n (n (n
* ( 1, +4‘°'M+1+69 2+2“‘E’M ) %(“"2)<M+1 eM+2 i, + 3)
2
- (2n- 1)eM2+2 -ia (eM2+l * 28M2+2+ eM2+3) T2M2+4(z)
L (2) (2) (2) _ _ (nH (1) (1)
* ;16( M2+1 + 4eM2+2 + bey +3) i(n-2) (eM2+2 *2e M2+3 +4)
2
~ (= Dey 437 4A <eM2+2 t 2oyt eM2+4) Tom,6(2)

@ DNy D) Lo (DN
+l“’ (eM2+2 41\/12+3) t(n 2)(eM2+3 eM+4) (2n ])eM2+4

2
- 1A +2 +e T (2)
C (eM2+3 "My +4 M2+5) 2M,+8
1 2
+ 476 e}i ) -i(n- 2)e15I 3_4 -(2n - ])eM2+5 -1iA (eM2+4+2eM2+5) Tou +10(z)
2
- 1a%e, T (2) (6-17)
e L P P A
If we use (6-13) to express eég)z in terms of e](:li and ei_z) for r 2 2
and to express (_'_% in terms of ef__}_% and e](sz) for r z 1 1in relations
(6-15) and (6-16) we get the equivalent relations
2 2 1 1 2
z(e(() ) v )) ~1@-2e{ - ya- e - fan-1)ey - 1a%(ey-e) -1 = 0 (6-18)
and
(2) 2) ,.@ (n (n (1
1 - -(n - -1
,,(er_] +2e e +4(r n+1)er_] (n Z)er i(c+n-1e o]
- (2n-1)e_-3A%(e__ *+2e_+e ) = 0 lsrsm, . (6-19)
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We now proceed as follows

from (6-12) determine eb(dlz-h = S(M2 + S)eM +5
2 2
. (2) €D
from (6~13) determine e = 8(M, + &e
: M2+3 2 M2+4
from (6-12) determine eél_)w = 8(M2 + A)eM +4
2 2
from (6-13) determine e}gziz = S(M2 + 3)e§11_)'_3'
2 2
. (N
from (6-12) determine e = B(M, + 3)
M2+2 2 eM2+3
. (2) ¢)
from (6-13) determine e = 8(M, + 2)
M +1 2 M, +2
. (1
from (6-12) determine = 8(M, + 2)e
eM2+1 2 M2+2
. (2) (N
from (6—-13) determine = 8(M, + 1e
eM2 2 M2+1
from (6-12) determine eél) = 8(M2 + l)eM +1
2 2
e o - ——
| |
= 1(1)M
: P (l) 2
]
. (2) Q)] (2)
\£ 6=13) determin = 8(M, - + 1 +
| rom ( ) determine eMZ_p ( 9 ~ P )eMz—pH eMz-p+2
1
. 1) (1)
from (6-12) determine e( = 8M, - p + Dey, _ + .
, My 2 M,-p+1 “M,mp+2
(£ 6-19) determine e = -2 -
| rom ( ) de M,=p eMz—p+1 eMZ---p+2
{
1 1Y (2) (2) (2)
+ —5de L+ 2en " + e
: AZ{MZ P M, p+1 M2 p+2
|
| o (N _ _ (D
\ | +2(M, —p - ¥ 2)eMz__p 4(n 2)eM2_p+1
i
t ' -2 (M, - + )(]) - 4(2n - e
' 2 p n eM ~p+2 M. -p+if .
i 1 2 2
- wm e e - « —— - - -—

ceees (6-20)
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(n (2) (1) (2) .

In this way we obtain in turn eM

+4° eM +3° eM +3° eM2+2’ M2+2’
(D (2) (1) () (1) (2) (1) (2)
2+]9 eM2 3 eMz 5 Mz_]s 19 e 2_1: e 2 -2 eMz -2 eMZ_zs seeoy el s

0) (2) (1 (0)
€

» €y sy "5 ey, as linear combinations of e

o e 2 2 2
M2+4 M2+5

(2) (2 (1) (1)

M. ° M. +1° SM_+2? eM2+3,

M. +1°
(D

When we substitute for ey s e, eg "o e/ Ty e and e so obtained

0 1

from the above procedure (6-20) into the relation (6-18) we get a linear relation

connecting eMz, eM2+1, eM2+2, eM2+3, eM2+4, eM2+5 from which we can express

eM2 in terms of eM2+1, eM2+2, eM2+3’ ey +4, e 45 ° A solution h(a)(z) of

2

the differential equation (6-17) is therefore known in terms of eM +1° S 42°

M2+3’ eM2+4 eM2+5 . The function h( )(z) S0 obtained is arbltrary ins

ofar

as the coefficients eM2+l’ eM2+2, ey +3° Oy +4° ©M 45 are arbitrary. We can
2 2

2

choose these coefficients as we wish and we shall choose them so that the right-

hand side of the differential equation (6~17) reduces as much as possible.

is achieved by taking

eM2+1 = 0
eM2+2 =0
eM2+3 = 0
eM2+4 =0
eM2+5 = 0

It then follows from (6-12) and (6-13) that

) _
eM2 = 0
(1)
M2+1 =0

eM +2

This

(6-21)

(6-22)

(6-23)

(6-24)

(6-25)

(6-26)

(6-27)

(6-28)

gf", :

N

P

[ AV
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31(4;13 =0 (6-29)
e§;14 - 0 (6-30)
eb(ézl = 0 (6-31)
eéz) = 0 (6-32)
81(4211 = 0 (6-33)
eéilz - 0 (6-34)
e§§13 -0 . (6-35)

The conditions (6-21) to (6-35) extend the conditions (6-7), (6-10) and (6-11).

We can now determine uniquely all the coefficients e in the definition
(6—-6) of the function hia)(z) . The differential equation (6-17) satisfied by

héa)(z) reduces to

0P () - (20 - AP (@) - {en - D+ 2P @) -

2
= - 1A T (Z) . (6_36)
4 ‘“’M2 2M,+2

The differential equation (6-36) is a slight modification of the differen-

tial equation (6-4) if A2eM2 is a small number compared with unity and if this

is so then the function héa)(z) can be expected to be a good approximation to
hn(z) . It is found, in practice, that this number rapidly decreases as the

positive integer M2 is increased.

We may therefore finally write an approximation Géa)(a) to Gn(a) in

the form
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M, M
(a) o a\ . (- D™l o h
- a - n a
G, " (a) o z erT2r<A)+ ST ® ch2r<A)
r= r=0
for 0 ag A . (6=-37)

The function Gn(a) may be written in the form

} " (n) (- D™x 2n VO
Gn(OI.) = a Z Ern (A)TZI‘(%) + —2—(-2-5—)"—“- i le,n) (A)TZr(%)
=0 =0
for 0 g o< A . (6-38)

The coefficients e for low values of r are approximations to the

coefficients Ein)(A). The value of the integer M, must be taken large enough

for these approximations to be so good and the value of the integer Ml s
discussed in section 5, must be taken large enough for the approximation Cr to

Cin)(A) to be so good that G (a) can be evaluated to the desired accuracy from
formula (6-37).

