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Summary 

The inviscid flow field past a slender delta wing at incidence with leading-edge separation can be considered 
as conical. The shape of the resulting vortex sheet has been calculated by J. H. B. Smith and others. Here the 
behaviour of the sheet near the leading edge of the wing is investigated and an expansion of the solution in this 
neighbourhood is found by the application of certain theorems of the theory of complex functions. It is shown 
that in a cross-flow plane (normal to the undisturbed flow) the slope of the sheet can be expressed in powers of 
the square root of the arc length measured along the sheet. A related series expansion is found for the strength 
of the vortex sheet. The sheet is always tangential to the pressure side of the wing. On the suction side of a wing 
with thickness the flow is parallel to the leading edge, so that the strength of the vortex sheet at the leading edge 
is directly related to the overall circulation around the sheet. 

* This work was done under the link between the University of Southampton and the R.A.E. 
t Replaces R.A.E. Technical Report 74150--A.R.C. 35 901 
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1. Introduction 

In recent years nonlinear effects have played an important part in the calculation of the pressure distribution 
over wings. Vortex sheets which may extend from the trailing or leading edges of a lifting wing, have important 
effects on the aerodynamic properties. Although viscosity plays a large part in these flows, inviscid mathemati- 
cal models have been shown to give valuable information on their behaviour. 

Because of their relative simplicity, leading-edge vortex sheets extending from a slender delta wing have 
been studied in some detail 1'2'3'6. These flows are conical so that the three-dimensional problem reduces to a 
two-dimensional one in the cross-flow plane. The theory of analytic functions and conformal mapping can be 
applied. Some information is available on the behaviour of this solution near the centre of the rolled-up vortex 
sheet 6. 

In the present paper the behaviour of the sheet near the leading edge is studied in some detail. It is known 
already 5, that the sheet leaves the edge tan/gentially to the pressure side of the wing. By the application of 
certain theorems from the theory of analytic functions an expansion of the solution of this problem in the 
cross-flow plane, valid near the leading edgel is obtained. The slope of the sheet is expressed as a series 
ascending in half-powers of the arc length along the sheet. The coefficients of this series determine some of the 
coefficients in similar algebraic expansions (in terms of the arc length) of the distribution of the normal 
velocities along the sheet, the potential function and the tangential velocities along the sheet. These last 
determine the strength of the vortex sheet. The remaining coefficients in these expansions cannot be 
determined locally, but follow from a 'global' solution, usually only obtainable by numerical methods. On the 
suction side of a wing with thickness the sheet forms a finite angle with the surface. Here the relative 
cross-velocity is shown to be zero, so that (according to the pressure condition) the local strength of the vortex 
sheet at the leading edge determines the overall circulation round the sheet. In the limiting case of a wing of 
zero thickness this result cannot be deduced directly. 

Since the shape of the vortex sheet is one of the unknown functions in this problem, it was decided to 
formulate the problem in another plane, which is obtained from the original cross-flow plane by conformal 
mapping. Here the two surfaces of the sheet and the surfaces of the wing are mapped on parts of the real axis. 
Both the potential function for the flow and the mapping function are determined and so the solution is found 
in parametric form. 

The present report investigates only the case of an algebraic singularity at the leading edge and no other type 
of singularity is discussed. Within this class the possibility of a solution involving the square root of the arc 
length is shown. 

The governing equations for the conical flow past a slender delta wing at incidence are summarised in 
Section 2. In Section 3 the mathematical background (e.g. the conformal mapping mentioned above) is 
explained and the leading terms of the various expansions are obtained. Some higher-order terms for functions 
on the sheet surface are enumerated in Sections 4 and 5, and corresponding expressions for the wing surface 
are given in Section 6. The results are summarised in Section 7. 

2. Governing Equations 

The equations we shall use are well known in slender body theory and have been derived in several sources. 
We quote the work of Smith 1'2. 

The undisturbed stream flows with veiocity U at small angle of incidence a '  to the wing, and Oxyz is a 
system of rectangular cartesian coordinates, with O at the wing apex, Ox directed along the wing centre line, 
Oy to starboard and Oz upward. Let k be tan y, where 2T is the apex angle of the wing so that the local 
semi-span s = kx (see Fig. 1). 

For small angles of incidence we may use Ward's 3 development of slender body theory which uses axes 
related to the undisturbed stream. We consider only the subsonic case and write the potential as 

where 

U(x + bo(x)) + dp (1) 

x 

27rb0(x) = A'(x) In (½fl)+ ½ A"(t) In ( t -  x) a t -  ½ A"(t) In (x - t) at 

for a body of unit length. Here f12= 1 - M  2 and A(x)  is the cross-sectional area of the body. 



Then • is a solution of Laplace's  equation 

(I)yy + t~ zz = 0 (2) 

and at large distances from the wing 

a ' z  + In r (3) 
U 

where r 2 -- y2+z2.  
Also Ux + d~ satisfies the boundary conditions on the wing surface and the vortex sheet so we have no need 

to consider bo(x) further. 
The boundary conditions are that the wing and vortex sheet should be stream surfaces of the three- 

dimensional flow, and that the pressure should be continuous across the vortex sheet. We introduce cylindrical 
polar coordinates (x, r, 0), where r is measured from the wing centre line and 0 from the starboard tip. We 
consider the trace of the starboard vortex sheet in the cross-flow plane, x = constant, and let ~b be the angle 
between the radius and the tangent at any point, o- the arc length along the trace and n the inward-drawn 
normal, so that (x, or, n) is a right-handed system (see Fig. 2). 

If the equation of the sheet is S(x,  r, 0) = 0, the condition for it to be a s tream surface is V • 7 S  = 0, where 
V = V ( U x  + ~) .  In accordance with the linearisation assumptions dPx << U cos a and the condition becomes 

USx + qbrS~ + ~ = O. (4) 
r 

In the cross-flow plane 

So = dr (5) 
Sr dO 

and for any plane curve 

dr 
- - =  r cot ¢ (6) 
dO 

so that ~'2 

qbn = U sin q~S~ ~. (7) 

For conical flow S is a function of r /x  and 0 only, so that 

on the vortex sheet. There is a similar condition on the lower and upper  surfaces of the wing 

~n = - k U  sin f~2, qbn = k U s i n  f~l. (9) 

By slender-body theory we have 

U 

or for conical flow, 

2 (10) 
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We denote the difference across the sheet by D, e.g. 

D O  = ( ( I ) )upper  - -  ( O ) l o w e r .  

Since D O ,  = 0 the condition DCp = 0 leads to 

DO= D(O~){r cos c~--~U(O~)m }, (11) 

where (6P~) m is the mean of the tangential velocities on either side of the sheets. Also we require smooth 
outflow at the leading edges, i.e. 

