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Summary

The inviscid flow field past a slender delta wing at incidence with leading-edge separation can be considered
as conical. The shape of the resulting vortex sheet has been calculated by J. H. B. Smith and others. Here the
behaviour of the sheet near the leading edge of the wing is investigated and an expansion of the solution in this
neighbourhood is found by the application of certain theorems of the theory of complex functions. It is shown
that in a cross-flow plane (normal to the undisturbed flow) the slope of the sheet can be expressed in powers of
the square root of the arc length measured along the sheet. A related series expansion is found for the strength
of the vortex sheet. The sheet is always tangential to the pressure side of the wing. On the suction side of a wing
with thickness the flow is parallel to the leading edge, so that the strength of the vortex sheet at the leading edge
is directly related to the overall circulation around the sheet.

* This work was done under the link between the University of Southampton and the R.A.E.
T Replaces R.A.E. Technical Report 74150—A.R.C. 35 901
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1. Introduction

Inrecent years nonlinear effects have played an important part in the calculation of the pressure distribution
over wings. Vortex sheets which may extend from the trailing or leading edges of a lifting wing, have important
effects on the aerodynamic properties. Although viscosity plays a large part in these flows, inviscid mathemati-
cal models have been shown to give valuable information on their behaviour.

Because of their relative simplicity, leading-edge vortex sheets extending from a slender delta wing have
been studied in some detail**°. These flows are conical so that the three-dimensional problem reduces to a
two-dimensional one in the cross-flow plane. The theory of analytic functions and conformal mapping can be
appli%d. Some information is available on the behaviour of this solution near the centre of the rolled-up vortex
sheet”.

In the present paper the behaviour of the sheet near the leading edge is studied in some detail. It is known
already’, that the sheet leaves the edge tangentially to the pressure side of the wing. By the application of
certain theorems from the theory of analytic functions an expansion of the solution of this problem in the
cross-flow plane, valid near the leading edge, is obtained. The slope of the sheet is expressed as a series
ascending in half-powers of the arc length along the sheet. The coefficients of this series determine some of the
coefficients in similar algebraic expansions (in terms of the arc length) of the distribution of the normal
velocities along the sheet, the potential function and the tangential velocities along the sheet. These last
determine the strength of the vortex sheet. The remaining coefficients in these expansions cannot be
determined locally, but follow from a ‘global’ solution, usually only obtainable by numerical methods. On the
suction side of a wing with thickness the sheet forms a finite angle with the surface. Here the relative
cross-velocity is shown to be zero, so that (according to the pressure condition) the local strength of the vortex
sheet at the leading edge determines the overall circulation round the sheet. In the limiting case of a wing of
zero thickness this result cannot be deduced directly. .

Since the shape of the vortex sheet is one of the unknown functions in this problem, it was decided to
formulate the problem in another plane, which is obtained from the original cross-flow plane by conformal
mapping. Here the two surfaces of the sheet and the surfaces of the wing are mapped on parts of the real axis.
Both the potential function for the flow and the mapping function are determined and so the solution is found
in parametric form.

The present report investigates only the case of an algebraic singularity at the leading edge and no other type
of singularity is discussed. Within this class the possibility of a solution involving the square root of the arc
length is shown.

The governing equations for the conical flow past a slender delta wing at incidence are summarised in
Section 2. In Section 3 the mathematical background (e.g. the conformal mapping mentioned above) is
explained and the leading terms of the various expansions are obtained. Some higher-order terms for functions
on the sheet surface are enumerated in Sections 4 and 5, and corresponding expressions for the wing surface
are given in Section 6. The results are summarised in Section 7.

2. Governing Equations

The equations we shall use are well known in slender body theory and have been derived in several sources.
We quote the work of Smith™?, .

The undisturbed stream flows with velocity U at small angle of incidence o’ to the wing, and Oxyz is a
system of rectangular cartesian coordinates, with O at the wing apex, Ox directed along the wing centre line,
Oy to starboard and Oz upward. Let k be tan y, where 27 is the apex angle of the wing so that the local
semi-span s = kx (see Fig. 1).

For small angles of incidence we may use Ward’s® development of slender body theory which uses axes
related to the undisturbed stream. We consider only the subsonic case and write the potential as

Ulx+bo(x))+® (1)
where

X

2mhy(x) = A’(x) In 3B) +1 I A" In(t—x)dr-1 I A"(H)In(x—1) dt

for a body of unit length. Here 8>=1—M? and A (x) is the cross-sectional area of the body.



Then @ is a solution of Laplace’s equation

P,y +®,, =0 2)
and at large distances from the wing
d A'(x)
—~a'z+ 1 3
T 2+ nr (3)

where r>=y>+z°.

Also Ux + ® satisfies the boundary conditions on the wing surface and the vortex sheet so we have no need
to consider by(x) further.

The boundary conditions are that the wing and vortex sheet should be stream surfaces of the three-
dimensional flow, and that the pressure should be continuous across the vortex sheet. We introduce cylindrical
polar coordinates (x, r, ), where r is measured from the wing centre line and 6 from the starboard tip. We
consider the trace of the starboard vortex sheet in the cross-flow plane, x = constant, and let ¢ be the angle
between the radius and the tangent at any point, o the arc length along the trace and » the inward-drawn
normal, so that (x, o, r) is a right-handed system (see Fig. 2).