Values of Egn)(A) and an)(A) obtained by this means are given for

A=2,4and 8, and n =0, 1, 2 in the results section 9.

7 EXPANSION OF Fn(a) for Aga<w

We introduce the variable 2z by means of the formula

2A
= —— - ] » -
z 5 (7-1)
The range A § a <~ of a corresponds to the range -1 <z 1 of 2z .

Since we know the form of Fn(a) for large real positive o from the

asymptotic expansion (2-39) we can put
F () = e %" (2) (7-2)

where fn(z) is a function of bounded variation.

If we substitute for Fn(a) from (7-2) into the differential equation

(2-50), we get, after simplification, the equation

{‘?1 ot
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4z + l)zf;(z) +8(z + 1+ 2)E! (2) - (4n? - DE (2) = 0 . (7-3)

From the'asymptotic expansion (2-39) and the form (7-2) of the function

Fn(u) we get immediately

201 v

fn(- 1) = ToTAZ - (7-4)

We shall seek an approximation féa)(z) to £ (2) in the form of a series

of Chebyshev polynomials

[++]

fr(la) (z) = Z £T_(2) (7-5)
=0'
where fr = 0 r oz M3 + 4 (7-6)

and M, is some positive integer. This approximation will be taken to satisfy
a differential equation which is a slight modification of the differential
equation (7-3). The precise form of this modified differential equation will

appear later, equation (7-29),

We can write the first and second derivatives of féa)(z) with respect to

z 1in the forms

oo

£ ') = z £D1_(2) (7-7)
r=0
and
@", . _ N .2
£ (2) Z £ Tr(z) (7-8)
r=0
where f(l) = 0 r M, +3 (7-9)
T =73
(2) _ -
fr = 0 M3 + 2 (7-10)
(n (1)
£ - f
f o= Xzl ¥l rzl (7-11)

T 2r
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and

(2) (2)
£ - £
f(1) - -1 r+1 _—
T 2r

By using the expansions k7—5), (7-7) and (7-8) for féa)(z)’ fﬁa)'(z)

féa)"(z) respectively we get

sz + DD @ v 8+ 1+ 2wED @) - Gl - @ ()

o0

_ N @ (2) (2) 2 . (2
- ZE: ,(%Ir—2| ¥ 4flr--ll * 6fr * 4fr+l * fr+2>

r=0

+ 4(f|(2,| + 2+ 4l o f](:R) - @ - DT (2)
Let us put
(Efizzl + 4ff§21| +oe?) v ueD fﬁf;)

(1) (1 (DY _ 2 - -
+ 4(%|r—l| + (2 + 4A)fr + fr+l (4n l)fr = 0 0O<srgM 1

Then the differential equation (7-15) becomes

4(z + széa)"(z) +8(z+ 1 + 2A)f£a)'(z) - (4n? - l)féa)(z)

(2) (2) (2) (2)
£ + 4f + 6f + 4F
( M3-2 M3—l M3 M3+]>

Ty (z)

’ 4(%;3] + 20+ gy +f§«;31) - tn® - Dy 3

3

3

+

(%ézzl + 4g{)4 6fé2i1> + 4(fé1) v 201 + 2l w g (D) )

3 3 3 3 M3+1 M3+2
- 4n? - Dt T (z)
M +1{ M.+1
3 3
(2) (2) ) ( (1) (1) ) 2 .

+ £ + 4f + 4Qf + 2(1 + 2A)f - (4n" - 1)Ff T (2)

('M3 M3+1 M3+l M3+2 M3+2 M3+2

(2) (1) 2
+ | f + 4f - (4n° - DE T (z)

M3+1 M3+2 M3+3 M3+3

(7-12)

and

(7-13)

(7-15)

L S



If we use (7-12) to express f§32 in
rs2, fﬁ% in terms of ff_l) and f](:_a
fﬁlz and fﬁz) for r 2 0 and use (7-11)
and f(l) for r 21

r+l

(2) (2) (1 (D
8fr + 8fr+] + 8(r + 1 + 2A)fr + 4fr+1 +
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terms of f(]) and f(z) for
r-1 T
for r 21 and f(z) in terms of
r+2
to express f(l) in terms of f
r-1 r

in the relations (7-14) we get the equivalent relations

br(e + 1) - 42 - DYe = o0
{ fe,

OsrsMy -1 (7-16)
We now proceed as follows:
_ . (n
From (7-11) determine fM3+2 = 2(M3 + 3)fM3+3
- . (2 _ (1
from (7-12) determine fM3+1 = 2(M3 + 2)fM3+2
- . nH (1)
from (7-11) determine fM3+1 = 2(M3 + Z)fM3+2
from (7-12) determine féz) = 2(M§ + l)fél)
3 3*!
- . SO (1)
from (7-11) determine fM3 = 2(M3 + l)fM3+l + fM3+2
-— o e o v s am
o {
' P =. l(l)M3
! {
’ (2) (1) (2)
t from (7-~12) determine fM3_p = 2(M3 -p + ])fM3—p+1 + fM3_p+2
! _ . (n _ _ (n
'from (7-11) determine fM3‘P = 2(M3 p+ l)fM3—p+1 fM3—p+2
!
' 2 2 ()
' - : = -
‘ from (7-16) det?rmlne fM3_p 8fM3_P + SfM3—p+l + 8(M3 p+1+ 2A)fM3_p
! \
' ‘ + 4elD) {(4112- 1) = 4(M; - p)(M, - p + 1)}
'____‘_____! M3-p+1 3 3

ceeees (7-17)
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. . 1 2 1 2 1 2
In this way we obtain in turn f§312, f§311, f& 1]’ fé )’ fé )’ fé331’

3 3 3
1 2 1 2 1 2 1 .
fISI _)_], fM ~-1° fl\(l 229 fl\'(I 129 fM -2 °°°o f§ )3 f]( )9 fly f(() )9 f(() ), fO as linear
3 3 3 3 23
combinations of f £ £ f .
M3’ M3+1 ® M3+2 ? M3+3

A solution féa)(z) of the differential equation (7-15) is therefore known

. R (a) . .
in terms of fM3’ fM3+1’ fM3+2’ fM3+3 . The function fn (z) so obtained is

arbitrary insofar as the coefficients f £ £ £

s s s are arbitrary.
M3 M3+1 M3+2 M3+3

Because of the condition (7-4) we shall impose the condition

(a) 2Mn1
o (1) = (22”@ : (7-18)

By using the formula (7-5) for fia)(z) we get

. M3+3
2 n! «JF _ _
(Zn)TNZ ~ Z £T.0D
r=0
M3+3
- Z - DT . (7-19)
r=0
Formula (7-19) is a linear relation connecting fMB, fM3+1’ fM3+2’ fM3+3
from which we can express fM in terms of fM +1° fM +2 and fM +3
3 3 3 3
The coefficients fM3+1’ fM3+2’ fM3+3 are still arbitrary. We can choose

these coefficients as we wish and we shall choose them so that the right-hand

side of the differential equation (7-15) reduces as much as possible. This is

achieved by taking

fe1 = 0 . (7-20)
3
fMa4+p = O (7-21)
3
fM 3 = o . (7-22)

[N
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It then follows from (7-11) and (7-13) that

(1
£y ) 2 o (7-23)
3
(1)
A 0 (7-24)
3
e _
M3+2 = 0 (7-25)
£2) - g | (7-26)
Ms 1
2
fé ) - 0 (7=-27)
3
£€2)
M3+1 = 0 . (7-28)

The conditions (7-20) to (7-28) extend the conditioms (7-6), (7-9) and (7-10).

