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SUMMARY 

The phase differences between degrees-of-freedom in a flutter calculation 

are discussed. From the study of phase variations with airspeed in binary 

systems, a technique is evolved for identifying the essential degrees-of-freedom 

in a large-order flutter calculation. This technique can be combined with that 

from a previous report in order to represent the flutter condition in a large- 

order flutter calculation with an equivalent two-degree-of-freedom system° 

* Replaces RAE Technical Report 78017 - ARC 37871 



LIST OF CONTENTS 

INTRODUCTION 

THE FLUTTER MECHANISM 

2.1 Phase differences in a fluttering system 

2.2 Tests with binary systems 

2o2.1 Example 1 
2°2°2 Example 2 
2.2.3 Example 3 
2.2°4 Conclusions from binary examples 

MULTI-DEGREE-OF-FREEDOM EXAMPLE 

3.1 

3.2 

3,3 

3°4 

3°5 

3.6 

Introduction 

Application of the original technique for binary condensation 

Variation of eigenvectors with airspeed 

System 23457 for flutter type AM 

System 2367 for flutter type B 

System 1234567 for flutter type AMS 

3.7 Types of flutter revealed 

4 SUMMARY OF IMPROVED TECHNIQUE 

Appendix A Equations of motion and energy balance 

Appendix B The form of eigenvectors at small airspeeds 

Table 1 

List of symbols 

References 

Illustrations 

Detachable abstract cards 

page 

3 

3 

3 

5 

6 
6 
7 
7 

7 

7 

8 

9 

II 

12 

13 

14 

14 

17 

22 

25 

26 

27 

Figures 1-18 



! INTRODUCTION 

1 
In a previous report a technique was described for representing the flutter 

condition from a multi-degree-of-freedom system of equations by an equivalent two 

degree-of-freedom system. This technique involves the observation of the relative 

phases of the degrees-of-freedom at flutter, the division of the degrees-of- 

freedom into two groups with similar phases and the amalgamation of the degrees- 

of-freedom in each group so that a two-degree-of-freedom system is formed. 

The clustering of the degrees-of-freedom into two groups has been seen to 

be reasonably clear in many examples, but obviously if the clustering is not 

clear it is difficult to apply the technique. 

This Report discusses phase differences between degrees-of-freedom in a 

fluttering system and describes the behaviour of the phase variation with air- 

speed of some typical two-degree-of-freedom systems. 

From the study of binary systems, a more extensive technique for condensing 

a large order system to two effective degrees-of-freedom is evolved. This 

technique is applied to a system for which the original technique was not 

satisfactory. 

2 THE FLUTTER MECHANISM 

2°] Phase differences in a fluttering system 

2 
It is well-known that a phase difference between degrees-of-freedom is 

related to the flow of energy into or out of a system. The background idea 

behind the previous report I, which was not discussed in that report, was that 

the clustering of degreees-of-freedom revealed two effective degrees-of-freedom 

with a phase difference between them, and that this phase difference could be 

observed empirically and indicated the workings of the 'flutter engine', whereby 

the 'input energy' arising from the phase difference was overcoming the effect 

of 'damping actions' at flutter (using the nomenclature of Ref 2). 

In order to explore more deeply the role of the phase difference, the 

'energy account' for a fluttering system is found in Appendix A. For the simplest 

fluttering system, a two-degree-of-freedom system, the 'energy account' for the 

critical root or eigenvalue at flutter is, from Appendix A, equation (A-9):- 

= 0 + v I + v2J ° 20] - mr~oo ~Z 11 q210 + (b12 + b21) cos 8qloq20 + b22q2 

- u2~(c12 - c21) sin B qloq20 (1) 
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where ~ +V 

ql0' q20 

b 
rs 

72vAo 
+ V9[ is the change, in one cycle of oscillation, in the total 

0 kinetic and potential (aerodynamic and structural) 

energies for a particular root; equal to zero for the 

critical root at flutter, 

are the amplitudes of the degrees-of-freedom 

is the phase difference between degrees-of-freedom (posi- 

tive with q2 leading ql ) 

are aerodynamic 'damping' coefficients in the equations 

of motion 

C 
rs 

are aerodynamic 'stiffness' coefficients in the equations 

of motion 

O is the equivalent airspeed parameter 

O 

~0 

is the atmospheric density relative to that at sea-level 

is circular frequency° 

It can be shown that the first term in (I) is always negative as long as:- 

4b 11b22 > (b12 + b21 )2 

which is usually satisfied. 

It can be seen from (I) that, at flutter, finite values of sin ~ and 

(c12 - c21) of the appropriate sign are needed for the 'input energy' to balance 

the energy dissipated by the damping forces. 

1 
In the previous report it was observed that when the elements of the 

critical eigenvector of a large order problem, are plotted on the Argand diagramp 

there are often two phases around which the elements tend to cluster. This 

clustering seems likely to indicate two effective degrees-of-freedom and the 

phase angle between them° However~ if the clustering is not clear, it is 

difficult to make more use of the generalisation of (I) for larger order systems 

because of the complication of the equation even for a binary. In particular 

B, qr0 and ~ are implicit functions of the aerodynamic damping coefficients 

b and so the apparently clear-cut distinction of aerodynamic damping coef- rs 
ficients in one term and aerodynamic stiffness coefficients in the other in (I) 

is not in fact so sharp. 

