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Summary 

Details of a method which enables the calculation of converged pressure distributions on a wing with 
distorted control surfaces oscillating harmonically in linearised, compressible subsonic flow, are presented. 
The local loading solutions, which have been developed from the original work of Landahl are used to extract 
the discontinuous part of the boundary conditions associated with oscillating control surfaces. The resulting 
regularised problem is then solved using a Lifting Surface Collocation procedure, giving togethe~ with the 
local solutions, the required pressure distribution. Results using the current theory for a rectangular wing and 
two swept tapered wings, are compared with experiment and other theoretical methods, including the long 
established 'equivalent modes' technique. 

* Replaces A.R.C. 35 831. 
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1. Introduction 

The work of Landahl (Ref. 1), in which the basic singular behaviour of the pressure distribution in the 
neighbourhood of the control-surface hinge-line corner was determined, has enabled direct solutions of the 
control-surface problem to be formulated. The present work extends that presented in References (2 and 9), to 
include the unsteady case with distorted control-surface vibration modes. 

Part II of this report gives details of the suite of computer programs, which enable the calculation of pressure 
distributions and integrated effects for wing, control-surface configurations. Results from this new method 
have been compared with theoretical and experimental results from N.L.R. (Ref. 3), and with results using a 
program written by D. E. Davies (Ref. 4) which uses 'equivalent modes' to represent the control-surface 
mode. 

2. Problem Formulation 

Consider a very thin three-dimensional aerofoil and a system of cartesian coordinates x, y, z with the origin 
at the aerofoil apex. Fig. 1 shows such an aerofoil and indicates the position of the coordinate system relative to 
the wing. 

The aerofoil is immersed in a compressible stream of undisturbed velocity U in the direction of the x-axis, 
and is assumed to deform harmonically with angular frequency to about a mean position in the plane z = 0. 

Suppose that the vertical displacement of a point (x, y) on the aerofoil at time t be given by z(x, y).  i,,t e , and 
the corresponding pressure difference coefficient on the aerofoil surface be given by ACp(x, y) .  e i~t 

For small disturbances linearised theory applies, and the downwash at the aerofoil is given by, 

= O Z +  . to 
W(X, y) OX Z.-~. Z, (1) 

and it may be shown (Ref. 5) that the pressure difference coefficient satisfies the integral equation, 

w(xr, ys) = - - ~  I I ACp(x, y) . K(X, Y; M, v) . dy dx, 
s 

where 

K(X, Y; M, v) is the Kernel Function, 

X=x~-x ,  
Y= Ys -Y, 
M is the free stream Mach Number, 

v is the reduced frequency based on semi-span, 

S is the projected wing planform in the plane z = 0. 

In general S is symmetric about y = 0, and may be defined as follows 

(2) 

(3) 

- - s < ~  y ~ s ,  

x~ (y)  ~< x ~< x , (y ) ,  (4) 

where s is the semi-span and x = xl(y), x = x,(y) are the equations of the leading and trailing edge respectively. 
Before proceeding to define ACp and K in more detail, the cartesian coordinates x, y, z are non- 

dimensionalised by the semi-span s, and the basic problem re-formulated in terms of an x, y, z coordinate 
system based on s (see Fig. 1). 

Thus from equation (1) the downwash at the aerofoil is given by 

OZ . 
W(X, y)=~+ l. V.Z, (5) 



where 

and the integral equation becomes 

O ) . S  

U 

1 Ix'(Y) ff ±G(x,y).s 2 K(X,Y;M,u)dydx. w(xr, y~)= -~--~ x,(y) ~ 

(6) 

(7) 

2.1. The Kernel Function 

Following Ref. (6) the Kernel function may be defined as follows, 

2 K(X, Y; M, v) = S , 

For z, > 0 

- -~( l  +~X) . {cos(u~)-i sin (v~)} 
v(1-M)  

R - X  
- - .  {sin (v~')+i cos (vff)} - v2[{G(vl YI, vl'r,I), cos (v~')- 

-H(vlVl, ,&,l)- sin (v~')}- {a(vlvl, ~'1~',1). sin (vC)+H(vlY[, vl~'ll), cos (vC)}] 

For ~'~ <~ 0 

-~2 [{2 cos ( v X ) - ( 1  _iX') . cos (v~')}-i{2 sin ( v X ) - ( 1  _ X ) s i n  (vs r)}] V(1R+X + ~  {sin (v~)+i cos (v~')}- 

- vZ[{ZG(v] Y[, 0) cos ( v X ) -  G(v[ Y], v['c,I) cos (vff)-H(v[ Y[, v[zl[) sin (v~')}- 

- i{2G(v[ Y[, 0) sin (vX) - G(v[ Y[, rich]) sin (v~) +H(v[ YI, v[~'al) cos (vff)}] (8) 

where 

and 

R = 4X2q-  f l2Y 2 

=,/1 - M L  

MR - X  
T I  - -  [~2  

~" = X + ~'1- (9) 

The functions G and H are defined in Ref. (6), and are evaluated using a technique introduced by Dat (Ref. 7) 
and developed by Kellaway (Ref. 6). 

2.2. The Pressure Difference Coefficient ACp 

The pressure difference coefficient is defined by the equation, 

ACp P t -P .  (10) 
- -  ½ p U  2 , 



where 

and may be written in the form, 

pt = lower-surface pressure on the aerofoil, 

Pu = upper-surface pressure on the aerofoil, 

p = free-stream density, 

ACp(x, y ) =  AC'p(x, y)+ iAC~(x, y), (11) 

where ACp(x, y) denotes the real part of ACp(x, y), and ACp(x, y) denotes the imaginary part of ACp(x, y). 
Following the work presented in Ref. 2, the ACp distribution is assumed to be the sum of two distinct 

sub-distributions: 

(i) 1ACp, a loading Which only accounts for smooth variations of downwash over the aerofoil, 

and 

(ii) 2ACp, loading which accounts for the main downwash discontinuity effects associated with an oscillating, 
distorted control surface. 

From the report, Ref. 5, a suitable representation for 1ACp may be defined as follows, 

1ACp = ~/1---~1"-,/1-rl 2 . R*(~I, ~), (12) 

where 

rt =y ,  (13) 

2 1 
'l=c--~){x-~[x,(rl)+x,(~q)] }, (14) 

c(r/) --- x,(r/) - x l  (rt), (15) 

and where R*(~:I, r/) is some regular but unknown function. 
Before defining 2ACp it is necessary to point out, that in order to calculate the downwash associated with this 

pressure distribution, it is most convenient to choose a generalised ~ coordinate in such a way that the 
planform's leading and trailing edges, and the hinge line are all constant ~ lines. In general then, such a 
coordinate system is defined through: 

y=7 /  (16) 

and 

(1 __~2) { X h ( 7 ~ ) - - X l ( ~ ,  ~h)}, x = X1(~7, ~:) + (1 - ~:2-----~ • (17) 

where 

(1+~) 
Xl('0, ~ ) = X l ('tl ) . - ~ - ~ - L  q- Xt ( TI ) • 2 ' ( 1 8 )  Z 

Xh(rt) is theequation of the hinge line and £h is the coordinate of the hinge line in the (~:, r/) coordinate system. 



2.3. The Assumed Definition of zACp 

The analysis used to define the 2mCp distribution was performed assuming, for the sake of generality, that 
the control-surface configuration is of the type shown in Fig. 2. That is, the control surface extends to the wing 
tip; clearly the principle of superposition may be used to define a 2ACp distribution for control surfaces not 
extending to the wing tip. 

The deformation mode in which the control surface is oscillating, is assumed to be of the form 

and 

z(x, y ) = 0  for points (x, y) off the control surface 

z(x, y) = X. F(X, Y) for points (x, y) on the control surface, (19) 

where 

-~=X --xh(y), (20) 

= r / -  ~e, 

= Y -- Ye, (21) 

Ye "= Tie is the side edge of the control surface, and F(X, Y) is some regular function. 
From equation (19) it is clear that finite discontinuities in z(x, y) at the hinge line are not allowed. 
Using the control-surface deformation defined by equation (19), it was shown in Ref. 8 that a suitable form 

for 2ACp could be defined as follows: 

2ACp(x, y)= 2[p(x, y)+ p(x,-y)] ,  (22) 

with the plus sign corresponding to symmetric control-surface modes, and the minus sign corresponding to 
anti-symmetric control-surface modes, 

p(x, y)= p,(x, y)+p2(x, y)+p3(x, y). (23) 

The definition of pl(x, y) 

f rgRp+x,-x-g2(x,-x)q , fgRe+(X,-Xh)-4-~x,-x]} 
p,(x,y):P(x,y). PCy). A(x, y) .9. {log [ ~ ~ J - , o g , ~ t 4 n ~ + ( x , _ x 0 + ~ , _ ~ j j ,  (24) 

where 

n.  = 4 (x , -  x f  + ~ ?~, (25) 

/ ~ = ~ ,  (26) 

Kt = x't(ye), (27) 

Re --.= ~/22 + ]~2 x~2 (28) 

/~ = x//32+ K 2 ' (29) 

K0 = x~(ye), (30) 

A(x, y)= A'(x, y)+ iA"(x, y), (31) 

A'(x, y) = -112F , ( -~ ,  0) + g{F~y(.~, O)+-~KoFx:y~(X,3 - O) --TvKO 2r-,Z~l~l, A, O)}+.~{Fs:y~(YC, O)-v2F(Yf, O)}], (32) 

A"(x, y)= ---v [2F(X, 0)+ ~"{Fy (X, 0) + 2KoFg(.~, 0)}+2. X. F~z(2, 0)], (33) 
7/" 
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with 

x/1 +~ r 1 (s~-s¢,) ~ 3 (~--~:1) 2] 
/5(x'Y)=N/1--~,L1 2(1+~,~ 8(i+T,)2J ~:<s~" 

= 1 ~>~,. 

