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Summary 

A general finite-difference procedure is presented for the calculation of steady, two-dimensional 'parti- 
ally-parabolic' flows, with special reference to turbine cascade problems. It can be used for incompressible, 
subsonic, supersonic or transonic flows. It can be characterised as an 'iterative space-marching' method. 

The method is more economical in computer storage than time-marching procedures; and computer time 
is also low. The main distinguishing features of the method are: 

(a) use of a streamline coordinate system, 
(b) one-dimensional storage for all variables except pressure, 
(c) solution by repeated marching integration from upstream to downstream. 
The capabilities of the method are demonstrated by application to six different inviscid-flow problems. In 

each case, computed results are compared with the available analytical or experimental data. Good 
agreement is shown. 

The method is capable of including momentum transfer across streamlines by viscous effects; it can easily 
incorporate a two-equation turbulence model; and heat transfer can be simultaneously calculated. 

* Replaces A.R.C. 37 016 
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1. Introduction 

1.1. The Problem Considered 

The development of aerodynamically-efficient turbines and compressors requires the rapid and accurate 
prediction of flow in cascades of blades. In axial-flow machines, the blade-to-blade flow is often regarded as 
a two-dimensional one. Fig. 1 represents the flow geometry for a plane flow. The important features are: 

(i) strong curvature in the flow passage; 
(ii) circumferential periodicity of flow; 

(iii) compressibility effects (subsonic,. supersonic or transonic). 
The present paper describes a numerical procedure for predicting flows which possess some or all of the 
above-mentioned features. The method can be easily extended to include other effects such as: 

(a) rotation of blades; 
(b) flow convergence resulting from variations of blade height or hub radius; 
(c) friction; 
(d) turbulence; and 
(e) heat transfer. 

1.2. Existing Methods 

Numerous computational methods have been developed in the past for this problem; and Gostelow 
(1973) 4 has reviewed the capabilities and limitations of several of them. He pointed out that most of the 
methods were limited to subsonic flow; and the few methods which were applicable to transonic flows either 
required a priori knowledge of the sonic line in the flow, or were very expensive in computation time. 

Most of the recent methods, e.g. McDonald (1971) 7, Gopalkrishnan and Bozzola (1971) 3, Denton 
(1975) 2, and Delaney and Kavanagh (1976) 1, are based on the 'time-marching' approach. This means that 
the steady-state solution is obtained by solving time-dependent, partial-differential equations. This practice 
has the merit of being easy to understand, but it possesses two inherent disadvantages: 

(i) usually a great many time steps are required before a steady-state solution is reached, therefore, 
computations are expensive, 

(ii) computer-storage requirements are also large because all the variables must be stored for the whole 

flow domain. 

1.3. Main Features of the Present Method 

The present method solves the steady-flow equations by a finite-difference technique and is very 
economical in computer storage and time requirements. It can be regarded as a combination of the 
Patankar-Spalding (1967) 9 procedure for predicting two-dimensional 'parabolic' flows, with the so-called 
'semi-elliptic' (Spalding, 1971) TM or 'partially-parabolic' method (Pratap and Spalding, 197511, 197612) of 
handling 'elliptic' flow without flow reversal. 

The novelties of the present method reside in the choices of: 
(a) the coordinate system; 
(b) the dependent variables; and 
(c) the numerical solution scheme. 

These will now be described. 

(a) Coordinate System 
A non-orthogonal coordinate system is employed in which the coordinate lines are: 
(a) streamlines; 
(b) a family of straight lines, parallel, in cascade problems, to lines through the leading edges of the 

blades. 
A typical grid is shown in Fig. 2. The two independent variables are axial distance x, and stream function ~. 
It should be pointed out here that the positions of streamlines in the x, y plane are not known in advance; 
instead, they are the outcome of computations. The main advantages of this coordinate system are as 
follows: 

(i) Arbitrary-shaped boundaries, e.g. blade surfaces, can be handled very conveniently and accurately. 
(ii) The governing flow equations are considerably simplified because the mass fluxes across the control- 

volume faces are known. For instance, in Fig. 3 the mass fluxes through faces 1 and 2 are equal to A~b; 
and mass fluxes through faces 3 and 4 are equal to zero. 
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(iii) The 'false viscosity' which afflicts numerical solution procedures in which streamlines cross grid lines 
obliquely is therefore absent. 