A certain way of simplifying the equation for the energy account is to make 

the aerodynamic damping coefficients equal to zero. This simplification has some 



usefulness in some aspects of the flutter problem and is often called the 

'frequency coalescence' approximation because critical flutter speeds are 

associated then with the coalescence of two roots as the airspeed parameter 

is increased. 

The nature of the 'frequency coalescence' approximation relative to the 

full problem is shown by Niblett 3 in his graphical representation of binary 

flutter. 

With aerodynamic coefficients b equal to zero, the 'energy account' at 
rs 

general airspeed u for a root (~ + im) is, from equation (A-8) in ~pendix A 

for a two degree-of-freedom system:- 

~4~ 
~2~/~ 2 m - 

= - U ~ ~(Cl2 - c ) sin ~q + VI + V~0 21 lOq20 

o2(c12 c21) sin gqloq20 4V L~ ~0 ]+ ½ 

u2(c12- 21 ) sin Bqloq20~r + ~-~-]] . (2) 

In equation (2), c12 and ¢21 are constant/j_ \and necessarily unequal for 

flutter 3 At flutter, is equal to zero and so {~) is likely to be small 

for airspeeds just above the critical airspeed. The energy balance seems likely 

most dependent on (u2q1oq20 sin B). The relative significance of the terms to be 

as the airspeed is increased through the critical speed can be observed from the 

results of typical binary systems some of which are described in section 2.2. 

The solutions are without aerodynamic damping, to be consistent with (2) and 

also with aerodynamic damping, in order to observe how confusing the effects of 

aerodynamic damping may be. 

2.2 Tests with binary systems 

Results using some of the binary examples from Ref 3 are shown in Figs I to 

6. On each figure the variation with airspeed of the critical frequency 

(proportional to the imaginary part of the root), the decay rate (proportional to 

the real part of the root), the phase ~ of degree-of-freedom 2 relative to 

degree-of-freedom ! and the amplitudes q10 and q20 are shown. The degrees-of- 

freedom in all cases are the normal modes of the system. 
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2.2.1 Example 1 

Example I is from Table I of Ref 3 and represents the flexure, torsion 

flutter of a swept wing. Fig ! shows the results with zero aerodynamic damping. 

It may be seen that, at frequency coalescence at D = 0.77 , the slopes of the 

decay rate and phase difference with o show a discontinuous change and that 

the phase difference continues to increase as u is increased above the critical 

value° The amplitude ratio q20/ql0 stays almost constant as u increases. 

The phase angle, therefore, is seen to be the most distinct indicator of the 

flutter mechanism. Fig 2 shows the equivalent results for the critical root 

with aerodynamic damping coefficients appropriate to sea level (the maximum 

values - see Appendix A) o It may be seen that for speeds above the critical 

speed, the phase difference and amplitude ratio are very similar to those on 

Fig 1 for zero aerodynamic damping. This is not unexpected as aerodynamic damp- 

ing has a small effect on flutter in this case - see the variations of decay 

rate and frequency with airspeed in Figs I and 2, and also Fig 3 in Ref 3. 

A point to notice is that at zero airspeed, the phase difference appears 

to be 90 °. With normal modes as degrees-of-freedom the amplitude ratio q20/qlO 

for the root shown is infinity at zero airspeed (i~ zero q10 for finite q20 ) 

and so the physical significance of the 90 ° phase angle is small. It is due to 

the coupling effects of aerodynamic damping - see Appendix B. However, it may 

confuse the comparison between the full problem and that with zero aerodynamic 

damping at airspeeds below the critical because the equivalent phase difference 

with zero aerodynamic damping is zero or 180 °, 

2.2.2 E>ample 2 

Example 2 is from Table 3 of Ref 3 and represents the flutter between a 

wing and a free aileron carrying close to the amount of mass balance that elimin- 

ates flutter° Fig 3 shows, with zero aerodynamic damping, discontinuous changes 

for the slopes of the decay rate and the phase difference with D at frequency 

coalescence at ~ = 0.43 . 
c 

The amplitude ratio q20/ql 0 stays almost constant above the critical 

airspeed. The effect of aerodynamic damping for the sea level case in this 

example is almost to eliminate flutter - see Fig 4 - but the phase difference 

and amplitude ratio above the critical airspeed are still similar to those for 

the zero aerodynamic damping case. 

The behaviour of the phase difference in the full case as airspeed tends 

to zero is different from that in example I. For example 2, with a free aileron, 



section B.2 shows that the behaviour of the phase angle for the root that tends 

to zero as airspeed tends to zero depends on the coefficients in the equations of 

motion, but will often be a tendency to an angle close to 180 ° as in this example. 

2.2.3 Exampl e 3 

Example 3 is from Table 5 of Ref 3 and represents the flutter between a 

wing and an aileron, the stiffness of the aileron being close to that that elimin- 

ates flutter. Fig 5 shows that with zero aerodynamic damping the minimum value 

of the negative decay rate is smaller than in the other examples and the flutter 

is much milder. Even so, the discontinuity in the slope of the phase difference 

at frequency coalescence is clear° Fig 6, for the sea level case shows a large 

effect of aerodynamic damping, the mild flutter of Fig 5 being almost eliminated. 