If the equation of the sheet is S(x, r, §) = 0, the condition for it to be a stream surface isV-VS =0, where
¥V = V(Ux +®). In accordance with the linearisation assumptions ®, « U cos a and the condition becomes

US, +®,5, + ‘D’f’fﬂ ~0. @
In the cross-flow plane
Sy dr
De_ 20 5
S, de ®)
and for any plane curve
dr
70 rcot ¢ (6)
so that"?
LSy
@, = Usin ¢§ (7)

For conical flow S is a function of #/x and ¢ only, so that

@, = - kU(;r) sin ¢ )

on the vortex sheet. There is a similar condition on the lower and upper surfaces of the wing

®,=—-kUsinQ,, ®, = kU sin ;. )
By slender-body theory we have
20, 1
Cp = — U — ?(KD%—@?) +(12,
or for conical flow,
2 2 2 2 2
C,,=—U—£(yd>y+zd>z-@)—(®y+@z)/U +a”. (10)



We denote the difference across the sheet by D, e.g.
Do = ((I))upper - (q))lower-

Since D®,, =0 the condition DC, =0 leads to

Dq>=D(q>,,){r cos b — %@a)m}, (11)

where (®,),, is the mean of the tangential velocities on either side of the sheets. Also we require smooth
outflow at the leading edges, i.e.

®, and @, arefinitefor z=0, y= 5. (12)
We define
x_r w0 x_7 i P

rr=s n*=7, =1 ) s (13)

and obtain our two conditions (8) and (11) in non-dimensional form
(3%) = —rsin¢ (14)
D¢=D<§-?){r cos¢—(§2) } (15)

do 00/ 1

Here the stars have been omitted.

3. First-Order Solution

Since the boundary conditions along the sheet have to be applied along a curve, the slope of which is as yet
undefined, we may use the method proposed by Mangler and Sells* to map the whole region onto a strip (see
Fig. 3b) bounded by straight lines. We note that points on the sheet surface are mapped onto two points,
corresponding to the two faces of the sheet. It is also possible to map into the upper half-plane as shown in Fig.
3cwith the points on the sheet mapped onto points on the real axis. For ease of reference we shall use the latter
case in our analysis and as suggested in the diagrams we shall deal with the starboard leading edge. Our
argument is very similar to that used by Craggs, Mangler and Zamir’.

We use Z* = X*+iY* as a complex variable in the new half-plane (Y* = 0) and denote the coordinates in
the physical plane (Fig. 3a) by { = y +iz. We denote the conformal mapping function by ¢ = ¢ (Z*) and define

e (16)

where h*, ¢* are real.
On the sheet surface ¢* is the slope of the sheet in the cross-sectional plane, x = constant (angle ¢ in Fig. 2).
We consider the function

1n2°12%=h*+i¢*, (17

which is analytic in the upper half-plane. If * is known on the boundary, in this case the real axis, we may

apply Poisson’s integral (vide Moretti®) to calculate #* on the boundary.
Therefore, for small values of X™*, the function A*(X™) consists of a regular function

h*—h¥=HF+HFX*+... , (18)



which arises from the distant part of the integral, and a local contribution A¥ which may be singular if 4™ is
singular at X*=0.

We are interested in the behaviour close to the leading edge and shall therefore work in variables local to it.
We use Z = X +iY as a complex variable, origin at C, for the ‘upper leading edge’ and Z=X+iY asacomplex
variable, origin at C", for the ‘lower leading edge’. We shall apply this notation to all variables, for example,
h*(Z*)= h(Z) near the upper leading edge and h*(Z*) = h(Z) near the lower leading edge.

For small X, X we assume expansions of the form

=+ A XM, =+ B XM (19)

on the sheet (X, X>_0) where 0<A, <1, 0<u, <1 and ¢ =, at the leading edge.
On the wing (X, X <0) we have (see Fig. 2)

P, = —Qy; =, (20)

Knowing the local behaviour of ¢ enables us to find the behaviour of 4, near the leading edge. This is dealt
with in Appendix A, giving, from equations (A-2), (A-5)

~Klog X+P X" +... (X>0)

1={—Klongl—A1 cosec A | X[ +. .. (X <0) ; 21
Q. %" ... (X >0)

1 {B, cosec pq | X[ . .. (X<0)

where

P1="“A1C0t)\17T, 01=B1 Cotﬂ-lﬂ.

If o, n are measured along and normal to the sheet (see Fig. 2), with o = 0 corresponding to the leading edge,
then

d{=dy+idz= e (do +idn). (22)
Thus from (16),
do, 4 _d_y_q_ R %_ ho
dX_e , e €os t,, X e” sin i, (23)

and integrating we can find a,,, y,, z,.. There are corresponding expressions in the lower variables and since they
describe the same part of the (thin) sheet near the leading edge, the conditions

D(‘ﬁ) = (pu - l,l’[ = 0’ (24)
D(og)=0,—0,=0, (25)

enable us to relate the local expansions in X and X.
Equation (21) gives, on the sheet,

h =H0+P1X,\1+H1X+. . ._KlogX,

h=H,+Q,X"+HX+... ,

and so
4oy _ b _eHoxX[14P,XM+..]  (X>0), (26)
ax
g%’ =ef =1+ QX" +...] (X>0). 27)



Hence,if a =1—K,

H, yra
o, == X [1+ aPy X"1+...] (X>0),
[24 a+/\1

o= eﬁf’)?[l +——Q—1—X"‘1+ .. ] (X>0).
1+p,

From equation (25) we find

- eHo_I'_Io
X=TX* with T=
In the same way from (19) and (24) we have
A XM =B X"+, ..
and so from (30)
A
A= ap, T"‘=-B—11-.