(iv) Constant-x lines are particularly suitable for the imposition of the 'cyclic' boundary conditions 
outside the blade passage, according to which flow properties at either limit of the lines, although 
unknown, must be identical. They are also convenient for interpretation of the computed results. 

(b) Dependent Variables 

The following variables are treated as dependent variables, the values of which are to be found at all grid 
points:--  

(i) streamwise-velocity, u ; 
(ii) y-direction component of velocity, v; 

(iii) fluid pressure, p; and 
(iv) fluid density, p. 

It must be noted that the selected velocities are aligned with the coordinate lines, and thus are not 
orthogonal to each other. The advantage of this practice is that the momentum-conservation equation for 
each velocity contains only one pressure-gradient term, i.e. u depends on Op/Os and v on Op/Oy. The choice 
of velocity components has been the most critical factor in the success of the scheme. 

(c) Numerical Solution Scheme 

The method employs an iterative, forward-marching integration scheme which assumes the flow situation 
to be 'partially parabolic', Pratap and Spalding (1976) 12. This means that downstream events are presumed 
to influence upstream ones only by way of pressure; for viscous effects in the upstream direction are 
negligible, at high Reynolds numbers; and recirculation (closed streamlines) is absent. 

The distinctive features of the adopted procedure are: 
(i) The pressure field is stored in a two-dimensional array. 

(ii) Density, velocities and all other variables remain in one-dimensional storage, one x-location being 
treated at a time. 

(iii) An iterative, marching-integration procedure is adopted, whereby several sweeps of the flow domain 
are made; in each sweep a better estimate of the pressure field is obtained. 

Further details of the calculation steps are given in Section 2.4. 
It can be noted from the above description that the computer-storage requirements are minimal. The 

saving, as compared with time-marching methods, becomes even more significant when additional depen- 
dent variables such as turbulence kinetic energy, stagnation enthalpy, etc., are also to be solved. 

1.4. Outline of the Paper 

The remainder of the paper is divided into three sections. Section 2 describes the governing flow 
equations, some important auxiliary relations, the boundary conditions, and the main steps of the solution 
procedure. Section 3 presents computed results for six test cases, comprising one incompressible, one 
subsonic and four transonic problems. In each case, the computed solution is compared with the available 
analytical or experimental data. Concluding remarks are made in Section 4. 

2. The Solution Procedure 

2.1. Governing Equations 

For a plane, two-dimensional, inviscid, compressible flow, the governing equations are written as follows: 
Streamwise momentum-conservation equation: 

u~_u 2_ 23' (pl p2]. 

y-direction momentum-conservation equation: 

(1) 

ml//(/)2 --/)1) = (P3 --p4) .  AX ; 

Equation for kinematic compatibility of flow: 

(2) 

Ayz - Ayl = Ax (tan Od 4 - -  tan a 3 ) ;  (3) 



Equation of state: 

pp_..) 1/~, 
P =P0 (4) 

The meanings of the symbols are explained in the List of Symbols. Suffixes 1, 2, 3 and 4 refer to the average 
values pertaining to the respective faces of the control volume of Fig. 3. Suffix 0 denotes the stagnation 
condition. 

Some remarks on equations 
Equation (1) is a form of the Bernoulli's equation for compressible flow (Liepmann and Roshko, 1966) 6. It 

can also be regarded as a 'total energy' equation; however, its main function is to relate the streamwise 
velocity, u, to the pressure. Equation (2) has been obtained by applying the momentum-conservation law to 
the control volume of Fig. 3. 