Or 

We define 

and • z are finite for z = 0 ,  y=+s.  (12) 

, r n* n , o- O* • r = - ,  = - ,  o- = - ,  - (13) s s s kUs 

and obtain our two conditions (8) and (11) in non-dimensional form 

O0 
- - =  - r  sin ~b (14) 
On 

00 DO=D(aO~[rc°s¢-(O-~)m}'\OG/t 
Here the stars have been omitted. 

(15) 

3. First-Order So lut ion  

Since the boundary conditions along the sheet have to be applied along a curve, the slope of which is as yet 
undefined, we may use the method proposed by Mangler and Sells 4 to map the whole region onto a strip (see 
Fig. 3b) bounded by straight lines. We note that points on the sheet surface are mapped onto two points, 
corresponding to the two faces of the sheet. It is also possible to map into the upper half-plane as shown in Fig. 
3c with the points on the sheet mapped onto points on the real axis. For ease of reference we shall use the latter 
case in our analysis and as suggested in the diagrams we shall deal with the starboard leading edge. Our 
argument is very similar to that used by Craggs, Mangler and Zamir 7. 

We use Z* = X* + iY* as a complex variable in the new half-plane (Y* I> 0) and denote the coordinates in 
the physical plane (Fig. 3a) by ~" = y + iz. We denote the conformal mapping function by ( = ((Z*) and define 

d( = eh.+i~. 
dZ* (16) 

where h*, ~* are real. 
On the sheet surface ~b* is the slope of the sheet in the cross-sectional plane, x = constant (angle ~p in Fig. 2). 

We consider the function 

d( 
In d--~ = h*+  i~*, (17) 

which is analytic in the upper half-plane. If ~b* is known on the boundary, in this case the real axis, we may 
apply Poisson's integral (vide Moretti 8) to calculate h* on the boundary. 

Therefore, for small values of X*, the function h*(X*) consists of a regular function 

h * - h *  =H~o +H~X*+ . . . .  (18) 



which arises from the distant part of the integral, and a local contribution h* which may be singular if 0* is 
singular at X* = 0. 

We are interested in the behaviour close to the leading edge and shall therefore work in variables local to it. 
We use Z = X + iY as a complex variable, origin at C, for the 'upper leading edge' and 2 = X + iY as a complex 
variable, origin at C', for the 'lower leading edge'. We shall apply this notation to all variables, for example, 
h*(Z*) = h (Z) near the upper leading edge and h*(Z*) = h (Z) near the lower leading edge. 

For small X, X we assume expansions of the form 

,t0 u = 1"~2 + A 1  x x l ,  ~Ot = ~'~2q-B1..~ jz, (19) 

on the sheet (X, X > 0 )  where 0<A1 < 1, 0</zl  < 1 and ~ = ~~2 at the leading edge. 
On the wing ( X , ) ( <  0) we have (see Fig. 2) 

Knowing the local behaviour of ~b enables us to find the behaviour of h I n e a r  the leading edge. This is dealt 
with in Appendix A, giving, from equations (A-2), (A-5) 

_I-Klogx+e,x,,+.. (x>0) } 
h i -  [ - K  log IXI-A1 cosec a l~ ' lXl" '+ . . .  (X<O) ; 

= / O ~ J ? " , . . .  ( 2  > 0) 

hi [ B  1 c o s e c  ~ l ~ r l 2 l " ' .  • • ( 2 < 0 )  

where 

P I=  - A 1  cot A~zr, Q~ = BlCOt p.~zr. 

(21) 

If o., n are measured along and normal to the sheet (see Fig. 2), with o. = 0 corresponding to the leading edge, 
then 

d (  = dy + i dz  = e i¢" ( do " + i dn ). (22) 

Thus from (16), 

dz ,  = e h do.~dX = e h, ~dY" _- eh COS Ou, --dX sin ~Ou, (23) 

and integrating we can find o-,, yu, z~. There are corresponding expressions in the lower variables and since they 
describe the same part of the (thin) sheet near the leading edge, the conditions 

D(0)  = O, - 0z = 0, (24) 

D(o.) = o.,, -o.t = 0, (25) 

enable us to relate the local expansions in X and YC. 
Equation (21) gives, on the sheet, 

h = H o + P 1 X  x' + H I X + . . . - K  log X, 

and so 

/~ =/-to + 0 1 f f 2 ' ~ + n l X + . . .  

do'. = e h  = eHoX__K [1 + P1X ~' + . . . ]  (X > 0), (26) 
d X  

d.__~j = e~ = eao[1 + Q12,1 + . . . ]  ( 2  > 0). (27) 
d X  
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Hence, if a = 1 - K ,  

n o o t  

~ r = e  X [1+ c~P1 XAI+,,.] 
L or+A1 

o-t= e " o ~ l  + 1 + @ l J f ~ + . . . ]  

From equation (25) we find 

. f 2 = T X  ~ 

In the same way from (19) and (24) we have 

with 

and so from (30) 

(X > 0), 

(2 > o). 

- ° T = en°-H° 
Ol 

A 1 X  x' = B A R " + . . .  

/~ 1 = O~lt/~ 1, Z/~l = A--! 
B I "  

Our original assumption that/xl < 1 (see equation (19)) thus means that )ta < a. 
On the wing surface, by (21), 

e h = eH°IxI-K[1 - A  1 c o s e c  3,  

(28) 

(29) 

(30) 

(31) 

(32) 

e ~ = ell°[1 +B~ cosec tzlTr121~'l...]. 

Next we consider the complex potential W = alp+ i',I r and find, along the sheet, 

e i ¢ . d W  =Odp t'O~ 
d (  0o" On 

e_h.dW -h*{ O@ . OgP 
= d Z . = e  ~ - ~ -  t~--~], 

which gives 

0CI) 0(I) 0(I) e _ h .  0(I) _ _ = e - h *  _ _ =  
Oo" OX*' an O Y* '  

and so (14), (15) take the form 

0 Y*  = - eh*r sin ¢, 

Let 

D¢=Oke- 5- )Vcos6- e 

d W  O6p . .  Od~ 
d Z *  = OX* - t-~--~ = u* + iq*, 

where q* can be found from (35) both on the sheet surface and on the wing. 

(33) 

(34) 

(35) 

(36) 

(37) 
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i 

As in the case of h*, for small X* the function u* consists of a singular part u* and a regular part, and can be 
written 

u*(X*) = u*(X*) + U'go+ u~x*  + . . . .  

so that in our local variables, close to the leading edge, 

u ( X )  -~- U l ( X  ) --1- Uo-{- U I X  + . . . .  

a(2) = a,(2) + (So+ u , x  + . . . .  