Our original assumption that p; <1 (see equation (19)) thus means that A; <a.
On the wing surface, by (21),

e" =e™|X|"¥[1- A, cosec A, w| X" . . ],

e’ =e[1+B, cosec w, 7| X|* .. 1.
Next we consider the complex potential W = ®+i¥ and find, along the sheet,

wdW 3D 3D
W _

al o lan

_edW _,,*( P 9b
azc ¢ \ax* Hhy*

which gives
N T JY.

e ,
o © aX® Y*

and so (14), (15) take the form
od

A
57 e” rsin ¢,
=n(e T ress (= 55) )
D D(e X+ rcos¢—\e ) I
Let
dW___ a<I>_»_a(IJ= ik
dz*¥ ax* ‘ay* 4 M

where g* can be found from (35) both on the sheet surface and on the wing,

)

(28)

(29)

(30)

(31)

(32)

(33)

(34)

(35)

(36)

(37)



t

I

Asin the case of h*, for small X* the function u* consists of a singular part 7 and a regular part, and can be
written

w¥( X =uF(XH)+ U+ UTX +. ..,
so that in our local variables, close to the leading edge,
u(X)=u,(X)+ U+ U X+... ,
aX)=a,(X)+ U+ U X +... .

From equations (22), (26), (27), (32), (33), (35), (37), (B-11), (B-13), (B-14),

eHDX’K[sin QZ—AI M (QQ_I\IW)X"1 .. ] (X>0)
sin A7
q(X)= A sinQ (38)
eH°|X|"‘[~sin Q,+ 230 Py ] (X<0)
sin A7
_ i + - —
e”o[sin q,+Bisin (et mm) g, ] (X>0)
o sin gy
4= = B sin Q) (39)
eH°[sin Q,+——2|X|" ... ] (X <0).
sin w7

In Appendix C we derive expressions for u,, &, from (38), (39) and including the regular terms, we obtain on
the sheet

u(X)= eH"X'K[cos QO+ Uy e Hox* — al COS_ (Qz_}\m)X"1 .. ] (40)
sin A7
_ I + _
(%) = eH"[ OyePor Broos atmm) g, ] 41)
sin pq,m
These expressions combined with (26) and (27) give, by (34),
o
(5;) =e "y =cos O+ Uye o X* - A, sin O, XN, 42)
@ — b 7 _I‘—Io . —q M1
Py =€ u=~upec +B1(d0 cot M7 —SIN Qz)X N (4’3)
!
where do=cos Q,— U, e o, (44)
Using (30), (31) we express (43) in terms of the upper variables
P 7 ~—H, : A
P =Uge "o+ A (dg cot wym—sin ) X" . .. (45)
!
and so from (42), (45) we deduce
a® - H, K A
D 5; =d0+er oX —AldOCOt;,mTX oL, (46)
o +Uye —Ho
(2_) _cos{ly 2U° °c . U"; XK+A1(éOCOZt¢T——sin Qz)X*l o 47)
T/ m



Using equation (B-10) this leads to

6@) d() Uo C_Ho K Aldg cot wym_,
(&) =& - . 4
r cos ¢ (aam 5 5 X > (48)
Equation (37) shows that u = 3®/4X and hence integration of (40), (41) gives
eHo «
O, =(D,)+ > [cos Q,+...], (49)
B = (D))o+ UgX. .. =(®)o+TUX"... , (50)
so that
HO
D¢>=Dq>o+d°:“ X+, .. (51)
Substituting (46), (48) and (51) into the pressure condition (15) we obtain
H, 2 —Hp\2
D<I>0+d°j X*+. . .=512—°——,A décot pymXh— (ﬂ%———)—xz". (52)
Our original assumption that u; <1 led to A; <a (equation (31)), and equation (52) therefore gives
dZ
D=, (53)
—Hy\2
0= A,d} cot u, X" +£—MX2K. (54)

2

We examine equation (54) in detail in Appendix D and arrive at the conclusion that for all values of K, u, = 3
and A, =a/2. Also, for K <1/3 we find that U, =0.
We may express our leading terms as functions of the arc length:

g=0+ Co*+..., C=A(a e Hopp =B, eﬁo/z,
@ s
D(a_) =dy+o0(a?).
do
Special case of a thin wing

For a thin wing K =0 and terms previously of order higher than A, now become of the same order (e.g.
A, +K). The expressions in the lower variables are largely unaltered apart from the simplifications introduced
by having Q, =Q, =0. The bulk of the argument for the thick wing still applies but slight differences occur
towards the end, necessitating a separate treatment.

Equations (26), (40), (42), (45) are replaced by:

e" =e[1—A, cot AymX™ .. .],

U=e"[1+U,e - A, cot ;7w X"1],

o® _ - _
(—) =efu=1+Uye P+ Uje ™A cot A, X" ...,
dc/ y

od 5 — g

<—-—) =e"i=U,e H°+A1docotu177X"1,

oo/

where now do=1— U, e .



Relationships defined by (30), (31) become

— n A
X=TX, T = eHo™Ho, A=y M=

By
Let
by=do+Use ™,  by=dy—Uye ™. (55)
Equations (46), (48) to (51) then become:
D(a—d)) = bl_b2A1 cot [,L]\7T'X)\l e s (56)
do
o A
rcos¢—(a—) =§_2__b1_1wt_“‘.l_fXM___ , (57)
o/ m 2 2

®, =(®,)o+e™X[1+...],
(I)l = (q)l)o‘l' TU(}X= (¢’[)0+ 00 eHO_I_—IOX‘l‘. TSN

therefore
D®=Ddy+eod X +. ... (58)
Substituting (56) to (58) into the pressure condition (36) we obtain

_biby _(bi+bY)

D<D0+doeHoX... 2 2 AICOthl‘n'X'\‘.
Hence,
b.b
Doy =—2, (59)
2+ 2
(bl 5 bZ)A1 cot u XM =0. (60)

For physical reasons D®, >0, D(3®/do), <0 so that b, <0, b, <0. Moreover (b} +b3) >0 and hence we may
deduce from (60)

=

COt}L17T=0, }L1=/\1=

Here we are unable to say anything about the value of U,,.
Also,

od

D(é-;) =b,+o0(c?)

which reduces to the expression for the thick wing if U, =0.