The phase difference variation with airspeed is much less marked than in Fig 5, 

the tendency to -90 ° at zero airspeed blunting the discontinuity in slope of 

Fig 5. 

2.2.4 Conclusions from binary examples 

The conclusions drawn from these binary examples are:- 

(1) Even with mild flutter, the phase difference change at frequency 

coalescence with zero aerodynamic damping is clear. 

(2) With finite aerodynamic damping, a similar change in phase difference 

with airspeeds above the critical can often be seen although the tendency 

with most systems for the phase difference to become 90 ° at zero airspeed 

may obscure the variation if the effects of aerodynamic damping on flutter 

are large. 

(3) Phase differences in the problem with zero aerodynamic damping can 

assist the interpretation of the full problem with aerodynamic damping° 

The conclusions from these binary examples give good pointers for the 

identification of the Wflutter engine' in a multi-degree-of-freedom example. 

In section 3, identifications are attempted from an 18 degree-of-freedom example 

for which the original condensation technique had not given good results. 

3 MULTI-DEGREE-OF-FREEDOM EXAMPLE 

3.] Introduction 

The example is concerned with the anti-symmetric flutter of a tail unit of 

a strike aircraft. The flutter characteristics of the tailplanes and fin were 

first found with an assumed rigid fuselage. A flexible fuselage was then admitted 
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as the first stage in complete flexible aircraft calculations, Antisymmetric 

flutter calculations revealed critical roots which, from the variation of real 

and imaginary parts with airspeed, were not obviously similar to those from the 

tailplane and fin fixed root calculations, and their physical bases were far 

from clear° 

The application of the original technique and subsequent solutions that 

led to the modified technique are described as they were carried out. Both 

techniques are empirical and depend in detail on the characteristics of the 

system being studied. Rigorous detailed rules are hardly possible, but it is 

hoped that a detailed description of one example will indicate some general 

principles and some of the variations in approach that can be tried° 

3.2 Application of the original technique for binary condensation 

The fuselage and tail unit are represented by 18 degrees-of-freedom. The 

variation with airspeed of the seven lowest frequency roots from this system are 

shown in Fig 7. It may be seen that there are two reasonably hard types of 

flutter and one mild type, labelled A~ B and C. 

The critical flutter conditions for the fixed root tailplane and for the 

fixed root fin are u = 0.70, ~ = 0.93 and ~ = 0.70, w = 0.69 respectively. The 

correspondence of these points with Fig 7 is not obvious. 

Recalling briefly the original technique I, the initial equations are trans- 

formed so that normal modes are the basis of the system of the generalised 

coordinates, smaller order systems are found with close critical conditions 

(speed and frequency) to those of the complete system, and the elements of the 

critical eigenvectors of the smaller systems are plotted on the Argand diagram 

in order to see if there are two phases around which the elements tend to cluster. 

If two phases show up, a transformation to a two-degree-of-freedom system is made 

with the elements at each of the phases comprising a new generalised coordinate. 

The results of the application of this technique up to the plotting of the criti- 

cal eigenvectors of the reduced systems are shown in Table ] and Fig 8~ 

Table 1 shows the reduced systems and Fig 8 the critical eigenvectors at 

flutter for the critical roots of the three reduced systems. The clustering at 

two phases of the elements of the critical eigenvectors appears to be reasonably 

straightforward, and the binary transformations are shown on Fig 8. However, 

the binary systems derived were found not to be a good representation of all of 

the critical roots in Fig 7. Details are not included here. A brief description 

is:- 



(a) Root A is reasonably represented with regard to critical speed and 

frequency by the binary (2 + 3) + (4 + 5 + 7) but the flutter is very 

mild. 

(b) Root B is reasonably represented by the binary (2 + 3) + (6 + 7) 

with regard to the critical speed and frequency and the severity of the 

flutter indicated by the slope of the decay rate with airspeed at speeds 

above the critical. 

(c) Root C is reasonably represented by the binary (I + 2 + 4 + 7) + 

(5 + 6) with regard to the critical speed and frequency but the binary 

flutter is severe compared with the mild flutter shown on Fig 7 for the 

complete system. 

The binary approximations are clearly not adequate; in particular because 

the severe flutter indicated by A on Fig 7 is not represented. 

3.3 Variation of eigenvector s with airspeed 

The new part of the technique is to seek additional information from the 

variation of eigenvectors with airspeed considering not only the full problem 

but also the solutions with zero aerodynamic damping. 

The variations with speed of the first seven roots of the system with zero 

aerodynamic damping are shown on Fig 9o Comparing Fig 9 with Fig 7, it may be 

seen that the simple correspondences between the problems with and without 

aerodynamic damping in the binary examples of section 2 are not present in this 

multi-degree-of-freedom system with several types of flutter and it is not at 

all obvious which are the corresponding roots. With zero aerodynamic damping 

there are three types of flutter, one comparatively mild and two more severe. 

