
~ O  
r e 5  

c5 
z 

R & M No.38~4. 

P R O C U R E M E N T  EXECUTIVE,  MINISTRY 

Aeronautical Research Council 

Reports and Memoranda 

OF DEFENCE 

W~TH LEADING 

NON-CONICAL FLOW 

PAST SLENDER W2~NGS 

EDGE VORTEX SHEETS 

by 

R.W. Clark 

Aerodynamics Department, RAE Farnborough, Hants 

11'{ ( , . ) ' f  ,ll::,,~ i. ;i ~'~ ,, :l: iI, i~  i i' 

. . . . .  I I, ....... ,'"::l ,l",i; 

London" Her Majesty's Stationery 

1978 

Office 

PRICE £5 NET 



NON-CONICAL FLOW PAST SLENDER WINGS WITH LEADING-EDGE 

VORTEX SHEETS 

By R.W. Clark 

Aerodynamics Department, RAE Farnborough, Hants 

Reports and Memoranda No.3814" 

March 1976 

SUMMARY 

The vortex-sheet model of leading-edge separation which has been success- 

fully applied to slender delta wings of conical shape is extended to non-conical 

wings which have thin, uncambered cross-sections. Calculations of the shape and 

strength of the vortex sheet are presented for examples (a) of a plane wing with 

a curved leading edge and (b) of a delta wing with lengthwise camber. In each 

case it is found that the sign of the circulation shed from the leading edge 

changes as the calculation proceeds downstream, but the consequences are very 

different in the two cases. An experimental investigation to clarify the 

behaviour of the cambered wing is described. 

* Replaces RAE Technical Report 76037 - ARC 36863 
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I INTRODUCTION 

The vortex sheet model of separated flow over slender delta wings 

developed by Smith I has been successfully applied to several conical flow 

problems. The simpler model of Brown and Michael 2 in which the vorticity is 

assumed to be concentrated into an isolated vortex above each half of the wing 

has been extended by Smith 3 to treat plane wings with curved leading edges. 

This paper presents a similar extension of the vortex-sheet model to non- 

conical wings, enabling separated flow over thin wings with both curved leading 

edges and lengthwise camber to be calculated. Apart from the limitations 

implied by the use of slender-body theory, the only restriction on the wing is 

that its cross-sections are thin and flat. 

As in the conical-flow applications, the assumptions of slender-body 

theory are retained. The vorticity in the primary vortex shed from the leading 

edge is assumed to be concentrated into an infinite spiral sheet, with the outer 

part represented explicitly in the numerical calculation, the infinite inner 

part of the sheet being replaced by an isolated vortex filament. Secondary 

separation is not represented. The boundary conditions on the sheet follow from 

the fact that it is a stream surface and that it can sustain no pressure dis- 

continuity. These conditions have been formulated by Smith 4 for a general 

vortex sheet under the slender-body assumptions and this derivation is outlined 

in Appendix A. Concentrating the vorticity from the inner part of the sheet into 

a single vortex filament leaves behind a cut, across which the velocity potential 

is discontinuous. When the strength of the vortex filament varies, the pressure 

is also discontinuous across the cut. The force to which this gives rise is 

balanced by a force acting on the vortex filament, so that the condition of zero 

pressure difference across the sheet is replaced, for the inner part, by a 

condition of zero total force. When suitable initial conditions are prescribed, 

these conditions, together with a leading-edge Kutta condition, provide a set of 

equations which determine the streamwise evolution of the vortex sheet. 

At any streamwise station the velocity field is determined completely in 

terms of a set of basic variables which define the position and strength of the 

vortex sheet and of the isolated vortex. The boundary conditions described 

above relate the streamwise derivatives of these variables to the variables 

themselves. However an attempt to integrate the equations directly by an 

explicit integration formula failed because of instability. The difficulty was 

overcome by the use of an implicit integration technique in which an iterative 
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method is used to obtain the solution at one streamwise station before proceeding 

to the next station. When the streamwise derivatives are approximated by a 

backward-difference formula the set of boundary conditions can be written as a 

set of non-linear equations in terms of the basic variables, and these equations 

are solved using a multi-dimensional extension of NewtonVs iterative method as 

used by Pullin 5 and Barsby 6 for their conical flow calculations. The initial 

conditions for this downstream integration are provided by the conical solutions 

derived by Smith ! . A similar approach is used by Jones 7 in his work on rolling 

wings with leading-edge separation. 

The method has been applied to various conical and non-conical configura- 

tions and in each case it has been found to produce a smooth development of the 

vortex sheet with results which are almost identical for different streamwise 

steplengths. When applied to conical wings it was found that if the initial 

solution was slightly perturbed the calculation would settle down to the known 

conical solution as the integration proceeded downstream. The results presented 

include those for plane wings with curved leading edges and delta wings cambered 

in the streamwise direction. 

Several other approaches have been applied to the representation of non- 

conical leading-edge separation, and a number of them are summarized below. 

One alternative representation is that adopted by Sacks et al..8 Instead of 

using a continuous vortex sheet, they introduce discrete vortex filaments shed 

at intervals along the leading edge. The subsequent positions of these filaments 

are followed downstream, so as to represent the roll-up of the vortex sheet° 

This method still uses slender-body theory and it has the additional disadvantage 

that the representation of the flow close to the apex is inadequate because of 

the overall limitations on the number of vortices that can be handled° This 

means, for instance, that a conical flow cannot be reproduced exactly by such a 

method° As the number of vortices in the calculation is increased the solution 

found no longer represents a coherent vortex sheet. This difficulty is avoided 

in the method presented here by removing the coupling between the vorticity of 

the sheet and the points defining the sheet. With a vortex-sheet model the 

vorticity can be convected around the sheet into the isolated vortex without 

disturbing the points defining the vortex sheet. 

The number of vortices which can be handled without losing the coherence 

of the sheet, has been increased in the vortex filament representation used by 

Fink and Soh 9 by means of an interpolation procedure applied after each 



downstream step. In the calculation of the induced velocity at a point on the 

vortex sheet by any numerical method it is necessary to include the effect of 

the interval around the point. In general, this involves a logarithmic 

singularity. If the velocity is calculated at the mid-point of the interval 

then this contribution vanishes. Fink and Soh 9 therefore argue that the point 

vortex calculation will correspond to the numerical approximation of the sheet 

calculation if the vortices are equally spaced. After each integration step they 

therefore redistribute the vorticity by interpolation to obtain an equivalent set 

of equally-spaced vortices. By this means the stability of the numerical calcu- 

lation is improved. The representation is still inadequate because of both the 

small number of vortices used close to the apex and the absence of any distinct 

representation of the central core, the importance of which was emphasised by 

Moore I0. Modifications to cover both of these points could however be incor- 

porated into this kind of vortex-filament model. 