4. Second-Order Solution

We now introduce a second term into the expressions for #,, ¢, and apply the same analysis as in the
previous section.

{QZ+A1X"/2+A2X"2 (X >0) {QZ+BIX%+32X“2 (X>0) 6D

—Q, (X <0) e, (X<0)

10




Equations (28), (29) become (X, X >0)

a,=

HO
e Xa[l—g—‘;‘—ltxaﬂ...], (62)

a
o, =ePX[1+0(XY), (63)

where ¢ = cot an/2. _
Let the second-order expression for X be

X =TX*(1+8.X"), (64)
then (24) and (25) lead to
142}<r)m2 - A;SIXﬁ1+a/2 +B2T”2Xa”2, (65)
Sy XPr = — gg—ll—txaﬂ. (66)
Equation (66) indicates that
V a 2A1t
ﬁ1=‘2“, Si=— 31, (67)
and so (65) becomes
2
A XM=~ ATltX"‘ + B, T*X">, (68)

We obtain expressions for u, i, cf. (40), (41)

—HOXK—' Al COS (Qz_aﬂ'/Z)Xa/Z_ A2 CcOSs (Qz_l\zﬂ)X,\z
sin am/2 sin A, 7

u(X)=eox" K[cos Q,+Use

A2 cos (Qy—am) ]
2 sin® awr/2 X%y (69)
= al~ -& _ + . - 2 _
(%) = eHO[ O, e~Fo— B, sin 0, %4+ 2208 Qe pam) o0, | (U1 e P 51—‘:35-92))(. . ] (70)
sin g, 2

In the coefficient of X in equation (70) the second term is the coefficient of X**1 which is not absorbed into
the global regular term, for clarity.
Expressions for 3®/dc then become, cf. (42), (43)

AZcosQ,

> X+ Upe ToA 1x5re?, (71)

od - . .
(5—0'—) =cos,tUpe Hox& ~A;sin Q'2)(&/2"—142 sin ‘QZXAZ—‘

oD _ ) _ )
((;—0-) = U() e"Ho_Bl sin QzX%‘{"Bz(do cot [.L27T—Sin QZ)X’LZ
I
g o-h, B1cos &) 5
R (72)
= U() e“ﬁo—Al sin QZXQ/2+BZTM2(dO cot /.L27T"Sin QZ)Xap.Z
— — - - A2 Q Azt . Q
+[T(U1—U0H1)e Ho— 1°§S 2. ng z]X“ (73)

where we have used expressions (67).

11



To second order we have

e_HO_Afcosﬂz)Xa”.

rcos ¢ =cos ),— A, sianX"‘/z—AzsinQZX"2+( 5
o

and so we find that if

- 2 1
Ci=T(U, - UpH)) e—Ho+Al—’§“3&, (74)
then
a@ - K " . . : A
D a_; =d()+ Uge o X "‘B2T 2(d0 cot Mo —SIn Qz)X 2_A2 sin QzX 2
—Ci X+ Uye oA (X 0+E) (75)
and
r cos é — (a_d>) _dy _Upe ™ox* BzTﬂz/d o — sin Q) X — Az_Sin&XAz
o0/ m 2 2 2 CoCOtKam TSI, 2
CHD Cl) UO C_PIOA t
+( — L) xe_HoC ilgaax)
—- )X > X* (76)
From (50), (75) and (76) to order X*, (36) gives
HO
DD+ L ey
24
U, e~ Hoy2 H,
—d2- (——%—-)—XZK —dyA, sin QX+ (% - c1> doX®
= doB,T"*(dy cot pym —sin Q) X*#2— (Uye Moy 4 X330 (77)
This equation is discussed in Appendix E and we find that for all thickness angles
At
Ar=a, M2>1, A= “”‘51“- (78)
Putting these results back into the pressure condition we obtain relationships required in Section 5.
(i) K#3
Equations (E-2), (78) give
(C1+A,sin Q,)X* =0,
i.e. (from (74))
T(U, - UpH,) e o =0. (79)
(i) K =4
_ o Pe Mo
T(0,~ Uofl)) e ”o+—°2%—- =0. (80)
0

12



5. Third-Order Solution

We now introduce a third term in the expression for i,, but no further terms in ¢, since ., is still unknown,
though of higher order than A,.

A%t
{QZ+A1X°‘/2 - TIX‘* +A,XY (X>0)

w = (81)
. Q.+ B X+ B X" (X>0) @2)
T (X <0)
and we obtain, as previously,
H, ya 2 2
. 9 OX |- 2A t a/Z 1(4t - 1) o ]
o= |. 3 X D X*. .., (83)
0',=eﬁ°)?[1+£-{il-)—(+ ] (84)

We shall later find for this case that the solution is more easily obtained by working in the lower variable X
We therefore invert (64), using the result found in (67) and including a further term:

~ 2Bt S =
=Rx[1 +—3—1—X%+52Xf’2], (85)
where R=T =g Fo, (86)
Hence, (24) and (25) give
3,2
B, X =21 ZSZXE2+%+A R/ XAl — 5—%’—)2‘2, (87)
oo, (H B34+ 1)

s = (G4 2R (88)

We find, using (79) or (80), (85), (86),

(6‘13) e e ol B sin 03 BicosQ, Bisin,

pyn b€ 1 8in 2, X7 — —2-——~X+ By(dg cot p,m—sin QZ)X“2+—6——-XJ (89)

oD oy BlcosQ,_ 2 Ho
<~) =cos (,— B, stJﬁ—ﬂ—zX-i—[B?sian(St +3)—Ble co (SOMT)]XJ+EX) (90)

do/ 2 18 3
ad 52 Be™ (5
D(a ) dy+ [ sin 02—1—8— - 3 cot ( MT)JXS By(d, cot p,m—sin Q,) X2+ E(X), (91)

and

_ a_CI)) _do A% [ 3 5t B, el Sam\] =
r cos ¢ (60' m— 5 +eoX — BISIHQZ—:”—C._ 3 cot (T)]X%
EX)