(-1+•)  
2 

(34) 

(35) 

giving the required ~-- zero at the leading edge, and 

__Tj ) p(y)= 1-y (lq 2(1--ye) 

= ~.I+Y (1 __Y _t .3 ~'2 
2(1 -It- Ye) 8 (1 ~'-y"ye) 2 ) 

giving a x/---- zero at both the starboard and port wing tips• 
Definition o f  p 2 ( x ,  y)  

Y > Ye, 

Y ~< Ye, (36) 

where 

f F,/Rt + fi(1 ~ y~ ~ 2 ~ 1  
p2(x, y):  H,(y) B(x, y)./C(x) log/--;-- -Y)] y)]}+ • . - log lAG(x, 

L,/R, + fi(1 - y) + J2fi(1 

+C(x).Hl(y) G ~ , /  2fi(1-y) , 
• a t  VRT-+-ff~---yi 

(37) 

AG(x, y)= 

Rt = 4 2 2  + fi2(1 - y)2  

,JR, +fi?+S*(x, y ) -  S , / ~ x ,  y) 

S*(x, y ) =  

~/Re + fi~" + S*(x, y) + ~ '  
(x t -x) .  (x-xl)(1- y) 

e l .  17 2 . (1--Ye) ' 

C 1 = Xt - -  Xh~ 

C2 = Xh - -  XI , 

B(x, y)= B'(x, y)+ iB"(x, y), 

1 IF(0, f") +X{2. F2(0, - Ko f,)}+ B'(x, y)= -~--fi Y) +~--~. F,(0, 

Ko - ~ 2 ( 1 + ½  M 2 M 2 +.~2{3F;~2(0, I~)+~F.%(0, Y)--~- -ff~-(5 +3-fi-~-))F(0, It')+ 

+(3. ~! 4 ~ ) .  Fy,(0, f,)}], 

. ~ v  M 2 

(38) 

(39) 

(40) 

(41) 
(42) 

(43) 

(44) 

(45) 



Ko . 1 [Ko~ 2] 
G =  --~[l*~-~k--ff) j.V(0,0), 

,~t--X( -Jl-l yk "+ 3"~.yk2 ) X,~>Xh, 
C(x, y ) = _ _ c z  \1 2Cl 8Cl 

- -  

giving a x/---- zero at both the leading and trailing edges of the wing, 

Hi(y)  = 1 Y/> - Y2 

1 
= ~/1 + y. 16(1 - y2) ~ [ -  5y3 + 3 ( 2 -  7y2)y 2 -  (35y 2 -  28y2 + 8)y + 

+(--35y3+70y2-56y2+16)] Y<-Y2 

where Y2 ---- 0"6, giving a ~ - -  zero at the port tip. 
The definition of p3(x, y) y; f~3 

~ ,  ~ = p ~  . ~ ,  ~[ ~ ,  ~ . ~ +  ~x,  ~ . ~ + ~ ]  

where 

with 

and 

with 

also 

C(x, y ) =  C'(x, y)+iC"(x, y), 

\t~-~o/ . ~ .  v~(o, o)+ 

+ , ~  og ~ - - ~ o J - ~ }  ~ o ,  o~ ~.,og 

(Ko//3) 2 M 2 - Ko c,~x, ~ :  ~ o ,  o~[- ~og (1- (~;) + ~1-~o~ ~. ~ ~ .  ~ .~],  

E(x, y) = E'(x, y) + iE"(x, y), 

2 
1 

E'(x, Y) = ~-~ [ ~- 

c~÷~o~ (~(o, o,+~ ~o. ~(o,o,)], +log ~---~o~ 

- M2~+K_K__iz+MZ'~+ E"(x,y):~F(O,O)[log(~+K°~ ( 1 +  1 
~ -  ~o/  ~ ]  t~ ~ ~ t~ ~] 

M ~ (~o/t~) ] 
tV 1 -(,,o/t~)~] ' 

D= -~-~/32 log (1 -~-~]. 

(46) 

(47) 

(48) 

(49) 

(50) 

(51) 

(52) 

(53) 

(54) 

(55) 

(56) 



2.4. Introduction of the Term 'Regularised Downwash' 

From equation (7)~ and using the breakdown of the pressure difference coefficient into 1ACe and 2ACp a s  

described in Section 2.2, it is possible to write 

where 

and 

w(x,, y~)= w~(x. y.)+ w2(x. y.), 

1 f~'(') /_ l 1ACe(x, y). s 2 . K(X, Y; M, v) dy dx, Wl(Xr, Ys) ~--- --8-~ "xt(y) 1 

1 f~"') f_ 1 w2(x, y~) = -~--~ %(y) 1 2ACe(x' y)" s2 " K(X, Y; M, v) dy dx 

(57) 

(58) 

(59) 

The function Wl(Xr) Ys) introduced above is known as the regularised downwash. The reason for this is that 
provided 2Ace(x, y) has been well defined, the downwash function w2(x, y~) will contain the main discon- 
tinuity effects associated with the prescribed boundary conditions, thus ensuring the regularity of 

WI(Xr~ Ys) = W(Xr, Ys) - -  W2(Xr, Ys)- 

The regularised downwash, once it has been calculated, defines a smooth-lifting-surface problem which may 
be solved using existing techniques to give aAce(x, y). 

Clearly then, the main problem is to evaluate w2(x,, y~) accurately, which immediately facilitates the 
evaluation of wa(x, y~), the regularised downwash. 

3. Preliminary Analytic Work on the Evaluation of w2(x. y~) 

The Kernel function K(X, Y; M, u) defined by equation (8) is clearly very irregular near Y = 0, X = 0, and is 
singular for Y = 0. It is this behaviour attributed to K(X, Y; M, v), which can cause severe numerical problems 
in the evaluation of w2(x,, y~), unless great care is taken. So that detailed knowledge of K(X, Y; M, v), and of 
the effect that this function has on the subsequent integrations, is required. 

3.1. The Transformation of the Integral Equation for w2(x, y~) to the (~, ~I) Coordinate System 

Consider the transformation of the integral equation (59) to the (~, xl) coordinate system defined by 
equations (16), (17) and (18), then 

where 
dy. dx = J(~, "11). d~. dn, 

c(n) 2~{x~(n) -x~(~ ,  
J(~' ~/)= 2 1 - ~h)}. 

(60) 

(61) 

The Kernel function has arguments Y, X which transform to give: 

Y =  ys - y ,  

= 7/~ - r/, 

= ~ say, (62) 
where r/~ = Ys. 

X = Xr - x ,  

=xl(n~, ~:,)-xl(n, ~ : ) + - -  

= XI(~/,, ~ ) - X l ( n ,  ~ ) 4 - -  

(1-~)  {xh(m)-Xl(ns, ~:h)} (1--~2) (1 -- ~2)- (1 -----~h) {xh (r/) -- X, (r/, ~h)}, 

(1 _~2) 
(1 _~2). {Xh(TIs)--Xh(T~)--[gl(ns, ~h)- XI(T~, ~h)]}-- 

~. (~+~r) {x~(ns)-X,(ns, ~:~)}, (1 - ~ ) "  (63) 



where 

Now from equation (18), 

giving 

where 

X~(7, ~) = c_~) . (1 + (1)+ xt(7), 

c(n~) 
Xl ('0s, ~r) -- Xl(~,  ~) = l{[~Xl (7) -1- ~xt(7)] - ~[~Xl (7) - ~xt(7)]} • ~ q - T "  ~' 

_ c(n~) 
= 7 ) .  n • 

with a similar expression for g, xt(7), and 

xt (ns) - x~ (n), 
~x,  (n) 

g(~, n) = ½{[;Xx, (n) + ~ x , ( n ) ] -  ¢[~.x~ (n) - ~,x,(7)]}. 