Equation (3) is a geometrical relation; it is the counterpart of the continuity equation of a fixed-grid 
coordinate system. In equation (3), Ay and o~ are auxiliary quantities, which are calculated from primary 
variables, as explained in Section 2.2.3. 

Equation (4), like equation (1), is valid for isentropic flow; more general relations can be incorporated, if 
desired. 

2.2. Some Important Details 

2.2.1. Staggered-Grid Practice 

The velocity components and pressure are stored in the 'staggered' positions on the finite-difference grid. 
The boundaries of the various control volumes, and the storage locations of variables, are shown in Fig. 4. 

2.2.2. Upwind-ditferencing Practice 

Upwind differences of momentum fluxes are used in the momentum-conservation equations. The final 
forms of these equations, as employed in the method, are: 

z z= 2y,,(pP_pE'~ 
u~-u~, y - l  \pe P~/" 

Atp(vn - v .w)  = (pc -pN). Ax. 

(5) 

(6) 

2.2.3. Calculation of Auxiliary Quantities 

As mentioned in Section 2.1, ~x and Ay are calculated from the primary variables; the relationships used 
are: 

Kinematics of flow: a = sin_1 _v, (7) 

a 0  ~ m °  Continuity: Ay p u c o s a  (8) 

In equation (7), v and u are velocities interpolated for the point at which a is to be calculated. In equation 
(8), the term pu cos a should be evaluated at the centre of the control-volume face for which Ay is to be 
calculated. 

2.2.4. A Pressure-correction Equation 

In accordance with the requirements of the SIMPLE (Semi-Implicit Method for Pressure-Linked 
Equations) algorithm of Patankar and Spalding (1972) 1°, a pressure-correction equation is derived. Full 
details of the derivation are given in a separate report by Singhal (1977)13; and the main steps are explained 
in the appendix of this report. Here, only the final form is presented. It is, with reference to Fig. 5: 

(AN +As +AE +Aw)pl,-- AlvpN AsPs+ ee. (9) 
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The A coefficients contain mass fluxes, areas and inclinations of control-volume faces. The ep term expresses 
the kinematic-compatibility error, for grid node P, as calculated below: 

ee - (Ay*-  Ay*) -  Ax (tan a*  - tan a*). (lo) 

Superscript *, given to Ay and a, denotes that these quantities are based on an estimated pressure field. The 
purpose of the pressure-correction equation is to correct the pressure and velocity fields so as to annihilate 
the error, e, at all grid locations in the flow domain. 

2.2.5. Treatment of Compressibility 

Irrespective of whether the flow is subsonic or supersonic, the equations (4), (5), (6) and (9) are solved, at 
each grid node, in an identical manner. However, the elliptic and hyperbolic behaviours of the subsonic and 
supersonic regions are expressed through the differing ways of computing the mass velocity (pu). This 
quantity pu is used in equation (8) for calculating the cell-face height Ay. 

For this purpose, a 'convective-velocity' practice (Spalding, 1976) 15, has been adopted. According to this 
practice, pu at a typical location, point e in Fig. 5, is calculated as follows: 

(pu ), = pp. ueonv¢cti~,, (11) 

where for subsonic flow, 

U c o n v e c t i v e - ' ~ U e .  \ p p ]  ' 

and for supersonic flow, u~onv~v~ = u~,. 
For an isentropic flow, the above prescription can also be interpreted as: 

(pu )e = pEu, for subsonic flow 

and 

(pu )e = ppuw for supersonic flow. 

The main implications of this practice are: 
(i) In a supersonic region, (pU)e is independent of the downstream pressure pn. This enforces the principle 

that influences cannot travel upstream in supersonic flow. 
(ii) In the flow regions where Mach numbers are close to or greater than unity, the large density changes 

provoke no numerical instability; for, in the product p~,uw or pnue, velocity is considered at an upstream 
point relative to the location of density; and therefore, for a pressure change at the location of density,.the 
considered p and u always vary in the opposite directions. 

It should be remarked that this deliberate contrivance of features in the finite-difference equations which 
conform to known features of real flows is both necessary and proper. Finite-differencing 'losses' infor- 
mation which the differential equations possess; and sometimes this 'loss' must be artificially made good. 