These methods all use the assumptions of slender-body theory and so make 

no allowance for any upstream influence. In particular, the validity of the 

solutions is reduced by the upstream influence of the trailing edge in subsonic 
11 

flow. The method used by Rehbach avoids this limitation. He considers an 

incompressible, three-dimensional flow and represents the leading-edge separation 

by semi-infinite vortex filaments springing from the leading edge and continuing 

downstream into the wake. The wing is represented by a vortex lattice. The 

three-dimensional nature of the flow is taken into account in calculating the 

influence of each of the vortex filaments. As with the other isolated vortex 

methods this will not give an adequate representation near the apex, and for a 

flow which is approximately conical the vortex positions predicted seem to be 

too far inboard. At the trailing edge, however, the positions of the vortices 

are close to those observed; and Rehbach ;I is able to predict the overall lift 

successfully. He does not present values of the circulation or pressure distri- 

bution over the wing. 

An alternative approach to the fully three-dimensional problem is adopted 
12 

by Rubbert et al. . They represent the wake and the leading-edge shear layer 

by a doublet sheet, with an isolated vortex to represent the rolled-up core. 

The position of this isolated vortex is fixed in relation to the end of the 

sheet and an iterative method is used to find the position and strength of the 

doublet sheet. Although this approach leaves unbalanced forces in the fluid, the 

results so far reported are in good agreement with experiment. 



The method presented here is claimed to be more accurate than those 

previous methods for non-conical flow which are also based on the assumptions of 

slender-body theory. It is liable to error through its use of slender-body 

theory when significant upstream influence occurs, but it gives a more detailed 

account of the flow development than existing methods which take account of 

upstream influences. 

2 THE MATHEMATICAL FORMULATION 

Under the slender-body assumptions the streamwise derivatives are small 

compared with those in the transverse directions and the velocity can be 

represented by a potential which satisfies Laplace's equation in the cross-flow 

plane perpendicular to the free stream. The flow separation is represented by 

a rolled-up vortex sheet springing from each leading edge with the infinite 

inner part of each of these sheets being replaced by an isolated vortex joined 

to the end of the outer part of its sheet by a cut. This cut, which is required 

to ensure that the velocity potential is single valued, can be regarded as a 

surface carrying transverse vorticity, but no axial vorticity. 

The non-conical wings considered here affect the flow only through the 

streamwise variation of the span and position of the local cross-section of the 

wing. The wing and the axes used are shown in Fig. l, the axes O~xyVz ' being 

centred on the apex and O'x aligned with the free stream. The local axes 

Oyz are introduced in the cross-flow plane as in Fig°2a and are related to the 

axes through O v by 

y = yV 

z = z '  + h ( x )  ( 2 - 1 )  

where h(x) is the distance of the wing centre line below 0'x o The local 

angle of incidence of the wing to the free stream, assumed to be small, is 

therefore given by h'(x) 

2.] The velocity potential 

The velocity potential will satisfy the two-dimensional form of Laplace's 

equation in the cross-flow plane. Therefore, if we write the velocity potential 

in the form 

Ux + ~ - Uzh v(x) , (2-2) 



will be given by the real part of an analytic function W(Z) where 

Z = y + iz and W will be determined to within an additive function of x 

by the boundary conditions. The additive function of x can be determined by 

considering the flow at a large distance, but this is not necessary for the 

present calculations. 

The conditions to be satisfied on the wing and at infinity are that the 

wing is a stream surface, i.e. 

~z = 0 on z = 0 (2-3) 

and that the disturbances decay at infinity, i.e. 

~ Uzh'(x) as [Z[ -+ oo • (2-4) 

Following Smith I the complex velocity potential can be defined with the aid of 

the conformal transformation 

Z,2 Z 2 2 
= - s , (2-5) 

where s = s(x) is the local semispan of the wing. This transformation takes 

the wing cross-section into a slit on the imaginary axis, as shown in Fig.2b. 

The complex velocity potential W can now be defined by the equation 

Iz v) dZ e d ~  = - i h ' ( x ) U  + 2 - ~  , Z ,  Z* + Z 
v 

rl _ I / "  . I l 

2~i j z* - z* z* + 
A~ 0 c 

dA~ , (2-6) 

which, by symmetry, will satisfy the boundary condition on the image of the wing 

in the Z*-plane. Since the transformation leaves the plane unchanged at infinity, 

equation (2-6) will also satisfy the second boundary condition (2-4). 

Equation (2-6) defines the complex conjugate of the velocity in the trans- 

formed plane due to the free stream component, together with the isolated vortex 

and its image in the imaginary axis and the vortex sheet and its image in the 



imaginary axis. In the right-hand half-plane the isolated vortex of strength 

F is at the point Z* and the circulation at a current point on the vortex 
v 

sheet Z* is A~ which varies from A~ 0 at the leading edge to F at 
' C ~ 

the free end of the sheet. 

2.2 Boundary conditions on the sheet 

The position and strength of both the isolated vortex and the sheet remain 

to be determined in such a way that the velocity field defined by (2-6) satisfies 

the Kutta condition at the leading edge, the boundary conditions on the sheet 

and the boundary conditions on the isolated vortex. 

The Kutta condition requires that the velocity should be finite at the 

leading edge. Since this edge corresponds to a singular point of the transforma- 

tion, (2-5), the Kutta condition implies that there must be a stagnation point 

at the image of the leading edge in the transformed plane, 

dW - 0 at Z* = 0 (2-7) 

dZ* 

The boundary conditions on the sheet are obtained in a general form in 

Appendix A and then specialised for the particular coordinate system used here. 

The coordinate system chosen is shown in Figo2a, and it uses polar coordinates 

(R,O) centred on the isolated vortex with O measured from the line joining 

the vortex to the leading edge. Basing the coordinates on the position of the 

isolated vortex means that the shape of any length of sheet can be described 

by a single-valued function R(x,O) Smith I used a similar system in the 

transformed plane but this leads to complicated expressions for the streamwise 

derivatives. Barsby 6 and Jones 7 use the intrinsic coordinates (~,o) defining 

the vortex sheet by means of the angle of the tangent ~ as a function of the 

arc length o This system can also be used for any length of sheet, although 

in practice there can be numerical difficulties in fixing the position of a 

longer sheet, since any change in @ close to the leading edge will affect all 

the subsequent points on the sheet. The intrinsic coordinate system was however 

able to handle the distorted sheet shapes found by Barsby 6 for conical flows at 

low incidences. Such a coordinate system might also be more suited to the non- 

conical wing whose incidence decreases in the streamwise direction (see 

section 4.3)° 



In terms of the polar coordinates the boundary conditions on the sheet can 

be written as (see Appendix A): 

~R(x,O) 
ax 

v n 
- cosec ~ -~- + p'(x) sin ~ - (q'(x) - h'(x)) cos @ 

R(x,O)~'(x) cos ~ 
Y 

(2-8) 

for the stream surface condition, and for the pressure continuity condition 

aA~(x,o) 
~x 

vl- U - Vtm '(x) cos (O + y(x)) - cosec ~ Av t cos ~ +-~-- sin ~ - p 

- (q'(x) - h'(x)) sin (O + y(x)) 

- R(x,O)~'(x)) . (2-9) 

The partial derivatives on the left-hand side denote differentiation along 

lines of constant O on the vortex sheet and the primes denote differentiation 

with respect to x . The angles ~, ~ and y are defined in Fig.2a, and p 

and q are the real and imaginary components of the vortex position Z . The 
v 

tangential component of the velocity at a point on the sheet is discontinuous 

and Vtm represents the mean tangential component in the cross-flow plane whilst 

Av t denotes the jump in the tangential velocity component across the sheet in 

the cross-flow plane, v is the normal velocity on the sheet in the cross-flow 
n 

plane measured along the inward normal. 