The expression for X now may be written in the form: 

X =  g,(~, 7 ) .  ~ +g2(~)- 

where 

and 

(1 __~2) 
g,(f, n) = g(f, n)+(1 -~--- -5  {~,xh(n)- g(fh, n)}, 

c(n,) (~+#r) 
g2(~:)- 2 ( 1 - ~ )  {Xh(~q~)--X'(Ts' ~h)}. 

The integral equation (59) becomes, 

w2(x ,y~)=-~ -~  , , 2ACp(x,Y).1(#,7).g,(~,~;M,v)dT@, 

where K(~, ~]; M, v) is the transformed Kernel function. 
Introduce the function L(~) where, 

L(~) = 2ACp(x, Y). J(~J, 7).  K(~, ~; M, v) dT, 
1 

then 

(64) 

(65) 

(66) 

(67) 

(68) 

(69) 

(70) 

(71) 

(72) 

(73) 

L(~:) d~. (74) w2(x,, ys)= - ~ - ~  1 

Clearly a detailed knowledge of the functional behaviour of L(~:) is required, in order to evaluate accurately 

w2(x,, ys). 
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3.2 .  A Deta i l ed  Analys i s  of  L(~) 

The Kernel function may be re-written in the form, 

where 
For ~< 0 
with ~'1 >i 0 

and with ~'~ > 0 

For ~>~O 
with ~ > 0 

and with "q <<. 0 

l(x ) 
K(~:, ~ ;M, v) =~-~ ~ - s g n  (~) . {(cos (v~)+ VTx sin (v~'))-i(sin (vsr) - 

/} 
-v~'~ cos (v~'))}-~(sin (v~)+i cos ( v 0 ) -  

- ~=[{G(~[~I, + d )  cos ( ~ 0 -  H(v[~]l, vlrl[) sin ( v 0 } -  

-i{G(vl~ l,/¢l'rl]) sin (v~)+H(v[~l, /J]TI] ) COS (/)'~'}] +/~(~, "17; M, v) 

K(~,~; M, v)=O, 

2 
R(~  q~; M~ v) ~--- _-L--~[{cos/,'X-(cos/.~" + 1,wT1 sin v~')}-/{sin v X -  (sin vs r -  v~'l cos v~')}]- 

~7 

- 2 .  v2[{G(vl~l, 0) cos v X -  G(vl~l, vl~-ll) cos ~ ' } -  

-i{G(vlc71, 0) sin v S -  G(vl~l, ~l~[) sin vff}]. 

K(~:, ~ ; M, v) : [{cos/1~ "Jr-/,'7" 1 sin v~'}-/{sin v~'- m'l cos v~}], 

(75) 

(76) 

(77) 

(78) 

= -  2 
K(s c, ~ ; M ,  v) =-z-~ [cos v X - i  sin v X ] - 2 ,  v2[{G(v[~[, 0) cos vX-G(vl '0[ ,  vlrll) cos v~'}- 

7/ 

-i{G(vl¢t[, 0) sin v X -  G(vla~[, Vlrll) sin v~'}]. (79) 

From previous work on the static-control-surface problem (Ref. 2), it is clear that the dominant singularities 
in the L(s ~) function will arise through the term N(~ ~; M, v) in the Kernel function, where 

N(~  ¢I" M, v)= 12 X v . , - -  ~{(cos v~" + v~'l sin v~ r) - / ( s in  us r -  vrl cos vsr)}-~(sm v~+i cos v~') 
r/ (8o) 

Consider then the integral 

L'(~) = "n~-~, fns+§ 2ACp(x' y)" J(~' n) . N(~  ~; M, v) dr/, (81) 

where A, B are positive parameters sufficiently small to allow a Taylor Series expansion of 2mfp(x, y) . J(~, r/) 
about rts for ~/~ ~ r/e, ~ # S~h- Using the work in Ref. 6, and writing U*(~:, r/) = 2ACp(x, y). J(~, r/), it may be 
shown that 

E(~:) - -2U*(~r,~s)~.a(~r~r/s).~.. ~ 2 / ~ 2 [f_~ ~)]  U*(~r~'lls) j- 
g2(~) " ~ t  a({~. n~) gl(~, • TI.= rls 

+ 0(~ log I~1)+ regular terms as ~ 0 with ~, # ~h, (82) 
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with 

a(~r, rls) = f12 + g12(~r, r/,). (83)  

Thus the exact analytic behaviour of L (s c) near ~:, has been determined. Clearly this information is absolutely 
necessary in order to formulate successfully the numerical integration of L(~). 

4. The Evaluation of wz(x,, Ys) 

As indicated in Section 3, and following Ref. 5 the double integral defining w2(x, Ys) is evaluated in the first 
instance with respect to r/, then with respect to s c. 

4.1. The Kntegration with Respect to ~! 

The highly singular nature of the Kernel function in the neighbourhood of r/$ indicates a natural division of 
the integral defining L(sC). The range of integration is sub-divided into three regions, 

Region 1 - 1 ~< ~ <~ "0s - , 4 ,  

Region 2 r/8 +/3 ~< r/~< 1, 

Region 3 r/8 - A < "0 < ~s +/~. (84) 

In Ref. 2 suitable values of the parameters A, B were found to be 

A = 0 . 1 ,  

~ = {  0 . 1  for ~ / s<0 .9 ,  
1-r/~ for "qs>0.9 .  (85) 

The regional breakdown of the spanwise integral is shown in Fig. 2. For the integrations over Regions 1 and 
2 the Kernel function defined by equation (75) may be used, since this is the simpler form, and all singularities 
and irregularities in the Kernel function are confined to Region 3. However, for the integration over Region 3 
a form must be used which identifies more explicitly the singularities of the Kernel function as functions of 
and rl. 

4.1.1. The rearrangement of the Kernel function for the integration over Region 3. The function X /  R may be 
written in the form 

/32fi 2 sgn (() 
X sgn (~) (86) 
-R= R[R + X sgn (~)]' 

so that using equation (75) it is possible to rewrite the Kernel function in the form 

K(~ ~; M, v) = K1(~ ~; M, v) + K2(~, ~; M, v) +K3(~, 0; M, v), (87) 

where 

-/32 sgn (~) v~+ vrl sin vs r) - / ( s in  v~-  vrl cos vsr)}, (88) K,(~ 0 ; M, v) - R[R + X sgn (~)]{(cos 

and for ~ <~ 0 

K2(~ ~; M, v) = 0, (89) 

for >O 

K2(~ O; M, v )=(  2 + v2log l¢ll ] . (cos v X - i  sin vX), (90) 
\ '0  / 

12 



K3(~ "0 ; M, v) = v - ~ ( s i n  v~" + i  cos v{) -vZ[{G(vl6 l ,  vlrll) cos vK-n(v]~l, vlr, I) sin v{}-  

-i{G(v[(l[,  viral) sin v~+H(vI~I,  vlrll) cos v~'}] +K3(s ~, ~ ;M, v), (91) 

with K3(~f, ~; M, v) defined as follows: 

For ~< 0 
with r~ >t 0 

a n d  with  'T 1 < 0 

K3(~: , "~; M,  v) = 0, (92) 

ForegO 
with r~ >t 0 

2 
K3(~, ~ ; M, v) = -7[{cos v X  - (cos v( + vrl sin v~')} - /{sin v X -  (sin v¢ - vrl cos v~')}] - 

71 

-2v2[{G(vl~[,  0) cos u x -  G(vI~I, vlrd) cos v~} 

-i{G(vl~l, 0) sin v X -  G(vl~], ~1~1) sin ~ff}], 

K3(~, ~; M, v) = "-~[{cos2 v¢. + vrl sin vg" - cos vX} - / { s in  v¢ - vrl cos vK - sin vX}] - 

2 - v log ]~1. [cos_vX- i sin vX], 

a n d  with  ,r 1 ,~ 0 

where 

K3(£, ~;M, v)= -2v2[{G*(vl~l, 0)cos vX-G(vl~l, vlr0)cos vff}- 

-i{G*(v[~[, O) sin vX-G(v/~[, 1)[q'a/) sin v~'}], 

(93) 

(94) 

(95) 

a*(v l~ l ,  0) - G(vl~l,  0 ) + 1 l o g  I~1. (96) 

It was shown in Ref. 6 that 

G(vl'0[, 0) = - ½ log I~ ] + regular terms as I~l ~ 0, (97) 

so that the function G*(vl~l, 0) is regular as I~l ~ 0. The singular term extracted from G(vl~l, 0) has been 
incorporated in the / (2  term, this proves convenient for the numerical r/-integration. 

The Kernel function then, has been separated into three basic terms. KI is a highly irregular function for 
(~, ~) ~ (0, 0) , /(2 is singular and gives a finite part integral, K3 includes the complicated humerical functions 
6(~1,~1, ~lnl) and H(~I,~I, ~1~11), and it is for this reason that K3 is considered separately. 