2.3. Boundary Conditions 

At the boundaries of the solution domain (Fig. 1), the flow conditions are specified in the following 
manner. 

Inlet plane: Stagnation pressure and density, and flow direction, are specified. 
Outlet plane: Static pressure is specified. 

In some cases, where the exit flow condition is subsonic, static pressure can also be prescribed at the inlet 
plane instead of at the exit plane. In these circumstances, the exit static pressure is an outcome of the 
solution, and the boundary condition for the outlet plane can be changed to one of the following two types: 

(i) cross-stream variation of pressure is specified; or 
(ii) streamwise derivative of pressure is specified. 

Solid boundaries: Local surface inclinations, with reference to the x-direction, are specified. 



Dividing streamline boundaries, upstream and downstream of the cascade. 
These are treated in the same way as solid boundaries, except that their local inclinations are calculated, as 

explained below, from the periodicity ('cyclic boundary') conditions. 
Fig. 6 shows a typical arrangement of streamlines in the cyclic-boundary region. The bounding streamlines 

are numbered as 1 and n. The line 2' is a pseudo streamline which is parallel to streamline 2 and displaced 
from it by a distance equal to pitch. Periodicity of flow implies that the flow properties are identical at 
corresponding points such as A and A', B and B', D and D', etc. 

In order to determine the inclination orB, the velocity vB is calculated by applying Equation (6) to the 
control volume, shown by the shaded area in Fig. 6; and the value of streamwise velocity uB is interpolated 
from the u-velocities of the adjoining points, viz. C, D, E and F. Then orb is simply calculated from Equation 
(7). 

Near-round-edge regions 
At present, the regions close to the round edges of the blades are treated in an approximate manner, i.e. 

by placing small 'cusps' at the round edges. At the leading edge, a cusp is made symmetrical to the inlet flow 
direction, while a trailing-edge cusp satisfies the Kutta-Joukowski condition of zero load. 

These 'cusps' are no more than aids to thought and verbal description, expressing the fact that, in the 
vicinity of the leading and trailing edges, large changes of blade-surface angle occur over distances which are 
of the same order as the grid size. More sophisticated practices are in the course of development. 

2.4. Sequence of Calculation Steps 

The main features of the numerical-solution scheme were outlined in Section 1.3. In this section, the 
detailed calculation steps are summarised as follows: 

(1) The pressure field is first assigned guessed values. For example, the pressure may be assumed to be 
uniform in the y-direction and to vary linearly in the axial direction. 

(2) Inlet distributions of u and p are obtained, from isentropic-flow relations, from the static pressure, the 
stagnation pressure and the density, v is deduced from u and the given a. 

(3) At the next downstream section, u, v and p are calculated, by solving equations (4), (5) and (6). 
(4) From the just-computed velocities and densities, the kinematic-compatibility errors and other 

coefficients of the pressure-correction equations are calculated. A set of pressure-correction equa- 
tions, one equation for each grid node of the section under consideration, is obtained. These are 
solved simultaneously by applying the tri-diagonal matrix _algorithm (TDMA) along the line of 
constant x. 

(5) The corresponding corrections are now applied to the pressures, velocities and densities of the 
current-plane nodes. 

(6) In addition to the above-mentioned local pressure corrections, average-pressure adjustments are also 
made so as to ensure that the calculated overall width of flow, in the y-direction, is exactly equal to the 
actual dimension. 

(7) The next downstream section is chosen; and steps 3 to 6 are repeated. This stepwise march is 
continued until the end of the flow domain is reached. This completes one marching sweep; and a new, 
improved, two-dimensional distribution of pressure has been obtained. 

(8) Steps 2 to 7 are repeated until the pressure corrections or the kinematic-compatibility errors have 
become smaller than a pre-assigned value. On the last sweep, the converged distributions of velocities, 
pressure and other quantities of interest are printed out. 