From equations (22), (26), (27), (32), (33), (35), (37), (B-II), (B-13), (B-14), 

r , , o . . _ , , r . . .  A 1 sin t ] / e ,,. Ls,n~--- ~ 7 - - - - ~  . . . j  (x>o) 

q(X) ~le,_,oiXi_,,f_s~n~,_, ~ ' l x l " ' + . . . ]  (x<o) 
(38 )  

L sln a l'n" 3 

q()~')=~ t-s B1 sln/Zl~" (39) 

[ e - ° [  sin fl2-i san" sin fl21Xl"' ' " " ] t ~ i ~ r  (2<0) .  

In Appendix C we derive expressions for u ,, aa from (38), (39) and including the regular terms, we obtain on 
the sheet 

Ig(X)=eH°X--K[cos~'~2 + Uoe-S-S°X x A1 c°s (~"~2-/~ lgF)XA1 .] (40) 
sin A17"g " " 

tTt(ff¥) = eFlo[ (so e-lrto+Bl C°S (~2 + #'zlrr).X '% .] (41) 
sin #z,~- " " " 

These expressions combined with (26) and (27) give, by (34), 

(0,) 
~ u = e-hu = COS a 2 +  go e-H°X K - A 1  sin ~2X al, (42) 

( 0 " )  = e_g~i = (So e -~°+ B'l(do cot , 1 7 r - s i n  f~2)J~ " ' ,  (43) 

where do = cos f~2 - Uo e -H°. (44) 

Using (30), (31) we express (43) in terms of the upper variables 

(OdP) = (So e - & +  Al(do cot/x17r-sin a2)Xa' . . . (45) 

and so from (42), (45) we deduce 

(0,) 
D "~ = do+ Uo e-H°x K-Aldo cot ~I~-X~' . . .  (46) 

aqb cos~2+(Soe  -H° Uoe .XK+A1 s i n ~  2 X *x (47) 
0--~ .~ - 2 + ~  2 . . . .  



Using equation (B-10) this leads to 

( ) Orb do Uo e .X  K A ldo cot  /Zl ~ X a  ~ (48) 
r co s4~ -  ~ , =  2 2 2 . . . . .  

Equation (37) shows that u = Orb/OX and hence integration of (40), (41) gives 

H o ~Tot  
e A 

rbu = (rb,)o + - - [ c o s  ~2 + . .  -], (49) 
OL 

so that 

rbt = (rbl)o + U o X .  . . = (rbl)o + TUo X'~ . . . , (5o) 

Drb = Drbo+ do e~°x~ + . . . .  (51) 
o~ 

Substituting (46), (48) and (51) into the pressure condition (15) we obtain 

. do e m ~.,~ dg -no 2 (Uo e ) .X2K. Drbo-e a + . . = - - - A l d 0 2 c o t / ~ l c r X  a l -  (52) 
a " 2 2 

Our original assumption that/Xl < 1 led to h~ < a (equation (31)), and equation (52) therefore gives 

ct°~ (53) Drb0 =-~-, 

-/-/0,2 
O = A l d Z  cotizl~.XX,_~ ( U o e  ) X 2K (54) 

2 " " 

We examine equation (54) in detail in Appendix D and arrive at the conclusion that for all values of K,/zl = 1 
and ha = a / 2 .  Also, for K <  1/3 we find that Uo = 0. 

We may express our leading terms as functions of the arc length: 

= ~'~2 -{- C O ' x  -'1- . . . .  C = A a (a e -Ho)~ = B 1 e st°/2, 

D(0~-~) = do + o(~r~). 

Special  case o f  a thin wing 

For a thin wing K = 0 and terms previously of order higher than h~ now become of the same order (e.g. 
/~ 1 "~ K )  o The expressions in the lower variables are largely unaltered apart from the simplifications introduced 
by having ~"~1 = ~r~2 = 0. The bulk of the argument for the thick wing still applies but slight differences occur 
towards the end, necessitating a separate treatment. 

Equations (26), (40), (42), (45) are replaced by: 

e h = e~r°[1 - A  1 cot AI~'X a' . . . ] ,  

U = eU°[1 + Uo e-H°-  A1 cot h,zrX*'], 

u = e - h u  = 1 + Uo e -n°  + Uo e - n ° A  1 cot a 1 ' r / ' X h '  • • " ,  

(Orb) = = 00 c o t  [&I'B'X h', e-fi/2 e-~qO+Aldo 

where now do = 1 - 0o e -n°. 
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Relationships defined by (30), (31) become 

= TX; 

Let 

T =  eHo-no; h l  ~--- [./q ; 

b i = do + Uo e -n°, 

Equations (46), (48) to (51) then become: 

therefore 

T~ ~ A1 
BI" 

b2 = d o -  Uo e -n°. 

D(O~)=bl-b2A1 co t /z lz rXa ' . . .  , 

(Ocb) b2 blel COt l~l~.xa, 
r cos~b-  ~ , , = 2  2 . . . .  

~u = (~u)o + eH°X[I+ . . . ] ,  

~, = (~0o+ T0oX= ffI,~)o + 0o eH°-H°X+... 

Dqb = Dd~o+e no doX+ ... .  

Substituting (56) to (58) into the pressure condition (36) we obtain 

Dd~o+doemX" bib2 (b~+b~) • " -  2 ~ A1 c o t / z l T r X  'h .  

Hence, 

(55) 

(56) 

(57) 

(58) 

bib2 
D~0 = ---~-, (59) 

2 2 [bl +b2'~ ~ - - ~ ) A 1  cot/~I~X x' = 0. (60) 

For physical reasons Dqb o > 0, D(aO/Oo')o < 0 so that bl < 0, b2 < 0. Moreover (b~ + b~) > 0 and hence we may 
deduce from (60) 

cot/z1~- = 0, p,1 = A1 = 1  . 

Here we are unable to say anything about the value of Uo. 
Also, 

which reduces to the expression for the thick wing if Uo = O. 

4. Second-Order Solution 

We now introduce a second term into the expressions for ~O,, ~0t and apply the same analysis as in the 
previous section. 