We can now determine uniquely all the coefficients fr in the definition
(7-5) of the function f( )(z) The differential equation (7-15) satisfied by

f(a)(z) reduces to

bz + DED"@ v 8+ 1+ 2w () - @a? - e ()

S V1€ BN 4, (1) - wn? - e (1. (2
g My-2 My= Ma( Mg
- {4M3(M3 +2) = (4n? - 1)}fM3TM3(z) : (7-29)

The differential equation (7-29) is a slight modification of the differen-—

tial equation (7-3) if {AMB(M3 + 2) - (4n2 - 1)}fM is a small number compared
3

with unity and if this is so then the function féa)(z) can be expected to be a
good approximation to fn(z) . It is found, in practice, that this number rapidly

decreases as the positive integer Mg is increased.

We may therefore finally write an approximation F

(a)(a) to F_(a) in

the form
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M,

a -a n—i 2A
FIE )(a) = e o °2 z frTr(-a— - 1) for Aga<o (7-30)
r=0

The function Fn(a) may be written in the form

co

Fn(a) = e_aun—% j{: Fin)(A)Tr(%§ - 1) for Aga<wo (7-31)

r=0

The coefficients £ for low values of r are approximations to the
coefficients Fin)(A) . The value of the integer M3 must be taken large enough
for these approximations to be so good that Fn(a) can be evaluated to the
desired accuracy from formula (7-30). Values of Fin)(A) obtained by this means

are given for A =2, 4 and 8 and n =0, 1, 2 in the results section 9.

8 EXPANSTON OF Gn(a) FOR A o<

We introduce the variable z by means of the formula

. (8-1)

The range A< o <« of a corresponds to the range 0 <z g 1 of z

Since we know the form of Gn(a) for large real positive a from the

asymptotic expansion (2~40) we can put

G (@) = g () (8-2)

where gn(z) is an even function of 2z which is of bounded variation.

If we substitute for Gn(a) from (8-2) into the differential equation

(2-51), we get, after simplification, the equation

zAg;(z) + (2n + 3)23g;(z) + %Zn + 1)22 - Az}gn(z) = A2 . (8-3)
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We shall seek an approximation gia)(z) to gn(z) in the form of a series

of Chebyshev polynomials

-]

g2 = j{: g T, (2) (8-4)

r=0

where g, = 0 r 2 M4 + 6 (8-5)
and M, is some positive integer. This approximation will be taken to satisfy a
differential equation which is a slight modification of the differential equation
(8-3). The precise form of this modified differential equation will appear

later, equation (8-33).

We can write the first and second derivatives of géa)(z) with respect to

z in the forms

==}

géa)'(z) = g :E: gil)Tzr(z) (8-6)
r=0
and
£ - ) {?il) e 452, + 28 + gﬁfi)}T2r<z> (&7
r=0
where gil) = 0 r > M4 + 5 (8-8)
g£2) = 0 r > M4 + 4 (8-9)
(N (1)
g .1~ 8
gr = r 18r r+l r>1 (8_10)
and
(2) (2)
5.1 8
gl = =l r>1 . (8-11)
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By using the expansions (8-4), (8-6) and (8~7) for gia)(z), géa)'(z) and
(a)"
(z)

0 respectively we get

g

ZAgéa)"(z) + (2n + 3)z3gia)'kz) + {(ZH + 1)22 - Az}géa)(z) - A

<«

) Z {514“ (8|(§Z3| ¥ 6g|(§Zz| * '58](]272” + 2007+ 15g(8) 4+ 652 gifg)

r=0
F30 D)+ e - o)
* i(2n + ]>(g|r—1| * 2gr * gr+l) - Azgr}TZr(z)
- ATy(2) . (8-12)
Let us put

é%QOgéz) + Ingz) + 6g(2) + ggza

‘3 - 2>(3gé )4 gD gé'))

) = 12 2

+ 1 (2n + ])(go + 1A gy = A (8-13)

and

gla(g(z) + 6g'( ) 2| * 15g(2) + ZOg]EZ) * 15g(2) + 6g(2) (2))

1 r+3

+ &(n + 2)<éfi12l + 4g(1) gl) + 4g 1, (1))

r+1 gr+2‘

2
+ 1(2n + 1)(gr_1 + Zgr + gr+1) - A g, = 0 lgrgM (8~14)

Then the differential equation (8~12) becomes

' B SO
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24 (a)"(z) + (20 + 3z g(a) (z) + {(Zn + 1)2% - Az}géa)(z) - 42

{2 o D 2 o, )

4 4 4 4

i D ) e, - sl )

+ 3 (2n + 1)(gM4 + ZgM4+1 + gM4+2) - A28M4+1}T2M4+2(z)
+ {‘ (DSIZ) + 6g(2) + 15g}ijil + 20g1512)2 + 15g§éi3>

i s eyl o)

+ $(2n + 1)(gM4+] + 2gM4+2 + gM4+3> - A28M4+2}T2M4+4(z)
+ {6—‘:, (g}ii) * 6g§123_1 " 15g§212 " 20g§213)

I 2)(“3}(4211 *4g nﬁliz * 633(4;}3 v 4e piiié)

, _ a2

G2 i, v on)

4 4
+ 3(n + 2) (gI‘(IZ}Z + 4g§[2_)'_3 + Gglsll.),.4>
4
£(2n + 1)(gM4+3 * ZgM4+£; * g1\44+5) - Ang4+4}T2M4+8(Z)
(2 - ) ¢ s e (el - i)

, _ a2
L(2n + 1)(gM4+4 * 2gM4+5> A 8M4+5}T2M4+10(Z)

1 1
+ {6—5 1512-)#-3 + 3(n + 2)g15143_4 + 1(2n + ])gM4+5}T2M4+]2(z) . (8-15)
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If we use (8-11) to express ﬁ%; in terms of g(l) and g(z) for r =z 3,

r-2 -1
2 1 2
gi_% in terms of gi_g and g( ) 42 1
(2) . (1

2) (2)

8, for r >0 and 8py3 1D terms of g 2 and g 4] for r > 0 and use
(1) (1) (1)
8r-2 r+2

for r 2 0 in the relations (8-~13) and (8~14) we

for rz 2, g(z) in terms of g(l) and

(8-10) to express

in terms of g.-; and = for r 20 and g

(1N

in terms of 8ry; and g

get the equivalent relations

%(;éz) + glz)) + }(2n + 3)g(1) 1(2n + ])g(])

+ i (2n + 1 - 2A2)g0 - Y (on - I)g1 = A2 (8-16)

and

He® + 26 + gP )4 j2n+3r 4 l)g(l) + 4(2n + 3)g(1)

r—1 r r+l
+ 4(2n - 3r + l)g( ) {(r - D@+ 1)+ {(2n + 1)}gr_] + {(2n + 1 - 2A2)gr
+ {(r + D(r =n) + {(2n + 1)}gr+l = 0 11k M4 . (8-17)

