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Summary 

The problem of a subcritical, potential, steady, three-dimensional flow past an unyawed ellipsoid is 
considered, using ellipsoidal coordinates. 

The full equations of motion and the exact body surface boundary condition are used throughout. Further, 
by means of a simple transformation the entire flow field is taken into the computation. A finite difference 
method, followed by an iterative process is used for the solution of the flow equations. 

Mach number distributions are given for a number of examlSles, for the free-stream flow aligned along either 
the major axis, or the second major axis of the ellipsoid. 

This work was done in association with Aerodynamics Department, R.A.E. under the link with the University 
of Southampton. 
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1. Introduction 

The problem of calculating the exact (in the numerical sense) solution for two-dimensional, potential, 
subcritical flows past general shapes (with and without lift) has largely been solved, for some years now, 
primarily using the work of Sells z. 

Now, however, the recent development of powerful computing machines has introduced the possibility of 
calculating the flow around three-dimensional, wing- and body-like shapes. 

Here we describe a numerical scheme that calculates the subcritical flow around an unyawed ellipsoid. The 
method is (numerically) exact, the full, non-linear equations of motion being used throughout, the entire flow 
field is taken into the computation, and the body surface boundary condition is satisfied as exactly as numerical 
differencing schemes will permit. 

Throughout we work in ellipsoidal body coordinates. This enables us to satisfy the exact body surface 
boundary condition easily, and at the same time ensures a refined mesh distribution in regions in which the 
solution is changing rapidly. Further, by means of a simple transformation of one of these body coordinates, we 
are able to bring the entire physical flow field into a finite working field. The transformation also ensures that 
there is a certain amount of bunching of mesh points near the body, whilst further away the point distribution is 
sparser. 

There are essentially two unknowns to the problem--the velocity potential and the speed of sound, which 
are connected by the Bernoulli energy conservation equation. The velocity potential has a singularity at 
infinity in the physical flow field, and this contribution is subtracted out of the calculation (being a known 
quantity) for numerical purposes. 

Section 2 deals with the ellipsoidal body coordinate system, and the equations of motion in this coordinate 
system, together with the special mathematical treatment required along the singular lines encountered in 
these coordinates. Section 3 describes the numerical procedures required for computation, and the results are 
given in Section 4. There are three independent solutions to the problem of the unyawed ellipsoid, one for the 
freestream velocity aligned along each of the three body axes. Here we consider just two of the three cases, 
namely for the flow aligned along the two longest axes of the ellipsoid. The conclusions are given in Section 5. 

2. The Ellipsoidal Coordinate System and the Equations of Motion 

2.1. Ellipsoidal Coordinates 

In this particular orthogonal, curvilinear coordinate system, the cartesian coordinates (x, y, z), using the 
well-known Jaeobian elliptic functions are given in terms of the three ellipsoidal coordinates (1, (2, (3, by 

where for conciseness 

x = [1  + ((1)2]~ dn (2 ~ (3 

Y = [0 r + ((1)2]~ cn (2 ~ (3 

Z =~'1 s n ( 2 ~ - ~ ( 3  

sn ( 2 _  sn ((z, ~ )  

G 3 -- sn ((3, 4-f-S_ o') 

and similarly for the two other elliptic functions. 
cr is a parameter that partly determines the shape of the ellipsoid, and for our purposes 

In general 

0 < o ' < 1 .  

- 2 K  ~< (2 ~< 2K 

- 2 K '  ~< (3 <~ 2K', 



where K and K'  are the complete elliptic integral and the complementary complete integral respectively, of 
the first kind, viz. 

f ,,/2 dO 
K =  

,0 [1 - t r  sin 2 0] ½ 

frO ~12 K' = dO 
[ 1 - ( 1 - o ' )  sin 2 O] ~" 

The surfaces (1, (z, (3 = constant are an ellipsoid, a hyperboloid of one sheet, and a hyperboloid of two sheets 
respectively. 

The equations defining these surfaces are 

X 2 y2 Z 2 

1 + ( ( 1 ) 2  "]" - -  1 O. + ((1)2 ~" ( - ~  = 

X 2 y2 Z 2 

dn 2 (2 ~ (2 - - = 1  o.cn 2 o.sn 2 (2 

X 2 y2 72 

(1_o.)~2(3 (1_o.)?h2(3 ~2(3 

For our purposes we set (1 = (~ = constant to complete the definition of the ellipsoid. 
It is convenient to introduce the curvilinear metrics of the system. For a general orthogonal system the three 

curvilinear metrics At (i = 1, 2, 3) are given by 

[ OX\ 2 [ C)y\ 2 [ 3 Z \  2 
A 2 = 1 ~ 7 )  + i V )  + i V )  i = 1 , 2 , 3 .  

Then for the ellipsoidal coordinate system 

where 

A1 = B2B3B* 

A2 = B1B3 

A a = B a B 2  

B *  ~-- [1 + (~.1)2]-~ [o. + ((1)2]-~ 

B1 = [0" cn z (2 + (1 - 0-) b--fi 2 (3]~ 

B ~  = [~a ~ + (~)~]~ 
B3 = [o. sn 2 (2 + ((1)2]~ 

For a more detailed examination of general coordinate systems, see Mangler and Murray 2. 

2.2 Equations of Motion 

The continuity equation in a general coordinate system may be written in the form 

1 O giJVj 3q_ 
y ~ ,  ( J g ' V j ) - - - ~ q ~ - ~ -  O (1) 

where Vj are the covariant velocity components, J is the Jacobian of the system, and gq are the contravariant 
metric tensors of order two. 