It was shown in Ref. 6 that the part of the Kernel function designated K1 above, gives the total 1 / (  
contribution to the function L(~). Clearly then, to allow accurate extraction of the 1 / (  singularity, the 
spanwise integral involving K1 must be evaluated accurately. In fact this integral is evaluated in double 
precision using an inverse hyperbolic 'stretching' transformation 

= A* sinh ( t ) - B *  (98) 

of the type introduced in Section 3.1 of Ref. 5. The coefficients A*,  B*, together with more detailed 
information on the spanwise integration, is given in Appendix A. 

4.2. The Integration with Respect to t~ 

From equation (74) the expression for Wa(X, ys) is, 

L(~) df, wi(x. Ys) = -~--~ 1 (99) 
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and from equation (82) it is known that L(¢) takes the form 

L ( s  c) = ~ + b l  log lYl + 0((log lYl)+regular terms (lOO) 

for ~: ~ ~ with so, ¢ Ch, 
where 

and 

bo = - 2 U * ( s  ~. ns) 
g2(~r) ' 

(101) 

bl = ~ t a ( s C ,  "0s)" LO-q 
"q = ~ s  

+ivU*(g,, n,). (1 + g~(sc,, ns))}. 

• U*(~e,, ~/s)+ gl(se,, ~/s) [~-~ U*(~, ~/)] + 
"rt = ~ s  

Then the expression for W2(Xr, Ys) may be written in the form, 

(102) 

1 1 
(103) 

where 

and 

~ d ~  
12 = t --if' (104) 

I3 = log dE (105) 
1 

The problem of evaluating the integrand L(~ e) - ( b o / ( ) -  b, log I~l accurately for small I(I, is resolved by the 
evaluation of the integral giving the 1/(singularity in double precision (see Section 4.1.1), and evaluating the 
resulting difference over a difference in double precision to preserve accuracy. This procedure, together with 
the other techniques used to evaluate w2(x,, ys), are presented in more detail in Appendix B. 

5. Use of the Method and a Discussion of the Results 

The method described in the preceding sections has been programmed in Fortran IV for use with an 
I.B.M. 360/65 computer. 

5.1. The Control Surface Program 

Using the described method, the downwash w2(x,, ys) is evaluated at a specified set of points distributed over 
the starboard wing. These points are chosen to be collocation points for the Lifting-Surface calculation using 
the regularised downwash w~(xr, Ys). The results reported in this section were obtained using a standard 
Multhopp distribution of collocation points, i.e. 

( 2r~r '~ 
~:~. = - cos \ ~ / ,  r = 1 . . . . .  n, (106) 

where ~, is the coordinate defined by equation (14) and 

m + l  
• / s=cos  , s = l  . . . . .  2 modd ,  

m 
m even. (107) 

2 
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The order of collocation solution is determined by the parameters m, n. Thus given an m and n, the 
regularised downwash w 1 (Xr, Ys) is calculated at the collocation points and used as the boundary condition in an 
oscillating lifting-surface calculation. This gives a ~ACp pressure-difference distribution, which together with 
the defined 2ACp distribution enables the calculation of the total pressure-difference distribution ACp through 
the relation 

A G = ,A G +2A G.  (108) 

From the ACp distribution various integrated effects have been calculated and presented. Details of the 
techniques used in evaluating these integrated effects are given in Part II of this report. 

5.2. Numerical Results 

following planform configurations were investigated using the procedure described in the preceding The 
text: 

(i) 
(ii) 

Wing E with an outboard distorted control surface, Fig. (3) gives details of this planform. 
The N.L.R. Rectangular wing with full-span flat-plate control-surface, Fig. (8) gives details of this 
planform. 

(iii) The N.L.R. Swept Tapered wing with an inboard control surface; 
(a) Deflected like a flat plate. 
(b) With a control surface camber mode. 
Fig. (18) gives details of this planform. 

(iv) The B.A.C. Swept Tapered wing with inboard control surface deflected like a flat plate. Fig. (41) gives 
details of this planform. 

For all but the first case the results consist of 
(a) Values of the pressure difference coefficient ACp. 
(b) Values of the local chordwise integrals designated Pi, i = 1, 2, 3 where 

and 

= P1 "t- IP1 = A r p  dx, P I  t • ,t 

t 

fx x' P2 = P2' + tP2" "= (x - x I - c / 4 ) .  ACp.  dx 
I 

P3 = P3 + " " -- (x -- Xh) . ACp.  dx. 

(109) 

(110) 

(111) 

(c) Values of the Generalised Airforces designated Qi, i = 1, 2, 3 where 

I/i" O l  = O~ + iO'; = 1 A C p  d x  dn, 
l 

I I/ - O '  + i n "  - . ACp dx d~7  Q 2  - 2 ',.12 - x 
1 l 

(112) 

(113) 

and 

i ' t le2 I~ Xt 
Q3 =" Q'3 + iO~ = 2 (x - Xh) . ACp.  d x .  d~l, (114) 

"rl~ 1 h 

where the spanwise extent of the starboard control surface is defined by ~e, ~< 77 ~ r/e~. 

5.2.1. The results for  Wing  E.  T h e  planform of this swept tapered wing is illustrated in Fig. (3), together 
with relevant geometrical information. The distortion on the symmetrically deflected control surfaces was 
defined by the equation 

z = .~. ¼e ~ e f (115) 
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where f2= X--Xh, and f ' = r / - ~ e , .  The Mach number and reduced frequency for this case were M =  0.7, 
v = 1-6. This case was designed to show that the assumed loading form 2ACp does in fact remove the main 
singularities in w(x, Ys), producing a smooth regularised downwash. 

Figs. 4 and 5 show plots of wl(x,, ys) against r /a long lines of constant ~Jl, and Figs. 6 and 7 show plots of 
w~(xr, Ys) against ~:~ along lines of constant ft. The coordinate £1 defined by equation (14), is effectively a 
constant percentage chord coordinate. The lines of constant ~:~ and r /are  drawn on the planform of Wing E in 
Fig. 3. It is to be noted that the singularity in w~(x,, y~), at the hinge-line side-edge corner, reported in Ref. 2, is 
no longer apparent. The removal of this singular effect is discussed in Ref. 9. The figures show that the new 
loading function gives a much lower order effect at the hinge-line, side-edge corner. Overall the curves are 
fairly smooth, and show that the main singularities in w(x, y~) due to the twisted and cambered control surface, 
have been successfully removed. 

5.2.2. The results for the N.L.R. Rectangular Wing. Fig. 8 illustrates this planform, and gives relevant 
geometrical information. The Mach number and reduced frequency for this case were M = 0.0, v = 1.115. 

Using the current method two solutions were obtained using collocation orders m = 14, n = 6 and m = 16, 
n -- 8. The aerodynamic convergence of the pressure-difference distribution, using the two solutions, is shown 
in Table 1. This table contains tabulated values of ACp at a set of points on the planform. 

The pressure results for the m = 16, n = 8 solution were then plotted against the experimental results of 
Hertrich (Ref. 10), and the theoretical results of N.L.R. (Ref. 3), for the spanwise stations r /=0"138,  
~7 -- 0"627, ~/= 0-983, these results are shown in Figs. 9 to 14. The comparison between the theories was good, 
with the experimental results showing the same trends, but at different levels. The true control-surface 
theories were then compared with the theoretical pressures obtained using an equivalent mode program of 
Davies (Ref. 4). The comparison is fairly good, with the pressures from the equivalent modes oscillating about 
the true control-surface-theory results, and rounding out the logarithmic peak, as one would expect. 

Figs. 15 to 17 show the spanwise variation of the locally integrated effects P1, P2, P3, comparing the B.A.C. 
and N.L.R. theories. The graphs show very good comparisons, as one would expect from the pressure 
comparisons. 

Table 2 shows values of Q~, Q2, Q3 from the current method and from the Davies Equivalent modes. The 
comparison is clearly very good. 

5.2.3. The results for the N.L.R. Swept Tapered Wing. Fig. 18 illustrates this planform, and gives relevant 
geometrical information. The Mach number and reduced frequency for this case were M = 0.8, v = 0.672. 
Two control-surface modes were considered, a flat-plate mode at unit incidence, and a camber mode. 

(A) Results for the fiat-plate control-surface mode at unit incidence 
As in the previous case two solutions were obtained using the current method, with m - - 1 4 ,  n = 6 and 

m = 16, n = 8. Table 3 shows the aerodynamic convergence of the pressures from the two solutions. The 
comparison is good, except near the trailing edge were certain discrepancies appear. 

The pressure results for the m = 16, n = 8  solution were then plotted against the experimental and 
theoretical results of N.L.R. (Ref. 3), for the spanwise stations ~/= 0.45, rt = 0.55, rt = 0.64 and ~/= 0.8, these 
results are shown in Figs. 19 to 26. 

The comparison between the theories and the experiment is seen to be fairly good. The pressure 
distributions from a Davies equivalent-mode calculation are also presented, and show quite good agreement 
with the true control-surface theories, considering the fairly low order of chordwise collocation distribution. 

Figs. 27 to 29 show the spanwise variation of Pl, P2, P3, comparing B.A.C. theory with N.L.R. theory and 
experiment. 