It can be seen from Fig 9 that one root, that marked D and F, is clearly concerned 

with two types of flutter, the comparatively mild type initially and then, just 

before the mild type of flutter reaches an upper critical speed above which the 

root would have been stable, another more severe type of flutter dominates° It 

is not clear from the variation of roots with airspeed how the three types of 

flutter with zero aerodynamic damping are connected with the three types of 

flutter in the full problem, but it seems necessary at this stage to restrict 

further study to the three types of flutter with zero aerodynamic damping. Any 

additional type of flutter in the full problem would be the result of the pre- 

dominant influence of aerodynamid damping forces. The additional information to 

be obtained to clarify the types of flutter is the behaviour of eigenvectors with 

speed, which the examples of section 2 showed were complicated by aerodynamic 
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damping. This seems to restrict the types of flutter capable of being identified 

to those present with zero aerodynamic damping and modified by finite aerodynamic 

damping° Those essentially based on aerodynamic damping are unlikely to be 

clarified. It is not felt that this is a serious omission. Experience indicates 

that flutter based on aerodynamic damping is likely to be mild, and the graphical 

representation 3 indicates why this should usually be so. 

The variations with speed of eigenvectors associated with the roots of 

interest were found. To reduce computer time, these solutions were restricted 

to the first seven normal modes of the system. Only small differences compared 

with the complete 18 degree-of-freedom system were observed in a few check 

computations° Comparing the variation of eigenvectors with speed for the 

critical roots with and without aerodynamic damping revealed the following:- 

(a) the root labelled A on Fig 7 covers two types of flutter, an initial 

mild flutter, now called AM and then at higher airspeeds a more severe 

flutter~ now called AMS, 

(b) there are the following similarities between the types of flutter 

with and without aerodynamic damping:- 

AM is similar to D 

AMS is similar to E 

B is similar to F, 

(c) type C flutter with aerodynamic damping does not have an equivalent 

with zero aerodynamic damping° 

No further attempt to identify type C is made because it is essentially 

due to aerodynamic damping. This is not thought to be a serious omission as 

the flutter speed is the highest of the three in the complete system, and the 

flutter is mild~ 

The initial comparisons of the eigenvector variations with airspeed with 

and without aerodynamic damping, on which the preceding conclusions are based, 

are not shown in this Report. They were reasonably straightforward apart from 

some elements in the vectors which did not show the standard pattern of the 

binary examples in section 2~2o These elements appeared to be associated with 

degrees-of-freedom that had been dropped in the degree-of-freedom dropping stage 

of the original technique - see Table ! - so it seemed likely that they were 

playing small parts in the type of flutter being considered and that the eigen- 

vector variations with airspeed would be clearer without them. 
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This suggested that the degree-of-freedom dropping procedure in the 

original technique still had a useful role. 

The reduced systems of Table ; were therefore solved for the variation of 

the critical eigenvectors with speed. Comparing these results with the corres- 

ponding results from the complete system showed:- 

(a) System 23457 has a similar variation of critical eigenvector with 

speed as flutter AM in the complete system. 

(b) System 2367 has a similar variation of critical eigenvector with 

speed as flutter B in the complete system. 

(c) System 124567 has similar critical speed and frequency to flutter C, 

but the critical eigenvector variation with speed is different from that 

of flutter C. Also, the 124567 flutter is severe, while flutter C is mild. 

Point (c) explains why the binary derived from system 124567 in the original 

technique did not represent flutter C - see section 3.2. This is also a warning 

that the reliance on the closeness of critical speeds and frequencies as 

criteria for the similarity of fluttering systems may prove to be confusing, and 

emphasises the desirability of checking the adequacy of the reduced systems for 

similarity with the complete system eigenvector variation with airspeed, as well 

as with the root variation with airspeed. 

Flutter AMS could not be indicated at all by a reduced system derived from 

the degree-of-freedom dropping procedure. This procedure uses the critical speed 

and frequency of the root from the complete system as a criterion. Because flutter 

AMS develops from the already unstable root for flutter AM it cannot be identified 

by a critical speed and frequency. The eigenvectors associated with the critical 

eigenvalue from the system 1234567 has, therefore to be studied for flutter AMS. 

Summarising, the variation of eigenvectors with airspeed with and without 

aerodynamic damping for the appropriate roots in the following systems are likely 

to show how the degrees-of-freedom are combining:- 

for type AM flutter, system 23457 

for type B flutter, system 2367 

for type AMS flutter, system 1234567. 

3.4 Sxstem 23457 for flutter type AM 

The root and eigenvector variations with airspeed for the critical root 

with zero aerodynamic damping are shown in Fig 10. It may be seen, by comparison 
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with Fig 9, that the reduced system is a good representation of the complete 

system for u only below 0°80° The two roots that coalesce for the critical 

flutter condition are shown dashed for speeds below the coalescence speed. At 

the critical speed u = 0°63, it may be seen that degrees-of-freedom 2, 3 and 7 

start to rotate together relative to 4 and 5o The actual combinations of 2, 3 

and 7 and of 4 and 5 are given by the amplitude ratios in Fig I0. For a com- 

pletely straightforward analogy with the binary examples of section 2.3, the 

amplitude ratios for each combination would remain nearly constant with airspeed. 