3. Applications 

In this section, the capabilities of the solution procedure, described in Section 2, are demonstrated by way 
of six examples. For each example, the description is divided into two parts, viz. (i) statement of problem, 
and (ii) presentation of computed results and their comparison with available analytical or experimental 
results. Computational details of all the examples are summarised in a table at the end of this chapter. 

3.1. Example 1: Incompressible Flow past a Cylinder placed in a Channel 

In order to test the basic solution scheme, an inviscid, incompressible flow, without any cyclic boundaries, 
has been selected as the first example. Fig. 7 shows the flow geometry, together with the selected domain of 
integration and a typical grid arrangement. 



An exact analytical solution can be obtained by considering an infinite series of doublets placed at the 
y-axis, at equal intervals (Ex. 39, p. 229, Milne-Thompson (1962) 8. The resultant stream function is: 

~" sin (7r/2. y) 
~P = Uooy - Uoo . 4 " cosh [(~-/2)x]-cos [(Tr/2)y]" (12) 

The streamline ff = 0 includes the x-axis and the contour of the cylinder. 
For numerical computations, the coordinates of the cylinder surface were specified. In addition, the 

following conditions were supplied as boundary conditions: 
(i) uniform inlet velocity; 

(ii) zero streamwise gradient of pressure at the exit plane. 
Fig. 8 shows the comparison between the predicted and analytically-solved streamlines; the agreement is 
very satisfactory. 

3.2. Example 2: Subsonic Row in a NASA Turbine S~ator Cascade 

In this example, a two-dimensional, compressible flow is considered in a cascade in which flow remains 
subsonic throughout. The selected problem is flow at the mean-diameter section of a stator of a N A S A  

turbine, operating at the design mass flow rate; relevant experimental data have been reported by Whitney 
et al (1967) 16. The cascade has round-edged blades. 

For computations, in order to avoid discontinuities in the grid, small cusps have been placed at the leading 
and trailing edges of the blades. 

The predicted and experimental distributions of surface Mach number are compared in Fig. 9. The 
computed Mach numbers agree well with the experimental data. 

3.3. ExampLe 3: Transonic Flow in Hobson's First Impulse Cascade 

This example considers the first of the two impulse cascades, for which analytical solutions, obtained by 
the Hodograph method, are reported by Hobson (1974). 

In this problem, flow is subsonic at both inlet and outlet sections; and there is an embedded supersonic 
region near the centre of the suction surface. Flow is expected to be free of shocks. 

R e s u l t s  

Figs. 10 and 11 show the computed streamlines and contours of critical Mach number (M* = u / u * ) .  It may 
be observed that the computed flow field is fairly symmetrical. 

In Fig. 12, the computed distributions of surface velocities are compared with the Hodograph design data; 
the agreement is quite good except at the central part of the suction surface, where the predicted velocities 
are relatively low. No reason is apparent for this discrepancy. However, it may be pointed out here that in a 
Hodograph method an inverse problem is solved, i.e. blade shape is calculated, by a finite-difference 
technique, for the pre-selected velocity distribution as a function of flow direction; this calculation is no less 
subject to truncation errors than the present one. 

Solutions of other methods, presented at a NATO conference at Cambridge University in 1973, also 
showed some discrepancies in this region; these solutions are reported in Hobson's Ph.D. thesis 5. 

3.4. Example 4: Transonic Flow in Hobson's Second Impulse Cascade 

This case is very similar to that of example 3; but the impulse blades are relatively of thinner section, and 
the expected supersonic region is smaller. 

Fig. 13 demonstrates that the present predictions agree well with the Hodograph design. 

3.5. Example 5: Transonic Flow in a VKI Gas Turbine Cascade 

This example considers a cascade flow which is subsonic at inlet and supersonic at outlet. Problem 
specifications, experimental measurements and theoretical predictions of several other methods are reported 
in the VKI Lecture Series 59 (1973). 