Table 4 shows values of Q1, Q2, Q3 from the current method and using Davies' Equivalent modes. The real 
parts of the Oi show good comparison characteristics; the imaginary parts of Q1 and Q2 show certain 
differences which it is felt are caused by cancellation effects from the chordwise integrals of AC'p' (see Figs. 20, 
22, 24 and 26). This is supported by the excellent agreement for Q~, where only the ACp on the control surface 
is used. 

(B) Results for the control-surface-camber mode 
A control-surface-camber mode was defined by 

Z = (X -- Xh)[1 +(X --Xh)+2(X -- Xh)2], (116) 

and solutions were obtained for this configuration in two ways. 
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A direct solution of this problem was obtained using the defined camber surface, the second solution was 
obtained by writing 

z = zl+z2, (117) 

where 

Zl=X- -Xh ,  and Z2=(X--Xh)2[I+2(X--Xh)], (118) 

and then treating the mode zl as a control-surface problem and z2 as a regular lifting-surface problem. 
Figs. 30 to 37 show that ACp comparisons for the stations 7/= 0.45, "q = 0.55, ~ = 0.64 and ~ = 0.8. The 

comparisons are very good, except for ACp near the leading edge, where reasonable differences may be seen. 
These differences are most probably due to the basic convergence of the B.A.C. control-surface theory, as 
applied to distorted control surfaces. 

Figs. 38 to 40 show the spanwise variation of P1, P2, P3 for the two methods of solution, the results show 

good agreement. 
Table 5 shows values of Q1, Q2, Q3 from the two methods, the Q'~, i = 1, 2, 3, and Q~ again show good 

agreement. The Q'~ and Q~ show poor agreement, which may be accounted for by the cancellation effects on 
the chordwise integral of AC~, accentuating the differences in AC~ near the leading edge of the wing. 

5.2.4. The results for the B.A.C. Swept Tapered Wing. Fig. 41 illustrates this planform, and gives relevant 
geometrical information. The Mach number and reduced frequency for this case were M = 0-5, v = 0.9551. 

Figs. 42 to 49 show comparisons of theoretical and experimental pressures, the comparison is very good for 
the stations over the control surface, with rather larger discrepancies for the real pressures outboard of the 
control surface. 

Figs. 50 to 52 show the spanwise variation of Pa, P2, P3 for the B.A.C. theory and the N.L.R. experiment. 
The comparisons are good for P~, P2, but not so good for P3. This may be attributed to the differences in the 
theoretical and experimental pressure at the trailing edge of the control surface. This difference will mainly be 
due to boundary-layer effects. 

Table 6 compares values of Q~, i = 1, 2, 3, from the current method and from the Davies' Equivalent modes 
technique. Good agreement is obtained between the two methods. It is to be noted that the cancellation effects 
involved in integrating AC~ are very small, due to the fact that the point at which the AC~ distribution crosses 
the axis has moved closer to the leading edge. 

6. Conclusions 

This report describes a numerical method of calculating the pressure distribution over a wing with 
harmonically oscillating, distorted control surfaces in subsonic flow. The applicability of the method has been 
assessed by treating particular planform, control-surface configurations at various Mach numbers and reduced 
frequencies. The results have been compared with experiment, with theoretical results from N.L.R., and with 
an equivalent modes technique programmed by Davies. 

The aerodynamic convergence capability of the B.A.C. solution has been demonstrated, and good 
comparisons have been obtained with the theory and with experiment of N.L.R. 

The equivalent-modes technique gives reasonable pressure comparisons with the current method, the 
agreement apparently improving with increasing n. The generalised forces obtained using equivalent modes 
compare favourably with those obtained using the B.A.C. control-surface theory. 

For distorted control surfaces, accurate control-surface treatment of twist effects combined with lifting- 
surface calculations on the residual camber, have been shown to give good agreement with complete 
control-surface solutions. 
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A(x, y) 

A* 
a 

AG(x,  y) 
B(x, y) 

B 
B* 
bo 
bl 

C(x, y) 
C3(x, y) 

¢ 

Cl 

c2 

D 
E(x, y) 

F(X, Y) 
F(x, y) 

G 

G* 
g(~, n) 

g~(~, n) 
g2(~:) 

H 
H~(y) 

2(~, 7) 
K(X, Y; M, v) 
K(£, ~;M, 1,) 

= m 

K(£, ~; M, 1,) 
K1(~ ~; M, ,,) 
K2(£, ~; M, v) 
K3(~, ¢1 ; M, t,) 
K~(~:, ~ ;M, v) 

L(s c) 
E(¢:) 

M 

N(~ ~;M, ,~) 

P(x, y) 
P1 
P2 
P3 

p(x, y) 
p~(x, y) 
p2(x, y) 
p3(X, y) 

Pl 
P,, 
Ol 
02 
03 
R 

LIST OF SYMBOLS 

See equations (31), (32), (33) 
Part width of integration region 3 (see Fig. 2) 
See equation (A-36) 
See equation (83) 
See equation (39) 
See equations (43), (44), (45) 
Part width of integration region 3 (see Fig. 2) 
See equation (A-37) 
See equation (101) 
See equation (102) 
See equations (50), (51), (52) 
See equation (47) 
Local chord of the wing 
Local chord of the control surface 
c - - c  1 

See equation (56) 
See equations (53), (54), (55) 
Defines the control surface distortion mode. See equation (19) 
See equation (36) 
Numeric function used in the definition of the Kernel function. See equation (75) 
See equation (46) 
See equation (96) 
See equation (68) 
See equation (70) 
See equation (71) 
Numeric function used in the definition of the Kernel function. See equation (75) 
See equation (48) 
Jacobean of the transformation to the (~, r/) coordinate system. See equation (60) 
The Kernel function. See equation (8) 
The transformed Kernel function. See equation (75) 
See equations (76), (77), (78), (79) 
See equation (88) 
See equations (89), (90) 
See equation (91) 
See equations (92), (93), (94), (95) 
The spanwise integral, see equation (73) 
See equation (81) 
Mach number 
Spanwise collocation order 
See equation (80) 
Chordwise collocation order 
See equation (34) 
See equation (109) 
See equation (110) 
See equation (111) 
Used to define 2ACp. See equation (22) 
See equation (24) 
See equation (37) 
See equation (49) 
Lower-surface pressure on the aerofoil 
Upper-surface pressure on the aerofoil 
See equation (112) 
See equation (113) 
See equation (114) 
See equation (9) 
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R*(~I, rl) 
R~ 
Re 
Rt 
S 

S*(x, y) 
s 

t 
U 

U*(¢, 7) 
w(x, y) 

wl(x, y) 
W2(X, Y) 

X 
2~ 

X1 
x 

xh(y) 
x~(y) 

Xr 

x,(y) 
Y 
? 

Y 
Ye 
Ys 
Y2 
z 

/3 

/3 
AG(x, y) 

~aG(x, y) 
~AG(x, y) 

r/¢1, r/e2 
rh 

K0 

Kt 

b' 

¢ 

fh 
f, 

f 
P 

TI 
¢20 

See equation (12) 
See equation (28) 
See equation (25) 
See equation (38) 
The projected wing planform in the plane z = 0 
See equation (40) 
Semi-span 
Time variable 
Free-stream velocity 
~aG(x, y). I(~, n) 
Downwash on the aerofoil. See equation (1) 
The regularised downwash. See equation (57) 
See equation (57) 
Xr - -  X 

X - -  Xh  

See equation (18) 
Cartesian coordinate in the free-stream direction 
Equation of the hinge line 
Equation of leading edge of the wing 
Streamwise coordinate of collocation station 
Equation of trailing edge of the wing 

y - Ys 
Y -Ye = r/--qe 
Cartesian coordinate in spanwise direction 
Side edge of the control surface 
Spanwise coordinate of collocation station 
See equation (48) 
Cartesian coordinate measured positive downwards 

4~-M 2 
Seeequation (29) 
See equation (26) 
Loading distribution over wing and control surface 
Regular contribution to ACp(x, y) 
Singular contribution to ACe(x, y) 
See equation (9) 
y/s 
Coordinate of side edge of the control surface 
Coordinates of side edges of the control surface 
Spanwise coordinate of collocation station 
r/s-r/ 
x~(y~) 
X't(Ye) 

O J . S  

Reduced frequency, based on semi-span U 

See equation (17) 
See equat!on (14) 
Hinge line coordinate in the (~, 7) coordinate system 
~-wise coordinate of collocation station 
See equation (35) 

Free-stream density 
See equation (9) 
Frequency of oscillation 
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From equation (73) 

where 

A P P E N D I X  A 

An Evaluation of the Spanwise Integral L(g) 

L(~:) = U*($, 7) - / ( (~-  ~; M, u) dn, (A-l)  
1 

U*(~, 7) = zACp( x, Y). J(~, 7). (A-2) 