The mean velocity components on the sheet follow from equation (2-2) and 

from the complex conjugate velocity 

dW dW dZ* 
= v - iw -- (2-I0) 

dZ dZ* dZ ' 

evaluated on the sheet. 

The velocity components perpendicular to the free stream are therefore 

v parallel to Oy and (w - Uh') parallel to Oz and so we can substitute for 

Vn and Vtm in equations (2-8) and (2-9) to obtain 
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~-~ = cosec ¢ _ pV sin ~ - _ qV cos ~ + Ry v cos ¢ (2-II) 

and 

~x = - cosec ¢ Av t - p cos (0 + y) + - q' sin (@ + y) - Ry 

. . . . . .  (2-I 2) 

It is this form of the equations that is used for the numerical calculation° 

The singular integral involved in evaluating (2-6) on the sheet must be 

treated as a Cauchy Principal Value integral in order to obtain the mean 

velocity° The part of the integral involving the singularity can therefore be 

written as 

Z* , dA~ dA~ 

E ZE dZ* dZ* 
l dA¢ dZ* f c dZ* 

Z* - Z* dZ* c J Z* - Z* c 
0 c c 0 c 

I z* , (2-13) 

where Z E is the value of Z* at the free end of the vortex sheet. In this 

form the singularity has been dealt with analytically and the integral remaining 

on the right-hand side of (2-13) can be evaluated numerically° 

The discontinuity in tangential velocity across the sheet arises from the 

contribution to this integral of the neighbourhood of the singular point and is 

given by 

3A~ 
Av = -- (2-14) 

t 8~ ' 

o being the arc length around the sheet and the partial derivative being 

evaluated for constant x o 

2.3 The zero-force condition 

Because the inner part of the vortex sheet has been replaced by an isolated 

vortex, the pressure continuity condition (2-12) is violated. It is replaced, 
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as in Ref.|, by the requirement that the total force acting on each isolated 

vortex and the cut joining it to the end of the finite part of the sheet should 

vanish. The formulation of this condition closely follows that of Smith 3 but 

differences arise since the wings considered here have lengthwise camber. 

The force per unit length on the isolated vortex filament is given by the 

product of -ipr and the velocity normal to the vortex induced by the rest of 

the flow. The dominant terms in this normal velocity are those due to the 

velocity in .the cross-flow plane and a contribution due to the fact that the 

line vortex is inclined to the free stream. The first of these contributions 

follows from the velocity potential (2-2) with the contribution from the vortex 

itself deducted. By equations (2-I) and (2-2) this term is 

lira ~ + i ~ ~ - Uzh'(x) 2~i Z - Z 
Z÷Z v 

V 

IdW r 1 I - iUh'(x) lim 
2~i Z - Z 

Z÷Z v 
v 

, (2-15) 

where the bar denotes the complex conjugate. The velocity component due to the 

inclination of the vortex filament to the free stream is given by 

dZ 
d v v v - U (y" + iz') = - U ~ + iUh'(x) (2-16) 

where we have again used equation (2-I). The force per unit length on the cut, 

due to the difference in pressure across it, follows immediately from Ref.3 and 

is given by 

dF 
ipU(Z v - Z E) (2-17) 

Combining this with the expressions (2-15) and (2-16) we find the zero-force 

condition: 

( > rllm 2 ,°z z - z E dr dZ d r . (2-18) 
v ~ + r dx ~ Z÷Z 

v 
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By using equations (2-5) and (2-6) the right-hand side of this equation can be 

expressed as 

{ :) r Zv r 1 1 ! 1 
U Z* - iUhV(x) 2~i  Z* + Z* 2~ i  " * - Z* Z* 

v v v AG O Zv c v 

I- + lim F d * 2~ri I n  Z Z 
Z÷Z dZ * 

V 

dAB 

and evaluating the limit by equation (2-5) we find that the zero-force condition 

can, be written 

( )dr 
Z v - Z E ~-~ + r 

v F Zv 

dx U Z* 
V 

- iUh' (x) 

F ( s 2 

2~i 2Z2Z * 
~ v v  

1 
+ 

Z + 
V V r( 

if _I 
2~i Zv* Z* 

AG O c Z*v + zc* 
(2-19) 

It can easily be checked that this expression agrees with that given in Ref.3 if 

the terms involving the vortex sheet are omitted and h'(x) is replaced by the 

uniform angle of incidence, ~ , 

3 NUMERICAL METHOD 

The boundary conditions given by equations (2-11), (2-12) and (2-19) can 

be regarded as a set of ordinary differential equations which can be integrated 

with respect to x to follow the evolution of the vortex sheet along lines of 

constant ~ . The initial conditions required for this integration are 

provided by the known conical solutions since we can assume that close to the 

apex the wing is approximately conical. 

The streamwise integration is carried out by using a backward-difference 

formula which leads to the solution of a set of implicit equations at each 



13 

strea~ise station. In the cross-flow plane the vortex sheet is represented 

numerically by its strength and position at a finite n-mher of points and the 

integral terms involved in the velocity field calculations are approximated 

using the trapezium rule. 

3.1 Finite-difference formulation 

The vortex sheet shape is defined in terms of the coordinates of the 

isolated vortex and the values of the polar distance R. from this point to 
i 

n points on the sheet at fixed values of the polar angle ~i ° The circulation 

on the sheet is defined by that of the isolated vortex, r , which fixes the 

value at the free end of the sheet, and the circulation per unit length of the 
J ~ 

sheet, I~l , evaluated at the leading edge, G = 0 , and at the points n 

i 
defining the sheet. 

The flow field in the cross-flow plane is defined by equation (2-6) in 

terms of the basic non-dimensional variables making up the vector quantity 

Y = l/s' "''' RnlS' ~ \ 30-----]0' "'' A--U \ ~°/n 

where A(x) is the 'local aspect ratio' defined by 

A(x) = 2s21f sdx . (3-2) 

In this form A(x) provides a generalisation of the sweepback parameter 

K = s/x which was used for the conical flow calculations, s/x itself is not 

appropriate because it conflicts with the form of the similarity solutions 

(see section 4.1) and s'(x) cannot be used for wings for which s'(x) 

vanishes. 