The speed of sound a, is obtained from the Bernoulli energy equation, viz. 

a 2 1 2 
Y -  1 ~-2q = constant 



where q is the fluid speed, i.e. 

Remembering that for an orthogonal system 

gii = (A/ )  2 

gii = 0 

Then 

q2 = g i, V~ Vi" 

(no summation) 

(i # f). 

J = ~/gl lg22g33 

= A I A 2 A 3 .  

Further since the flow is irrotational, there exists a velocity potential ~,  where 

V~ =---~ i = 1 , 2 , 3  
0(' 

and equation (1) may be written in the form 

1 ] (A/) 20(q z) OdP 
A1A2A3 O( t O( J 2a 2 O (  i 0~.. i - -  0 

where A ~ = l / A t  for orthogonal systems. 
If we now consider the special case of the ellipsoidal coordinate system, equation (2) becomes 

1 { .  0 2 ~ =  2t:I)lt:I)2 _ 1 / qbz 2 ~,~  

z.p2JJ3J.~ x J_~2.t~3.u t~ ~, DID2.O3.O U J-PlZ.~3x /~1/~3 a / 

2(I) 1 qI) 3 2qb2qb 3 1 / qb 2 

/~ 1/~2/~3a /5 l b ' 2 / J 3 a  /~ 1/~2 \ 

(I)l 0 ( 1 ) ..I.. vi  [ (~1 '~2 0 [O21~219,2, ~ 
+ B22B]B - - - - - - -~  0-~ - ~  2BZzB]B*2\BzB3B*a] a(~2"-'3"-' J 
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where 

and 

o(i ,, 

020 

dpq - O( ~ O( j =- dp,i j 

V/ V/ epl = ~ = ~ (no summation). 

(2) 

(3) 

We now find it convenient to introduce the transformation 

= B* d(  a 

J0 ~1 d (  1 = (1 + ((1)2)½ (or + ((1)2)½ 



i .e. 

~-' =.,7~7. ( 

where 

and for our purposes 

~ - - t n  (~, dl-o-) 

a s  

¢~-<~1-<oo. 

As well as simplifying slightly equation (3), this transformation brings the entire physical field into a finite 
working field, and so there is no need to impose arbitrary outer boundaries in order to obtain a finite range for 
the computation. This transformation will also ensure a denser distribution of mesh points near the body in the 
flow field, and fewer points as infinity is approached in the physical field, when the finite difference 
approximation is made. 

After some algebra, the continuity equation (3) becomes 

~ ( 1  0~2 \ 20 ,02  02 "~0 20 ,03  01 
B22~3a2)Ou-B2B2B~a20,2+~(1 B12--~a2] 22-B~B4B2 3 
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where 

00 
. I  -- O~ 

020 
°, ,=a(g)2 

a20 

The boundary condition on the surface of the body (~  = ~o, (1 = sro ~ =vT~ tn ~o is 

O i = 0  

whilst as ~o-+ K', O-+ Oo~ where O~ is the freestream (undisturbed) potential 

(5) 



2.3. Singular Lines of Transformation 

We find that there are singular lines, along which the Jacobian of the transformation vanishes. This occurs if 
any of the B~ = 0 (which implies that A~-I, A~+I = 0). 

Since we are dealing with a non-zero ellipsoid, then (a I> (~ > 0 and consequently B2 and B3 do not vanish in 
the flow field. 

However  B1 = 0 along the lines ( 2 =  +K, (3 = +K '  which correspond in the cartesian system to the 
hyperbolae 

X 2 Z 2 

- 1 ,  y = 0 .  
1 - - O "  O r 

Along these hyperbolae, A2 and A3 vanish and special attention is required in order to establish the 
equation of motion and the fluid speed q. 

In general 

qZ = V/V ~ = g 0 V y  ~ 

V 2  i2-2 I2-2 
+ v 2 .  v 3  

= - ~  T~ + - ~ .  
,ca 1 r x  2 z-'x 3 

For ellipsoidal coordinates 
2 2 2 V I  ,.[_ V2 V2 

(6) 

We now examine the behaviour of the above expression along these singular lines, where B1 = 0 and V2, 
V3 = 0 (this follows immediately from the symmetry of the problem). 

Now if ui = rbi/(B~-lBi+l), ur = dPff(B2B3) then 

q2= 2 2 2 U i+  ld2"]- b13, 

where u 2 presents no problem. 
In order to calculate the sum of the other two velocity components, we consider a second orthogonal 

coordinate system ((t ,  77 2, r/3), with origin at the point (0, K, K') in the original ((~, (2, (3) coordinate system. 
s r~ remains unchanged but r/2 and r/3 are inclined at an angle O to (2 and (3 respectively as shown in Fig. 1. 

Then 
97 2 = ( ( 2  - -  K) cos ~b - ((3 _ K') sin ~b 

7/3 = ( ( Z - K )  sin 4~ + ( ( 3 - K  ') cos 4t. 