Using the subdivision into three regions, introduced in Section 4.1, L(~) may be written in the form 

L(~) = L,(~:) + L2(~:) + L3(~), (A-3) 

where 

and 

~ s a - -  - -  

L,(~) = U*(~, 7). K(~, (1; M, u) dT, 

i 
1 _ _ 

L2(~) = U*(£, 7). K(£, "71; M, v) dT, 
s + B  

(A-4) 

(A-5) 

L3(~) = ~,s-A U*(~, 7 ) . / ( ( ~  ~; M, v) dn. (A-6) 

A.1. The Numerical Evaluation of LI(~), Lz(~) 

The Kernel function is regular over regions (1) and (2), that is the range of integration of LI(~) and L2(~) 
respectively, However,  the loading function U*(~, 7) exhibits the following behaviour, 

U * ( ~ , n ) - 4 1 - 7  for n ~ l ,  

- 1 , /~ 'q  for n-~ -1, 

and using equation (24) it may be shown that for the case of either non-zero frequency, or of camber 
on the control surface 

U*(~, n ) - ( n -  he) log In- ml for 7-~ne, 

--(7+7e)lOg[7+7el for 7-~--7e (A-7) 

Clearly some account must be taken of these singularities in order to obtain quadrature convergence. The 
relative positions of 7~, 7e, - 7~ will obviously effect the quadrature technique used. Consider the most general 
case where - 1 ~< - 7e ~< 7~ -- A, and 7~ + B ~< 7~ ~< 1, then 

L1 (~) = L1 ~(~) + L12(s~), (A-8) 

where 

Ll1(~) = U*(~:, ~l)./~" d7, 
1 

,t/s - / ~  

c12(~) = I_ u*(~, n)./~ dn, 
'Oe 

(A-9) 

(A-10) 
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a n d / (  represents the Kernel funct ion/ ( (~  ~; M, v). 
Also 

where 

and 

L2(s ¢) = L21(~ ) -t- L22(~), 

L2,(~) = U*(~, 7 ) . / ( d 7 ,  
~+/3 

g22(~) = u*(~, n) .  Rdn .  
"qe 

(A-11) 

(A-12) 

(A-13) 

This 'split range' technique proved adequate for the relatively weak singular form (7 -r/~) log 17 -7e ] -  
The integrals L12(~), L2~(~:) may be evaluated using Gauss-Legendre quadratures after making a normalis- 

ing transformation of the form 

1 -]- l(7u + nt.), (A-14) 7 = ~ ( 7 , - 7 t ) .  v 

where 7, and 7t are the upper and lower limits of the integrals concerned. 
Consider next the evaluation of L22(~:). After application of a normalising transformation of the form 

7 =(7~-7 , )v+7~ (A-15) 
the integral becomes 

Ij R. 1,/-i-2-vdv, (A-16) 
U*(~, 7) 

L22(~) =(1 --7e) X/1 --V " 

where use has been made of the fact that U*(~, ~) ~ , , / 1 -  7/as 7/~ 1 thus U*(~, ~ ) -  l~]-Zv- v as.v -~ 1. 
In this form L22(~) may be evaluated using Gauss-Root quadratures. Now Gauss-Root quadratures take 

the form 

! NO 

I V(v)x/-i-Zv = ~ 2 .  D 2 2 , N o + l W k V ( 1 - - D b  (A-17) 
) k=l 

where NO is the Gauss-Root quadrature order, vk, 2.No+~ Wk are the kth positive root and weight of a 
(2. NO + 1)th Gauss-Legendre quadrature. 

Application of this to equation (A-16) gives 

NO 
L22(~) = Y. 2.  vk 2.NO+l Wk. V(1 - v2), (A-18) 

k=l 

where 

v(v)  = (1 - m) .  u*(~,, n) .  K'. (A-19) 

Note that functions of the form U*(~, 7)/x/1 - v do not require evaluation. 
The evaluation of L~1(~) proceeds in a similar fashion. 
The valuation technique described above for the case - 1 ~< - 7e ~< 7s -- A and 7s +/3 ~< 7e ~< 1, may be 

applied to the other eases that arise. 

From equation (A-6) 

A.2. The Numerical Evaluation of L3(~) 

~ n ~ + B  

L3(~) = Jn~-A U*(~, 7 ) - / ( d T ,  (A-20) 
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and using equation (87) this may be re-written as 

L3(~) = L31(~) + L32(~) + L33(~), 

where 

and 

f n,+/] L31(f) = Jn,-,~ U*(~, "O). K1 drt, 

~ -% +/~ 
L32(f) = J~-a U*(~, "0). K2 dr,, 

i n~+B 
L33(~:) = U*(~, r/). K3 tin, 

~ - ~  

K~=K~(~,~;M,v) i = 1 , 2 , 3 .  

(A-21) 

(A-22) 

(A-23) 

(A-24) 

(A-25) 

The evaluation of L31(~ ) and L33(~ ) 

(A) For I~l not small 
For I~-I not too small the functions K1 and K2 are regular, so that L31(~) and L33(~) may be evaluated by using 

the Gauss quadrature technique described in the previous section on the evaluation of LI(~) and L2(~). The 
exact methods used depend upon whether 

V,+/~= 1 or rb +/~ # 1, 

and whether 

(B) For I~'1 small 
For I~1 small the functions K1 and K2 are very irregular, this irregularity is 'stretched' out using the inverse 

hyperbolic transformation introduced in Ref. 5. 

Formulation of the inverse hyperbolic stretching transformation 
From equation (69) 

(A-26) x = g,(~:, n) .  # +g~(~:). g 

= -If{.  u, (A-27) 

X = ~. X*, (A-28) 

X* = g2(s c) - g,(~:, rt) sgn (~'). u. (A-29) 

(A-30) 

introduce u through 

then 

where 

Now 

R "~" 4 X 2  -{- l~ 2'~ 2 , 

= I ?IR*, 
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where 

It may be shown that 

R* = 4 X ' 2  nt"/32u 2. 

R * =  1 ~ [ { a  (~, n)u - g2(~) • g,(s ¢, ~t) sgn (b} 2 +/3292(~)]~, 

where 

a(~, ,q) = 182 + g~(!d,'n). 

This expression for R* defines the required stretching transformation to be 

gd~) 
u -- a(~, ~os) {/3' sinh (t)+g~(¢, ~,) sgn (~)}. 

Using equation (A-27) the total transformation may be written in the form 

= A* sinh (t) +B*,  

(A-31) 

(A-32) 

where 

(A-33) 

and 

(A-34) 

(A-35) 

A* = - I~l .  g~(~)./3 
a(s ¢, ns) ' (A-36) 

/ 3*  - - (g~(~'  n , ) .  g2(~)  a(s ¢, r~,) (A-37) 

Consider limits of integration in the r I plane, -q~ and 7/, where r/t ~< r/s ~< r/u, then under the transformation 
(A-35) 

~t gives tl say, 

7.  gives t 2 where, 

, t2 = log , (A-38) 

[, = ~ + ~ / 3 z ~  z, i = 1, 2, (A-39) 

~1 a(¢, 
g2(s¢) )• (~9s - 71) + gl(~, ~%)- ~ (A-40) 

and 

and 

i2 a(~, ns)(n" g2(s¢ ) - r l , ) -  g,(~, r/s). ~ (A-41) 

The evaluation of L33({~ ) 
L33(s ¢) is evaluated using Gaussian quadratures after splitting the range at Tie if r/s --fi* < r/e < ~/$ +/~, and 

applying the stretching defined above. If rl~ +/~ = 1, then the root zero behaviour is taken into account after 
the stretching transformation, in the manner described in the first section of this Appendix. 
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The evaluation of L31(~) 
Since this integral gives the total 1/~ contribution to L(¢), it is evaluated in double precision. This then 

allows the accurate extraction of the 1/~ term for very small [~l- 
The inverse hyperbolic stretching is applied to the integral L31(~), which is then split into N intervals. In each 

of these intervals a 16th order double precision Gauss-Legendre quadrature is used, if rl~ +/3 = 1 then the 
transformation 

t= v (A-42) 

is used to remove the infinite slope of the integrand in the interval with end point corresponding to rl. +/~ = 1. 
- ~ >  - 6  

This technique has been shown to work very well for values of I~1 10 . 
The evaluation of L32(~) 

~ n,+§ 
L32(~) = ~n~-~ U*(¢, ~).  K2 d~ (A-43) 

where from equations (89) and (90), 

K2=0 for ~<0 ,  

K2 = (++ v21og [Cll)(cos vX-  i sin vX) for ( > 0 .  