Fig 10 shows that the a~litudes of degrees-of-freedom 2 and 7 have a similar 

ratio from ~ = 0~63 to 0080 but S changes its amplitude relative to 2 and 7 and 

so does 5 relative to 4° This presumably reflects couplings that result in the 

reduced system not being a good representation for airspeeds above 0o80. How- 

ever, the similarity is reasonable just above the critical airspeed 0°63, and 

suggests an equivalent binary could be formed by the combination of 2, 3 and 7 

with 4 and 5. With this background, the system with aerodynamic damping in 

Fig II is reasonably easy to interpret~ Degrees-of-freedom 2 and 3 are closely 

in phase at the critical speed and above, and 7 may be seen to vary with them, 

even though at the critical speed it is at about 90 ° to them. Degrees-of-freedom 

4 and 5 are closely linked° The binary (2 + 3 + 7) and (4 + 5) constructed using 

amplitude ratios at u = 0°60 in Fig II is shown in Fig 12° Fig 12 shows that 

this binary represents quite well the mild onset of flutter characterising 

type AM in the complete system - Fig 7. It is interesting to compare this result 

with that derived using the original technique~ The top sketch in Fig 8a gives 

the critical eigenvector at ~ = 0°49 and the binary transformation based on this, 

in which 7 was associated with 4 and 5, instead of with 2 and 3~ In fact, this 

made little difference to the representation of the binary, presumably due to the 

small amplitude of 7 in this case genuinely reflecting a small effect of mode 7. 

The relative amplitudes cannot generally be relied upon as a measure of importance 

as the amplitude of an element in an eigenvector can be changed by scaling the 

degrees-of-freedom and does not indicate the size of the coupling terms associated 

with that element° 

3.5 System 2367 for flutter type B 

The root and eigenvector variations with airspeed for the critical root 

with zero aerodynamic damping are shown in Fig 13. Clearly degrees-of-freedom 2 

and 3 are rotating relative to 6 and 7o The amplitude ratios are nearly constant 

from the coalescence speed up to u = Io0o 
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With aerodynamic damping, the variations with airspeed are shown in Fig 14, 

and a similar behaviour is seen. The amplitude of 2 relative to 3 is reasonably 

constant, but the amplitude of 6 relative to 7 reduces a little with airspeed 

above the critical speed. Below the critical speed, the amplitude of 6 relative 

to 7 may be seen to increase considerably. This suggests that a binary with 

fixed relative amplitudes for 2 and 3 in one degree-of-freedom and for 6 and 7 

in the other could not be a good representation over the whole range of airspeeds. 

The amplitude ratios chosen were those at D = 0.70 and the resultant binary solu- 

tion is shown on Fig 15. The similarity with the full system is seen, by 

comparison with Fig 7, to be good over the range of airspeeds above the critical 

speed. Below the critical speed the full case has a higher decay rate, probably 

for the reason outlined above - a significant change of amplitude of degree-of- 

freedom 6 relative to 7 below the critical speed in the complete system. 

The binary representation of flutter type B is good. A similarly good 

result was obtained with the original technique. Type B is a straightforward 

case, satisfactorily handled by either technique. 

3.6 System 1234567 for flutter type AMS 

Flutter type AMS is the type that could not be analysed with the original 

technique. Section 3.3 describes how study of the variation of the eigenvectors 

with airspeed for the root A in Fig 7 showed that flutter type AMS emerged out 

of a root already unstable in flutter type AM. A critical speed and frequency 

could not, therefore, be assigned to type AMS and so the degree-of-freedom dropping 

stage of the original technique could not be implemented as the criterion for 

dropping a degree-of-freedom is a small change in critical speed and frequency. 

The root A from Fig 7 is reproduced on Fig 17 and, for airspeeds above 0.8, 

the eigenvectors that are associated with it. Below an airspeed of 0°8 the eigen- 

vectors change to those for type AM flutter. On Fig 16, the equivalent roots and 

eigenvectors are shown for the case with zero aerodynamic damping. Section 3.3 

describes how this root was chosen by general similarity of the eigenvector 

variation with airspeed with the finite aerodynamic damping case. 

In Fig 16, it is reasonably clear that degrees-of-freedom 3, 4, 5, 6 and 7 

are rotating relative to 1 and 2. The amplitude ratios are reasonably constant 

with airspeed. Fig 17 is not so clear and it would be difficult to draw firm 

conclusions without the information from Fig 16. Bearing in mind that at u = 0.8 

the effect of type AM is still apparent, the behaviour about u = 1.0 and above is 

most significant. Degrees-of-freedom 4 and 5 show a similar variation with air- 

speed as on Fig 16 and are obviously associated. Degree-of-freedom 2 shows a 
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similar variation with airspeed as 4 and 5 but, comparing Figs 16 and 17, it seems 

likely that this is due to 2 becoming more in phase with I than it was in the 

milder flutter AM at airspeeds below 0.8. Therefore Fig 16 gives evidence that 1 

and 2 are associated on Fig 17. Degrees-of-freedom 3, 6and 7 are rather difficult 

to attribute on Fig 17. Their amplitudes are small, however, and, as this type of 

flutter is being investigated without the benefit of a smaller order system result- 

ing from a degree-of-freedom dropping stage, it is possible that these degrees-of- 

freedom are not important. The binary transformation was, therefor eLGqntSnue dwith 

3, 6 and 7 associated with 4 and 5 as they are on Fig 16 but with the amplitude 

ratios from Fig 17 at u = Io0. Above u = Io0 the amplitude ratios of the 

important degrees-of-freedom (2 relative to I and 4 relative to 5) are reasonably 

constant. The result of the binary approximation is shown on Fig 18. Comparing 

Fig 18 with the complete system equivalent on Fig 7, it may be seen that the 

binary representation is very good, not only for the rate of change of decay 

rate above the critical speed around u = 1.0, which was the aim, but also at 

lower airspeeds. Comparing the binary representation for AM flutter on Fig 12 

with that for AMS on Fig 18, it may be seen how similar are the critical roots 

of the binaries at u about 0.5. These have been separated by the observation 

of the eigenvectors associated with a single root from the full case. The modi- 

fied technique is obviously superior in handling this type of problem. 