Now 

B1B2 B1B3 2 2 

[qb,2 COS ~O + qb3 sin ~b] 2 2 2 + [~ '~ cos 0 -  ~.2  sin ¢]2 
2 2 (7) 

B1B3 B1B2 

Applying L'H6pital 's rule twice to equation (7) we obtain 

[u 2 + u32],=+o = 2[(qb,3,2) 2 + (0,%2) 2] 
. '=o (B~).%2[0- +. ((1)2] • (8) 

Alternatively 

[u2+.  21 3 2[~ '%' )2+(~ '%3)2]  
~ 3 J ,  ~ 0  = 

.2=o (B0n%310-+(~ " ) ] 
(9) 



where 

Now 

ado 
do"' = or/i 

aEdo 

do., . ,  = a ( r f )2  

don~.{ = orli Orl i 

_ 02 2 

2 2 [ (B 1)n%~2].2=o = [(B1)~%73]n2=o 
rt 3=0 7 3 = 0  

and because equations (8) and (9) must be equivalent (the flow speed must be independent of the direction of 
approach) 

Taking the positive sign we obtain 

Taking the negative sign we obtain 

don%~ + do~%~ = O. 

do22 + do33 = 0. (10) 

do22 - do33 + 2 tan 20do23 = 0. (11) 

However this latter equation implies that the equation of motion along the singular lines is dependent on the 
direction of approach of the lines, and so must be neglected in favour of equation (10). 

Consequently in order to calculate the flow speed (and hence Mach number) along the singular lines we use 

o-(1- o-)[o- + ((a) z ] 

= - + ( ( 1 ) 2 ] .  

3. Numerical Techniques 

In its present form, equation (4) is unsuitable for numerical treatment. Firstly negative powers of B1 occur, 
and as discussed previously, B1 = 0 along the lines ~.2 = +K, ~.3 = +K' .  However we have shown in the previous 
section that along these singular lines, the continuity equation reduces to (10). Thus for mesh points situated 
along these lines, (10) must be used in place of (4). 

Secondly do has a singularity at ~ = K '  (~'1 = eo). However this singular contribution to do is known, and may 
be subtracted out of the potential, leaving a perturbation potential ~b which is finite everywhere, i.e. 

~=dos +4'. 

This singularity arises from the freestream flow. Thus we can set 

dos = doo . (12) 

Alternatively since we know the exact incompressible solution dO* (see Appendix A), then we can put 

dos = q ~ + O * .  (13) 



In both cases, the partial differential equation in 4' is approximated by a (central) finite difference equation, 
where the derivatives at the point (~0+ 181, m82,  n83) are given by 

1 
( 4'I)I .... = 281 (4'/+1 .... -- di)l-1 .... ) "I-0(~21) 

i 
(4' .) ,  . . . .  = ~ ( 4 ' , + 1  . . . .  - 2 4 , ,  . . . .  +4',-1 . . . .  ) +  o( ,s~)  

1 
(4',2), . . . .  = 48182 (4',+,.m+l.n --4'l+l.n-1.n --4',-1.n+l.n "[-4'l-l.n-l,n)'{"Ofa 2"1"-¢~2) 

with similar expressions for the other derivatives of 4'. 81, 82 and 83 are the cell dimensions in the ~1, ~2 and ~.3 
directions respectively. Derivatives of ~s may be calculated analytically. 

The difference equation, at the point (~o+ I81, m82, n~3) may be written in the form 

dJpt  . . . .  - l  + cn4'l . . . .  + bn4't . . . .  +1 = an (14) 

where an contains the contributions in the difference equation from the other 12 neighbouring mesh points. 
Details of the an, b,, c, and dn are given in Appendix B. Similar expressions to (14) may be written for the 1- or 
m- (~  or ~.2) directions. 

It can be shown (Varga 3) that if a matrix is diagonally dominant (the absolute value of the diagonal element 
is greater than the sum of the absolute values of the off-diagonal elements) then the point Gauss-Seidel 
method is convergent. Further if this method is convergent, then for block tridiagonal matrices, such as is 
represented by a set of equations (14), with l, m fixed, n varying, it is quicker to solve for blocks rather than 
individual points during the iterative process. For this purpose, a variant of Choleski's method was used (see, 
for example, Hartree 4) in which the submatrix is first factorised into upper and lower matrices for inversion. 

Again, a similar process may be applied for solution along lines of I, n fixed and m varying, or m, n fixed and l 
varying. 

In order to start the iterative process, the initial guess used was the exact, incompressible perturbation 
solution ~*, i.e. if 

then 

4' =qb* 

whilst if 

qb~ = qb~o + alp* 

then 

4'=0. 

For the purpose of the computation, symmetry was invoked fully in order to reduce demands in both 
computer storage and time. 

Since the velocity potential was the flow field quantity stored throughout the computation, the convergence 
criterion adopted was that the iteration process was stopped when the maximum change in potential 
encountered anywhere within the flow field was less than 1 x 10 -6 during one iteration. This corresponds to a 
change in local Mach number of about 1 x 10 -5. 

In order to transform the final iterated solution into cartesian coordinates, two linear interpolation routines 
were used. One gave the Mach number distribution on the surface of the ellipsoid, whilst the other produced 
lines along which the Mach number remained constant. 

A number of runs was carried out using different mesh sizes in order to test the effect of mesh size on two of 
the calculations and the results are shown in Tables 1 and 2. In the first example, for which the freestream is 



aligned along the major axis of the body (Table 1), the solution appears fairly insensitive to changes of cell 
dimensions in any of the three body coordinates. In the other example (Table 2) for which the freestream is 
aligned with the second major axis, the calculation appears more sensitive to changes in mesh size, particularly 
in the region of the stagnation point. The calculation in general appears especially sensitive to changes in the 
number of points taken in the coordinate perpendicular to the body surface. It should be noted that the 
discrepancy in the region of the stagnation point in the cases for which the number of points in the (2 direction 
was decreased, is largely due to the linear interpolation routine, because of the rapid rise in Mach number in 
this direction in this region. Examination of the uninterpolated results shows closer agreement. The results 
seem to indicate convergence of local Mach number with decreasing mesh size. 