2 92)

B _
- "é‘z(dg cot ,LL27T+Sin Qz)X‘LZ_

13



where
_ - 2K\ g s
E(X)=Uye MoR® XK= 4 1, e"H°BltRK/°‘< 1 +§I-<-)XK/"‘+2
(44
_ B —n 1
— A;RM/ gin 0, X/ — 1752 sin ,XP*2

+ UpAT2£2+1) e MR R L (1, — U,H,) e PR IHR e g+ K /e

6
(93)
We find that
— o 2B;e™sinQ,
(D[ = ((DI)O"I' U()X"‘ "—'_:;—_AX.;A
HO HO
®, = (D)o + 0 Laya 1y 5 2A31 © (¢ cos O, +sin 0,) X3/
64
_ - _ ﬁO 1 _
=(®,)o+e™ cos L, X+ U,RVeX V= — —23—16—3-81—“—)-2-){%.
Therefore
D®=D®+dye™X+URY*X "+ .., (94)
Hence to order X2 the pressure condition (36) is
D®,+dyeoX + U,RV XV
d; 5o (Uge ™) = >
= ?°+ doeoX — (O—ZLR”‘/“XZK/“ ~d3B, cot pomX 2+, .. . (95)
If we ignore the constant terms, this leads to,
veoi/e , (Uo e Ho)? 2K/ 2K/ | 32 &
UR’*X +———2——R X +doB; cot p,mX*2=(. (96)

This equation is discussed in Appendix F, where we conclude that U, =0for K <3/7 and that ., =3 for all
K, though it appears likely from the form of the equations that wa=3.

Equation (88) shows that B,= 1, and using the above result for > in (87), it can be seen that A3 =3a/2.
Unfortunately we are unable to place a greater restriction on the values from the available information and,
although it seems likely that A; = 3a/2 and 8, =1, we can satisfy all the equations without requiring either of
these equalities.

6. Extension to Wing Surfaces

(a) Upper surface

Let I = cosec am/2, then we have seen previously that
=~ (20)

(rsin @), = —sin ), (B-14)
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and extending (32),

2,4212 AP ]
h _ Hy ~K]| _ a/2 a _ 1 3a/2 __ As
o =e x| 1 4,1+ A X - B X - AR X - —Eix
Hence,
ePIX][. 24,1 N A e aHy, , 2A30 s aA
= - @ “« [ X2 - ——3——X*3+°’]. 97
e LT3 PR X | (a+/\3)sinA3wl | 67
We find u, on the wing in an analogous manner to its evaluation on the sheet, using Appendix A:
2A Hi
=™ X|™® cos 91[1 — AJIX|?+ ==X - Hy | X]
_ A?lslx':ﬂa/z |)(|).3 ezH0141 | l3a/2—K
3 sm)l m (5 77) ’
3a sin
2
for Q# /5.
We find that
H,
°A,
¢ ~"uy = cos Oy +— | X2 .
3a sin dam
2
and so
HOA
e~y =cos Q, — U, e Ho|x|K 4 — = D1 __xperz (98)
3a sin <5a7r)
2
Also,
1xi
(I)uz(q)u)O_J' uleI
0
Ho| x| 2A.0 .., AP aH,
= @0~ cos 0, 1- 20 xpra s Al e - Sy
1+a
2A 13' |3a/2__ aAs 'Xl/\s]
15 (@ +As)sinAsm
2 2H,
PYyxp 240 0 ypern (99)
2 Sa
154 sm( )
2
(b) Lower surface
Previously we had
"/II = 927

(r sin @); =sin ,,

and extending (33) we obtain

Bl B3 -
e _e 1+B1]X|2+ ‘Z—“Hl ,Xl+ ?_B Hl Bz |X,2... .
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Hence, by integration,

ol 2B s (BY H\ o  2(B3 - -
o= eH"IXI[l +—3—1|sz + (71 - —5—1-) |X] +§(-6—1 —-BH, —Bz)lez . ] (100)
Then, as for the upper surface,
Bicos Q, 3

. . — a\e. (B _ .
i =eH“[ U,e M+ B, cos QZIX!2+< 5 +U, e HO)IX]+(?1—B1H1—B2) cos 0,/ X[ .. ]

Using equation (79) we obtain

he o~ g 51 doBi - Bl _\oa
e "i=Uye o+d,B| X}~ 02 1|X|+do(—6—1——}32)|X]2+..., (101)
and integrating & we find
— o 2B e oz Uyon 2(B: - . -
@, = (®)),~ Ty|X| - 25 costlX|2+—21|X[2—§(?l—BlHl—Bz)eH”cosQZIXIS/z.... (102)

7. Summary of Resulis

In previous Sections quantities have been expressed in terms of X, X, the variables in the transformed
plane. They become more indicative of the physical behaviour if expressed in terms of o, the arc length from
the leading edge. We consider only the case U,=0, corresponding to K <3/7 (i.e. Q<77°), and the most
likely third-order solution, namely

3 3a
H2=3, Az = 5
Define the censtants,
C=B,e /2= A (a e ), (103)
) 12 2] () Ta- x5 - 1)
« (& _ (& —A3L ) 104
C(Bl 324 e A3A1924 (104)
Equations (44), (46) and (53) give
—V2D®y=dy=cos O, — Uye Ho=(Dd,),<0 (105)
and we summarise the other results as follows.
7.1. Sheet
Shape
v=0,+Cot+C¥a?+. .. . (106)
Normal velocity
[} ) % sin Q 3 3
‘Z—n= ~sin O+ C cos 0205+£——S—;n—30--[§+(C*— %) cos Qz]au. . (107)
C
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Tangential velocities