3.7 Types of flutter revealed 

This Report is concerned with the technique rather than the detailed 

analysis of the example. However, it can be said that the modes involved in the 

binary representations of the types of flutter show that:- 

(i) Type B flutter is essentially similar to the fixed root fin flutter, 

although fuselage flexibility modifies the lower frequency mode. 

(ii) The mode shapes involved in types AM and AMS flutter all contain 

contributions from tailplane, fin and fuselage and it is not possible to 

identify clearly either fixed root fin or tailplane flutter. 

4 SUMMARY OF IMPROVED TECHNIQUE 

It has been shown that the study of the critical eigenvector of a large- 

order system as airspeed is increased through the critical airspeed can give 

clear indications of degrees-of-freedom to be associated in a binary representa- 

tion of the complete system. The eigenvectors of the system with zero aerodynamic 

damping are much simpler in form and give useful additional information for 

interpreting the full problem. 
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In the example described in section 3, there is a complication in that two 

types of flutter are associated with a single root. This is probably an unusual 

effect, but the possibility complicates Stage 6 below in the summary of the 

procedure. The procedure is basically that of Ref 1 modified by this Report. 

~tage 0 The original solutions for roots versus airspeed for the problem 

with aerodynamic damping to indicate the flutter conditions to 

be investigated.] 

Stage ] Transform the equations so that normal modes are the basis of 

the generalised coordinates. 

Stage 2 Find the variation of roots with airspeed for the problem with 

zero aerodynamic damping. 

Stage 3 Find, from the system transformed to normal modes, the variation 

with airspeed of the eigenvectors for the critical roots for the 

cases with and without aerodynamic damping. (These solutions, 

with normal modes as degrees-of-freedom can often be with a much 

smaller order system than the complete system. In the example of 

this Report it is clear from Figs 7 and 9 that the first seven 

normal modes should be adequate and a few checks confirmed this.) 

Stage 4 From the variation of eigenvectors with airspeed from Stage 3 

find equivalent types of flutter for the cases with and without 

aerodynamic damping. A type of flutter with aerodynamic damping 

that is not similar to a type with zero aerodynamic damping is 

unlikely to be clarified by continuing the process for binary 

representation. 

Stage 5 For the critical roots with aerodynamic damping, which have an 

equivalent in the case with zero aerodynamic damping and which 

are uniquely indicated by a critical speed and frequency, find by 

degree-of-freedom dropping the minimum system with similar criti- 

cal speed and frequency. 

Stage 6 For the minimum systems find the variation of the critical eigen- 

vector with airspeed for the cases with and without aerodynamic 

damping and check that these are still similar to those for the 

complete system. Simiiar variations of phase angle and amplitude 

ratios with airspeed will indicate two sets of degrees-of-freedom 

to be associated. (If degree-of-freedom dropping is not possible 

because an already unstable root changes to a different type of 
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flutter, the eigenvector variation with airspeed for that different 

type, particularly the phases, will be complicated by unimportant 

modes which, however, will usually be recognised by their small 

amplitudes°) 

Stage 7 Take the relative amplitudes within each of the two sets from the 

problem with aerodynamic damping just above the critical speed and 

form a binary transformation matrix t . 

Stage 8 Transform the equations to the binary equivalent with the trans- 

formation matrix found from Stage 7, and check the binary root 

versus speed behaviour against that of the complete system. 

Stage 9 Study the binary flutter revealed, using the mode shapes involved 

and the graphical representation of the binary 3. 

The additional computation compared with the original technique is that 

required for finding the root and eigenvector variations with airspeed for the 

problem with zero aerodynamic damping, the eigenvector variations with airspeed 

for the problem with aerodynamic damping and the eigenvector variations with 

airspeed for critical roots of small-order systems. 
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A.I 

Appendix A 

EQUATIONS OF MOTION AND ENERGY BALANCE 

Equations of motion and solutions 

The equations of motion are evaluated in the form:- 

! 

A~ + o~uB~ + (u2C + E)q = 0 (A-I) 

where q is a column matrix of generalised coordinates 

u Is an airspeed parameter proportional to equivalent airspeed 

o is atmospheric density relative to sea level 

A is a square matrix of structural inertia coefficients 

B is a square matrix of aerodynamic damping coefficients 

C is a square matrix of aerodynamic stiffness coefficients 

E is a square matrix of structural stiffness coefficients. 

Note At constant equivalent airspeed, the aerodynamic damping forces will be 

relatively larger the lower the altitude. 

The aerodynamic matrices B and C are functions of Mach number M and 

frequency parameter ~ , and the elements of the matrix are evaluated with an 

assumption of simple harmonic motion. If constant values of M and ~ are 

assumed, then matrices B and C are constant. 