For any given value of the vector ~ the circulation F can be 

calculated from the Kutta condition, equation (2-7). The velocity at any point 

in the cross-flow plane then follows from equation (2-6), and the circulation 

on the sheet is given by 
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A¢. f 3A¢ do 
z = A~i+l + ~0 (3-3) 

d 

°i+l 

using A~ 
n 

either to 

= F The integration is performed by applying the trapezium rule 

z 1 

3---~ d~ dO = 

°i÷, 

3A~ R 
3o sin dO (3-4) 

or else, if ~ is small, to 

R .  R °  :l. :L 

f 3A~3o dR do dR = f ~A9_3o s ec ~ dR 

Ri+ 1 Ri+ 1 

(3-5) 

• are evaluated at fixed values of 0 = 0. , Y Since R. and (3A~/~o)z z 
1 

will be a function of x alone and, for conical flow, because its components 

have been appropriately non-dimensionalised, Y will be constant. If Y is 

known at equally spaced stations, ~x apart, upstream of x , then its 

derivative IV(x) can be approximated in terms of Y(x) using the backward- 

difference formula 

t 1 \ 
Y'(X) = 66--~ ~]IY(x) . . . .  - 18Y(x- 6x) + 9Y(x - 26x) - 2Y(x - 3~x~ , 

. . . . . .  (3-6) 

where terms of relative order (~x) 3 have been neglected. 

By using this equation to replace the derivatives occurring on the left- 

hand sides, the boundary conditions (2-I]) and (2-12) and the force condition 

(2-19) can be written as a set of non-linear equations for the unknown elements 

of the vector ~(x) o The normal velocity condition, equation (2-]]), is 

applied at the n pivotal points defining the sheet, and the pressure condition, 

equation (2-]2), is applied at these points and at the leading edge. The tangen- 

tial velocities above and below the leading edge of the wing required for this 

last condition are not calculated directly but are found by extrapolation from 

the values calculated at the first pivotal point and at a supplementary point 

midway between the leading edge and the first pivotal point. 
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The boundary conditions together give a set of 2n + 3 non-linear 

equations to solve for the 2n + 3 basic variables involved in [(x) . For 

any vector [ we can therefore calculate the vector F(Y_) whose components 

consist of the residual values of each of these equations, so that the problem 

at each streamwise station can be written in the form 

F(Y_) = 0 . (3-7) 

The terms involved in these residual equations are non-dimensionalised in such a 

way as to ensure that for the conical flows, and for the self-similar flows 

discussed in section 4.], their dependence on x is eliminated. The normal 
DR 

velocity equations which are proportional to ~x are therefore divided by A , 
aAW 

the pressure continuity equations, proportional to -~x ' are divided by UA 2 
dr 

and the zero-force equation, proportional to Z -- is divided by UA2s 
vdx ' 

3.2 Iterative scheme 

Y 
-s 

In order to solve equation (3-7), we suppose that we have an approximation 

to the solution. Then for Y near Y we can write 
-- m s 

F(Y) = [(Is ) + Js(Y- Ys ) + ... , (3-8) 

[ Fi] 
where Js is the Jacobian matrix, , evaluated at Y_ : Y-s , consisting 

of the partial derivatives of the components of the residual vector with 

respect to the components of the vector Y . 
w 

If we assume that F has a locally-linear behaviour then we can neglect 

the higher order terms in this expansion to obtain a further approximation 

[s+l to the solution of (3-7): 

~s+1 = Y -s - Jsl~(~s) " (3-9) 

This is the multi-dimensional extension of Newton's iterative method. This 

iterative procedure has been applied to other flows with leading-edge separation 

by Pullin 5 and Barsby 6 in their work on conical flows° 

The initial approximation for the iterative procedure, (3-9), is obtained 

by extrapolation from upstream values and the iteration is continued until the 

sum of the squares of the residuals is less than a predetermined value. It was 
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generally found to be advantageous to use three upstream values for the initial 

extrapolation since this reduced the number of iterations required to obtain 

a converged solution. 

The Jacobian matrix is evaluated by numerical differentiation using the 

approximation 

[(YI' "'°' Y" + ~Y'' "°'' Y2n+3) -[(YI "''' Y2n+3 ) ~F 
__L- ~ i I 
~Y. eY. " 

l l . . . . . .  ( 3 - I 0 )  

The i t e r a t i v e  method d o e s  n o t  seem t o  be  p a r t i c u l a r l y  s e n s i t i v e  t o  the  c h o i c e  

o f  t h e  i n t e r v a l  ~ , b u t  t h a t  used  h e r e  i s  ~ = 10 -6 The c a l c u l a t i o n  o f  t h e  

J a c o b i a n  m a t r i x  i n v o l v e s  a l a r g e  number o f  v e l o c i t y  f i e l d  e v a l u a t i o n s  and i s  

t h e r e f o r e  a l e n g t h y  c a l c u l a t i o n .  As B a r s b y  6 found  f o r  t h e  c o n i c a l  s o l u t i o n s ,  

t h e  i t e r a t i v e  p r o c e s s  can be  s p e e d e d  up v e r y  s i g n i f i c a n t l y  by  u s i n g  t h e  same 

J a c o b i a n  m a t r i x  f o r  s e v e r a l  c o n s e c u t i v e  i t e r a t i o n s .  T h i s  s lows  t h e  r a t e  o f  

c o n v e r g e n c e  down f rom second  to  f i r s t  o r d e r ,  b u t  t h e  o v e r a l l  c o m p u t i n g  t ime  i s  

g r e a t l y  r e d u c e d  by  t h e  need  f o r  f e w e r  c a l c u l a t i o n s  o f  t he  J a c o b i a n  m a t r i x .  The 

r a t e  o f  c o n v e r g e n c e  was m e a s u r e d  by  the  r a t i o  o f  t he  sum o f  t he  s q u a r e s  o f  t h e  

r e s i d u a l s  o f  s u c c e s s i v e  a p p r o x i m a t i o n s  and a new J a c o b i a n  was c a l c u l a t e d  o n l y  

when t h i s  f a c t o r  became l a r g e r  t h a n  0 . 4 ,  t h i s  v a l u e  b e i n g  a compromise ,  a v o i d -  

ing  b o t h  an e x c e s s i v e  number o f  i t e r a t i o n s  and an e x c e s s i v e  number  o f  c a l c u l a -  

t i o n s  of the Jacobian. In practice it was found that the same matrix could even 

be used economically to produce converged solutions at a number of streamwise 

stations. A few calculations were made to check the effect of step size° As a 

result a step size of the order of 5% of the wing chord was chosen. For wings 

with more rapid variations in shape, smaller steps would be required. 

The streamwise integration process requires a suitable starting solution 

and this is provided by the known conical solutions which can be applied close 

to the apex where the flow can be regarded as conical. The conical solution is 

provided as data for the calculation. If this conical solution is not 

sufficiently accurate then difficulties could be experienced over the converg- 

ence of the solution as the integration proceeds downstream° The starting data 

can therefore be refined if necessary by using the iterative procedure described 

above. In this case, since Y is independent of x for conical flow, the 

derivatives required for insertion in the governing equations can now be deter- 

mined from 
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Y, (x) = 0 (3-11) 

instead of the backward-difference formula (3-6). 