We now proceed as follows:

From (8-10) determine gélla = 8(M4'*5)3M4+5
from (8-11) determine géZZB = 8, +4)gé]14
from (8-10) determine géii3 = 8(M4 +4)8M4+4
from (8-11) determine géiiz = 8(M '*3)8é2i3
from (8-10) determine g&liz = 8(M4 +3)8M4+3 géi14
from (8-11) determine gézil = 8(M, 'fz)géliz gé213

4 4
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X gM3-p

from (8-10) determine g&ill = 8(M4+ 2)g}(423_2 + g}(dzl;3'3

from (8~11) determine gl(di) = 8(M4 + ‘)8»%;11 +g].sliz-2

from (8-10) determine g&l) = 8(M4 +l)gM +1 +gl\('113_2

o e e e e 4 4 4
5 }
I P = l(i)MB
|

|

' - i (2 . g, -p+ngl! 4 gl®
' from (8-11) determine gM4"P ( 4" P )ng’_p_'_l gM4_p+2
'
' from (8~10) determine (1) = 8(M, -p+1) + (1
| gMa"p 4 gM4-p+1 gMA-p+2
)
! - 1
¢ from (8-17) determine g, = ,
; ) Mj-p {4(M3—p)(M3+n-p+l)+(2n+ 1)}
]
, @), (2) (2)
|

- (1)
gM3-p+1+g‘M3—p+2 +(3MB+ZH 3P4'4)gM3—p

(D

(n _ -9 -
+ 2(2n-l-3)gM3_P+1 (3M; - 2n 3p+2)gM3-p+2

2
+ 2(2n +1 -2A )8M3_p+1

--—-.-——*

i
:
!

+ [4(M3- p+2)(My-n-p+1) + (2n+ 1)] 8M3_p+2

ceeness (8-18)

In this way we obtain, in turn, g§z14, géil3, géli3, géziz, géiiz, gézll,
1) (2 (1) _(2) 1) (2) (n 2 (M

B +1° By, o By, gMa—l’ B, -1 Buy-10 By -2 By -20 By 20 ccc0 By oo By By
(2 _(D

gy 8 » 8 as linear combinations of gM4, gM4+1, By +2° BM +3° gM4+4’

g 4 4
M4+5 .

Equation (8-16) has not been used in the procedure (8-18). When we

(2) (2)’ gél)’ gﬁl),

substitute for 8y ° 8 g9 and g » as obtained from the
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procedure (8-18), into the equation (8-16) we get a linear equation connecting

g g g 3
M4’ M4+]’ gM4+2’ gM4+3’ M4+4’ M4+5 .
By putting z = 0 in equation (8-3) we get

8, (0 = -1 . (8-19)

However, a solution of (8-3), satisfying the condition (8-19), and which is
finite for 0 & z & | , is not unique. We can get a unique solution by pre-

scribing the value gn(l) . Correspondingly we prescribe the value géa)(l) to
be

gy = 2P -0 (8-20)

(

where Gna)(A - 0) 1is obtained from the approximation Géa)(u) to Gn(a) in
0 ¢ o ¢« A which was derived in section 6. This prescription leads to a second

linear equation connecting gM4’ gM4+], gM4+2, gM4+3, gM4+4, gM4+5 . We can use

these two linear equations to express gy and 8 +1 in terms of &y +2° By 43
4 4 4 4

. (a) . . . . . _
gM4+4, gM4+5 . A solution g, (z) of the differential equation (8-15) satisfy

ing the prescribed value (8-20) is therefore known in terms of By 497 gM4+3,

. (a) . . . .
g . . The function g (z) so obtained is arbitrary insofar as the
M, +4° B, +5 n

coefficients B +2° &M,+3° 8y, +4° SM 45 Are arbitrary. We can choose these
4 4 4 4

coefficients as we wish and we shall choose them so that the right-hand side of
the differential equation (8-15) reduces as much as possible. This is achieved

by taking

BM +2 0 (8-21)
4

By 43 = 0 (8~22)
[}

Bt " 0 (8-23)

gMZ+5 = 0 . (8-24)

It then follows from (8-10) and (8-11) that



X ﬁ -

R b

53

gl = 0 (8-25)
4

8151212 =0 (8-26)

gb§13~3 = 0 (8-27)
4

3n(4]~)u4 =0 (8-28)
4

g2 = 0 (8-29)
4

gbizz-l =0 (8-30)
4

gb(dziz -0 (8-31)
4

gb(’IZ-)FB = 0 . (8~-32)

The conditions (8-21) to (8-32) extend the conditioms (8-5), (8-8) and (8-9).

We can now determine uniquely all the coefficients g, in the definition
(8-4) of the function g( )(z) . The differential equation (8-15) satisfied by

r(xa) (z) reduces to

n
= (2) +6 (2) )+ 3( +2)( (1) + 4 (1))
{ (gM4 27 28, i M,-1" "0,

2
+ %(2n+1)<g + 2¢g )-A T (z)
" B, ¢ gM4+1 2M, +2

(" (@) + (n+ 3% (2) + {<2n+1>z2-A2}gr(la)<Z> - A

+{5‘15, gl(éz] + 3(n +2>gb(4]) %(2n+1)gM4+1}T2M4+4(z)
{[M4(M4+n+ 1) + 1 (2n + ]):l gM4+ [(M4 + 1)(3M4+ 2n+4)+ 1(2n+1)

2
- A ]gM4+I}T2M4+2(Z)
{(M +1)(M +n +2) +1 (2n+1)}ngl oM +4(z) (8-33
4
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The differential equation (8-33) is a slight modification of the differen-
tial equation (8-3) if the numbers

[M4(M4+n+l) + },(2n+1)]gM4'+ [(M4+l)(3M4+2n+4) + i(2n+1) - %Az]gM ]

4

and

%M4 + ])(MZ +n+2)+ }(2n + 1)]gM4

are small compared with unity and if this is so then the function géa)(z) can
be expected to be a good approximation to gn(z) « It is found, in practice,

that these numbers rapidly decrease as the positive integer M4 is increased.

We may therefore finally write an approximation Géa)(a) to Gn(a) in

the form

M4+1

Gr(la) (0) = -}iz ngZr(%) for Aga<o . (8-34)

=0
The function Gn(a) may be written in the form

(<]

G (@) = —('; z Gi“) (A)Tzr(%) for Agsa<o . (8-35)
r=0

The coefficients &, for low values of r are approximations to the
coefficients Gin)(A) . The value of the integer M4 must be taken large enough
for these approximations to be so good that Gn(a) can be evaluated to the
desired accuracy from formula (8-34). Values of Gén)(A) obtained by this means

are given for A= 2, 4 and 8, and n =0, 1, 2 in the results section 9.

9 RESULTS

For real o 2> 0 the real functions Fn(u) and Gn(a) of o of formula

(2-2) are obtained from formula (2-33) in the forms

2701 n
T © Kn(d) (9-1)

F_ (a)

and

G _ 2! 1 n _ 130+l -
@ = T 7 ¢ \Lpled + (DT () (9-2)
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where In(u) and Kn(a) are modified Bessel functions of order n and of the

first and second kinds respectively and Ln(u} is a modified Struve functionz.