I~2+A1X°42+A2Xaz ( X > 0 )  = I~2 + BI~-~ + B2)~~2 ()('> 0) 

~ = ( - l ~ ,  (X<O); ~i [02 (X<O) " (61/ 

10 



Equations (28), (29) become (X, X >  O) 

], O'u= O~ L " "  

(62) 

< = e&.,~'[ 1 + o (~ ) ] ,  (63) 

where t = cot aTr/2. 
Let the second-order expression for J( be 

R = T X  ~ (1 + S~X&), (64) 

then (24) and (25) lead to 

A 2X *~ = A 1S1Xfll+c¢/2 °v B2 T~2X ~2, 
2 

(65) 

S1X/31 = 2Altx~/2" 
3 

(66) 

Equation (66) indicates that 

and so (65) becomes 

a 2Al t  
f l  l = "~ , S a = 3 ' 

A2Xa= = _ A,'X~}--  + B 2 T . = X ~ = .  
3 

We obtain expressions for u, ti, cf. (40), (41) 

(67) 

(68) 

u(X) = emX-K[cos 122 + Uo e-HoX K - A1 COS (122 -- a~r/2)X~/2_ A2 COS ( 1 2 2  --/~ 2"/T).xA 2 
sin arc~2 sin ,/~.2"/T 

A 2 cos (122- ot~r)..,~ .], 
-  sin 7#)5 

(69) 

• _ 2 cos 122 - ~7(X') = e&[ Uo e - & -  B1 sin ~'~2~q -B2 COS (~"~2 q-/d,2q'/')~2 q" (01 e_Ho - B1 2 ) X . . ]  
sin/z2rr " " 

(70) 

In the coefficient of J ( in  equation (70) the second term is the coefficient of j~z~, which is not absorbed into 
the global regular term, for clarity. 

Expressions for 0~/0o- then become, cf. (42), (43) 

0 ( I ) )  2 - 
,, = COS f~2 + Uo e-~r°X K - A  1 sin 122 x ~ / 2 -  A2 sin ~'~2 XA2 -- A 1 cos2 ~'~2xc~ or- UO e-H°A l txK+a/2' (71) 

0d#) 0o e - & - B 1  sin I~2,YY~+Bz(do cot/*27r - s in  ~"~2).~ 

COS q_ [ (~.~1 __ [~0I_~1) e-/~o B2  2 122 ] ~  

= 0o e -H°- A 1 sin f~2 X~/2 + B2 T~2(do cot/,Z2"W -- sin 122)X ~"2 

- A 2 COS ~'~2 A 2t sin 12Z]x~ 
+ [.T(U1 - UoHa) e -Fz°- 2 ~ 3 

(72) 

(73) 

where we have used expressions (67). 
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To second order we have 

[eHo 
r cos ~b = cos f~2- A l sin ~2X ~/2- A 2 sin f~2X a~ + k-~ 

and so we find that if 

A 12 cos 122~X. 
] . ° ,  

then 

and 

C1 = T ( 0 1 -  OoISI~) e-&+ A ~t sin f~2 
3 ' 

(0®) 
D ~ = do+ Uo e-H°X K -B2Tt*2(do  cot/..£2"W-sin ~Q2)X°qZz-A2 sin f/2X ~= 

- C1X ~ + Uo e-H°AxtX ~O+K), 

Ocb) do Uo e - n ° X  t¢ B2T"='(d 0 cot /z2rr-  sin O2)X ~'= A 2 sin 122.X, = 
r c o s O -  ~ , - 2 2 2 2 

[eHO + k ~  C1) x'~ U ° e 1 % A l t x ~ ( l + K )  
2 

From (50), (75) and (76) to order X ", (36) gives 

14o 
D@o +d°e X~ + . . .  

Ol 

-//°2 ~-~2X~2 -~ (~-~- C1)doX" - d ~  (Uoe ) X2K_doAzsin 
2 

-- doB2Tt 'Z(do cot/z27r - sin ~~2)X a'°'2 - (U 0 e-Ho)2Al tX~( l+3g)+ . . . .  

This equation is discussed in Appendix E and we find that for all thickness angles 

AFt 
A2=ce, / z 2 > l  , A 2 -  

3 

(74) 

(75) 

(76) 

(77) 

(78) 

Putting these results back into the pressure condition we obtain relationships required in Section 5. 

(i) K # ~  

Equations (E-2), (78) give 

i.e. (from (74)) 

(ii) K = 

(C1 +A2 sin ~-'~2)X a = 0, 

T( 01 - UoH1) e -n° = O. 

T ( U 1 -  UoH1) e-&~ U~ e -2m 
2d0 

(79) 

(80) 
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5. Third-Order Solution 
We now introduce a third term in the expression for 0,, but no further terms in ~0t, since/z2 is still unknown, 

though of higher order than A2. 

- 3 X I 
~2+AIX,~/2 A~t ,~ + A 3 X A 3  ( X > O )  

gz~ = L - l ' h  (X<  0) (81) 

" I I '~2+BtJ~+B2~ ( 2 > 0 )  (82) 

¢~ = ln2 ( 2  < o) 

and we obtain, as previously, 

~r~=e~°aX'~[1-2Alt --~--X ~/2 + A z1(4t2-12 1)'X'~ . . . ] ,  (83) 

o't = e~°2[ 1 + - ~ + . . . ] .  (84) 

We shall later find for this case that the solution is more easily obtained by working in the lower variable 2.  
We therefore invert (64), using the result found in (67) and including a further term: 

X'~ = RTk{ t +2B-! t ~  + s22~],  (85) 

R = T -1 = a e H°-H°. (86) where 

Hence, (24) and (25) give 

- = B l S 2 2 o 2 + ~ + A 3 R 3 X 3 / = 2  x3/~ 5B3t2~¢ ~ (87) 
B2X~ 2 18 " - '  

/-'tl . B2( 4t2+ 1 ) ) 2  . 
S 2 2 ~  = (--2 " ' 12 (88) 

We find, using (79) or (80), (85), (86), 

and 

0qb) = Uo - B1 sin ~'~2 ~-~ e-ao 
B 2 

f~2X+-- B2(do cot/£27/"- sin f~2)2 "2 4 
COS 

2 
B31 sin f122 ~ 

6 (89) 

0 I)) B 2 cos ~"~2 - . r ~ 3  • / 5 t  2 + 3\  B1 e ~° 
u = c°s f~a-B1 sin f~2y~- 2 x *  Lt~lSln ad,--W-) 3 - -  cot ( ~ - ~ ) ] J ~ + E ( 2 ) ,  

a2]-ff - - T -  cot ) ~ - B z ( d o  cot/z2zr- sin D.2)2"~ + E ( 2 ) ,  

_ 5t z 
r cos 4~ - (~-~), = - ~ + e a ° 2 -  [B3 sin 1~2 ~ - - 7  cot -5--/J 

B~(do-- cot ~2"/'g--I-sin 122)2 ~2 - 
E(2f) 

2 ' z 

(90) 

(91) 

(92) 
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where 

/ 
E(~') Uo e-H°RK/'~X K/~ + Uo e-'- '°B,mK/°[ 1 +-_~ ]~K/.+~ 

\ 3~ /  

- A 3  Ra#°' sin ~27( ~/~ B1S2. sin ~ 2 X  ~+~ 
2 

UoA Z(2t 2 + 1) e_Ho R a/~ffa/~ + ( Ua - UoHO e-n°R(~+K)/"~ ~+K)/~ 
. . . 