1 % cos Q) 4/a _
(a_cp) =cosQZ—Csinﬂzo-2—C—9-O§-——2(—T+ﬂ(£) oot
do/ 2 44 A1
~3 Pl
—[(C*—~8—> sin92+§tan (%)]03/2... , (108)
2 3
(‘;—f)l = (cos O, —dp) — Csin Q02— C%SQZ"—(C*- %) sin 02, .. (109)
Q‘_I))_ ﬂ(g)ﬁa 2/a—1_§ (&) 3/2 (110)
D(aa _d0+a A, o 3’[an > o’
6@) 1 . 1 CZCOSon' Ul( 0)4/“ 2/a—1
il = —4 — .- 4 —
(60 N (cos O, —3dy) — C sin Q0 > Ta\A, o
3
—[(c*—%) sinﬂz+gtan (%—)-)]03/2... . (111)

The potentials may be obtained by integrating (108) and (109). The case & = /5 introduces logarithmic
terms into the expansions and is not dealt with here.
Note that we have used (79) to express U, in terms of the other constants.

7.2. Wing

We measure o from the leading edge once again and quote the results for — (3®/do), the tangential velocity
towards the leading edge:

4/a a

) o0 S e @

u 1
_(g)l ~ (005 0 —do)+doGrl— 240 Cor+ (S2doCP =€) )

(do<0)
Normal velocities

(&) =sine, (114)

an/
(‘;i:f) = —sin Q. (115)

!

Here, on the lower surface, n is in the direction indicated in Fig. 2, i.e. into the wing.

7.3. Concluding Notes

(i) In Section 2, the potential was non-dimensionalised by ®* = ®/kUs and the results we quote are in
terms of this ®*. For the physical velocities and potentials the expressions given are multiplied by k = tan .

(ii) Allthe results are true for the special case of the thin wing, with the exception that Uy, is not necessarily
zero which means (105) does not hold in this form. For the thin wing the constants have values:

Q=0,=0,=K=1t=0; a=[=1.
(iii) In the results we notice the intrusion of a ‘rogue’ term in o*/*~". For K>1/5, 2/a —1>3/2 and this
term lies beyond the range of our investigations. For K<1/5, 1<<2/a —1=3/2 and this term dominates the

terms from the third-order expansion. It is possible, as in the case of Uy, that U, is zero for this range, but we
are unable to confirm this without going to higher-order expansions.
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LIST OF SYMBOLS

A Area of cross-section (Section 2)
A, B Coefficients of X, X* in 4
c cos (),
Coefficient of o in ¢
¢ {Arbitrary constant (Appendix A)
Cc* Coefficient of o2 in ¢
G Pressure coefficient
do =cos ), — Uye o
D Difference operator across sheet
F Analytic function of Z*
g1, 82 See equation (B-9)
G, G, Coefficients in u, &, (Appendix C)
hh Real parts of In (;——é), In (52{-)
h, h, Singular parts of k, /i
H, H, Coefficients of X*, X' in regular parts of h, i
k = s/x = tan v (Section 2)
K =0/n
K Arbitrary constant (Appendix A)
l = cosec (ﬂ) =sec L
2 2
LM Arbitrary coefficients (Appendix A)
n Normal to sheet or wing
P, = —A; cot A,
Q; = B, cot w7
v ()
aY*/ )\ aY*/,
14 See Fig. 2

R { Coefficient of X in X* (equation (85))
=|Z| (Appendix A)

R =|Z| (Appendix A)

s {Semi-span (Section 2)

sin {),
S S(x, r, 0) =0 is equation of sheet
S Coefficients of X* in X or X in X*
! =cot 27 tan —
2 2
T Coefficient of X* in X
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Greek

¢7 ¢’ X> Qa ‘Qfl’ 92

Subscripts

LIST OF SYMBOLS (concluded)

(). ),

Free stream velocity

Coefficients of X*, X' in regular parts of u, i
Velocity vector

Complex potential

Cartesian co-ordinates in original frame
Co-ordinates in transformed plane

Upper local co-ordinates in transformed plane
Lower local co-ordinates in transformed plane
=X*+iY*

=X+iY, X+iY

= angle of incidence

=1-K

Powers of X in X or of X in X*
Semi-apex angle of wing
=y+iz

See Fig. 2

=arg (Z) (Appendix A)

=arg (Z) (Appendix A)
Powers of X, X in &

Arbitrary power (Appendix A)
Arc length along sheet
Velocity potential

See Fig. 2

Imaginary part
Lower surface
Mean value
Real part

Upper surface
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APPENDIX A

Real and Imaginary Parts of Analytic Functions

If, in the transformed plane, Z*= X™*+;Y*, we know the imaginary part F; of an analytic function,
F(Z*) = F, +iF,, on the boundary (in Fig. 3c, the real axis) then we are able to calculate the real part, F,, on the
boundary to within an arbitrary constant. The means used is Poisson’s integral which involves an integration
along the boundary (see Moretti®).

In the main text we are concerned with two such functions,

d{,“) aw
ln(dZ* and 7

where

ﬁ)_ woow AW
ln(dZ* = Q¥+ ™, dZ*_u +ig*.

In both cases we know the singular behaviour of the imaginary part in the neighbourhood of the leading edge,
but the behaviour at more distant points depends upon the global properties of the flow and cannot be
ascertained from our local analysis.