Generally the numerical system was well behaved, and in order to increase the rate of convergence, 
over-relaxation was applied to the velocity potential. If U't.,,,n'h(N) denotes the value of ~bt .. . .  found by block 
inversion during the Nth iteration cycle, and ~.t/v-1) u,t . . . .  the previous value, then the new value is 

D(N) 2 . (N)  _~_( __ "~./.(N--1) 
l .m,n ~ O.)bq) l ,m,n , 1  to }tt.~ l,m, n 

where oJ is the relaxation parameter. 
Usually relaxation parameters of 1.8 to 1.9 gave adequate stability and rate of convergence. Solving along 

lines of varying (2 generally gave the best stability and rate of convergence. For a typical calculation, solving 
along varying (2 lines, 20-60 iterations were required to satisfy the convergence criterion. Solutions obtained 
along different coordinate directions were numerically identical. 

Further setting ~,  = qb~ + ~*, instead of qbs = qb~, had little effect on the numerical system. Local Mach 
numbers differed by no more than 1 x 10 -4. 

4. Results 

Tables 3-8 and Figs. 3-6 and 8 and 9 show the Mach number distribution on the surface of a number of 
ellipsoids at various Mach numbers. Figs. 2 and 7 show the lines on the body surface along which the Mach 
number is constant. 

For the cases in which qboo = x, the constant speed of flow along the second major axis of the ellipsoid, present 
in the incompressible solution, is still present, to within 2 x 10 -4 in Mach number. 

For the examples for which ~Poo = y, the Mach number is approximately constant along the major axes, 
although it appears to increase as the tips are approached, the variation in the example in Table 4 being about 
0.6 per cent. Further this effect was seen to increase with an increase in aspect ratio and also with an increase in 
freestream Mach number. 

Fig. 10 shows the variation of normalised flow speed, at the point on the surface given in cartesian 
coordinates by (0, 0, (o ~) with the reciprocal of aspect ratio (aspect ratio = (4/~-)[1 + ((ol)2]½[o - + ((~)2]-~). The 
ellipsoids all have thickness/chord ratios of 10 per cent. For comparison the exact incompressible result is 
shown, as are three theoretical values obtained for a 10 per cent, two-dimensional, elliptic section. One value 
was obtained by Rasmussen and Heys 5 using a variational method, a second by Clapworthy 6 solving for 
potential, and the third by the author using Sells' method 1. The results of the latter two calculations are almost 
identical, giving a value of q/q~ = 1.200. As expected the present three-dimensional calculations approach the 
two-dimensional values as the aspect ratio is increased, to within the numerical accuracy of the four sets of 
calculations. 

5. Conclusions 

We have shown that a finite difference approximation to the full equation of motion, expressed in ellipsoidal 
coordinates, can produce a satisfactory numerical solution for the three-dimensional flow around an unyawed 
ellipsoid. 

The main advantages of using this body coordinate system are, a simplification of the treatment of the body 
surface boundary condition, and a refined mesh distribution (in the physical flow field) where the solution is 
changing rapidly. The only real problem, namely the mathematical treatment along the singular lines along 
which the Jacobian of the transformation vanishes, appears to present no serious difficulties. 

The numerical scheme is generally well behaved, with usually just 20 to 60 iterations required for maximum 
changes in velocity potential of less than i x 10 -6 per iteration, for a 20 x 21 x 20 mesh. This corresponds to 
changes of local Mach number of about 1 x 10 -s. Computations usually take no more than 70 seconds on a 
CDC 7600. 

10 



An extension of the present work is planned to ellipsoids in mixed flows. This will require the application of 
retarded difference schemes (Murman and Cole 7) in the supersonic regions, along rotated coordinate axes 
(JamesonS). Further the fore and aft symmetry invoked in the present subcritical case will be lost, as a result of 
the appearance of shock waves in the flow. 
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APPENDIX A 

Exact Incompressible Solution 

The continuity equation, in ellipsoidal coordinates, for incompressible flow reduces to 

B* 0(' \B* "~7) + B 2 ~ + / / 3  0(- ~ = 0. (A-l) 

Consider first the case for which the freestream velocity potential is given by 

Then since dp = x will be a solution of (A-l) we try for another solution, of the form 

d) = xf(¢ 1) (h-2) 

remembering x = [1 + ((i)z]½ dn (2 -gg (3. 
Having substituted (A-2) into (A-l), we obtain, after some algebra 

f, / 3( '  ( '  ~ ,  "1- ~ 1 "~ ~-1)2 1" O r "l- (¢1)2/1 ~--- 0. 

The solution for this first order ordinary differential equation in f '  may be written in the form 

o d( '  
f((1) = Ct , [1+ ((t)2)3/2[a + ((,)2]½ (A-3) 

where the limits of integration are chosen for convenience, so that 

f((1) "-> 0 as ¢ 1 ~  

aThilst 6"1 must be chosen such that the surface boundary condition (0~/0¢~)c, =~o~ = 0 is satisfied. 
(A-3) may be integrated to give 

C1 
f((~) = ~_ [F(O, , /1-  o-)-E(O, 41-or)] 

¢¢here F(0,41-or),  and E(O,V'-f-or) are the incomplete elliptic integrals of the first and second kind 
:espectively, with modulus ~ and argument 0 where 

0 = tan_ 1 __(1. 