C o m p u t e d  resu l t s  

Computations have been made for two different flow conditions, specified by the outlet Mach numbers 
which are: (i) 1.31 and (ii) 1.11. Figs. 14 and 15 present the calculated Mach-number contours in the flow 
field. From these two figures, it can be seen that in the downstream part of the flow domain there are 



noticeably different shock structures; but, in the upstream region, changes in Mach numbers are in- 
significant. 

Figs. 16 and 17 compare the predicted and experimental values of surface Mach numbers for the two flow 
conditions considered. The agreement of the present method with experiments is excellent except that, in 
Fig. 17, slight discrepancies appear on the suction surface near to the trailing edge. These discrepancies may 
be ascribed to one or both of the following: 

(i) Neglect of viscous effects: These are most significant in the rear part of the suction surface where 
adverse pressure gradient exists; thus the boundary layer can grow and the shock boundary-layer 
interactions can change the flow significantly. 

(ii) Limited accuracy of the finite-difference procedure near the round edges of blades. 
It may also be pointed out here that none of the other methods, reported in VKI Lecture Series, were able 

adequately to predict the steep variations of Mach number near the trailing edges of this cascade. 

3.6. Example 6: Transonic Flow in a VKI Steam Turbine Cascade 

This is the second test case of VKI Lecture Series 59 (1973). It presents a very severe test of any 
finite-difference scheme since extremely steep gradients of flow properties occur in both pitchwise and 
streamwisedirections. Fig. 18 illustrates the cascade geometry; pitchwise grid lines are also shown to give an 
idea of the axial grid spacings used in the present computations. The computed streamlines and Mach- 
number contours are exhibited in Figs. 19 and 20. 

Fig. 21 shows the comparison of predicted and experimental surface-Mach-numbers. Once again, 
agreement between the computed results and experimental data is good over most of the blade surface. 

3.7. Computational Details 

Computations were carried out on the CDC 6600 computer of London University. Execution time 
requirements of the examples described in Sections 3.1 to 3.6 are indicated in the following table: 

Example 
No. Identification 

The cylinder problem 
NASA stator cascade 
Hobson's first cascade 
Hobson's second cascade 
VKI gas turbine cascade 
VKI steam turbine cascade 

Grid size 
Ny×N~ 

11x25 
8×27 

11×30 
8x30 

10×30 
20×38 

Execution 
time on CDC 
6600 computer 

(seconds) 

7 
9 

15 
10 
20 
52 

It was established, by variations of the grid fineness and by increasing the number of iterations that the 
physically-significant results of the computations were substantially independent of these factors. 

4. Concluding Remarks 

(i) The present paper has described a simple and economical solution procedure for calculating two- 
dimensional, partially-parabolic flows, such as flow in turbine cascades. The presented examples have 
illustrated its capability of solving incompressible, subsonic and transonic flow problems. 

(ii) The main merits of the method derive from its use of (a) the non-orthogonal streamline coordinate 
system, (b) the velocity components which are aligned with the local coordinate directions, and (c) the use of 
one-dimensional storage for all variables except pressure. 

(iii) Further developments of the method, now in progress, include: 
(a) Inclusion of physical effects such as friction, turbulence, heat transfer, rotation of blades, and 

convergence of flow resulting from hub-radius and blade-height changes. 
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Oa) Calculations of two-dimensional through-flow, in turbomachines, by neglecting circumferential varia- 
tions, in the meridional plane. 

(c) Allowance for 'doubling back' of streamlines. 
(d) Applications to external flows. 
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A 

M 

P 

s 

U 

IJ 

X 

Y 

Greek 

Ol 

.y 

e 

4, 

P 

Subscripts 

N , S , E , W  

n, s, e, w 

P 

0 

1 ,2 ,3 ,4  

Superscripts 
I 

LIST OF SYMBOLS 

Coefficient in the pressure-correction equation. 

Math number. 

Fluid pressure. 

Distance along a streamline. 

Stream-wise velocity or total velocity. 

y-direction component of velocity. 

Reference direction, e.g. direction of turbine axis. 

Direction normal to x. 