The functions Fn(a) and Gn(u) have the following expansions in terms

of Chebyshev polynomials.

]

. 2n = (n) o o
F () = Z p{™ (A)Tzr(%> + (- ™! T Z Cp (A)TZr(K) log (K)

=0 r=0

for 0 ag A , (9~-3)

o] [+

_ ' (n) o (- ])n+1 T 2n ' (n) o

Cple) = a j{: B, (A)TZr(K) * oyt 2 ° :E: Ce (A)TZr(X)

r=0 =0

for O g ag A, (9-4)
F () = e %0 Z F]En) (A)Tr(%"i - 1) for ASag® (9-5)
=0
and

Gn(u) = —;—L z Gr(_n) (A)TZr(%) for Agag o, (9-6)

=0

where A 1is any positive quantity which we call the demarcation value of a ,
and the dash ' on the summation sign ZE: indicates that the quantity under

the summation sign for r=0 is to be multiplied by } . The coefficients Din)(A),
c™w, MW, 7@ and 6™ (4) for r=0,1,2, ..., for agiven

value of A may be obtained by means of the procedures describes in sections 5,

6, 7 and 8, for any integer value n . Values of these coefficients when
A=2,4and 8, and n =20, 1 and 2 have been obtained by these procedures

and are given in the following tables. The FORTRAN program with double precision
arithmetic gave values of the coefficients accurate to at least four more decimal

places than are recorded in these tables.
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© (1 (2)
r C. (2) c. (2) c. (2)
0 3.20584561362 2.56703598796 2.36638439931
1 0.63880962565 0.29507864030 0.18885410329
2 0.03685485969 0.01179748536 0.00575527693
3 0.00098287813 0.00023976274 0.00009433753
4 0.00001498365 0.00000294783 0.00000097108
5 0.00000014738 0.00000002428 0.00000000687
6 0.00000000101 0.00000000014 0.00000000004
7 0.00000000001 0.00000000000 0.060000000000
8 0.00000000000
0 (1 )
. D, (2) D (2) D, (2)
0 -0.535327393234 1.52530022734 0.889508489353
1 0.344289899925 -0.35315596078 0.172359859474
2 0.035979936515 -0.12261118082 0.057430675574
3 0.001264615411 -0.00697572386 0.008193527247
4 0.000022862121 -0.00017302890 0.000321511780
5 0.000000253479 -0.00000243341 0.000006168057
6 0.000000001905 -0.00000002213 0.000000071010
7 0.000000000010 -0.00000000014 0.000000000548
8 0.000000000000 =0.00000000000 0.000000000003
9 0.000000000000
) (1) (2)
. 2.9 2) ALY )) E.%(2)
0 2.50156743335 -3.62686040785 0.090223522158
1 0.26062825773 -0.86466471676 0.434512274677
2 0.01004230874 -0.05265301734 0.058535673516
3 0.00020018002 ~0.00144057353 0.002521317931
4 0.00000243208 -0.00002228887 0.000053495433
5 0.00000001987 ~0.00000022136 0.000000676401
6 0.00000000012 -0.00000000153 0.000000005681
7 0.00000000000 -0.00000000001 0.000000000034
8 =0.00000000000 0

.0000600000000




3
r

(0)
F.o7(2)

(1
r @)

(2)
F 77 (2)

0 2.44030308207 2.72062619048 1.28419268187
1 -0.03144810131 0.10392373658 0.23331862013
2 0.00156988389 -0.00285781686 0.00872357116
3 ~-0.00012849550 0.00019521552 -0.00025006082
4 0.00001394981 -0.00001936198 0.00001789144
5 -0.00000183176 0.00000240648 -0.00000185219
6 0.00000027668 -0.00000035020 0.00000023919
7 ~0.00000004660 0.00000005741 -0.00000003601
8 0.00000000857 ~0.00000001035 0.00000000609
9 -0.00000000170 0.00000000202 -0.00000000113
10 0.00000000036 -0.00000000042 0.00000000023
11 -0.00000000008 0.00000000009 -0.00000000005
12 0.00000000002 -0.00000000002 0.00000000001
13 ~0.00000000000 0.00000000001 -0.00000000000
14 ~0.00000000000
(0) (1 (2)
r 6. (2) 6, (@) 6, * (2)
0 -2.13217869983 -2.09643364580 -1.91194596134
1 -0.03217700555 0.06792205958 0.20712837099
2 0.02984899218 0.07490609971 0.06895623846
3 -0.00705161897 -0.03908076633 ~0.06674389453
4 -0.00010761971 0.01103390443 0.03210856375
5 0.00129508722 0.00034669686 ~0.00915804519
6 -0.00097613324 -0.00316179696 -0.00117500739
7 0.00051428094 0.00284228294 0.00421227330
8 -0.00020387361 -0.00181382702 ~-0.00403407960
9 0.00004311030 0.00091914922 0.00285774540
10 0.00002305925 -0.00033807218 -0.00166055679
11 -0.00004040266 0.00002613941 0.00076578034
12 0.00003686071 0.00010760420 -0.00020527751
13 -0.00002691184 -0.00014111748 -0.00009181465
14 0.00001698007 0.00012704050 0.00021365013
15 ~-0.00000928372 -0.00009615367 -0.00023371869
16 0.00000411161 0.00006418149 0.00020355054
17 -0.00000102277 -0.00003775024 -0.00015514772
18 -0.00000058649 0.00001857381 0.00010612667
19 0.00000125217 —-0.00000605656 -0.00006467299
20 ~0.00000137570 -0.00000123882 0.00003337879
21 0.00000122726 0.00000484729 -0.00001187962
22 -0.00000097313 -0.00000608037 -0.00000149056
23 0.00000070620 0.00000593157 0.00000874946
24 -0.00000047169 -0.00000509017 -0.00001178025
25 0.00000028623 0.00000399734 0.00001212772
26 -0.00000015078 -0.00000291057 -0.00001095266
27 0.00000005886 0.00000196133 0.00000906510
28 -0.00000000137 -0.00000120062 -0.0000069893!
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0)
6" @)

(1)
G. 7 (2)

(2)
G.""(2)

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
b
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

-0.00000003078
0.00000004547
-0.00000004895
0.00000004585
=0.00000003941
0.00000003175
-0.00000002419
0.00000001743
~0.00000001178
0.00000000733
-0.00000000398
0.00000000159
0.00000000002
~0.00000000101
0.00000000155
-0.00000000177
0.00000000177
-0.00000000164
0.00000000144
~0.00000000121
0.00000000097
=0.00000000075
0.00000000056
-0.00000000039
0.00000000026
=0.00000000015
0.00000000008
-0.00000000002
-0.00000000002
0.00000000005
-0.00000000006
0.00000000007
~0.00000000007
0.00000000006
-0.00000000006
0.00000000005
~0.00000000004
0.00000000003
-0.00000000003
0.00000000002
~0.00000000002
0.00000000001
-0.00000000001
0.00000000000