Fhe surface boundary condition gives 

C1 ~-- 

where 

(, - or)(oV(1 + ((~)')ior ÷ ((~):) 
[(1 - or) - ¢~4(1 + (¢o~)2)(or + (¢o~)2)(Fo - Eo)] 

F0 = F(Oo, 1,/i---~) 1 

Eo =E(Oo, 1J1--~)i. 
0°=tan-'~ 

(A-4) 
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A similar analysis for qboo = y, a s s u m i n g  a perturbation solution of the form 

=f( (x)y  

yields 

where 

(~-,~)~'~ ] 
f (~l )=or(~__or)LE(O , lx/]--~)-o'F(O, 1~1-~) ~/(i "1-(~'1)2)(0""~-(~1)2)J 

c~= 
g(l - g)(o~/(1 + (~r~)2) (o - + ((1)2) 

{o-(1 - o-) - [(E0 - o'Fz) sr ~'v/(1 + (sr~)2)(o " + (st1) ;) - (g~)2(1 - o3]} 

where F0 and Eo are as defined in (A-4). 

A P P E N D I X  B 

D e t a i l s  of  D~fferenee  E q u a t i o n  

Here we assume throughout that we are solving along lines of varying (3, and constant ~ and (~, but similar 
expressions may be obtained for solutions in the two other coordinate directions. Then, we can write the 
difference equations in the form 

d ~.(N) _ ~  A.(N) _t_/~ .g(N) n b(tll, rn,n-1 Tt'n btPl, rrt,nTUn b(Dl, m,n+l ~ an (B-l)  

subscript b's denoting values obtained directly from the solution of (B-l),  i.e. with no relaxation parameter 
applied. For the Nth iteration, away from the singular lines, we have 

1 d.=~(1 
_ 1 1 

6 ~ ~ a - ~ ( B O  B2B2a z] 4B2B6~2a26a O-~t 2) 4B~BzB3a 83 

B~---a ~B~ ) q - -  z "Zgt/J2) 03(B~)4 4B~B6B~a 6~ 0,~ 4B6B~B~a233 O( 

o~ o (B~Bb 
4B~B62a 283 O( 3 

q52 0~3 (B~xU 2 ) 
4 B6 B62a a 6a 

--2I 1 (1 *~ 2)+ 1 lq e~ \+ 1 / ~ ~/ 
c,,- [B2B3~ k -B2B2 a B2/~3za{ ( B]-~3a2 ) ~ 1  B2Bia2 ]J 

~ ( 1  

(~2 ~ ( ~  ~l+l,m,n.~l_l,m,t~ ~ 
B~B~aZ]\ "~s" q 6~ ] 

B ~-~3 a ]\  

q ~  2qbzqb2 - 2qblqr% - 2~e~3 
~ 2  ~-~-~_2)~s33  "~ ~ 2 n 2 ~ 4  2 ~ s I 2  -~ ~ 2 n 4 ~ 2  2 (~I3 q B ~ a  z d923 
~1~2a  / ~1~2z~3a ~iz~2z~3a 

2 2 2 
IffI)l { I~D I 0 f1~21~2\ .~  B 2  ,~  (:3 I D 2 " , ±  B 3  ,.~ 0 t o 2 ~  

O ~ 4 0 4 ~ 2  k D"~D2 ..~7"1 t.-u 2/-~'31 D---'~--~D2 Nt"2"~2 I./.1' 3] T~"~D2Nt"sa[~'~y3112J2] ] 
z.,.t.," 2L~ 3 u L." 2.U 3 U 6 /-.n 1/-;' 3 UC o .t..J' 1/...P 2 Ot o , '  

2 2 (i) 2 
1ff~2 [ B 1  m 3 / ,D2~4  2 O r n 2 0 2 , ~ +  B 3  ,-h O rr:,2:'~ 

Z / ~ l / : 5 3 a  k / ) ' 2 /~3  d ~  J~lJ-~3 u 9 Z.~lJ-J2 u ~  / 
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z ~ l ~ 2 a  ~r~z~3 06 ~lr~3 o6 B~IBZzOP (B 'Bz) )  

where al, Oz and a3 are the cell dimensions in the ~ ,  ¢z and ~.3 directions respectively, and where for the Nth 
iteration 

q~(N-1) 2.(N) 
l+ l ,m,n  - -  q" l -  l ,m ,n  (f~I)l . . . .  = ((~}, , ) l ,m,n "4 

2al  

t~ (N-1)  O.&(N--1) A_ .a (N) 
l + l , ra ,n - -  l-,ql l, m,n T q,* l-- l ,m,n  

(q~II ) l  . . . .  ~" ( f ~ 2 . ) l . m , n  q" 

~ ( N - 1 )  .i. ( N - l )  (N) ..~ (N) 
l + l , m + l , n - - ~ P l + l , m , n - - ~ l - l , m + l , n ~ l - ~ l - l , m - l , n  

(cbrz)l . . . .  = (0~,~)1,,.,. q 
48182 

with similar expressions for the other derivatives of the point (~o+ l~1 ,  m82, rta3). 
4/N) is the value of the (unknown) potential obtained for the preset (Nth) iteration cycle, whilst ~b (N-l) is 

obtained from the previous cycle. 
Note we use the latest value of q~.m,n available. As well as reducing computer store, this also tends to increase 

the rate of convergence of the overall system. 
Along the singular lines, the equation of continuity reduces to (11), and so the coefficients become simply 

(neglecting any symmetry or antisymmetry) 

1 1 
d.  = -a-~, b,, - - -  

a3 - 632 

i.e. 