We find that 

~t  = ( % ) 0 +  UoX 
2B~ e n° sin f~z.~ 

3 

e H° cos ~2 ..~ 2A1 e~°(t 
¢b. = (dp.)o + a X + U o X -  3 o~ COS ~'~2 -~- sin ~ 2 ) X  3 a /2  

2B1 e~o 
= (dP,)o+e a° cos f~22(+ UoR i/,~1/,~ sin f~zp~. 

3 

Therefore 

Deb = DdP o + do eI4° f ;  + UoR ~/~1/~ + . . . .  

Hence to order J ~  the pressure condition (36) is 

D~o + do eH°X + UoR I / a ~ l / o ~  , . , 

e_HO~2 
= +doe~O~ (Uo j R 2 K l ~ 2 K / ~ _ d ~ B z C O t l x 2 7 r ~ + .  

. . . 

(93) 

(94) 

(95) 

If we ignore the constant terms, this leads to, 

[ f o r  1/%,~1/~ 4 (Uo e -H°~2 2 J "R2KI~xZK/~ + dzB2 cot/x27r){ "2 = 0. (96) 

This equation is discussed in Appendix F, where we conclude that U0 = 0 for K < 3/7  and that/~2 t> ~ for all 
3 K, though it appears likely from the form of the equations that/~2 - 3. 

Equation (88) shows that /32 ~ 1,  and using the above result for/x2 in (87), it can be seen that A 3/> 3a/2 .  
Unfortunately we are unable to place a greater restriction on the values from the available information and, 
although it seems likely that A3 = 3c~/2 and 132 = 1, we can satisfy all the equations without requiring either of 
these equalities. 

6. Extension ~o Wing Surfaces 

(a) Upper surface 

Let I = cosec aTr/2, then we have seen previously that 

0. = - ~ 1  

(r sin &). = - sin ~1, 

(20) 

(B-14) 

14 



and extending (32) ,  

eh=  eHoIxI-K[1--A lllxla/2+ 2A~I2IxI'~-HllX[- - ~ [ X [  3~/2- sinA;3vr[Xla3] • 

Hence, 

22 j e [Xl 2Aft ~/2 Al l  ,, all, 2A313XI3,~/2 - aA3 
= a- - -S - - IxI  +--~--Ixl  - ]%- g l x l -  Ixl ~+~ • 

a 15 (Or +h3) sin A3"B" 

We find u~ on the wing in an analogous manner to its evaluation on the sheet, using Appendix A: 

ell°IX[ -K cosOl[1  ~/z 2A212 ul-- - A J I X I  + - - T - - I x I - n d g l  

3 3 ] 2Ho~ 
e z~ 1 ~kr 3o~/2-K _ A  l lx[3~/2 - A3 ix l~  + / 5 ~ N  

sin Z31r 3a sin ~--~-} 

for f~ # ¢r/5. 
We find that 

e - h u l  = COS ~1 q e~°A-.L~ l X l ~ / z . . . ,  

3a sin 
2 

and so 

/40 
e A 1 1~13~/2 e -hu = cos f h -  U1 e-H°lX[ '+K -~ m ~-a~'N'--' "'" " 

3~ sm VT-) 

Also, 

[xl 
• ~ = ('~.)o-  u dlXl 

"0 

= (~u)o 

+-~lxl 2- 

eH°lxr c°s f12[ 1 o~ L - ---~12AlI X~/21 +A__: 

2 A  3al 3 
15 IXI~/2- 

2A1 e 2H° 
IX[ 5~/2 . . . .  

X o sin( ) 

~/~_21Xla - o~H1 

~ , -rxl ~3] 
(OL -l-A3) sin a37r 

(b) Lower surface 
Previously we had 

~/ = ~'~2~' 

(r sin q~)t = sin ~2, 

and extending (33) we obtain 

e ~7= e~q°[ 1 +BI[2P+ (-~-~-H1)121 + ( - ~ - B ~ H a - B 2 ) I 2 F ~ . . . ] .  

(97) 

(98) 

(99) 
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Hence, by integration, 

o. = eOolj~l[ 1 + ~ [ j ~ [ ~  + (B~ 
\ 4  

/~1 j~ +2 B~ 
2"')] ] 5 ( T  -- B1/-I1 - B2),..~[za . . .] . (100) 

Then, as for the upper surface, 

ti = e&[  Uo e - & + B ~  cos O212[~+ (B~ cos 02 
2 

O 1 e-n°)[21+ B 3 _ _ 
+ ( 6  ] 

Using equation (79) we obtain 

e-ha = -  U o e - R °  - ~ d o B  2 - [ B ~  ~ - + doBllX] - ---Z--IXI + doP-7  - B211X] + . . . .  
~ ' , 0  / " 

(101) 

and integrating ff we find 

2B1 e n° 
3 c°$~-~vlX]3+~ ] ~ 1 2 - 2 ( n 3 - e l I ~ I I - n 2 ) 5  6 e/~° c°s ~21J~15/2 . . . .  (102) 

7. Summary of Results 

In previous Sections quantities have been expressed in terms of X, J~, the variables in the transformed 
plane. They become more indicative of the physical behaviour if expressed in terms of o', the arc length from 
the leading edge. We consider only the case Uo = 0, corresponding to K < 3/7 (i.e. O < 77°), and the most 
likely third-order solution, namely 

3 3a 

Define the constants, 

C =  B1 e -1%/2 = Al (a  e-H°) ½, (103) 

© ]  c,= [A3-AI\ 9 (104) 

Equations (44), (46) and (53) give 

- 42-D~o = do = cos f~2- Uo e -~'° = (D~,~)o < 0 (lo5) 

and we summarise the other results as follows. 

7.1. Sheet 

Shape 

~O = 02 + Co -~ + C*o'a+ . . . .  (106) 

Normal velocity 

0qb , C2sinO2 [ C  ( , ~__~ 3) ] 3 
- - = - s i n O ~ + C c o s f ~ e C r - ~ +  ~r-  + C - cosO2 o-3+ 
On - 2 . . . .  (107) 
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Tangential velocities 

(o(ID) = ~'~2or -- C 2 c o s  122or ,_l___ Ul{-c~4/°tO r 2/t~- 1 _  
- - ~  u c o s f ~ z - C s i n  ~ 2 a ~AIJ 

- ( 5 a ) ]  3,2 (108) - [ ( C * -  -~-) sin f~2 + 3 tan \-~--j j or . . . .  