(A-44) 

(A-45) 

Consider the non-trivial case of ~-> 0, then 

_~"~+'~ 0(~, n) 
L32(~) = ,%,-X ~2 

• where 

~ - ( 2 +  v2~2 log I 1) dn, 

0(~, n) = U*(~, ~/). (cos uX- i sin vX), 

(A-46) 

(A-47) 

An expansion of 0(~, 77) about "Os gives 

L32(~) = L321(~) + L322(~) + L323(~), (A-48) 

where 

and 

1, r t s + / 3  - - -  t 

L32~(~) = Jn,-7~ 0(~, n)-  (J(~,~$)+nUn (~' n~) (2 + vz¢12 log I, l) dn 

fn~+B 1 
L322(~) = 0(~:, n,) -~ _--~. (2 + u 2 ¢  log I~ l) an, 

L323(~) = - 0 %  n~) ¢ (e+ , ,2¢  log I~1)~,  

(A-49) 

(A-50) 

(A-51) 

(A-52) 

L3zz(~),  L323(~) may be evaluated analytically to give 

- 2(-~+--~) + vZ(B log B + A log fi~ L322(,) = 0( , ,  rh)[ 1 1 - B - A ) ] ,  (A-53) 

and 

L323(~) = [.~r,(~, ,Os)[2 log (~-_-)-F~{/~2 log }~-~2 log .z~ +I(A 2-/~2) }]. (A-54) 
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The integral L321(~: ) may be evaluated using the Gaussian quadrature ~echniques described earlier in this 
section, if the integrand can be accurately evaluated. The function [0(~, 7 ) - 0 ( ~ ,  r/s)+fiO'(¢, ~s)]/~ 2 is 
evaluated in double precision to ensure accuracy as ~ -~ 0. By splitting the range of integration at ~ = 0, that is 
rl = ~s, the difference over difference is never evaluated for ~ = 0, since Gaussian quadrature points do not 
coincide with the end points of the range. 
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From equation (103) 

where 

and 

APPENDIX B 

The Integration with Respect to 

W2(Xr, Ys) = - ~-~{I1 + boI2 + b113}, 

/1----ill (L(,5)--~-bllog[~[)d~, 

1 
I3 = log Iffl d~. 

1 

I2 and 13 may be evaluated analytically to give 
4 

Iz = - log  \1 +~,] '  

13 = (1 -~:~) log (1 - ~) + (1 +~:~) log (1 + ~:~)- 2 

The evaluation of I~ 

where 

(B-l) 

(B-2) 

(B-3) 

(B-4) 

(B-5) 

(B-6) 

I1 = S(~) d~, (B-7) 
1 

bo 
S(~) = L(~) ---ff- bl log I~1. (B-8) 

The term in L(~) giving the 1/~ content is L3t(~), as defined in Appendix A, and this is evaluated in double 
precision so that bo/~ may be accurately extracted. The function S(~) has the f~llowing form 

s(~)-  14T--~ ~or ~-~1, 

~ 1 ~  for ¢ ~ - 1 ,  

~ l o g (  for ( - 0 ,  

~logl~--~h [ for ~o~h. (B-9) 

In order to evaluate 11 parameters 61, 6z, 63 are introduced, and/1 written as 

(B-lO) 

where 

Ii=Iii+I12+I13+I14+I15+I16, 

f 
-1+8~ 

Ill =a-1 S(~) d~, (B-11) 
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f ~5h-82 
112 S(E) dE, (B-12) 

= #--1+81 [0h 
113 = S(~:) dE, (B-13) 

h--82 

~ ,~5h+82 
114 = S(E) dE, (B-14) 

Cn 

f 
l--83 

115 = S(~) de, (B-15)  
"£a+82 

and 

~1 
1 

116 = S(E) dE. (B-16) 
--83 

I~1 and I16 may be evaluated using Gauss-Root quadrature after using the appropriate normalising 
transformation. 112 and I15 may be evaluated using Gauss-Legendre quadratures after normalising the range 
of integration. 

Consider the evaluation of I13, 

f 
~h 

113 = S(E) dE, (B-17) 
gsh--82 

where 

S(~:)~loglE--~h[ for sc-~sc h. 

Assume a transformation of the form 

2 
v = ~ - g  

2vdv = - d ~  (B-18) 

then 

113 = - 2  S(~) vdv. (B-19) 
82 

Now the log [E-Eh[ variation in S(E) is transformed into 2 log ]v[ so that 

S(E) .v~v log[v[  as v ~ 0 ,  

and since v = 0 is an end point of the range this integral may be evaluated using Gauss-Legendre quadratures. 
Clearly the integral 114 may be evaluated similarly. 

The values of the parameters 6j, 62, 63 are determined through numerical experimentation. For swept wings 
with r/.~ stations close to the centre line, a very irregular behaviour of L(E) across E = Er was noticed. By 
appropriate choice of one of the parameters 61, 62, 63 a split in the integration range at scr was achieved, this 
improved the convergence properties of I~. 
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TABLE 1 

The Aerodynamic Convergence ot the ACp Distribution obtained for the N.L.R. Rectangular Wing M=0.0 ,  
v = 1.115 

Real Pressures 

AC~,at rt = 0.138 AC~, at 71 = 0.627 AC~ at ~q = 0.983 

( x - x t ) / c  m = 1 4  n m = 1 4  n m = 1 6  n = 8  

0-02 
0.1 
0.24 
0.34 
0.44 
0.54 
0.64 
0.68 
0.72 
0.76 
0-84 
0.94 
0"98 

2-847 
1.560 
1.397 
1.567 
1.861 
2.317 
3.370 
4.700 
4.651 
3.215 
2.015 
0.944 
0.443 

= 6 m = 1 6  n = 8  

2-857 
1.539 
1.432 
1.570 
1.832 
2.318 
3.425 
4.761 
4.701 
3-236 
1.963 
0.931 
0.499 

2.118 
1.164 
1.043 
1.225 
1.521 
1.970 
3"023 
4.362 
4.329 
2.918 
1.797 
0.792 
0.226 

= 6 m = 1 6  n 

2.131 
1.136 
1-091 
1.226 
1.475 
1.970 
3-104 
4.449 
4.397 
2.942 
1.716 
0.816 
0.365 

= 8 m = 1 4  n = 6  

0.483 
0.232 
0.199 
0.250 
0.320 
0.427 
0.820 
1.683 
1.681 
0.812 
0.428 
0.166 

-0-032 

0.519 
0.192 
0.215 
0.269 
0.309 
0.424 
0.859 
1.728 
1.717 
0.824 
0.378 
0.178 
0.053 

Imaginary Pressures 

(x-x,)/c 

0-02 
0.1 
0.24 
0-34 
0.44 
0.54 
0.64 
0.68 
0.72 
0.76 
0.84 
0.94 
0.98 

AC~at ~/=0.138 

m = 1 4  n 

-0 .778 
-0 .194  

= 6 m = 1 6  n = 8  

-0 .763 
-0 .200  

AC~ at rl = 0.627 

m = 1 4  n = 6  

0.072 
0.212 
0.358 
0.528 
0.769 
0.934 
1.238 
1.380 
1.433 
1.039 
0.598 

-0 .554 
-0-123 

0.084 0.051 
0.215 0.181 
0.346 0-316 
0.525 0.462 
0.790 0.678 
0.959 0.838 
1.260 1.144 
1.392 1.293 
1.414 1.376 
1.039 0-992 
0.628 0.491 

m = 1 6  n = 

-0 .538 
-0 .153 

0.082 
0.185 
0.286 
0.454 
0.716 
0.883 
1.181 
1.308 
1.336 
1.012 
0.571 

AC~ at r /= 0.983 

~ m = 1 4  n = 6 m = 1 6  n 

-0 .133 
-0 .029 

0.015 
0.039 
0.062 
0.102 
0.181 
0.240 
0.395 
0.458 
0-530 
0.414 
0.188 

=8 

-0 .126 
-0 .028 

0.030 
0.028 
0.038 
0.103 
0.213 
0:271 
0-416 
0.459 
0-489 
0-432 
0.255 
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Rea l  Part 

T A B L E  2 

Comparison of  the Generalised Ah~orces  Ol, i = 1, 2, 3 
for the N.L.R.  Rectangular Wing M = 0 .0 ,  v = 1 .115  

;_' Ixi Ql = O~ + iO~ = ACp dx drl, 
I 

Q2 = O'z + iO'~ = x .  ACp dx d~7, 
1 X t 

- O' + iO~ = 2 (x - x h ) .  ACp dx drl. Q 3 -  3 
e X h  

B.A.C. 
m = 1 4 n = 6  

2.964 
1-269 
0.0694 

Davies 
m = 12n = 1C 

2.964 
1.268 
0.0708 

Davies 
m = 8  n = 1 5  

2"95 
1"263 
0"0698 

Imaginary  Part 

0", 

O'~ 
O~ 
Og 

B.A.C.  
m = 1 4  n = 6  

0-724 
0.485 
0.0589 

Davies 
m = 1 2 n = 1 0  

0.734 
0.488 
0.0591 

Davies 
m = 8  n = l  

0.715 
0.477 
0.0571 
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T A B L E  3 