/1+1\ 
c" = -2~-~2 -~3) 

1,q 
a . =  ~ a~ /" 

With symmetry fully invoked, we take the coordinates in the intervals 

~ o ~ < ~ < K  ' as O<~l<~l,,, 

O~<(2~<K as O~m<~m,,, 

O~<ga~K ' as O<~n<~nm 

al = ( K ' -  ~o)1l,. 

82 = g / m m  

as = K'/nm. 

Using the body surface boundary condition (5), using reflection, we obtain 

~ ) - 1  . . . .  = ~ l , m , n  "{- 281d*r~s, 

where (~0-a l ,  m82, na3) is a point inside the body. 
Symmetry arguments give the following: 

for  ~oa = X : 

(~l,--l,n = ~l,l,n 

~l,m,-1 = -~l,..,i 

4~t . . . . .  +i = cbt, . . . .  -I. 
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for ¢'oo = y : 

~,~l,--1,n ~ (~l,l,n 

~ t m m ÷ l , , ,  = --C&mm--l,n 
c~t.m.-1 = Ckt.m.1 

~)l, . . . .  +1 = ~l . . . . .  -1. 

The matrix equation (B-l)  is now of block tridiagonal form, viz: 

Co bo 0 

dl Cl bl 

0 d2 c2 b2 

0 dn~-i  Cnm--1 b._ 
dnm Cnm 

Note that because of the symmetry of the problem we can set 

do = 0 

bn,, = 0. 

ao -1 
a l  

g2 

° °  ° °  

anm--1 
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TABLE 1 

Variation of  Local  Mach N u m b e r  A l o n g  y = 0, with Mesh Size for ~oo = x, Moo = 0 .95 ,  ~r = 0 .04 ,  ~o = 0 . 1 0  

Point 

0 
0.0909 
0.1919 
0.2929 
0.3939 
0.4949 
0.5960 
0.6970 
0.7980 
0.8990 
0.9596 
0.9697 
0.9798 
0.9899 
1.0 

6 x 2 1 x l O  

0.9635 
0.9635 
0.9634 
0.9634 
0.9633 
0.9631 
0.9629 
0.9625 
0.9616 
0.9582 
0.9468 
0.9407 
0.9301 
0.9142 
0 

l O x l l x l O  

0.9636 
0.9636 
0.9635 
0.9635 
0.9634 
0.9633 
0.9631 
0.9628 
0.9620 
0.9591 
0.9498 
0.9448 
0.9347 
0.9111 
0 

l O x 2 1 x 6  

0.9623 
0.9624 
0.9625 
0.9626 
0.9627 
0.9627 
0.9627 
0.9625 
0.9623 
0.9596 
0.9520 
0.9479 
0.9374 
0.9142 
0 

l O x 2 1 x l O  

0"9636 
0"9636 
0"9635 
0"9635 
0"9634 
0"9633 
0"9631 
0"9628 
0"9620 
0"9591 
0"9499 
0"9449 
0"9350 
0"9112 
0 

Ratio of axes 1 : 0.2010: 0.0200 
X 

£ =  
[1 + (ffl)2]½ 

TABLE 2 

Variation of Local  Mach Number  A l o n g  x = 0, with Mesh  Size for tpoo = y, Moo = 0 .80 ,  cr = 0"04, ~o = 0"10 

" " ~ o i n t  distri- 

0 
0.0909 
0.1919 
0.2929 
0.3939 
0.4949 
0.5960 
0.6970 
0.7980 
0.8990 
0.9596 
0.9697 
0.9798 
0.9899 
1.0 

2 0 x l l x 2 0  

0.9613 
0.9607 
0.9593 
0.9569 
0.9529 
0.9475 
0.9400 
0.9286 
0.9096 
0.8691 
0.7931 
0.7580 
0.7165 
0.6075 
0 

15x15×20  

0.9592 
0.9587 
0.9573 
0.9547 
0.9509 
0.9454 
0.9375 
0.9260 
0.9067 
0.8696 
0.8065 
0.7860 
0.7347 
0.6401 
0 

20x21 x 15 

0.9618 
0.9613 
0.9599 
0.9575 
0.9537 
0.9483 
0.9406 
0.9292 
0.9102 
0.8704 
0.8025 
0.7792 
0.7313 
0.6369 
0 

20×15x20  

0.9616 
0.9611 
0.9597 
0.9572 
0.9534 
0.9480 
0.9403 
0.9290 
0.9097 
0.8711 
0.7997 
0.7766 
0.7238 
0.6287 
0 

15×21x20  

0.9593 
0.9589 
0.9574 
0.9549 
0.9511 
0.9456 
0.9378 
0.9262 
0.9071 
0.8689 
0.8097 
0.7894 
0.7438 
0.6503 
0 

2 0 x 2 1 x 2 0  

0.9617 
0.9613 
0.9599 
0.9574 
0.9537 
0.9483 
0-9406 
0.9292 
0.9103 
0.8704 
0.8026 
0.7792 
0.7313 
0.6370 
0 

Ratio of axes 1 : 0.2010: 0.200 

Y 
+ 
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TABLE 3 

Mach N u m b e r  Di s tdbuf ion  on Surface ot  EHipso~fl ~ = x,  ~r = 0 ' 0 4 , M ~  = 0"95, ~ = 0"10 
10  x 21  x 10  Mesh  

0 
0'0909 
0.1919 
0.2929 
0.3939 
0.4949 
0.5960 
0.6970 
0.7980 
0.8990 
0.9596 
0.9697 
0.9798 
0.9899 