0.00000063210
—-0.00000023477
-0.00000002259

0.00000017285
~0.00000024595

0.00000026685
-0.00000025507

0.00000022507
-0.00000018696

0.00000014741
~0.00000011046

0.00000007828
-=0.00000005172

0.00000003083
-0.00000001512

0.000000006391

0.00000000362
~0.00000000825

0.00000001069
~0.00000001155

0.00000001133
-0.00000001044

0.00000000917
-0.00000000773

0.00000000628
-0.00000000492

0.00000000370
-0.00000000266

0.00000000179
-0.00000000110

0.00000000056
-0.00000000016
~0.00000000013

0.00000000032
-0.00000000043

0.00000000049
-0.00000000050

0.00000000049
~0.00000000045

0.00000000040
-0.00000000035

0.00000000029
~-0.00000000024

0.00000000019
-0.00000000015

0.00000000011
~-0.00000000008

0.00000000005
-0.00000000003

0.00000000001
-0.00000000000
=0.00000000001

0.00000503433
~0.00000335766
0.00000201682
-0.00000100847
0.00000029610
0.00000017129
-0.00000044754
0.00000058262
-0.00000061936
0.00000059228
-0.00000052787
0.00000044543
-0.00000035827
0.00000027498
-0.00000020055
0.00000013739
~0.00000008614
0.00000004629
-0.00000001667
~0.00000000422
0.00000001795
-0.00000002606
0.00000002990
~0.00000003067
0.00000002934
~0.00000002669
0.00000002331
-0.00000001964
0.00000001599
~0.00000001257
0.00000000951
-0.00000000685
0.00000000464
-0.00000000284
0.00000000143
-0.00000000036
~-0.00000000042
0.00000000094
-0.00000000127
0.00000000144
-0.00000000150
0.00000000147
-0.00000000138
0.00000000125
-0.00000000110
0.00000000094
-0.00000000079
0.00000000064
-0.00000000051
0.00000000039
-0.00000000028
0.00000000020




©) (1) (2)
r e, (2) G, (2) ;¥ (2
81 0.00000000002 -0.00000000012
82 ~0.00000000002 0.00000000007
83 0.00000000002 ~-0.00000000002
84 -0.00000000002 -0.00000000001
85 0.00000000002 0.00000000004
86 -0.00000000002 -0.00000000006
87 0.00000000002 0.00000000007
88 ~0.00000000002 -0.00000000007
89 0.00000000001 0.00000000007
90 =0.00000000001 -0.00000000007
91 0.00000000001 0.00000000007
92 =0.00000000001 ~-0.00000000006
93 0.00000000001 0.00000000005
94 =0.00000000001 -0.00000000005
95 0.00000000000 0.00000000004
96 -0.00000000003
97 0.00000000003
98 -0.00000000002
99 0.00000000002
100 ~0.00000000001
101 0.00000000001
102 ~0.00000000001
103 0.00000000000
©) ) (2)
r ¢ (4) c.' (4 ¢ > (4)
0 10.3930183013 5.33276709459 3.96245000143
1 5.0602512067 1.91921769578 1.09780120523
2 0.9492999272 0.27251588793 0.12401460987
3 0.0905165805 0.02061784143 0.00773765351
4 0.0051467756 0.00096614639 0.00030756128
5 0.0001930879 0.00003073894 0.00000848241
6 0.0000051211 0.0000007066 5 0.00000017192
7 0.0000001009 0.00000001228 0.00000000267
8 0.0000000015 0.00000000017 0.00000000003
9 0.0000000000 0.00000000000 0.00000000000
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©)
DS’ (4)

(1)
p.')(4)

(2)
D% &)

—Owoo~NOoUBMTPLN —=O

bt Sk

~2.07010521536
0.57925185014
0.40087333324
0.06130342160
0.00457144436
0.00020585246
0.00000624313
0.00000013654
0.00000000226
0.00000000003
0.00000000000

.05596928486
. 11829410946
.46724835571
.35471783977
.03569556020
.00201916844
.00007369308
.00000188403
.00000003566
.00000000052
.00000000001
.00000000000

1 1
COO0OOCOOCODOODO O —

.27162945068
. 75983364876
.94490368050
46759026789
.07040584357
.00530641092
.00024217164
.00000743529
.00000016435
.00000000274
.00000000004
.00000000000

()
By (4)

)
B:! ()

(2)
B (4)

Co~NOTUMPS~WN=—O

4.90866345562
1.66839475339
0.23044870859
0.01715670552
0.00079558551
0.00002512773
0.00000057454
0.00000000994
0.00000000013
0.00000000000

.6449585986
.0679003896
.3713700036
.1333429331
.0076768959
.0002904768
.0000077518
.0000001535
.0000000023
.0000000000

[eNeNolNeNoNeNe Nl e e

.10884949164
.58926863493
.94768516568
.26518165143
.01991274171
.00093490279
.00062988114
.00000069043
.00000001205
.00000000016
.00000000000

(0)
P (4)

(1
re!) ()

(2)
F (4)

OCWwooo~NNGOULH~WN-—O

—

2.47090781345
-0.01733468653
0.00049916079
~-0.00002457275
0.00000165659
-0.00000013857
0.00000001362
-0.00000000152
0.00000000019
-0.00000000003
0.00000000000

.61822093104
.05488260137
.00087520483
.00003609633
.00000222984
.00000017697
.00000001679
.00000000183
.00000000022
.00000000003
.00000000000

1 i 1
COO0OOO0OOOCOOO —

.04639456552
.10785139320
.00238173226
.00004174267
.00000187777
.00000012505
.00000001059
.00000000106
.00000000012
.00000000002
.00000000000




(0)
6> (4)

(D
6, (4)

(2)
G (&)

—_—
CSCWwoo~NOWULP~WN—O

GUEBEDEPEREESEPRPRPEL,ELPWWLWWWWWWWWNNDNDNRNDRDRNDNDDNDRN = o e e e
— O WVWEONOUEWN=—=OOWVWOENOTUPRPWN=0WOONOOUIRPNWLWN—=0WVENGWLESWDN -

-2.07704638677
-0.03811891413
0.00205735660
0.00133583904
~0.00040242153
0.00000135756
0.00005271870
-0.00002943689
0.00000887895
~0.00000009208
=0.00000196906
0.00000162254
-0.00000086683
0.00000031946
-0.00000003999
-0.00000006125
0.00000007429
-0.00000005558
0.00000003248
~0.00000001487
0.00000000425
0.00000000093
~0.00000000273
0.00000000278
-=0.00000000215
0.00000000140
-0.00000000077
0.00000000033
~0.00000000007
=0.00000000006
0.0000000001 1
-0.00000000011
0.00000000009
~0.00000000006
0.00000000004
-0.00000000002
0.00000000001
=0.00000000000

