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Summary.—Two aspects of the solution of the equations governing steady gas flow in a laminar boundary layer,
when the main stream velocity is non-uniform, are considered. In the first place it is shown that the equations can be
reduced to ordinary differential equations, whose solution implies the similarity* of the distributions of velocity and
temperature in planes perpendicular to the boundary, only in the case when the main stream velocity is uniform. In
the second part, an extension of Pohlhausen’s method is used to determine the point of separation of the boundary
layer in an air flow in which the pressure increases with a uniform gradient.

PART I

1.1. Introduction.—Exact solutions of the boundary layer equations for a compressible fluid
flowing with uniform velocity in the main stream have been given by Busemann, and by Kdrman
and Tsien, for the special case in which the Prandtl number is equal to 1. Much more extensive
sets of solutions have been obtained by Brainerd and Emmons for a series of Prandtl numbers,
originally with constant values for the coefficients of viscosity and thermal conductivity *(1941)
and later with these coefficients varying with temperature *(1942). In both these cases conditions
depend only on one independent variable y/4?, and consequently the solutions simply involve
the integration of ordinary differential equations.

For an sncompressible fluid with a uniform velocity in the main stream the solution is also a
function of y/x'/* only. Otherwise, when the main stream velocity U is not uniform, it has been
shown by Goldstein *(1939) that there are no solutions in which the velocity distributions are
similar for different values of x, apart from the cases when U = cx” or U = ce™ .

The corresponding question for a compressible fluid will be examined :—What special forms
of the variations of U with «x allow solutions with similar velocity and temperature distributions

for different values of x ?

1.2. Boundary Layer Equations.—The steady flow of a compressible fluid along a fixed boundary
will be considered. With the co-ordinate axes of x and y along and at right-angles respectively
to the wall the usual approximations of boundary layer theory yield the equations

onu ou\ _ _ op 0 ou
) u@—c—{—v@ = @—}—@ ,u@), .. .. .. .. .. (1)

* In the sense that each distribution function is a function of a single variable of the form y times a function of ¥,
where «, y are distances measured along and perpendicular to the boundary.
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The equation of continuity is
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It is assumed that the fluid is a perfect gas so the relation between pressure, density and
temperature is

In the main stream, where the effects of viscosity and heat condition are neglected, the pressure,

density, temperature and velocity are all functions of x only. They satisfy the following equations,
in which the suffix 1 refers to the main stream,

au _ _ dp,

nUS — — %, N )
d dp,

plzx(cpm:zi_, O )

pi=RoTs. . oo 8

From equations (6) and (7) it follows that
¢, Iy + 3U? = const. = ¢, T,.

1t follows from equation (2) that the pressure is constant, for a given value of «x, throughout the

boundary layer, and therefore that it is equal to the main stream value for the same value of x.
Consequently, for all values of y,

o(%,9) T(x, 3) = pi(x) Tu().
By using this relation, p can be eliminated from equations (1) to (5) which then give

ou ou T ;;dU | RT @ ou
i Y= U - = — .. .. .. .. 9
TR i L PR Y "ay>’ ©)
d o o~ _ _ ul ;,dU | RT rou\* | RT @ ol
%a(cpT)+v5§(cpf)‘ _T:Ud_x_’—?b:[u 55/ + ;1—53—’ ”53}— ’ e . (10)
ou , 0v " alu 1 ol | ol
- V= b = il ). 11
8x+6y RTlde+T iy ’vay (1)

When the main stream velocity is uniform these equations can be reduced to three ordinary
differential equations involving the three unknowns, #, v and 7', which are functions of the inde-
pendent variable y/x'/*2. Brainerd and Emmons have integrated these ordinary differential
equations in several cases, for different main stream velocities with different laws of dependence
of the viscosity coefficient ¢ on the temperature 7.