The real part can then be calculated in terms of a local contribution, probably singular, and a regular
contribution from the distant parts of the integral. The arbitrary constant may, for our purposes, be absorbed
into the regular function.

In this Appendix we seek an analytic function whose imaginary part behaves locally on the boundary in the
same way as F. The real part of this function will then give the local behaviour of F,.

A.1. Upper Leading Edge
From Fig. 4 we see that dZ =dZ* and so

o d¢ ) . aw .
=)= . ——=u+tig.
ln(dZ h+ig; 17 u+tiq
If Z =R €”, then on the sheet R = X and 6 = 0, while on the wing R = |X]| and 8 = 7. We choose a function,
F(Z), to try to match the known behaviour of F; on the boundary.
() If F(Z)= Ce™Z" then,

F.=Ccos (6 +a)R”, F,=Csin (6 +a)R". (A-1)

Taking the case of g in equation (38), we know that

;= [Vz_K,Al_K,...]

Lx: on =0 (sheet),
M|X|” on 6= (wing),

giving, from (A-1),

I =Csina; M= Csin (a +vw).

We may now calculate F,(= u) on the boundary in terms of L and M and find that

M—.L cos VI oo on 6=0,
sin var
= M L
LCSVITUXT  on 6=
sin var
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We obtain the expression for w; by treating each term successwely as above—see Appendix C.
(i) If F(Z)=Ce”Z"—K log Z+iQ, then

F,=Ccos(a+78)R”*—-KlogR,
F,=Csin(a+v)R” — K6 +),.

Taking the case of ¢ in equations (19), (20), we know that

{QZ+A1X"1 (6=0),
E =

_Ql (0 = 77').
fv=21, A;=Csina, a = —vm, K=(Q,+Q,)/7, then F, has the required behaviour, giving
—Klog X— A, cot A;mX™M (0=0),
F= g 1 1 (A-2)
—Klog|X|-A cosecA,7|X|" (9=m).

This deals with the discontinuity in  and the first term in the expansion. In Sections 4 and S the further
terms in the expansion are treated as in (i) above.

A.2. Lower Leading Edge
From Fig. 4 we see that dZ = —dZ* and so

d aw
1n<d§) h+i(y—m); —d—Z_—=a+iq. (A-3)

If Z=R ¢”, then on the sheet R = X and § =0 while on the wing R =|X| and § = — 7. We proceed as in
Section A.1.

If F(Z)=Ce™Z" +iK then

F,=Ccos(v6+a)R”, F,=Csin (v6 +a)R” + K.

(A-4)
Taking the case of § in equation (39),
LX"+K on =0 (sheet)
= e S v=pae
M|X"+K on 6=-7  (wing)

giving, from (A-4),

L=Csina, M= Csin(a—vw)

leading to, as in Section A.1,

M —
L—COS—LX v on =0 (sheet)
sin v

r L _ _ )
MIX}V on §=—-xm  (wing)
sin vr

In the case of ¢, from equations (19), (20) and (A-3) wesee that K =Q,— 7, M =0,L =B, v = iy andso

; {Bl cot u,wX* on =0 (sheet)
1 =

_ (A-5)
B cosec u X" on 9=-x

(wing)
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APPENDIX B

Series Expansions for the Geometrical Expressions

In Section 3 we require expressions for 7 cos ¢ and r sin ¢ in terms of X, X. The derivations involve simple
but tedious manipulation which we have included in this Appendix for convenience. This work is for the

surface of the sheet, i.e. X, X >0. Note that A; <a.

Let
X=1—,
then from equations (19),
(cosx)u=1—..., (sin,\/)u=A1.X’\‘—... \
and thus using (26),
(" cos x), =eXX[1+...],
(e" sin x), =X X[A, XM +. . ].
Let
cos (), =¢, sin ), = s,
then (B-1) gives,
COS iy =¢ cOs y — s sin , sin ¢ =5 cos y +c sin y,

and hence, using equations (23), (B-3) and (B-4) we obtain,

Yy & dz,  n -x
2= gHo +...], =Z=eM +...)
X ¢ X e ] xC X s ]
Integrated these become,
"Ho a Hyvyra
y, =1+ [c+...], z,,=e X[s+.. 1,

since y, =1, z, =0 when X =0.
From Fig. 2 we see that

o=y, rcosf=y; rsin = z.
Thus,
rcos¢ =rcos(y—0)=y cos +zsin ¢,
rsin ¢ =y sin ¢y — z cos ¢.
Let
g1=ycos y+zsiny, g;=ysiny—2zcosy,
then it can be seen from (B-1), (B-7) and (B-8) that

rcos ¢ = cg,— 582, ¥ sin ¢ = sg; +cgs.
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Equations (B-2), (B-6) and (B-9) give

@u=1-..5 (@ =AX"... .
Thus,
(rcos¢), =c—sA X" ... (B-10)
(rsing),=s+cA; X" ... . (B-11)

Similar analysis for the lower variables gives
(rcos¢),=c—sB, X" ... , (B-12)
(rsing),=s+cB, X" ... . (B-13)

If we consider the wing surface, a similar analysis would give r sin ¢. However, simple geometry gives, since
the span is unity,

(rsin @), = —sin ; (r sin ¢), =sin ;. (B-14)
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APPENDIX C

Calculation of u, u

From equations (38), (39) we evaluate u, %; using Appendix A Sections A.1and A.2 so that u,, &1, are of the
form

ul(X) = eHOX_K[G()+ GlX/\l +.. ]
ﬁl(X) = ego[éo+ G—l)?f"l +.. .].
In fact the expression e G, will be absorbed into the regular part of & and may be omitted from ;.