~2.20275867159
-0.08759337069
0.02059130191
0.00362532371
-0.00290859890
0.00070097680
0.00010613794
=-0.00019652550
0.00011184366
-0.00003753309
0.00000162860
0.00000890557
-0.00000847565
0.00000520869
~-0.00000233692
0.00000059911
0.00000019495
-0.00000042253
0.00000038583
-0.00000026575
0.00000014856
~0.00000006380
0.00000001341
0.00000001088
-0.00000001879
0.00000001810
-0.00000001394
0.000000009219
-0.00000000518
0.00000000231
-0.00000000053
-0.00000000041
0.00000000080
~0.00000000084
0.00000000072
-0.00000000054
0.00000000036
-0.00000000022
0.00000000011
~0.00000000003
-0.00000000001
0.00000000003
-0.00000000004
0.00000000004
~0.00000000003
0.00000000002
-0.00000000002
0.00000000001
-0.00000000001
0.00000000000

~2.26114518420
-0.08758430284
0.05154088100
-0.00013081384
~0.00615912013
0.00287012995
-0.00048585002
-0.00029594622
0.00033304245
-0.00018763525
0.00006586766
-0.00000302022
~-0.00001790372
0.00001844388
~-0.00001243241
0.00000632377
~0.00000215099
-0.00000005929
0.00000090772
~0.00000100762
0.00000079217
-0.00000050773
0.00000026606
-0.00000009996
0.00000000415
0.00000004003
-0.00000005206
0.00000004726
-0.00000003583
0.00000002361
-0.00000001336
0.00000000595
~0.00000000125
=0.00000000132
0.00000000241
~0.00000000257
0.00000000225
~-0.00000000174
0.00000000121
-0.00000000075
0.00000000040
-0.00000000015
-0.00000000000
0.00000000009
~0.00000000012
0.00000000013
-0.00000000011
0.00000000009
-0.00000000007
0.00000000004
-0.00000000003
0.00000000001
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0 (D) (2)

r G, (4) 6, ) 6{? 4)
52 -0.00000000000
53 -0.00000000000
54 0.00000000000
55 -0.00000000001
56 0.00000000001
57 -0.00000000001
58 0.00000000000

©) (1) (2)

r ci? (8 ¢, (® ci? (8)

0 1 255.466879624 64.9725594516 28.9707969754

1 190.494320173 45.3281540101 18.6527830678

2 82.489032744 17.3489794084 6.3067199703

3 22.274819242 4.0836376381 1.3038036594

4 4.011673760 0.6428649766 0.1812635131

5 0.509493365 0.0719638780 0.0180737062

6 0.047718749 0.0059982698 0.0013538182

7 0.003416332 0.0003857548 0.0000788968

8 0.000192469 0.0000196892 0.0000036766

9 0.000008738 0.0000008160 0.0000001401
10 0.000000326 0.0000000280 0.0000000044
11 0.000000010 0.0000000008 0.00000000 0t
12 0.000000000 0.0000000000 0.0000000000

(0) (D )

r D.""8 D "7 (8) D (8)

0 | -21.0576601774 116.109338821 ~195.885440934

1 -4.5634335864 42.009912196 -90,.282237104

2 8.0053688687 -43.100766931 60.497819474

3 5.2836328669 -39.591707756 80.721102981

4 1.5115356760 ~-14.060770629 36.310359055

5 0.2590844324 -2.879821291 9.065640544

6 0.0300807224 -0.389782914 1.456316380

7 0.0025363082 -0.037608348 0.163280020

8 0.0001627084 -0.002720562 0.013492644

9 0.0000082160 -0.000153070 0.000855157
10 0.0000003352 -0.000006890 0.000042861
1 0.0000000113 -0.000000254 0.000001741
12 0.0000000003 -0.000000008 0.000000058
13 0.0000000000 -0.000000000 0.000000002

0.000000000




(0)
E_77(8)

(N
E.7(8)

(2)
E.77(8)

—
CYWwooo~NSTU W —~O

55.0474921501
38.0449554282
14.4133068178
3.3641911979
0.5261166156
0.0585897829
0.0048633953
0.0003117276
0.0000158673
0.0000006561
0.0000000225

~-372.619706447
~279.527258869
~122.152472131
~-33.264982053
~6.032827358
-0.770469771
~0.072484811
~0.005208214
~-0.000294292
-0.000013394
~0.000000501

745.239636537
589.918946483
293.155739975
93.384976387
19 .844857559
2.943204561
0.317694398
0.025875685
0.001639103
0.000082815
0.000003408

11 0.0000000006 ~0.000000016 0.000000116
12 0.0000000000 -0.000000000 0.000000003
0.000000000
(0) (1) (2)
% (8) r, (8 F,o(8)

CoO~NOULEPWN - O

2.48798130174
~0.00917485269
0.00014445509
-0.00000401361
0.00000015678
-0.00000000777
0.00000000046
~0.00000000003
0.00000000000

2.56379308344
0.02832887813
-0.00024753707
0.00000577197
~(.00000020689
0.00000000974
-0.00000000056
0.00000000004
0.00000000000

0.937332182311
0.051529284574
0.000628142864
-0.000006258705
0.000000164093
-0.000000006506
0.000000000334
~0.000000000021
0.000000000001
=0.000000000000

(0)
G~ (8)

(1
G, " (8)

(2)
G (8)

— OWwWooNOULI~WN—O

—

-2.01801261013
-0.00944907144
~0.00045461284
0.00000198940
0.00001488859
~0.00000010130
-0.00000102711
0.00000022192
0.00000004427
~0.00000004312
0.00000001216
0.00000000076

-2.05920385453
-0.03174217296
-0.00203112013
0.00023199704
0.00011385109
~0.00001923454
~0.00000682205
0.00000364533
~0.00000034764
-0.00000036733
0.00000022076
-0.00000005064

~2.10556259049
-0.05693946028
-0.00335879864
0.00114848463
0.00026274169
~0.00010983172
~-0.00000601590
0.00001472816
-0.00000442224
—~0.00000038387
0.00000093643
-0.00000043536
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©)
Gy (8)

(1)
6, (8

(2)
6,2 (®

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

-0.00000000244
0.00000000127
~0.00000000031
-0.00000000006
0.00000000011
-0.00000000006
0.00000000002
0.00006000000

~0.00000001203
0.00000001722
-0.00000000861
0.00000000208
0.00000000050
=0.00000000088
0.00000000056
-0.00000000022
0.00000000003
0.00000000004
-0.00000000004
0.00000000003
-0.00000000001
0.00000000000

0.00000007086
0.00000004713
-0.00000004756
0.00000002266
-0.00000000512
-0.000000001 86
0.00000000286
~0.00000000186
0.00000000077
-0.00000000013
-0.00000000012
0.00000000015
-0.00000000010
0.00000000005
~0.00000000001
~G.00000000000
0.00000000001
~0.00000000001
0.00000000000

Values of Fn(&)

are as follows:

and Gn(u)

for n =0,

1, 2, for a

Fo(a)

Go(a)

—
CWwoo~NOUS~WN—=O

B e et e e et b e
O WO~V W —

o]

0.42102443824
0.11389387275
0.03473950439
0.01115967609
0.00369109833
0.00124399433
0.00042479574
0.00014647071
0.00005088131
0.00001778006
0.00000624302
0.00000220083
0.00000077845
0.00000027614
0.00000009820
0.00000003499
0.00000001249
0.00000000447
0.00000000160
0.00000000057