4 APPLICATION TO NON-CONICAL WINGS 

4.1 Self-similar solutions - validation of the method 

In the previous section it was pointed out that the basic vector is 

independent of x for conical wings. In fact these conical solutions are part 

of a wider family of wings for which such self-similar solutions exist. This 

family of wings was examined by Smith 13 who found that for wings defined by 

s (x) = ax~ L 

J h(x) = bx v 

(4-1) 

where a, b and ~ are constants, the vortex sheet shape will be similar in 

all cross-flow planes, with its length scale being proportional to s(x) . 

Also the vortex density on the sheet depends on x through s'(x) alone, and 

so with the non-dimensionalisation chosen in (3-I) we can see from equations 

(3-2) and (4-I) that Y will be independent of x . The conical solutions 

already referred to can now be seen to be recovered for the particular choice 

= I in equations (4-I). 

The existence of these solutions provides a useful check for the numerical 

method outlined in the previous section. Starting from one of these known 

solutions the definition of the local semispan and incidence can be changed to 

correspond to another member of the family defined by equation (4-I). If the 

flow were attached, according to slender-body theory the cross flow would 

depend only on the local semispan and incidence, i.e. it would change at once 

to that appropriate to the second member of the family. The presence of circu- 

lation shed further upstream modifies this, but as the integration is carried 

downstream away from this changeover point the influence of the original solu- 

tion can be expected to decrease and the behaviour to approach that of the 

corresponding new similarity solution. This was indeed found to occur and 

Fig.3 illustrates the behaviour of the total circulation for one such wing. 

For x ~< 0.01 the wing shape corresponds to a similarity parameter ~ = 0.95 in 

equation (4-I). Downstream of this point the wing shape corresponds to a 

similarity parameter ~ = 0.90 with s(x) and h(x) defined so that they are 
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continuous, although their derivatives are discontinuous, at x = 0°01 There 

was a tendency for oscillation to occur about the limiting downstream solution, 

but this behaviour was thought to be caused by the discontinuity which occurs 

in the local angles of incidence and leading-edge sweep at the change from the 

initial planform, combined with the high-order difference formula used for the 

downstream integration° For the remaining wings which have been examined the 

change from the conical starting configuration to the wing being studied was 

achieved more smoothly and no such oscillations were observed in the solutions° 

4.2 Plane wings with curved leading edges 

In the family of similar solutions 13, the shape of the planform is simply 

related to the lengthwise camber, by equation (4-I)o The effects of planform 

changes can now be considered independently° As an example a wing designated 

II in Ref°3 is chosen° Its planform is shown in Figo4 and its leading edge 

consists of a straight section followed by a parabolic section joining smoothly 

onto a portion of the wing with streamwise edges, the wing being defined by 

a n d  

s ( x )  = 0 ° 2 5 x  , 

s ( x )  = - 0 o 1 2 5 x  2 + 0 . 5 2 5 x  - 0 . 1 5 1 2 5  

s ( x )  = 0 , 4  , 

h ( x )  = O ° l x  , 

O ~ < x ~ < l o l  

1o l  < x  ~ < 2 . 1  

x > 2 , 1  

. . . . . .  ( 4 - 2 )  

so that the wing is at an angle of incidence of 0.1 radians° 

Using the isolated vortex model, Smith 3 found that as his calculation 

proceeded downstream in the region of increasing leading-edge sweep, the 

strength of the isolated vortex decreased, implying that vorticity of the 

opposite sign was being shed from the leading edge° It was not clear at the 

time whether this was realistic or was due to the inadequate model of the 

separated flow. It can be seen from Fig.5, in which the total circulation on 

the sheet and in the isolated vortex is plotted against the downstream distance, 

that a similar reduction in the circulation still occurs when the outer part of 

the sheet is represented in the model° In fact the agreement in the total 

circulation between this method and the isolated vortex model is remarkably 

close. 
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The vortex sheet strength is plotted against the angular coordinate on 

the sheet at several streamwise stations in Fig.6. As the leadlng-edge sweep 

increases, the vorticity being shed from the leading edge decreases and becomes 

negative. This region where negative vorticity is being shed corresponds to 

that over which the total circulation is decreasing. Beyond about x = 2.5 the 

vorticity being shed from the leading edge becomes positive and the circulation 

begins to increase. The region of negative vorticity can be seen to be 

convected around the vortex sheet as the distance downstream increases. 

The corresponding vortex sheet shapes are plotted in Fig.7 (note false 

origin) and it is worth noting that this region of negative vorticity on the 

sheet appears to have no noticeable effect on the behaviour of the sheet, which 

varies smoothly in the streamwise direction. This figure also shows that the 

position of the isolated vortex is changed significantly by the inclusion of 

the outer part of the vortex sheet. For the conical solution the isolated 

vortex model predicts a vortex which is too far outboard, whereas further down- 

stream it predicts a vortex which is too close to the wing. 

4.3 Wing s with lengthwise camber 

A wing with delta planform was chosen to study the effects of lengthwise 

camber. Results are presented for the wing defined by 

and 

s(x) = 0.25x , 

h (x) = 0.2x , 

2 
h(x) = 0.1(4x - x - I) 

O ~ x ~ l  

1 < x ~ < 2  

(4-3) 

These equations define a wing which is initially conical as far as x = I with 

an angle of incidence of 0.2 radians downstream of which the local angle of 

incidence decreases linearly to zero at x = 2 as shown in Fig.8. 

The vortex sheet strength is shown in Fig.9. As the local incidence is 

reduced, the vorticity being shed from the leading edge decreases and becomes 

negative. The absolute value of this negative vorticity is large in comparison 

with the values elsewhere on the sheet and in comparison with Fig.6. The 

corresponding vortex sheet shapes are shown in Fig.10 from which we can see 

that the change in the sign of the vorticity on the sheet is associated with a 

drastic change in its shape. As negative vorticity is shed from the leading 
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edge the sheet begins to bulge towards the lower surface of the wing whilst 

the vorticity on the remainder of the sheet decreases so that it carries very 

little circulation. For this configuration the negative vorticity does not 

appear to be convected around the sheet but the negative circulation builds up 

near the leading edge. The calculation could not be taken any further than 

about x = 1.8 because of the difficulty over the representation of this 

distorted sheet. This difficulty arises because the vortex sheet is defined 

in terms of polar coordinates based on the isolated vortex position for fixed 

polar angles. It is not possible therefore to represent a sheet which passes 

below the extension of the line joining the vortex to the leading edge. This 

deformation of the sheet can be interpreted as the beginning of the new vortex 

system which must form on the underside of the wing as the effective local 

incidence changes sign, although this method does not as it stands provide an 

adequate representation of the two vortex systems. It would be expected that 

this new vortex would be formed before the point at which the geometric 

incidence vanishes, since the vorticity generated upstream of this point 

creates a downwash at the leading edge thereby reducing the effective incidence. 

The calculation reflects this behaviouro 

In an attempt to quantify this effect some wind tunnel tests were carried 

out on a delta wing cambered along the wing centre line. This investigation is 

discussed in Appendix B, where the results obtained are compared with those of 
14-16 

previous studies . 