The Aerodynamic Convergence of the ACp Distribution obtained for the 
N.L.R. Swept Tapered Wing with a Flat.Plate Flap at Unit Incidence M = 0"8, v = 0 .672  

Real Pressures 

(x-x,)/c 

0.02 
0.06 
0.14 
0.26 
0.34 
0.48 
0.6 
0.7 
0-74 
0.76 
0-8 
0.84 
0a9 
0.94 
0.98 

AC~,at 

m = 14 
n = 6  

-0 -345  
- 0 . 0 7 5  

0.181 
0.616 
0.998 
1.804 
2.643 
3.941 
5.979 
5.794 
3.101 
1.957 
0.970 
0.586 
0.444 

rl =0 .45  

m = 1 6  
n = 8  

- 0 . 3 4 5  
- 0 . 0 8 2  

0.209 
0.613 
0.985 
1.787 
2.581 
3.852 
5.893 
5.714 
3.036 
1.908 
0.919 
0.507 
0-342 

AC~, at-0 = 0-55 AC~,at "0 = 0"64 AC~, at "0 = 0"8 

m = 14 m =  16 m = 14 m = 16 
n = 6  n = 8  n = 6  n = 8  

- 0 . 2 3 2  
0.042 
0.347 
0-821 
1.177 
1.835 
2.443 
3-371 
5.149 
4.650 
1.968 
1.199 
0.604 
0-405 
0.407 

- 0 . 2 4 4  
0.040 
0-382 
0-800 
1.157 
1.817 
2-331 
3.217 

m = 14 m = 16 
n = 6  n = 8  

-0 .0 6 5  - 0 . 0 7 2  
0.186 0-194 
0.513 0.542 
0.967 0.934 
1.257 1.234 
1.533 1.529 
2.097 1.970 
2.301 2.138 

0.394 
0.510 
0.750 
0.997 
1.094 
1.154 
1.116 
0.812 

5.016 
4.535 
1.900 
1.176 
0.585 
0.319 
0.248 

1-863 
1.473 
1.034 
0.717 
0-399 
0.312 
0-395 

1.732 
1.366 
0.987 
0.738 
0 .400  
0.221 
0.206 

0.635 
0.549 
0.400 
0.284 
0.178 
0.185 
0.345 

0.429 
0.532 
0.737 
0.958 
1.079 
1.157 
1.040 
0.732 
0-583 
0-516 
0.407 
0-321 
0.194 
0.124 
0.208 

Imaginary Pressures 

0"02 
0"06 
0"14 
0"26 
0-34 
0"48 
0"6 
0"7 
0"74 
0"76 
0"8 
0-84 
0"9 
0"94 
0"98 

ACg at n = 0.45 

m = 14 m = 16 
n = 6  n = 8  

- 0 . 8 5 9  - 0 . 8 5 7  
-0 .721  - 0 . 6 5 7  
- 0 . 6 6 0  - 0 . 6 0 3  
- 0 . 7 1 9  - 0 . 7 1 4  
- 0 . 7 0 0  - 0 . 6 6 6  
- 0 . 3 9 4  -0 .331  

0.150 0.123 
0.786 0.714 
1.135 1.081 
1.421 1.383 
1.626 1.629 
1.617 1.656 
1-403 1.433 
1.182 1.135 
0.878 0.746 

AC~ at "0 = 0.55 AC'~ at r /=  0.64 AC~ at 71 = 0-8 

m = 1 4  
n = 6  

m = 14 m = 16 
n = 6  n = 8  

- 1 . 1 0 7  - 1 . 1 3 4  
- 0 . 8 5 9  - 0 . 7 7 2  
- 0 . 7 3 3  -0 .655  
-0 .668  - 0 . 6 8 6  
- 0 . 5 6 0  - 0 . 5 5 5  
- 0 . 1 6 9  - 0 . 1 1 7  

0.339 0.274 
0.885 0.747 
1.181 1.062 
1,402 1.304 
1.436 1-394 
1.321 1.336 
1-075 1.102 
0.900 0.844 
0.704 0.543 

m = 14 m = 16 
n = 6  n = 8  

- 1 . 3 5 3  - 1 . 3 5 7  
-0 .9 8 9  -0 -906  
- 0 . 7 5 9  -0 .6 9 8  
-0 .571  - 0 . 6 0 0  
- 0 . 4 0 4  - 0 . 4 0 3  
-0 -183  - 0 . 1 4 2  

0.453 0.363 
0.846 0.701 
0-963 0.844 
0.966 0.872 
0.879 0.845 
0.746 0.770 
0.539 0.571 
0.438 0-385 
0-412 0.253 

- 1 . 7 4 4  
- 1 . 1 2 2  
-0 -645  
-0 .271  
- 0 . 0 8 0  

0-098 
0-430 
0.488 
0.463 
0-439 
0-376 
0.300 
0.200 
0.178 
0-244 

m = 1 6  
n = 8  

-1 .6 7 5  
- 1 . 0 1 2  
- 0 . 6 2 4  
- 0 . 2 7 2  
-0 -065  

0.107 
0.387 
0.473 
0.470 
0.459 
0.414 
0.343 
0.209 
0.137 
0.165 

31 



T A B L E  4 

Comparison of the Generalised Airforces Q~, i = 1, 2, 3 for the N.L.R.  Swept Tapered Wing 
with a Flare Plate Control Surface at Unit  Incidence M = 0.8,  v = 0-672 

f f/ Ot  = O', + iO~ = ACe  dx  d~, 
1 l 

Y I? Qe = O'2 + iO'~ = x .  A C  e dx  d n, 
1 l 

"tie2 

0 3  = O~ + iO'~ = 2 (x -- Xh) . a G dx dn. 
Tlel Xh 

Real Part 

Oi 

O; 
o; 
o; 

B.A.C. 
! m = 1 4  n = 6  

3.427 
4.716 
0.125 

B.A.C. 
m = 1 6  n = 8  

3.355 
4.594 
0.117 

Equivalent  Mode Calculation 

Davies 
m = 1 4  n = 6  

3-407 
4.617 
0.124 

Davies 
m = 1 4  n = 

3-372 
4.564 
0.116 

Davies 
m = 1 2  n = 1 0  

3.414 
4.598 
0-115 

I m a g i n a r y  Part  

B.A.C. 
Q'~ m = 14 n = 6 

O'; 0.058 
Q~ 0.722 
Q~ o. lO9 

B.A.C.  
m = 1 6  n = 8  

0.078 
0.714 
0.107 

Equivalent Mode Calculation 

Davies 
m = 1 4  n = 6  

0.182 
0.831 
0.106 

Davies 
m = 1 4  n = 

0.193 
0-842 
0.108 

Davies 
8 m = 1 2  n = l C  

0.217 
0.880 
0.109 
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T A B L E  5 

Comparison of the Generalised Airforces Qa i = 1, 2, 3 
for the N.L.R.  Swept Tapered Wing with a Control Surface Camber 
Defined by z = (x - xh)[1 + (x - x h )  + 2 .  (x - x h )  2] M = 0.8,  v = 0 .672  

Q1 = Q] + iO~ = ACp dx dn, 
1 l 

If? Q2 = 0'2 + iO'~ = x . ACp dx drl 
1 r 

03  = 0'3 + iO'~ = 2 (x - Xh) . AC~ dx dn. 
'tie I x h  

KEY: A. B.A.C. results for the cambered control surface. 
B. B.A.C. results for the flat-plate control z = x -Xh,  + a lifting-surface calculation on the control- 

surface mode  z = (x - Xh)2[ 1 + 2(X -- Xh)]. 

Rea l  Part 

Q~ 

Q~ 
Q;~ 
Q' 

3 

A 
m = 1 4  n = (  

6.625 
9.578 
0.430 

B 
m = 1 4  n = 6  

6.688 
9.598 
0.422 

Imaginary  Part 

Q,,, 

O~ 
Q~ 
Q; 

3 

A 
m = 1 4  n = 

- 0 . 3 4 9  
.0.503 
0.169 

B 
m = 1 4  n = 6  

- 0 . 4 7 2  
0.443 
0.170 
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Real Part 

T A B L E  6 

Comparison on the Generalised Aidorces  Q~, i = 1, 2, 3 
for the B.A.C. Swept Tapered Wing M =  0.5,  v = 0 .9551 

IlI? 
O~ = 0'~ + iO~ = ACp dx d'o, 

1 t 

Q2 = Q2 i0"2 = x . , 5 @  dx dn ,  
1 t 

03 = Q ; + i O  "=23 2 (X--Xh) . ACvdxdn .  
Xh 

O~ 

O~ 
O~ 
O~ 

B.A.C. 
m = 1 4  n = 6  

2.466 
2.784 
0.074 

Equiv. 
modes 

Davies 
m = 1 6  n = 8  

2.422 
2.716 
0.071 

Imaginary Part 

0', 

Q;' 
o~ 
Q" 

3 

B.A.C. 
m = 1 4  n = 6  

0.490 
0.748 
0.068 
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