Local streamline inclination with reference to the x-direction. 

Ratio of specific heats. 

Kinematic-compatibility error. 

Stream function. 

Fluid density. 

Refer to the neighbouring grid nodes located in north, south, east and west directions, 
respectively. 

Refer to the mid-node locations. 

A typical grid node. 

Refers to the fluid stagnation conditions. 

Refer to control-volume faces, Fig. 3. 

Denotes correction component. 

Refers to fluid properties based on approximate pressure field; also used to denote critical 
(or sonic) condition. 
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APPENDIX 

Derivation of the Pressure-Correction Equation 

The basic idea of the SIMPLE algorithm is: first, to solve the momentum-conservation equations, using 
approximate values of pressures; and, then, to correct the pressures and velocities so that the continuity, or 
in the present case, kinematic-compatibility, requirement is satisfied at each grid node. These corrections are 
applied for o n e  cross-stream section at a time, and are calculated as follows: 

(a) The pressure and velocity fields are expressed as: 

p = p * + p ' ,  (A-l)  

u = u* + u', (A-2) 

v = v * + v ' ,  (A-3 )  

where the primed quantities represent the corrections to the approximate (starred) values. 
Similarly, the auxiliary quantities can be expressed as: 

p = p * + p ' ;  (A-4) 

Ay = Ay* + Ay', (A-5) 

a = a*  + a ' .  (A-6) 

(b) Application of the kinematic-compatibility condition (Equation 3) to the control volume of Fig. 5 
yields: 

Aye -- A y w  = Ax(tan an -- tan ors), (A-7) 

But ee, the kinematic-compatibility error in the region surr6unding grid node P, is defined (see Section 
2.2.4) by: 

Ay * - Ay* =-- Ax [(tan a , )*  - (tan as)*] + ep.  (A-8) 

Subtracting (A-8) from (A-7) yields: 

t O/ J A y ' -  Ayw = Ax[(tan a , ) ' - -  (tan s) ] -  ee. (A-9) 

t OJ (c) Next, the quantities Ay' and (tan a ) '  are expressed in terms of u ,  and p'. 
For example, by differentiating equation (8), there results: 

Ay,=_[p,+±+ (cos 
Ay Lp u co sa  J" (A-10) 

Further, cos a and cos a '  are also expressed in terms of the velocity components as follows: 

• / U  2 - -  ~) 2 

cos a = - - ,  (A- 11) 
U 

0(cos a) 0(cos a) v'. 
( c o s a ) ' -  Ou u ' - t  - -  (A-12) 

Ov 

Similarly, tan o~ and (tan a) '  can be related to velocity components. 
' V '  p' (d) Now, u ,  and are related to the pressure corrections at the adjoining grid nodes by relations such 

a s :  

r AX f i 
vn = ~-~. (pp -p~) ,  (A-13) 
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1 
U'e = (pu)e" (p~'-pk), (A-14) 

xyp/e" 

These equations can be derived by substituting equations (A-2), (A-I) and (A-3) into equations 2, 1 
and 4 respectively. 

(e) The relations expressed above are then substituted into equation (A-9), the coefficients for p/o are 
collected and rearranged to obtain the form which appeared in Section 2.2.4, as equation (9): 

r +  (A~r+ As+ AE+ Aw)pre= ANpiv AsPs+ep. (A-16) 

It may be noted that in equation (A-16), pressure corrections of the upstream and downstream nodes, pk 
and p~v, do not appear. The reason is that corrections are not being made on the constant-x lines containing 
E and W at the time in the computation at which P, N and S are being attended to. Of course, in the 
repeated-space-marching procedure, all corrections are made, and all kinematic-compatibility errors 
reduced to acceptably small sizes, before the end. 
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FIG. 10. Computed streamlines; Hobson's first impulse cascade. 
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FI6. 1 I. Critical-Mach-Number contours; Hobson's first impulse cascade. 
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FIG. 18. Pitchwise grid lines; VKI steam turbine cascade. (Outlet Mach No. = 1.80). 
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