5 CONCLUSIONS 

A vortex-sheet representation of flow which separates from the leading 

edge of a slender wing has been extended to non-conical flow. The boundary 

conditions which determine the shape and strength of the vortices are formulated 

as ordinary differential equations in terms of the streamwise coordinate° An 

implicit, backward-difference scheme for the solution of these equations, 

starting from a known conical solution, is formulated. The method is shown to 

be stable and to be capable of producing known solutions accurately. 

Solutions are presented for two examples: a plane wing with a curved 

leading edge and a delta wing with negative longitudinal camber. In each case 

the method predicts the shedding of circulation of the reversed sign from some 

part of the leading edge. On the plane wing, this negative circulation is 

convected smoothly into the core of the vortex: the shape of the vortex sheet 
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is smooth, as is found experimentally for plane wings at incidence. On the 

cambered wing, the negative circulation appears to build up near the leading 

edge, producing a distortion of the shape of the sheet which suggests that a 

vortex of the opposite sense of rotation is about to form below the lower surface. 

The coordinate system chosen to describe the vortex sheet is unable to describe 

the further development of the sheet. Some new experimental evidence is 

presented to elucidate the flow over the c~mhered wing. 
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Appendix A 

THE VORTEX-SHEET BOUNDARY CONDITIONS 

The boundary conditions which must be applied on the vortex sheet follow 

from the requirements that it should be a stream surface of the three- 

dimensional flow and that it can sustain no pressure discontinuity. We shall 

derive these conditions in terms of a set of general coordinates defined on 

the vortex sheet E , and then interpret them in terms of the polar coordinates 

used for the numerical calculations. The derivation of the general equations 

is based on that put forward by Smith 4. 

We can define the parametric surface coordinates ~ and ~ on E such 

that $ is measured in the direction of the free stream and ~ is measured in 

the cross-flow plane, ~ = constant. Any point on the vortex sheet can therefore 

be expressed in terms of the parametric coordinates ~ and n , and the shape 

of the vortex sheet will be defined as a function of these two variables. As 

an example of these general coordinates the numerical method given in this 

paper uses polar coordinates (R,~) in the cross-flow plane, as defined by 

Fig.2a, so that ~ = x , the downstream distance and ~ = ~ , the polar angle. 

The shape of the vortex sheet can now be defined by the polar distance 

R = R(x,e) . 

Let ~ be the unit vector parallel to the free stream and let a and 

be unit vectors in the tangent plane at a point on the vortex sheet such that 

is in the direction of ~ = constant with ~ increasing and b is in the 

direction of E = constant with ~ increasing. The vector a x b is therefore 

normal to the three-dimensional surface E , and the unit vector normal to the 

trace of E in the cross-flow plane is given by n = i × b . The vectors 

(i,b,n) therefore form a right-handed orthogonal triad of unit vectors as shown 

in Fig.ll. 

The velocity is discontinuous across E , but the value it takes as E 

is approached from one side can be written as 

_ = + v n ; (A-l) v (u + u)i + vtb - n- 

and we assume that the components of the disturbance velocity (u,vt,v n) are 

small in comparison with the free stream velocity U 
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We can also resolve the vector 

obtain 

a into three orthogonal components to 

so that 

a = (a . i)i + (a o b)b + (a . n)n , (A-2) 

a= × b_ = ( a .  i _ ) n -  ( a  , n ) i  , ( A - 3 )  

The requirement that ~ should be a stream surface is 

X • (~ x b) = 0 , (A-4) 

which with the aid of equations (A-I) and (A-3) gives 

v a . n ~ __ a . n 
n - - 

= a i l + U  " - - ( . _ a . i _ (A-5) 

since we can neglect u in comparison with U , and this condition then gives 

the same value for v on both sides of E . 
n 

We associate the suffices I and 2 with the two sides of the surface E 

such that the normal vector n points towards side I. The second boundary 

condition requires that the static pressure is continuous across E and so, 

if we assume that the total pressure is the same on both sides of E and that 

the density is a function of the pressure alone, the speed must be continuous 

across the sheet. This condition is therefore 

I u)2 2) = 0 
A U + + v~ + v n , (A-6) 

where the difference operator A denotes the value on side I of the sheet 

minus that on side 2. By retaining the second order term in equation (A-5) we 

find that 

v 

AV "~" n 
- -  - -  Au 

n U 

so that we can neglect 

in comparison with U 

Av in comparison with Au . 
n 

so that equation (A-6) becomes 

We can also neglect u 
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UAu + v Av = 0 
t t 
m 

(A-7) 

where Vtm= ½(Vtl + vt2) is the mean tangential velocity in the cross-flow 

plane. Again neglecting the term involving Av we can use equations (A-l) 
n 

and (A-2) to obtain 

Au = Av . i . . . .  = Av. (a- (a. b)b)/(a . i) (A-S) 

If g~d$ denotes the arc length along the curve ~ = constant on E due 

to a small increment d~ in ~ and ~l(~,n) denotes the velocity potential 

on side 1 of Z , then the velocity component parallel to a on side 1 of Z 

is given, on the one hand by a . X1 , and on the other by 

lim 
d~-~0 g~dE 

¢i(~ + d~,~) - ~l(~,n) 

D0 
! I (A-9) Therefore ~ " X1 = g~ D~ 

The component of the velocity jump parallel to a is therefore 

a . Av = 1 DA~ (A-IO) 
- - g~ D~ " 

Also, from equation (A-I) we can see that 

b_ . Av_ = Av t (A-ll) 

and so combining these results with equations (A-7) and (A-8) the second 

boundary condition on Z becomes 

1 DA~ 

g~ DE vt<a (A-12) 

To interpret the boundary conditions (A-5) and (A-12) in terms of the 

polar coordinates used here (see Fig.2a) we observe that ~ = x, ~ = @ and 

in terms of the cartesian axes O Vxy'z ' centred on the apex of the wing 
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and 

i = (i, 0, 0) 

b = (0, cos 4, sin 4) 

= (a x, ay, a z) . 
(A-I 3) 

A general point on the vortex sheet can be written as 

(x, p(x) + R(x,O) sin (O + y(x)), q(x) -h(x) !(x,o) 
% 

-" R(x,O) cos (O + y(x)O , 

and since on the surface 

(A-14) 

3P 3P 
m m 

dP = D-~dx + ~dO = agxdx + bgodO (A-15) 

it follows that 

gx a 
DR 

l, pV + ~x sin (O + T) + Ry' cos (e + T) , 

q, _ hV DR )~ -D--x cos (O + y) + Ry' sin (O + 
/ 

(A-16) 

From Figo2a we can see that O + ~ - 4 = (~/2) - ~ and using this 

together with equations (A-13) and (A-16) we find that 

a. n a. (b × i) 

a . i a ° i 
DR 

pV sin 4 - (q' - h') cos 4 + ~x sin ~ - Ry v cos 

...... (A-I 7) 

so that the normal velocity condition (A-5) becomes 

D--x = - cosec ~ ~- + p' sin 4 - (q' - h') cos 4 - R~' cos . (A- 18) 

Similarly we can combine equations (A-12), (A-13) and (A-16) together with 

(A-18) to obtain the pressure continuity condition 
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~ x  

~~_ vt 
Vn m P, 

- cosec ~ Av t cos ~ + T sin ~ - cos (® + T) 

- (q' - h') sin (O + 7) - RT'~ . (A-19) 
J 
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Appendix B 

EXPERIMENTAL INVESTIGATION OF A WING WITH LENGTHWISE CAMBER 

Visualisation of the flow over delta wings with lengthwise camber has 

been reported by Jones 14, Nangia and Hancock 15, and Snyder 16 Jones 14, in 

describing some preliminary experiments by N.C. Lambourne and DoW. Bryer, 

showed photographs of flow in a water tunnel past a thin delta wing with length- 

wise camber, at an attitude such that the plane containing the apex and the 

trailing edge is parallel to the undisturbed flow. Although the flow over a 

delta wing involves vortices in pairs, one from each leading edge, it is less 

confusing to refer only to the vortex or vortices from one of the leading edges. 