0--~ I 2 . . . .  

- -~ tan . . . .  (110) D G = do-e--~-l~--T) Or o -3/2 

<) m = (cos 122-½d0)- C sin f~20-~- C2 cos a20-, UI{ C~ 4/~ 2/~-1 2  GkT,] Or 

- [ ( C * -  -C-3-) sin ~2 + 6 t a n  (5~-)] o -3/2 . . . .  (111) 

The potentials may be obtained by integrating (108) and (109). The case f~ = ~r/5 introduces logarithmic 
terms into the expansions and is not dealt with here. 

Note that we have used (79) to express U1 in terms of the other constants. 

7.2. Wing 

We measure or from the leading edge once again and quote the results for - (0~/0or), the tangential velocity 
towards the leading edge: 

-(~)u=COS~"~l-Ul(£)4/c~or2/a-lq-lfsec(5~~]Or a 
a A~ 3 2 / . . . .  (112) 

-(~)l=(cos~2-do)+doCo'~-5doCZOr +~-~doC/47 3__ C.)Or ~ . . . .  (113) 

Normal velocities 
(do < 0) 

(0®) 
. = sin ~'~1 (114) 

(O~-n~) = - s i n  122. (115) 
l 

Here, on the lower surface, n is in the direction indicated in Fig. 2, i.e. into the wing. 

7.3. Concluding Notes 

(i) In Section 2, the potential was non-dimensionalised by qb* = ~/kUs and the results we quote are in 
terms of this qb*. For the physical velocities and potentials the expressions given are multiplied by k = tan y. 

(ii) All the results are true for the special case of the thin wing, with the exception that Uo is not necessarily 
zero which means (105) does not hold in this form. For the thin wing the constants have values: 

12=~l=~2=K=t=O; a = l = l .  

(iii) In the results we notice the intrusion of a 'rogue' term in O "2/°t-1. For K >  1/5, 2/a - 1 > 3/2 and this 
term lies beyond the range of our investigations. For K ~  < 1/5, 1 < 2/a - 1 <~ 3/2 and this term dominates the 
terms from the third-order expansion. It is possible, as in the case of U0, that U1 is zero for this range, but we 
are unable to confirm this without going to higher-order expansions. 
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A 

Ai, Bi 

¢ 

C 

C* 

¢ 

do 

D 

F 

gl, g2 

h,g 

h i ,  h i  

k 

K 

K 

l 

L , M  

n 

P, 
Q, 

q,~l 

R 

S 

S 

s, 

t 

T 

LIST OF SYMBOLS 

Area of cross-section (Section 2) 

Coefficients of X*', X" '  in 

COS ~ 2  

Coefficient of or ~ in ~b 
Arbitrary constant (Appendix A) 

Coefficient of 0 .2 in 0 

Pressure coefficient 

= cos 122- 00 e -n° 

Difference operator across sheet 

Analytic function of Z* 

See equation (B-9) 

Coefficients in Ul, ul (Appendix C) 

Real parts of In \~--~/ In \~--~] 

Singular parts of h,/7 

Coefficients of X i, ,~i in regular parts of h, 

= s /x  = tan 3' (Section 2) 

= f~/~- 

A r b i t r a r y  constant (Appendix A) 

. 
= c o s e c  = s e c  - -  

2 

Arbitrary coefficients (Appendix A) 

Normal to sheet or wing 

= - Ai  cot AiTr 

= B i c o t / z i ~  

See Fig. 2 

Coefficient of 2 in X ~ (equation (85)) 
= 121 (Appendix A) 

= 121 (Appendix  A) 

Semi-span (Section 2) 
sin ft2 

S(x, r, 0) = 0 is equation of sheet 

Coefficients of X °' in J¢ or J(¢' in X ~ 

= cot -~- = tan 2 

Coefficient of X ~ in J(  
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u, 

U 

us, O, 
V 

W 

X, y ,  Z 

X*, Y* 

X , Y  

x , Y  

Z* 

z , 2  

Greek 

Ot r 

Ol 

3i 

3/ 

0 

Ai, ~ i  

/) 

tT 

0 

~, ~, X, sq, fh,  f~2 

Subscripts 

i 

l 

m 

r 

u 

LIST OF SYMBOLS (concluded) 

Free stream velocity 

Coefficients of X i, Jf~ in regular parts of u, ~i 

Velocity vector 

Complex potential 

Cartesian co-ordinates in original frame 

Co-ordinates in transformed plane 

Upper local co-ordinates in transformed plane 

Lower local co-ordinates in transformed plane 

= X * + i Y *  

= X + i Y , . ~ + i Y  

= angle of incidence 

= I - K  

Powers of X in X or of X in X ~ 

Semi-apex angle of wing 

= y + i z  

See Fig. 2 
= arg (Z) (Appendix A) 

= arg (5) (Appendix A) 

Powers of X, )~ in 0 

Arbitrary power (Appendix A) 

Arc length along sheet 

Velocity potential 

See Fig. 2 

Imaginary part 

Lower surface 

Mean value 

Real part 

Upper surface 
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APPENDIX A 

Real and Imaginary Parts of  Analytic Functions 

If, in the transformed plane, Z * = X * + i Y * ,  we know the imaginary part F~ of an analytic function, 
F(Z*) = F~ + iF~, on the boundary (in Fig. 3c, the real axis) then we are able to calculate the real part, Fr, on the 
boundary to within an arbitrary constant. The means used is Poisson's integral which involves an integration 
along the boundary (see Moretti8). 

In the main text we are concerned with two such functions, 

( d ~ )  d W  
In ~ and dZ*'  

where 

d(  _ d W  
In (~Z--~) - h* + i~*, dZ* =u*+iq* .  

In both cases we know the singular behaviour of the imaginary part in the neighbourhood of the leading edge, 
but the behaviour at more distant points depends upon the global properties of the flow and cannot be 
ascertained from our local analysis. 

The real part can then be calculated in terms of a local contribution, probably singular, and a regular 
contribution from the distant parts of the integral. The arbitrary constant may, for our purposes, be absorbed 
into the regular function. 

In this Appendix we seek an analytic function whose imaginary part behaves locally on the boundary in the 
same way as F~. The real part of this function will then give the local behaviour of Fr. 

A.1.  Upper Leading Edge 

From Fig. 4 we see that d Z  = dZ* and so 

In = h + i O ;  -d-~=u+iq.  