Solutions to (A-|) are obtained by:- 

! 
(a) assuming constant values for M and 0 2 , ~ constant values for Mach 

number and altitude, 

(b) assuming a constant value for frequency parameter v , 

(c) introducing specific values of ~ and solving the resulting equations 

with constant coefficients for roots which are generally complex. 

Critical flutter conditions are indicated at interpolated values of air- 

speed u that result in pure imaginary roots. The interpolated airspeed and 

frequency imply a derived frequency parameter. Solutions are repeated with 

aerodynamic matrices B and C for several (not usually more than three) values 

of frequency parameter, and critical flutter conditions with assumed frequency 

parameter consistent with derived frequency parameter obtained by interpolation. 

The assumption of simple harmonic motion made in the evaluation of the 

aerodynamic matrices B and C is satisfied at flutter but not generally. 

However, experience indicates that this inconsistency seldom leads to confusing 



18 Appendix A 

results and the approximation is certainly adequateto indicate whether the 

flutter is mild or severe° 

The lining up of assumed and derived frequency parameter can be omitted 

when the effect of changing structural parameters on flutter speed is being 

found. These studies can be made with a single set of aerodynamic data with a 

frequency parameter close, within ±30%, say, of the frequency parameters of the 

flutter conditions. 

The effect of Mach number and altitude are found independently and no 

attempt is made until a very late stage in an investigation to obtain values of 

critical equivalent airspeed, Mach number and altitude consistent with the 

standard atmosphere. 

It is considered that time and computation effort are better spent in 

trying to understand the flutter mechanisms inherent in equation (A-I) with 

constant coefficients than in ensuring consistencies in often unimportant para- 

meters. The form of (A-I) is preferred as it emphasises the role of the dominant 

parameter in flutter, equivalent airspeed. 

Ao2 The energy account 

Following Appendix III of Ref 2, with equations of motion (A-I) together 

with external generalised forces Q :- 

(2 C A~ + o2DB~ + + E)q = Q . 

The rate of work being done on the system by Q can be written:- 

.T J 
~TQ _--__ q [A~ + o~B~ + (D2C + E)q] 

where accent T denotes the transpose of a matrix. 

For a free system Q is zero, and so the 'energy account' for a free system can 

be written:- 

.T i 
q [A~ + ~uB~ + (u2C+E)q] = 0 . (A-2) 

The kinetic energy of the system T can be written:- 

2T = ~TA~ 
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therefore 
dT 
dt 

- ~[~TA~ + ~TA~] 

and the scalar quantities are equal to their transposes 

therefore dT 
dt 

-TAT.. ] - ½[~TA~ + q q 

= ½~T(A + AT)~ --= ~TA~ (A-3) 

since A is symmetric. 

The potential energy associated with the symmetric part of the aerodynamic 

stiffness terms C can be written:- 

q --q 

therefore 
dV 

dt 
I 2 [2 qTIC + cTI~ + ~T(C + CTIq ] 2  2 

2 ~T + q + ~T 
= -- 2 q 

= Dq 2 q (A-4) 

The potential energy associated with the structural stiffness terms 

written:- 

2V 2 = qTEq 

E can be 

therefore 
dV 2 

dt 
= ½ [qTE~ + ~TEq] 

= ~ [~TETq + ~TEq] 

= }~T(ET + E)q -- ~TEq (A-5) 

since E is symmetric° 
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A dissipation function F can be written:- 

2F = o½~TB~ o (A-6) 

Using (A-3), (A-4), (A-5) and (A-6), the energy account (A-2) can be written:- 

d(T + V 1 + V 2) 
dt 

=- 2F- D2~T( C - CT.) q" (A-7) 

If (A-7) is integrated, for a two degree--of-freedom system, over the period 

t = 2~/m of a motion:- 

q ~ ePtlqL- sin ~t 1 I0 ) 

|q20 sin(~t + B 

it can be shown that:- 

IT + V I + V%]~ ~/~ 

o½ le i 2 b 2 
- u ~p- l lql 0 + m(bl2 + b21)(p sin B + ~ cos ~)ql0q20 

2 - u 

b22(p2 2 2 + + ~ +pm sin 2B - p 

1 - c 2 ) sin Bql0q20 ] ~" [m(cl 2 - I 

cos 2B)q220] 

It can be shown that the first expression in (A-8) is negative for all 

values of ql0' q20' m' p and ~ if:- 

(A-8) 

b l l  > 0 

4b l lb22  > (b12 + b21) 2 

This condition is usually satisfied - an exception indicates a susceptibility 

to single degree-of-freedom flutter° Usually, therefore, the energy of the system 
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over one cycle is reduced by one of the actions of the aerodynamic damping 

coefficients b , and whether it increases, stays constant or reduces depends 
rs 

on the sign and magnitude of the second expression in (8-A), ~e on:- 

2 
- o f 

4yp 
~o - 1 ] ~(Cl2 - C2|) sin6qioq2J • 

It can be shown that:- 

for all values of V . 

co ._  1 > 

An important feature in the energy account is therefore seen to be the 

sign of:- 

(c12 - c21) sin 6 • 

At flutter ~ is equal to zero, and (A-8) simplifies to:- 

~ + V 1 + V2] 2~I/°J 
0 

= - o - ~ . o w t o  l l q l O  + ( b 1 2  2O] + b21) cos B q10q20 + b22q2 

2 
- I,-) ~(c12 - C21) sin 6q10q20 (A-9) 
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Appendix B 

THE FORM OF EIGENVECTORS AT SMALL AIRSPEEDS 

B°I We consider binary equations in which normal modes are the generalised 

coordinates:- 

1~2 o½ub 1 2 ! 2 I 2 ~ + o c12 a I + oaUbll% + o e l i  + e l l  [ 
I 

n 2 
oaub21 ~ + o c2l  

! 

t a22% 2 ~ 2 ] + ~ub22 ~ + u c22 + e22 ! 

ql 

q21 

For small airspeed u , 
2 O << O 

. 