1.0 

0"9636 
0.9636 
0.9635 
0.9635 
0.9634 
0.9633 
0.9631 
0.9628 
0.9620 
0.9591 
0.9499 
0.9449 
0.9350 
0.9112 
0 

0.1111 

0"9636 
0.9636 
0.9635 
0.9635 
0.9634 
0.9633 
0.9631 

0.2222 

0'9636 
0.9636 
0.9635 
0.9635 
0.9634 
0.9633 
0.9632 

0.3333 

0.9636 
0.9636 
0.9635 
0.9635 
0.9634 
0.9633 
0.9632 

0.6667 

0"9636 
0.9636 
0.9635 
0.9635 
0.9635 
0"9634 
0.9633 

1.0 

0"9636 

0.9628 
0.9620 
0.9593 
0.9511 
0.9468 
0.9390 
0.9217 
0.4157 

0.9628 
0.9622 
0.9600 
0.9538 
0.9507 
0.9458 
0.9361 
0.6789 

0.9629 
0.9624 
0.9606 
0.9563 
0.9545 
0.9517 
0.9454 
0.8105 

0.9631 
0.9628 
0.9620 
0.9602 
0.9593 
0.9577 
0.9543 
0.9343 

Ratio of axes 1 : 0.2010 : 0.0200 

y x 
)7 : [0,....~ (~,,1)2]~ } "~ : [1 "~- (~"1)2]~[1 --~72] ~ ( f<~ 1) 

= 0 07 = 1) 

TABLE 4 

Mach N u m b e r  Distr ibut ion on Surface of El l ipsoid O ~  = y, o" = 0"04, M ~  = 0"80, ~o = 0 .10  
20  x 21  x 20  Mesh  

0 
0.0909 
0.1919 
0.2929 
0.3939 
0.4949 
0.5960 
0.6970 
0.7980 
0.8990 
0.9596 
0.9697 
0.9798 
0.9899 
1.0 

0.9617 
0.9613 
0.9599 
0.9574 
0.9537 
0.9483 
0.9406 
0.9292 
0.9103 
0.8704 
0.8026 
0.7792 
0.7313 
0.6370 
0 

0.1111 

0.9617 
0.9613 
0.9599 
0.9574 
0.9537 
0.9483 
0.9406 
0.9292 
0.9103 
0.8705 
0.8027 
0.7794 
0.7315 
0.6372 
0.0193 

0.2222 

0.9617 
0.9613 
0.9599 
0.9575 
0.9537 
0.9484 
0.9407 
0.9293 
0.9105 
0.8707 
0.8031 
0.7798 
0.7319 
0.6377 
0.0393 

0.3333 

0.9618 
0.9614 
0.9600 
0.9576 
0.9538 
0.9485 
0.9409 
0.9295 
0.9108 
0.8712 
0.8037 
0.7806 
0.7327 
0.6386 
0.0609 

0.6667 

0'9623 
0.9619 
0.9605 
0.9582 
0.9545 
0.9494 
0.9420 
0.9313 
0.9133 
0.8750 
0.8094 
0.7872 
0.7397 
0.6466 
0.1522 

1.0 

0.9680 

~ =  
[1 + ((1)2]~, 

Ratio of axes 1 : 0.2010 : 0.0200 

Y 
y = [~ + (¢o~)q~[1 - ~]~ 

=0 

20 

(2< 1) 

(~ = 1 )  



TABLE 5 

Mach N u m b e r  Distr ibut ion on Surface of  El l ipsoid Ooo = x,  or = 0 .04 ,  Moo = 0 .80 ,  ~o = 0 . I 0  
I 0  × 21  × I 0  M e s h  

0 
0.0909 
0.1919 
0.2929 
0.3939 
0.4949 
0.5960 
0.6970 
0.7980 
0.8990 
0.9596 
0.9697 
0.9798 
0.9899 
1.0 

0 

0.8086 
0.8086 
0.8087 
0.8087 
0.8087 
0.8087 
0.8087 
0.8086 
0.8083 
0.8073 
0.8035 
0.8014 
0.7968 
0.7856 
0 

0.1111 

0.8086 
0.8086 
0.8087 
0.8087 
0.8087 
0.8087 
0.8087 
0.8086 
0.8084 
0.8073 
0.8039 
0.8020 
0.7983 
0.7897 
0.3628 

0.2222 

0.8086 
0.8086 
0.8087 
0.8087 
0.8087 
0.8087 
0.8087 
0.8086 
0.8084 
0.8075 
0.8047 
0.8032 
0.8007 
0.7949 
0.5830 

0.3333 

0.8086 
0.8086 
0.8087 
0.8087 
0.8087 
0.8087 
0.8087 
0.8086 
0.8084 
0.8077 
0.8055 
0.8045 
0.8027 
0.7982 
0.6886 

0.6667 

0.8086 
0-8086 
0-8086 
0.8086 
0.8086 
0.8086 
0.8086 
0.8086 
0.8084 
0.8079 
0.8066 
0.8060 
0.8047 
0.8020 
0.7859 

1.0 

0.8086 

Ratio of axes 1 : 0.2010: 0.0200 

y x 
)7 "-"~ [0- ..~- (ff 1) 2]~ ' 2 = [1 +($~)2]~[1__)72]½ (37<1 ) 

= 0 ()7 = 1) 

TABLE 6 

Mach N u m b e r  Distr ibut ion on Surface of EHipsoifl Ooo = y, or = 0 .04 ,  Moo = 0 . 7 0 ,  ~o = 0.  I 0  
20  x 21  x 2 0  Mesh  