1.3. Reducibility to Three Ordinary Differential Equations.—The possibility of obtaining a
reduction from partial to ordinary differential equations when the main stream velocity is non-
uniform will now be examined. Suppose that by employing the substitutions

u(x, y) = Fi(x, y) us(n) ,
v(%,y) = Fy(%,y) vs(n) ,
T(x, y) = Fu(x, y) To(n) ,



where # is a function of x and y, the resulting equations involve only one independent variable, 7.
These substitutions are not completely general, but at first sight they appear to be less restrictive
than those required by the assumption that the velocity and temperature distributions are
similar for different values of x. When these forms for #, v and T are used, the equations become

F, F,u?+ Fn, u,u, + F, F,u,v, + F, Fyny uy v, — U@dUldx) T, Fy T,
— Rp,™ u [Foyy Fouy Ty + 2Fy Fsny+ Fy Fan,) u' Ty + F, Fyn? u," T,)

- Rpl—l (d:“/dT) [Fly F, F3y uy 15 + Fly Fg Ny Ug T,T, 4+ F, F, F3y77y uy T
+ F, Fiplu' T,7T,]=0, .. .. (12)

(¢, By Fo,+-U(AU[dx) Ty  Fy Fyluy To+¢p Fo Foy 0, To+- ¢y Fy Fan, 0, Ty + ¢, FyFan, vy T

— Rp, 7w [F ) Fsu Ty + 2F, Fyy Fyn, uy ) Ty + F2Fyn? u,'T)

— Rp, 7 % [F3 Fy, Ty + (2F; Fyyny, + Fi¥n,,) ToTy + Fiin? ToT,"]

— Rp, 7 (dn|dT) [Fs Fy 2 T,° + 2F# Fyyn, T2 Ty + Ft g2 T,1,%1 =0, . .. (13)

[F, — U(dU/dx) (RT,)™ F, — Fy Fy  Fyl uy, + [Fyy — F, F3™' Fy ] v,
+F177x%2’+F277yv21__Fl'r]xMZTZ—sz,'_anyvz T, Ty =0. . . .. (14)

In these equations, the suffixes x, y denote 0/0x, 9/2y, and the dash denotes 2/o6n. The specific
heat ¢, has been assumed to be constant.

Apart from the possibility of a common factor in each equation, the part of each term not
involving #,, v,, or T, must be a function of » only. Thus comparison of the coefficients of u,v,
and #,’v, in equation (12) leads to the equation F,™' F,, = G,(y)n,, where G, is an
undetermined function of 7. Consequently log F;, = [Gy(n)dn + H,(x), where H, is an
undetermined function of x. This equation can be written as Fy(x,y) = J,(n)K,(x), where
J1 = exp [JGi(n)dn] and K, = exp H,(x). But Ji(y) must be unity since it is supposed that all
factors of # which are functions of 5 have already been absorbed into u,(y). It therefore follows
that F, (x, ) is a function of x only. Similarly comparison of the coefficients of v,7, and v,7%’
in equation (13) gives the result Fy(x, v) = K,(x). Finally, from the coefficients of v, and »," in
equation (14) F,(%x,y) = K,(x). Now the coefficients of u,*> and w,u,” in equation (12) give the
equation F,™' Fy, = K" (dK,/dx) = L,(y)n,, where L, is an undetermined function of 7.
Integration of this equation gives log K; = [L,(n)dn + M,(y), where M, is an undetermined
function of y. This is equivalent to N,(n) = K,(x) Pi(y), where N, = exp [[L,(n)dn] and
P, = exp [—M,(y)]. There is no restriction in taking N,(y) equal to 5. For, if this is not the
case, a new independent variable ¢ can be defined by the equation { = N,(5) and each of #, v
and T can be written in the form f(x)g(¢) where ¢ = K,(») P,(y). Thus the independent variable
in the ordinary differential equations is expressible as the product of a function of x and a
function of y.

This does not mean that the solution of the differential equations necessarily has the property
of similarity, whereby the distributions of the velocity component and temperature are similar in
the planes of constant x. Compare, for example, the distribution in the plane through the
point (x, 0) with that in a standard plane ¥ = x,. The ordinate y of the point in the arbitrary
plane for which conditions correspond to those at the point (,, ¥,) in the standard plane is given
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by the equation P,(y)/Py(v,) = K,(%,)/K,(x). The condition for similarity is satisfied only if
this equation implies that y/y, is independent of y and y, individually. This is certainly the case
if P,(y) is a power of y.