-1.57079632679
~-0.87308424265
-0.53745038906
~0.36459259386
~-0.26840471551
~0.21041554608
~-0.17271246880
-0.14653670418
-0.12736175065
~-0.11270609629
-0.10112644070
-0.09173512472
-0.08395815487
-0.07740790423
-0.07181280030
-0.06697661204
-0.06275381750
~0.05903409849
~0.05573223363
-0.05278130611
-0.05012801666

selection of values of




F, ()

G, (@)

WoooNOTULI WD —= O

1.00000000000
0.60190723020
0.27973176363
0.12046929338
0.04993399555
0.02022306723
0.00806351831
0.00317927741
0.00124295369
0.00048273315
0.00018648773
0.00007172947
0.00002748909
0.00001050216
0.00000400168
0.00000152126
0.00000057715
0.00000021857
0.00000008264
0.00000003120
0.00000001177

0.00000000000
-0.46845081220
~-0.46728898961
=-0.37634317644
~0.29174356448
~-0.22928450853
~0.18560906849
-0.15496532001
-0.13288154121
-0.11640802117
~0.10369265741
-0.09357737742
-0.08532476963
~0.07845132045
-0.07262921268
-0.06762868732
~-0.06328372054
-0.05947107581
-0.05609713464
~0.05308935616
-0.05039056921

F,(a)

Gy(a)

Vo~ -—O

0.66666666667
0.54161296621
0.33834633942
0.18453137542
0.09280760282
0.04424119760
0.02030361081
0.00905784872
0.00395334417
0.00169561755
0.00071699390
0.00029962147
0.00012396568
0.00005085437
0.00002070874
0.00000837883
0.00000337093
0.00000134937
0.00000053772
0.00000021342
0.00000008439

0.00000000000
~-0.26999528902
-0.36145984516
-0.34467323255
-0.29265419235
~0.23965255633
-0.19628900465
-0.16340971491
~-0.13897170808
-0.12066994738
-0.10667646165
-0.09570161546
~0.08687461347
~0.07961281856
-0.07352242786
~0.06833169487
-0.06384823994
-0.05993220510
-0.05647932206
-0.05341007312
~0.05066260063
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10 CLOSING REMARKS

Expansions in terms of Chebyshev polynomials have been obtained in the
forms (9-3), (9-4), (9-5) and (9-6) for the real functions Fn(u) and Gn(a) of
the real variable o > 0 . Eiplicit expressions for Fn(a) and Gn(a) in terms

of known functions are given in formulae (9-1) and (9-2).

Three values of the demarcation parameter A have been considered, namely

A =2, 4 and 8 . The coefficients Cin)(S), Din)(S) and Eﬁn)(S) are quite
large for low values of r compared with the values of the functions Fn(a) and
Gn(a) except for those of Fo(a) near o = 0 . There is consequently a loss of
accuracy in the values obtained for Fn(a) and Gn(u) for 0 < a € 8 when
calculations are carried out from formulae (9-3) and (9-4) using only a small
number of significant figures. The values obtained, however, are more accurate
than the corresponding values obtained by using formulae (2-34), (2-35) and (2-36)
and the power series expansions (2-15), (2-16) and (2-17) unless o 1is much

smaller than 8. The coefficients Fin)(S) and ng)(8) are not nearly as large

for low values of tr as are Cin)(S), Din)(S) and Ein)(S) and there is there~
fore only a slight loss in accuracy in the values obtained for Fn(a) and Gn(u)

for 8 & a £ » when calculations are carried out from formulae (9-5) and (9-6).

The coefficients Cén)(A), Din)(A) and Ein)(A) are much smaller for
A =2 and 4 than they are for A = 8 for corresponding values of r and fewer
of them need to be retained than for A =8 to get a given accuracy in F (o) and
Gn(u) for 0 s o< A . On the other hand the coefficients Fin)(A) and Gin)(A)
are comparable for A = 2, 4 and 8 when r = 0 but their values decrease much
more slowly as r increases when A = 2 and 4 than they do when A = 8 thus
necessitating the retention of more of them than for A = 8 to get a given
accuracy in F (a) and G, (a) for A< o <w® ., The choice of demarcation para-
meter A is a matter of compromise. Of course, it is possible to introduce
series for an intermediate range of a not extending either to o = 0 or
o =« , so that expansions in Chebyshev polynomials may be obtained which give
Fn(a) and Gn(m) to a given accuracy without the need for retaining an exces-

sive number of terms in any expansion.

From formula (9-1) for n =0 and I we get

Fala) = K,(a) (10~1)
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and

~F1(u) = aKl(a) . (10-2)

Clenshaw3 has obtained expansions of Ko(a) and K](a) in terms of Chebyshev
polynomials with demarcation parameter A = 8 . His expansion for Ko(a) for

0 £ ag A is the same as our expansion (9-3) for Fo(a) and his coefficients
agree with our coefficients Cio)(S) and DEO)(S) but he gives more significant
decimal figures. His expansion for Ko(a) for A< a <= is different from our
expansion for Fo(a) and his coefficients do not reduce to zero as rapidly as
our coefficients F§0>(8) do as r increases. His expansion for Kl(a) for

0 € o € A can be used in conjunction with the properties (3-6) and (3-7) of
Chebyshev polynomials to give our expansion (9-3) for Fl(a) . His expansion

for Kl(u) for A< a < » when multiplied by o 1is different from our expan-
sion for Fl(a) and his coefficients do not reduce to zero as rapidly as our

coefficients Fél)(8) do as r increases.

Since in(a), kn(u) and zn(a) given by the power series expansions (2-15),
(2-16) and (2-17) are integral functions of o it is possible to express them
for -A § o € A as series of Chebyshev polynomials TZr(%) by expressing a2r
in the above mentioned power series expansions as a series of Chebyshev poly~
nomials. For practical numerical evaluation of the coefficients in these series
of Chebyshev polynomials the power series need to be truncated to a finite
number of terms, so again, only approximations to the coefficients in the series
of Chebyshev polynomials are obtained, although these approximations become very
good as the number of terms retained in the power series becomes very large. The
resulting series of Chebyshev polynomials for the functions in(u), kn(a) and
Zn(a) may then be inserted into formulae (2-34), (2-35) and (2-36). The series
(9-3) and (9~4) for Fn(a) and Gn(a) are then obtained. The process is, how-

ever, no easier to apply than the process described in this paper.

For the range A < o < ® it is not possible to obtain the series (9-5)
and (9-6) for Fn(a) and Gn(u) by applying a similar procedure to the
asymptotic expansion (2-39) and (2-40) because these asymptotic expansions are
divergent. However, the series (9-5) and (9-6) are obtained quite easily by

applying the procedure described in this paper.

The series (9-3), (9-4), (9-5) and (9-6) are effectively finite series
because the coefficients are known to only a finite number of decimal places.

The evaluations of Fn(a) and Gn(a) from these series are very rapid. Unless
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o € A the evaluations of Fn(a) and Gn(a) to a given accuracy are more rapid
from the series (9-3) and (9-4) than from (2-34), (2-35) and (2-36) where the

power series (2-15), (2-16) and (2-17) are used to evaluate in(a), kn(a) and

Zn(a) regpectively.
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