It is also convenient to refer to the concave and convex sides of the wing. For 

the published water-tunnel photographs, the vortex on the concave side was made 

visible by the introduction of a stream of small bubbles of air. There is a 

strong tendency, because of buoyancy, for bubbles to be drawn to the low-pressure 

region along the axis of a vortex and, if the concentration is sufficient, to 

form a core of air along the vortex axis. This is what appears to be happening 

in the published photographs. 

When this core of air approaches the streamwise station at which the local 

geometric incidence vanishes, it appears to pass outboard, round the leading 

edge, and continue downstream on the opposite (convex) side of the wing° This 

suggests at first sight that, in the absence of the core of air, the vortex 

formed over the forward part of the wing is convected round the leading edge, 

near the station of zero local incidence, to becon~ the vortex on the new 

leeside. Such an interpretation is not consistent with the findings of Snyder |6, 

who followed the paths of the vortex cores by injecting steam into them. He 

describes a vortex which forms on the concave side of the wing near the apex 

and continues downstream on the same side of the wing, past the station of zero 

incidence, to the trailing edge; and a second vortex which forms on the convex 

side of the wing near the station of zero local incidence and continues on the 

same side of the wing to the trailing edge. Nangia and Hancock 15 did not find 

the second vortex when the wing was at this same attitude, but describe the 

vortex on the concave side crossing the leading edge when the inclination of 

the apex to the stream is somewhat less. 

The present calculations are interpreted in section 4 as indicating that 

a second vortex of opposite sign forms a short distance upstream of the station 
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of zero local incidence. Certainly the calculations give no indication that the 

vortex formed over the forward part of the wing is convected outboard round the 

leading edge. Unfortunately they could not be carried far enough to reveal just 

how the flow develops. In order to provide a basis for modelling the flow 

further downstream, a simple flow visualisation experiment was carried out in the 

No.I ll½ft x 8½ft low-speed wind tunnel. 

A thin delta wing of aspect ratio I, about 0.96m in length, with sufficient 

lengthwise camber of approximately parabolic form to give a difference in the 

local angle of incidence of 30 ° between the apex and the trailing edge, was 

mounted in the tunnel on a strut attached to a stiffening member mounted along 

the wing centre line. The incidence of the model was controlled by bracing wires 

attached to the wing at about one-quarter of the chord from the apex° The flow 

at various angles of overall incidence was investigated by surface oil-flow, 

using a suspension of lamp black in paraffin oil, by the injection of 'smoke' 

formed from paraffin, by tufts mounted along the leading edge and by a paper 

cone attached by a short thread to the tip of a wire, itself supported by a thin 

rod. This last probe is a sensitive indicator of the location of a vortex, 

since the cone rotates vigorously when the tip of the wire lles in a vortex 

core. 

With the wing set so that the line joining its apex and trailing edge 

was aligned with the free stream the vortices shed from the forward part of the 

wing form over the concave surface. In this case it was possible to follow 

these vortices all the way back to the trailing edge using the vortex probe. 

Vortices of the opposite sense could also be found on the convex surface of the 

wing and followed forward towards an apparent origin at the leading edge, near 

where the local geometric incidence vanished. 

The leading edge of the wing was cut at right-angles to the wing surface 

so that the cross-seetlonal shape took the form of a thin rectangle. The tufts 

consisted of pieces of wool about I0 to 20mm in length and they were attached by 

one end along the leading edge of the wing. Over the forward part of the wing 

the tufts were swept upwards (the wing was mounted concave side upwards) by the 

influence of the vortex above the wing, and over the rear part of the wing the 

tufts were swept below the wing. Precise measurement of the point at which the 

tufts switched from above the wing to below the wing was not possible because 

in this region the tufts were all nearly parallel to the leading edge. It did 

however occur near the position of zero geometric incidence. 



30 Appendix B 

The smoke, produced by a proprietary device marketed for stage use, was 

introduced at the apex of the wing. The flow field was illuminated by a planar 

beam of light across the flow. By viewing this plane obliquely, it was possible 

to see the smoke lying in the vortices formed over the forward part of the wing 

and, by translating the beam, to follow them back to the trailing edge of the 

wing. Unfortunately, the contrast was inadequate for photography. 

The oil flow on the concave surface of the wing is shown in Fig.12a for 

the case in which the angle of incidence at the apex was 15 ° , i.e. the free 

stream was parallel to the plane containing the apex and the trailing edge. The 

pronounced lines emanating from the apex are the secondary separation lines at 

which the flow separates under the primary vortices formed at the apex. The 

effect of some slight lateral asymmetry can be seen in the behaviour of these 

lines close to the trailing edge. However these lines indicate the presence of 

the primary vortices on this side of the wing until well after the station of 

zero geometric incidence, and therefore until well after the formation of the 

new vortices on the convex surface. Downstream of the point at which the right- 

hand separation line crosses the leading edge, outboard flow can still be seen, 

indicating that the vortex is still on the concave side of the wing. This 

surface oil flow is therefore entirely consistent with the description of the 

flow put forward here. 

These observations therefore confirm the essential features of Snyder's 

description of the flow, but the photograph published by Jones 14 remains to be 

explained. It is thought that the column of air trapped in the core of the 

upstream vortex is large enough to respond to the pressure gradients in the 

water flow, rather than to the tangential stresses. As the local angle of 

incidence of the wing reduces in the streamwise direction, the pressure on the 

concave surface surrounding the vortex will rise. When a new vortex forms 

further aft on the convex surface of the wing, a region of low pressure will 

occur in its core. It is suggested that air.from the core of the upstream 

vortex is driven by this pressure gradient round the leading edge and into the 

core of the downstream vortex, so that the path of the air does not indicate 

the path taken by the core of the vortex in the absence of the air. 

Confirmation is provided by unpublished photographs made available by 

Lambourne and Bryer. These were taken at the same time as those published by 

Jones and are reproduced in Fig.13o For both photographs a filament of dye was 

introduced upstream of the apex of the model. In Fig.13a, the dye appears 
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initially to follow both surfaces of the wing. On the concave side it is con- 

vected into a vortex formed at the apex and shows the continuation of this 

well past the station of zero local incidence. The striations which appear in 

the vortex over the forward part of the wing may arise from the helical pattern 

of the streamlines inside the vortex. On the convex side the dye shows a second 

vortex forming near the station of zero local geometric incidence. The dye has 

apparently followed the convex wing surface until the leading-edge vortex sheet 

begins to roll up on the convex side, forming a vortex which convects the dye 

outboard and into itself. 