Now by comparison of the coefficients of u,’T, and #,"T, in equation (12) it is seen that the
expression (2Fy, Fyn, + F1Fyn,,)/(FFy n,*) = (*P,/dy?)|[K,(dP:/dy)*] must be a tunction of 7. -
It follows that P,(d*P,/dy?®)/(dP,/dy)* must be a constant, and therefore that either P,(y) = y° or
P,(y) = ev. That the second alternative is mnot permissible is seen by considering the
behaviour of u#(x, y) at the wall y = 0. If P,(y) = e, then u = K,(x)u,(K, e¥), and at
the wall » = K,(x)us(K,(x)). It is not possible for the last expression to vanish as required
for all values of x, unless either K,(x) is a constant or u,(y) = 0 everywhere, and neither of these
conditions can be satisfied. The conclusion is that P;(y) is of the form »* and that a solution of
the ordinary differential equations must have the property of similarity.

By considering the coefficients of #,7, and #,7," in equation (13) it follows that the expression
[epd' Iy, 4+ U(dU]dx) T,7* FoFql/[c, FiFsn,] = [Ky Y (dK/dx) + U(AU/dx) (¢, 17) "] /n.
= [K, ™ (dKs/dx) — T,7(dT,/dx)]/[ Ky~ (dK,/dx) 7]
must be a function of 5.  Consequently [K, ' (dK/dx) — T, "(dT,/dx)]/[K, " (dK,/dx)] = «,
where « is a constant. Hence, K;/7; = AK,* where A is also a constant.
Comparison of the coefficients of u, and »," in equation (14) shows that the expression
[F. — U@U/dx) (RT,)™* F, — F, Fs7' F,]/[Fy1,]
= [Ki'dKy/dx) + y(y — D7 Ty7YdT/dx) — Kyt (dK/dx)][[K, 7 (dK,/dx) 7]
must be a function of 5. This requires that
K,7YdK,/dx) 4+ y(y — 1)t T,7Y(dTy/dx) — K, dK,/dx) = K, (dK,/dx) ,
where f 1s a constant; and this equation in turn requires that 7,*/¢*~9/K; = BK,’~', where B is
also a constant. Hence A BK,*"#~' = T,'/¢~Y g0 K, = T,", where the constant factor has been
taken equal to unity, without loss of generality. Also Ky(= AK," T;) = T,", where the constant
factor has again been taken equal to unity.
Finally from the coefficients of #,* and T, in equation (12) it is necessary that
[U(dU/dx) T, F3)/[F, Fy,] = — [¢, Ty~ AT /d%) K)|[K\(dK,Jdx)] = — ¢, T"*|n
is a function of . But this expression is a function of x only and must therefore be a constant,
and so m = 2n.

Thus the expressions for % and 7 are

A w(x, y) = Tl (Rus(n),  T(x,y) = T:"(%) Tuln),
where = y*T,"(x) .

As y — o0, 7 — 0 or w according as s < 0, and #, and 7T, must in either case become constant.
But T(x,0) = T, so it is necessary to have 2n = 1. Consequently #(x,0) = U(x) = CT,*/*,
where C is a constant. In order to satisfy the equation ¢,7 + % U* = ¢, T it is necessary that
ey Ty + 3 C*T, = ¢, Ty, so T4, and p,, p, and U are all constants.

If the boundary layer equations are to be reducible to three ordinary differential equations by
substitutions of the type used above (which have been shown to imply solutions with the
property of similarity), then conditions in the main stream must be uniform.




PART 1II

2.1. In a recent paper Cope and Hartree* (1945) have assessed the problem of solving the
boundary layer equations for compressible fluids when the main stream velocity is non-uniform.
Cope has examined the possibility of extending the approximate method of solution for
incompressible fluids given by Pohlhausen. He has found that the use of the equation of energy,
¢,I" + $u* = const., to express the density and temperature in terms of the velocity considerably
complicates the method. The different extension of Pohlhausen’s method used here was
suggested by the treatment of the problem of forced convection in a laminar boundary layer at
a flat plate, given in Modern Developments in Fluid Dynamics®. At a later stage it was found
that a similar method had been given previously in a paper by Frankl® (1934). The accuracy of
the method is measured against an exact solution in the case of a uniform main stream velocity.*
The method provides a forecast of the position of separation in retarded flow.