C.1. Upper Surface (on the sheet)
Using the notation of Appendix A,

_M;—L; cos ym

! sin v

Note that Q; =Q—-Q,, Q= K.
(i) Taking vo=—-K

—sin ), —sin Q, cos Kw  —sin O cos (),
GO = T = N =y C
—sin Kar —sin Q)

0s {1,.

(li) Taklng V= Al -K

__ A sian+sin(92—A17r)cos(Q—/\lw)___Alcos(Qz—-/\,w)
! Sin)\l’ﬂ' "Sin(Q"")\l’fT) Sin)\l’ﬂ' '

C.2. Lower Surface (on the sheet)

; oS-y — M,

It

sin v
Taking #; = u,

B, sin(Q,+p ) cos pym—sinQ, Bjcos (Q+u,7)
sin py7r sin g, 7 sin w7 ’

Glz
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APPENDIX D

The Several Possibilities of Equation (54)
Equation (54) is

(Uo C—HO)Z

2 XZK:()

A]d(z) cot I.L177')(,\l +

and the possibilities arise from the relative values of the powers A, and 2K, where K = Q/.

(a) K=j(a=1-K<?
We have assumed that u; <1 and so, by (31), A; <a <2K. Thus (54) reduces to

A d§cot Xt =0. (D-1)

Since D®, # 0, equation (53) shows d, # 0 and (D-1) leads to the conclusion that cot wim=0,ie. pu,=%and
A] = a/2.

(b) K <3(a>3
@) A, <2K

Equation (54) then gives immediately x; =3. This leads to the further conclusion that U, =0, since for
K< 2K<a.

(i) A, >2K
We again obtain Uy =0, u; =3.
(iii) A, =2K
_h_ 2K
#1 a 1-K

cot um=0 for pg<i,

(i.e. for K<1).
Equation (54) gives

(Uye o)

A1d(2) cot wym+ )

=0. (D-2)

Thus for K <3, since A, >0, (D-2) contains two positive terms which must separately be zero, giving U, = 0
and p,=3.

There remains a possibility that A, = 2K, +< K <3. However, this does give rise to a discontinuity in A, at
K =1 (see case (a)).

Therefore we conclude that A, = a/2 and p, =% throughout and that U, =0 for K <3. Later it is shown
(Appendix F) that U= 0 for a wider range of K.
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APPENDIX E

The Several Possibilities of Equation (77)

Ignoring the constant terms, equation (77) becomes

—~Hy\2
—(—l—{‘%—)—XZK +doA, sin QX2+ doCy X® +doB, T(dy cot pym —sin Q) X2+ (Up e )2 A, 131390 = 0,
(E-1)
(a) K<3
In Section 3 we saw that from (54), U, =0 for K <3. Hence (E-1) becomes, since dg# 0,
A2 sin QzX,\z + ClXa +B2 "= (Cot Mo T — sin Qz)Xauz =0. (E'2)

If we assume that u, # 1 (this can be justified by a lengthy argument) then (E-2) allows two possibilities:
() Ay=ap,<a, (i.e. up<1)and so from (68), A, =B,T"?,

_Alcotam/2

(i) A,=a <ap,, (i.e. u,>1)and so from (68), A, = 3

Putting (i) into equation (E-2) we obtain
BzT’deO cot [~L27TXQM2 = O,
which is impossible. with B, # 0 and 1= <u,<1. Hence we are left with condition (ii) and

2
t
A =a, “2>1’ A2= _é:—;l— (E"3)

(b) K>3 (a<3)
All terms involving U, are of higher order than those considered in (E-2) and the results of (a) still hold.
(© K=3(a=5%=2K)

(E-1) now becomes

(U e o)
2

d0A2 sin QzXAz + [ + docl]Xa +d0B2 TMz(dO cot pwym— sin Qz)XaMZ =(.

The argument in Section (a) is unaltered and (E-3) is again valid.
Thus we see that (E-3) holds for all values of K (i.e. all thickness angles).
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APPENDIX F
The Several Possibilities of Equation (96)
Equation (96) is

(Uy C—Ho)
2

2
UoRY XV + R/« X2/ 4 42B, cot u,mX* =0,

and again we look at the different ranges of K.

(a) K<}
Here U,=0 (see Appendix D) and (96) becomes (to order X3

diB, cot u,mX*>=0.
Thus since d, # 0 we see that u,=3.

(b) j<K<3(1/a>31<2K/a<?)

Equation (96) now gives

~Hg\2 _ _
(oe > Y Raag2Kte . 2B, cot =0,

There are three possibilities:
(i) mr<2K/a <3, which leads to cot p,7 = 0 with 3= u, < u, <3, giving a contradiction.
(i) w,=2K/a <3, which means that uw,~ 1 as K—>3+. ... Since we wish to avoid sharp changes in u, for
increasing K, having regard to case (a) above we rule this possibility out.

(iil) 2K/« <, which leads to U, = 0 which subsequently gives (96) the same form as in case (a).

Thus for < K <3 we have, as in case (a), u, =3 and U,=0.
(c) K=3(Q2K/a=1,1/a=3

In this case the terms in X>*/* will have been previously absorbed into those of order X by the use of
equation (80) in place of (79) after equation (88). Thus (96) becomes

d2B; cot u,mX*2 +0(X%) =0,

and as in case (a) u,>=3.

(d K=}(2K/a=}1/a=])

Equation (96) again assumes the form of case (a) and we can conclude that u =3.
Therefore we may conclude that Uy = 0 for K <3 and u, >3 for all K.
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Fic.1. Wingand coordinate system.
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FiG.2. Cross-flowplane.
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§=y+ 1z

oy

N

d Equivalent system to (b)locally

Fic.3a~d. Several representations of the region of the starboard leading edge.
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F1G.4. Enlargement of Fig. 3c.




Fig.5. Flowdiagram for first-order solution.
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