In Fig.13b, the dye is initially confined to a region close to the axis 

of the vortex formed near the apex. The whole of this filament remains on the 

concave side until some distance downstream of the station of zero local 

incidence. Part of the dye is then convected round the leading edge in two 

distinct filaments which are wrapped round the axis of the vortex on the convex 

side, remaining some distance away from it. The details of the process by which 

the dye from the core of the vortex on the concave side finds its way round 

the leading edge are not clear. 

The oil-flow photographs provide an opportunity for a quantitative compari- 

son between the theoretical model and the real flow. In Figs.12b, c and d, the 

flow on the convex surface of the wing is shown. Over the forward part of the 

wing the flow is directed outboard near the leading edge and inboard over most 

of the semi-span. (The disturbance near the front end of the marker tape 

attached along the centre line is produced by the attachment of the bracing 

wire.) This is consistent with a pair of vortices lying on the concave side of 

the wing. Over the rear of the wing, there is a strong outflow some little way 

inboard of the leading edge, terminating in a secondary separation line, which 

is usually dark. This secondary separation line is the clearest indication of 

the presence of the vortex on the convex surface. 

Since it is difficult to see where along the leading edge this secondary 

separation line first appears, the station at which it is a small fixed distance 

(about 0.15% of the root chord) from the leading edge was measured on the 

photographs. (NB: The dark border around the wing is part of the wind-tunnel 

background.) Because of the lateral asymmetry existing in the flow, the right- 

hand side of the wing was used throughout for consistency. These positions are 

shown as a function of the geometric angle of incidence of the apex of the wing 

in Fig.14. These measurements show a remarkably smooth variation, and are 

clearly related to the position at which the local geometric incidence vanishes. 
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With one marginal exception, they lie just upstream of this position. Since 

the vortex on the convex surface must be formed upstream of the station at which 

the secondary separation is identified, it is concluded that it forms upstream 

of the station at which the local geometric incidence vanishes. 

For comparison, Figo]4 also shows the lengthwise stations at which the 

numerical solution breaks down, again as a function of the apex incidence of the 

wing° The breakdown of the calculation is simply a failure of the Newton method 

(section 3°2) to converge to a solution. The breakdown of this calculation was 

usually accompanied either by the development of a point of inflection on the 

sheet or by the shedding of vorticity of the opposite sign from the leading edge, 

although there were no such features commoD to all of the cases considered. It 

has not therefore been possible to identify a single cause of breakdown. 

However the points shown in Fig.14 have a consistent and reasonably smooth 

dependence on the apex incidence. In the cases considered here the breakdown 

occurs before the build up of circulation of the opposite sign over the convex 

surface which was observed in Fig.10, which suggests that it occurs before the 

appearance of this new vortex° In this sense, the calculated points in Fig. J4 

are in a consistent relation to the measured points. 

As the apex incidence was increased the breakdown of the numerical 

calculations was found to occur at increasing local angles of incidence, but no 

similar trend was observed in the experimental measurements. This difference 

may be due to the absence of trailing-edge effects in the mathematical model° 

i 
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SYMBOLS 

unit vectors tangential to the vortex sheet - see Appendix A 

local aspect ratio - see equation (2-3) 

constants in equation (4-I) 

residual values in governing equations - see section 3.1 

arc-length scale factors - see Appendix A 

wing centre line camber 

unit vector parallel to free stream 

Jacobianmatrix of F with respect to Y - see section 3.2 

= S/X 

unit vector along inward normal to vortex sheet in cross-flow plane 

number of points defining vortex sheet 

horizontal and vertical distance of isolated vortex from wing 
centre line 

vector position of a general point on the vortex sheet - see 
Appendix A 

polar distance from isolated vortex 

local semispan 

component of velocity perturbation parallel to free stream 

speed of free stream 

fluid velocity 

component of velocity along inward normal to vortex sheet in 
cross-flow plane 

component of velocity tangential to the vortex sheet in the 
cross-flow plane 

mean component of tangential velocity in the cross-flow plane 

real and imaginary components of the complex velocity - see 
equation (2-10) 

complex velocity potential 

cartesian coordinates in cross-flow plane - see Fig.2a 

cartesian coordinates based on apex - see Fig.l 

vector defining position and strength of the vortex sheet and 
isolated vortex - see equation (3-I) 

= y + iz , complex coordinate in cross-flow plane 

= (Z 2 - s2) ½ , complex coordinate in transformed plane 

see Fig.2a 

circulation about isolated vortex 

increment used for numerical differentiation 
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SYMBOLS (concluded) 

steplength for streamwise integration 

difference operator across vortex sheet 

total circulation about vortex sheet and isolated vortex 

cross-flow velocity potential 

angle between radius vector and the tangent to the vortex sheet - 
see Fig.2a 

polar angle measured about isolated vortex - see Figo2a 

parametric coordinates - see Appendix A 

density 

similarity parameter - see section 4.1 

intrinsic sheet coordinates - see Figo2a 

vortex sheet - see Appendix A 

current position on vortex sheet 

free end of vortex sheet 

point on vortex sheet 

current approximation to solution 

position of isolated vortex 

separate sides of vortex sheet 
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Fig.12b Convex surface oi l  f low - 15 ° apex incidence 
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Fig.12c Convex surface oi l  f l ow - 20 ° apex incidence 
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Fig.13a&b Water tunnel test of cambered elta wing 



Fig 14 

1.0 

Distance 
along 
wing 

centre lir 
(m) 

0.8 

0'6 

(9 

Posit ion of zero local 
incidence 

Measured posit ion of 
vor tex fo rmat ion  

Breakdown of calculat ion 

E) 

,:I 0 

0"/, 

(3 

0-2 

(3 

I I I 
10 20 

Apex incidence (degrees) 

30 

Fig.14 Format ion of  second vortex on wing with lengthwise camber 

Printed in England for Her Majesty's Stationery Office by the Royal Aircraft 
Establishment, Farnborough. Dd. 587484 K4 3/78. 



© Crow~ copyright 

"1978' 

Published by 
HER MAJESTY'S STATIONERY QFF|CF 

(;overmnent I~ookshops 
49 High |tolborn, Lo¢~don W(Tl V 6HB 
13a Caslle Street, Edii~burgh EH2 3AR 

41 The Hayes, Cat'diffCFl IJW 
Brazennose Street, Ma{tchester M60 8AS 

Southey House, Wine Streei, Bristol BSI 2B(,) 
258 Broad Street, Bix{l~ingham B~ 2HE 
80 Chichester Street, ]3elf~lst BT1 4JY 

Govermnent Publicatio*f,s are also available 
through booJtcsellers 

:R &M No.3814 

ISBN 0 I1 471~4.'7 X 