(B-l) 

and the equations are approximately:- 

I %2 ' w 
11 + °~Ubll % + e l l  ] 

i ! 

o~ub21 ~ ] 
i 

a22 %2 

I JIl 
°~Ubl2)" ql  = 0 . 

- 7  . . . .  

+ cr~ob22% + e 2 

. . . . . .  (B-2) 

The roots are found by evaluating the determinant of the matrix of coefficients 

and solving the polynomial in % o The roots are approximately:- 

= 

2 l e, 

2 all \ally 2 a22 \a22 ] 

The amplitude ratio q2/ql is given by:- 

q2 

ql 

! 

_~2 ub 2 1X 
! - - 

a22 % + o2ub22 % + e22 

(B-4) 

! ! 
u2Ubl ] 

+ i ( ' l l ~  i e  f i n d i n g  the  a m p l i t u d e  E v a l u a t i n g  t h i s  f o r  the  r o o t  X = 2 a l l  \ a l l ]  

r a t i o  of  the  2nd c o o r d i n a t e  r e l a t i v e  to t h a t  o f  the  1st  c o o d i n a t e  f o r  the  

r o o t  c l o s e s t  to  t h a t  f o r  t he  1st c o o r d i n a t e  as a s i n g l e  d e g r e e - o f - f r e e d o m ,  
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q2 

ql f ell 
all 

--~iUbll + i 
- o2vb21 2all \all/J 

i~2°bll(~ll x._._ll + ifll~]o2ub~ + 
~ a22 + zal, \a,, / j  zL e22 

I i°2~b21 \ai I/J 

~ el'a22 ÷ e221 + i~u('e]l~2 ~ b l l a 2 2 a l l  k'~ll/ all b22] 
2 neglecting 

(B-5) 

As u tends to zero, the denominator tends to:- 

ella22 + e221 
all 

and so q2/ql tends to: 

[ l 

ia2Db2] \al I / ] (B-6) 

where ~ is real and finite. 

If q2/ql is computed for small u , this corresponds to a phase ±90 ° . 

B.2 

zero is different for the root that tends to zero as 

for smal i 

If one of the structural stiffnesses is zero, the behaviour as o 

u tends to zero. 

u with e22 = 0 , (B-3) is replaced by:- 

1 

X ~ 2a22 \a22 4--~222/ 

2 u in the numerator, and, neglecting 

tends to 

Then, 

(B-7) 
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q2 
ql 

ell 

_ ! [_°~b.22 + i~c22 

~Z~bl2L 2a22 ~a~2 

ell 

4a~2/I 

2 
D C 12 

~ 2--a2~ +Cl 

! 

2 4a22 } 

(B-8) 

Therefore) as D tends to zero, q2/ql tends to infinity but) in general, to 

a Vcomplex v infinity° For many flutter systems, including that shown in Fig 4, 

c12 is much greater than b12 o In that case q2/ql would tend to a nearly 

~real ~ infinity, and, if q2/ql is computed for small u , this corresponds to 
a phase close to zero or 180°o 
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Table 1 

APPLICATION TO EXAMPLE OF ORIGINAL TECHNIQUE 

A 0.50 

C 

18 modes 

I) 
c 

0.69 

0.80 0.6]  

(0 
c 

0.58 

0.78 

1-2-4-5-6-7 

Modes remaining after 
degree-of-freedom dropping 

Modes u 
¢ e 

[ L  

2-3-4-5-7 0.51 0.58 

2-3-6-7 

0.80 

0.72 

0.62 

0.78 

25 

Deduced binary 

(2 + 3) + 
(4 + 5 + 7) 

(2 + 3) 
(6 + 7) 

(I +2+4+ 
(5 + 6) 

7) + 
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A 

a 
rs 

B 

C 

E 

F 

M 

Qr 
qr 

qro 
T 

t 

V 

~2~/m 
ET +Vj 0 

B 

u 

u 
c 

c 

n ! 
2 

accent T 

LIST OF SYMBOLS 

matrix of structural inertia coefficients 

typical element of A 

matrix of aerodynamic damping coefficients 

matrix of aerodynamic stiffness coefficients 

matrix of structural stiffness coefficients 

dissipation function - see Appendix A 

Mach number 

generalised force r 

generalised coordinate r 

the amplitude of generalised coordinate r 

kinetic energy 

transformation matrix in Fig 8 

total structural and aerodynamic potential energy 

see equations (1) and (A-10) 

phase angle 

complex root ~ ± im 

real part of root 

frequency parameter 

atmospheric density relative to sea level 

equivalent airspeed 

critical flutter value of u 

imaginary part of root proportional to frequency 

critical flutter value of 

cycles to half amplitude 

denotes the transpose of a matrix 
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