If Z = R e i°, then on the sheet R = X and 0 = 0, while on the wing R = IXI and 0 = 7r. We choose a function, 
F(Z),  to try to match the known behaviour of F~ on the boundary. 
(i) If F(Z)  = C ei"Z ~ then, 

F~ = C cos ( vO + a ) R ~, Fi = C sin ( uO + a ) R ~. (A-l)  

Taking the case of q in equation (38), we know that 

= I L X ~  on 0 = 0 (sheet), 

Fi [MIX j ,  on 0 = 7r (wing), 

giving, from (A-l) ,  

T = C sin a ; M = C sin (a + v~).  . ¢ . . . ,  

We may now calculate Fr( = u) on the boundary in terms of L and M and find that 

I M - L  cos VrrX~ 
/ sin mr 

Fr = J M cos u'rr - L 

on 0 =0 ,  

on 0=Tr. 
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W e  obtain the expression for ~a by treating each term successively as above--see Append ix  C. 
(ii) If F(Z) = C ei~Z ~ - K log Z + il~2 then 

Fr = C cos (a + vO)R" - K log R,  

F~ = C sin (a + vO)R" - KO + ~2. 

Taking the case of  0 in equat ions  (19), (20), we know that  

']2 + A 1 X  ~' (0 = 0), 

F/= L -- ~'~1 (0 : 7r). 

If v = A,, A ,  = C sin a,  a = - VTr, K = (l], + 122)/~ , then F~ has the required behaviour,  giving 

{ : : log X -  A , cot A x qrXx' (0 = 0 ) ,  

Fr = log I X [ - A ,  cosec a : l x l  (0 -- ~).  
(A-2) 

This deals with the discontinuity in 0 and the first term in the expansion. In Sections 4 and 5 the fur ther  
terms in the expansion are t reated as in (i) above. 

A.2. Lower Leading Edge 

From Fig. 4 we see that d Z  = - d Z *  and so 

In (d~-)  = / ~ +  i ( 0 t -  7r); 
d W  
dZ. - ~ + iq. (A-3) 

e , then on the shee t /~  = J? and 0 = 0 while on the wing /~  = [J([ and 0 = - or. We proceed  as in 
Section A. 1. 

If F ( Z )  = C ei~2 ~ + i /(  then 

F~=Ccos(vO+a)R ~, Fi=Csin(vO+a)R~+F, .  (A-4) 

Taking  the case of ~] in equat ion (39), 

giving, f rom (A-4),  

= ~L)(~ + g on 0 = 0  

f~ (MIXI ~ + g on 0 = - ~" 

L = C sin a, 

(sheet) 
. . . .  ] 

(wing) 

M = C sin (o~ - ,,~-) 

leading to, as in Section A.1,  

t ~  COS b'qr -- v _ M ~  on 
sin uqr 

F, = - M c o s  vrr[21, on 
sin pTr 

0 = 0 (sheet) 

0 = - rr (wing) 

In the case of 0l, f rom equat ions (19), (20) and (A-3) we see t h a t / (  = ~2 - m M = 0, L = B 1, v = /x ,  and so 

t 
/~, = B,  cot  t x : X  ~' on 0 = 0 (sheet) 

B1 cosec~l~r[J¢[ ~'' on 0 =  -~"  (wing)" 
(A-5) 
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A P P E N D I X  B 

Series Expansions for the Geometrical Expressions 

In  Section 3 we require expressions for  r cos ~b and r sin ~b in terms of X, X.  The derivations involve simple 
but  tedious manipula t ion which we have included in this Append ix  for convenience.  This work  is for  the 
surface of  the sheet, i.e. X, . ~ >  0. Note  that  A 1 < or. 

Le t  

then f rom equat ions (19), 

and thus using (26), 

Let  

then (B- l )  gives, 

X = O - O z ,  (B- l )  

(cosx)u = 1 - . . . ,  (sinx)~ = A I X X 1 - . . .  , 

(e h cos X)u = ell°x--K[ 1 + . . . ] ,  

(e h sin X), = eH°x-K[A1Xxl  + . . . ] .  

COS ~'~2 = ¢, s i n  ~ 2  = s, 

cos 0 = c cos X - s sin X, sin ~ = s cos X + c sin X, 

and hence,  using equat ions  (23), (B-3) and (B-4) we obtain,  

In tegra ted  these become,  

since y,  = 1, z ,  = 0 when X = 0. 
F r o m  Fig. 2 we see that  

T h u s ,  

dy~ = enoX_K[ c + . . . ] ,  
d X  

eHoX ~ 
y ~ = l +  [ c + . . . ] ,  

o~ 

dzu = enoX_K[ s +. . . ] .  
d X  

(B-2) 

(B-3) 

(B-4) 

(B-5) 

eHoX ,~ 
Zu = - - [ S  + . . . ] ,  (B-6) 

o/ 

& = q , -  0, r cos 0 = y;  r sin 0 = z. 

r cos 0 = r cos (0 - 0) = y cos ff + z sin 0, 

g2 = Y sin X - z cos X, 

r sin ~b = y sin 0 - z cos 0- 

Le t  

gl = Y cos X + z sin X, 

then it can be seen f rom (B-l ) ,  (B-7) and (B-8) that  

r cos & = cgl - sg2, r sin ~b = sgl + cg2. 

(B-7) 

(B-S) 

(B-9) 
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Equations (B-2), (B-6) and (B-9) give 

(g,), = 1 - . . . ;  

Thus, 

(g2)u = A 1 X a ' . . . .  

(r cos ~b ) u = c - s A 1 X X ~  . . . 

(r sin c~ ) ,  = s + c A 1 X ~ '  . . . . 

Similar analysis for the lower variables gives 

(r cos 4~ ) t  = c - s B 1 2 ~ '  . . . , 

(r sin (~ ) l  = s + c B 1 X  ~1 . . . .  

(B-10) 

(B-11) 

(B-12) 

(B-13) 

If we consider the wing surface, a similar analysis would give r sin ~b. However, simple geometry gives, since 
the span is unity, 

(r sin ~b), = - s i n  121; (r sin 4~)t = sin 112. (B-14) 
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A P P E N D I X  C 

Calcu la t ion  of  u, 

F r o m  equat ions  (38), (39) we evaluate  u 1, 81 using Append ix  A Sections A. 1 and A.2 so that  u l, 81 are of the 

fo rm 

ul(X) = e n ° X - K [ G o  + GIX ~1 +.. .] 

8a (2 )  = e~q°[Go + a ~ x  ~'1 +...]. 

In fact  the  express ion ea°Cro will be  absorbed  into the regular  par t  of 8 and m a y  be omi t t ed  f rom 81. 