0 
0.0909 
0.1919 
0.2929 
0.3939 
0.4949 
0.5960 
0.6970 
0.7980 
0.8990 
0.9596 
0.9697 
0.9798 
0.9899 
1.0 

0.8075 
0.8073 
0.8069 
0.8061 
0.8050 
0.8031 
0.8003 
0.7956 
0.7868 
0.7645 
0.7172 
0.6994 
0.6602 
0.5799 
0 

0.1111 

0.8075 
0.8073 
0.8069 
0.8062 
0.8050 
0.8031 
0.8003 
0.7956 
0.7868 
0.7645 
0.7173 
0.6995 
0.6603 
0"5800 
0.0169 

0.2222 

0.8075 
0.8073 
0.8069 
0.8062 
0.8050 
0.8031 
0.8003 
0.7957 
0.7869 
0.7646 
0.7175 
0.6997 
0.6605 
0.5803 
0.0344 

0.3333 

0.8075 
0.8074 
0.8069 
0.8062 
0-8050 
0.8031 
0.8003 
0.7957 
0.7870 
0.7647 
0.7177 
0.7000 
0"6609 
0.5808 
0.0532 

0.6667 

0.8076 
0.8074 
0.8071 
0.8063 
0.8051 
0.8034 
0.8006 
0.7961 
0.7876 
0.7659 
0.7201 
0.7032 
0.6643 
0.5851 
0.1329 

1.0 

0.8099 

Ratio 
x £ =  

[1 + (~)2]~, 

of axes 1 : 0.2010 : 0.0206 

Y 
)7 = [o" + (~ '1)2]i[1 --  22 ]  t 

=0 

21 

(2 < 1) 

(f  = 1) 



TABLE 7 

Maeh N u m b e r  Distr ibut ion on S u d a c e  of  El l ipsoid q)~ = x, o" = 0 .50 ,  M ~  = 0 . 9 0 ,  ~o = 0 . 1 0  
10 x 21  × 10 Mesh  

0 
0.0909 
0.1919 
0.2929 
0.3939 
0.4949 
0.5960 
0.6970 
0.7980 
0.8990 
0.9596 
0.9697 
0.9798 
0-9899 
1.0 

0 

0.9896 
0.9892 
0.9882 
0.9866 
0.9841 
0.9807 
0.9759 
0.9691 

0.1111 

0"9896 
0.9892 
0.9882 
0.9866 
0.9842 
0.9808 
0.9760 
0.9688 

0.2222 

0"9896 
0.9892 
0.9883 
0.9868 
0.9843 
0.9810 
0.9764 
0.9694 

0.3333 

0"9896 
0"9892 
0.9884 
0.9868 
0.9845 
0.9814 
0.9771 
0.9705 

0.6667 

0"9896 
0.9891 
0.9886 
0.9875 
0.9859 
0.9838 
0.9807 
0.9766 

0.9546 
0.9248 
0.8727 
0.8546 
0.8267 
0.7596 
0 

0.9554 
0.9261 
0.8758 
0.8579 
0.8313 
0.7658 
0.1318 

0.9569 
0.9296 
0.8827 
0.8650 
0.8397 
0.7791 
0.2612 

0.9591 
0.9343 
0.8925 
0.8757 
0.8489 
0.7935 
0.3870 

0.9694 
0.9555 
0.9285 
0.9177 
0.9002 
0.8578 
0.7247 

1.0 

0.9894 

Ratio 

Y 
Y [~ + (~o~)~] ~' 

of axes 1 : 0.7089 : 0.0707 

f =  
x 

[1 + (~o~)~]~ [ 1 - 9~]~ 

=0 

( y <  1) 

(y  = 1) 

TABLE 8 

Mach N u m b e r  Distr ibut ion on Surface of EUipsoid ~ n  = y, o- = 0 .50 ,  M~o = 0 . 7 0 ,  ~o = 0 . 1 0  
20  x 21  x 20  Mesh  

0 
0.0909 
0.1919 
0.2929 
0.3939 
0.4949 
0.5960 
0.6970 
0.7980 
0.8990 
0.9596 
0.9697 
0.9798 
0.9899 
1.0 

0 

0.7851 
0.7850 
0.7846 
0.7840 
0.7830 

0.1111 

0.7851 
0.7850 
0.7846 
0.7840 
0.7830 

0.2222 

0.7851 
0.7850 
0.7847 
0.7840 
0.7831 

0.3333 

0.7851 
0.7850 
0.7847 
0.7841 
0.7831 

0.6667 

0.7854 
0.7853 
0.7850 
0.7844 
0-7836 

0.7815 
0.7792 
0.7753 
0.7677 
0.7481 
0.7019 
0.6775 
0.6447 
0.5532 
0 

0.7815 
0.7792 
0.7753 
0.7678 
0.7482 
0.7025 
0-6780 
0.6456 
0.5545 
0.0573 

0.7816 
0.7792 
0.7755 
0.7681 
0.7486 
0.7040 
0.6794 
0.6481 
0.5583 
0.1159 

0.7817 
0.7794 
0.7756 
0.7686 
0.7492 
0.7066 
0-6818 
0.6524 
0.5647 
0.1771 

0.7823 
0.7803 
0.7770 
0.7710 
0.7548 
0.7152 
0-6996 
0.6701 
0.6085 
0.3968 

1.0 

0.7859 

Ratio of axes 1 : 0.7089 : 0.0707 

x y 
f =[1+((~)2]~' ~7 = [o- + ((o~12]~[1- 22]½ 

=0  

22 

(2<  1) 

(z = i) 
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