C.1. U p p e r  Surface (on the  sheet)  

Using the nota t ion  of Append ix  A, 

Note  tha t  121 = 12-122, fZ = K~'. 
(i) Tak ing  Vo = - K  

M~- Li cos viTr 
G i  - sin vi~r 

(ii) Tak ing  vl = A 1 - K 

A 1  
1 ~ m 

s in /~  l"/r 

- sin ~'~1 - -  sin 122 cos KTr - sin 12 cos 122 
Go = - sin Kqr - - sin 12 = cos 122- 

sin YZl + sin (122 - A 17r) cos (YZ- A I"B') = - -  A 1 COS (~'~2 - - / ~  1'7"/') 

- s i n  (12-  A17r) sin A17r 

C . 2 .  L o w e r  Surface (on the sheet)  

G1 --- B1  
sin/21qr 

Tak ing  ffi = 121 

sin v i~  

s in  (~2 +/~ a ~r) cos/217'1" --  s in  ~'~2 _ B 1 c o s  ( ~ 2  + / £  17"/') 

sin/21~" sin/217r 
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APPENDIX D 

The Several Possibilities of Equat ion  (54)  

Equation (54) is 

¢ r r e-Ho~ 2 
A l d 2  cot lz:rXX,_~ ~,-'o : X 2 K = 0  

2 

and the possibilities arise from the relative values of the powers A1 and 2K, where K = O/Tr. 

(a) K>~½(a = 1 - K < ~  2) 

We have assumed that tta < 1 and so, by (31), A a < a ~< 2K. Thus (54) reduces to 

A i d  2 c o t  ~ l q T X  A1 ----- 0. (D-l)  

Since D ~ o  # 0, equation (53) shows do ~ 0 and (D-I) leads to the conclusion that c o t / x : r  = 0, i.e./za = ½ and 
al = a / 2 .  

(b) K < ½(o~ > 3) 

(i) A~ < 2K 

Equation (54) then gives immediately/z~ =½. This leads to the further conclusion that Uo = 0, since for 
K<½, 2 K < a .  

(ii) A 1 > 2K 

We again obtain U0 = 0, /z l  = ½. 

(iii) A~ = 2K 

A1 2K 
~ 1 = - - - - - - ~  o~ 1 - K  

c o t ~ l ~ > 0  for t~<½,  

(i.e. for K ~< 6). 

Equation (54) gives 

(Uo e-~o) z 
Aad~ cot/~a~--~ 0. (D-2) 

2 

Thus for K ~< ~, since A 1 • 0 ,  (D-2) contains two positive terms which must separately be zero, giving Uo = 0 
1 and P~I = ~. 

There remains a possibility that A 1 = 2K, 1 i 3 ~< K < 3. However,  this does give rise to a discontinuity in A 1 at 
K = 1 (see case (a)). 

Therefore  we conclude that A 1 = a / 2  and/.t  1 = 1 throughout and that Uo = 0 for K < ½. Later it is shown 
(Appendix F) that U0 = 0 for a wider range of K. 
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APPENDIX E 

The Several Possibilities of Equation (77) 

Ignoring the constant terms, equation (77) becomes 

(u0 e J "X 2K + doA2 sin £12X .2 + do CtX" + doB2 T'2(do cot/~2~r - sin I~2)X ~'2 + (Uo e-n°)aA it X+(I+3K) = 0. 
2 

(E- l )  

(a) K<+ 

In Section 3 we saw that from (54), Uo = 0 for K <½. Hence (E-I)  becomes, since do # 0, 

A2 sin I~2X a~ + C1X~ +B2T ~'2 (cot/x27r- sin I~2)X ~'2 = 0. (E-2) 

If we assume that/-~2 # 1 (this can be justified by a lengthy argument) then (E-2) allows two possibilities: 

(i) A2 = alz2 < a, (i.e./z2 < 1) and so from (68), A2 = BzT~% 

A12 cot azr/2 
(ii) A 2 = a " ( a / - ~ 2 ,  (i.e./~2 > 1) and so from (68), A 2 = 3 

Putting (i) into equation (E-2) we obtain 

B2 T~'2do cot/~2~rX "+'~ = 0, 

which is impossible, with B 2 # 0 and ½ =/~t </-~2 ~ 1. Hence we are left with condition (ii) and 

(b) K > ½ (a < ~) 

A2t 
A 2 = a ,  J['~2 > 1, A2 = - T (E-3) 

All terms involving U0 are of higher order than those considered in (E-2) and the results of (a) still hold. 

(c) K = ~ (a = ~ = 2K) 

(E- l )  now becomes 

I-err e-Ho'~ 2 ] 
n v '~ J_ / ~ °  J +doB2T~(do cot ~=+r-sin ~2)X =*= -- O. doA2 sin ,,2_,, . [ ~ F doC 1 X ~ 

The argument in Section (a) is unaltered and (E-3) is again valid. 
Thus we see that (E-3) holds for all values of K (i.e. all thickness angles). 

27 



Equation (96) is 

APPENDIX F 

The Several Possibilities of Equation (96) 

UoR 1/'~Y21/'~ -t ( Uo e-H°)ZR2ig/o,~eK/a + d292 c o t / , / , 2 q ' L e Y  'u'e = 0, 
2 

and again we look at the different ranges of K. 

(a) 

Here  Uo = 0 (see Appendix D) and (96) becomes (to order J~)  

Thus since do # 0 we see that/x2 >/3. 

(b) t 3 ~<K <~(1/a > 3, l <2K/a <~) 

Equation (96) now gives 

d2B2 -~2 cot/~2q'/'X = 0 .  

( Uo e-H°)2RZK/,~22K/,~ + dgB2 c o t / . ~ 2 7 r X  t*2 = 0. 
2 

There are three possibilities: 
(i) /-*2 < 2K/a < 3, which leads to cot/~27/" = 0 with 1 3 = Izl < ix2 < ~, giving a contradiction. 

(ii) ~2 = 2K/a <3, which means that ~ a ~  1 as K ~ ½ +  . . . .  Since we wish to avoid sharp changes in t~2 for 
increasing K, having regard to case (a) above we rule this possibility out. 

(iii) 2K/a < 1~2, which leads to Uo = 0 which subsequently gives (96) the same form as in case (a). 
Thus for ½ < g < 3 we have, as in case (a),/x2 >I-~ and Uo = 0. 

(c) K =} (2K/c~ = 1, 1/a =3) 

In this case the terms in ~2K/c~ will have been previously absorbed into those of order 2( by the use of 
equation (80) in place of (79) after equation (88). Thus (96) becomes 

doB2 cot/x2¢rX + 0(X ~) = 0, 

and as in case (a) tx2 i> 3. 

(d) K>~ 3 (2K/a >3, 1/a >~) 

Equation (96) again assumes the form of case (a) and we can conclude that ~ t> 3. 
Therefore  we may conclude that Uo = 0 for K < 73- and/~2 ~> 3 for all K. 
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