2.2. Momentum and Energy Equations.—By considering the change of linear momentum
in a semi-infinite section of the fluid, extending from the boundary in the direction normal to
the boundary, the momentum equation is obtained. The same result is reached by integrating
equation (1) with respect to y from 0 to c. Similarly the energy equation is obtained by
integrating equation (3) in thisway. Infiniteintegrals are replaced by finite integrals by introducing
the so-called thicknesses of the velocity and temperature boundary-layers, denoted by ¢ and ¢’
respectively®. At points further from the boundary than ¢ the velocity » is indistinguishable
from the main stream velocity U to the extent that [5(U — u)dy can be neglected. Similarly 6’
is such that [§,(7° — 7,)dy can be neglected.

It is not assumed that 6’ = 6, necessarily. In the first place suppose that é" < 4. At a
position y = ¢” such that ¢’ < ¢” <46, 07/oy =0 and ou/oy = O since ¢” is outside the
temperature boundary layer but inside the velocity boundary layer. Hence equation (3) reads,
at y = 96", as

putdjdn)e, 1) = w dpyfdx + p(ou/y)* = wp(d@|dn)(e,Ty) + w(@ufoy),
using equation (7), or
0 = p(ou/oy)*.
This involves a contradiction, and therefore it is necessary to have ¢’ = d. So long as there is

dissipation in the flow the temperature boundary layer is at least as thick as the velocity
boundary layer.

In what follows, it is assumed that the gas is perfect, obeying equatlon (5), and that ¢, and ¢, are
constant. :

Momentum Equation

By using equation (4) and the facts that #» = U at y = and v = 0 at y = 0, it follows, after
integration by parts, that

[" oo % (u— Uy = [ (u—U) 2 (puidy.

Equation (1) can be written in the form '
pudujox — pU dU|dx 4 pU dU/dx — p,U dU[dx + pv (9/0y)(u — U) = (3/3y) (u 0u/oy) .

When this equation is integrated with respect to y from 0 to oo it gives

(ol —vay+ v U pyay + [ w—0) 2 o)ty = — (n 32 )

* When this was written, in 1946, no solutions other than that for a uniform main stream were available, so far as
the author was aware.
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J

OO 0 2 __ 2 — ? — _?_ AV
[ ps =0y =0, [ (w—10)L (pu)dy=0

and

[ o—may="5[ Lot ay=o0.

This equation can be rearranged as

[ vt 0 L& i 0 4[] ity [ o] = (o3
which is the same as
%&JZ putdy — U J p%dy—f—U l:f pdy — pi0 :|=-—- w %)y RO . (19)

Energy Equation

Again by use of equation (4), after integration by parts,

[" o0 % (el — Tdy= [ ef(T — T2) 2 (pu)dy.

The energy equation (3) can be written as

pu (2)32) [c)(T — T2)] + (p — p2) w (@) (¢, T2) + po (3/09) [T — T3)]
= u(0u/oy)* + (9/9y) (= 0T [0y) .

Integration of this equation gives

[Cou l tedr — 1dy+ [ (o — pdu L (@Ty + [ T = T0) 2 (pu)dy

::Jj,u(%zdy— (xg

This can be written as

[ 2 ey — o7 [ 2 oy — o L (0,1 [ wdy= [ = (%),

and finally in the form

;Zx zﬁlj %dy) cPT_j pudy+plU j dy-—f a;‘ dy — = (BT)y (9
6



It is required to solve equations (15) and (16), together with (5), subject to the boundary
conditions which must be satisfied at the boundary y = 0 and at the lines of transition into the
conditions of the main stream, viz. y = 4§, for the velocity, and y = ¢’, for the density and
temperature. ‘

In formulating the boundary conditions, two alternative ways of stating the thermal condition
at the solid boundary y = 0 present themselves. Either the temperature of the boundary is
known, and then the problem is to determine the rate of heat transfer between the flowing gas
and the wall, or vice versa the heat transfer is prescribed and it is required to find the temperature
of the wall. 1n both cases, of course, the gas in contact with the wall is at rest. In passing
from the boundary layer into the main stream there are no discontinuous changes in either the
velocity or the temperature.

Boundary Conditions
Aty =0, =0, v =0 and either T o1 97/0y is prescribed. Accordingly, from equation (1),

0 = — dpyjdx + [(2/29) (u 216/29)], o
0 = [u (994/29)]y=0 + [(3/0y) (% 0T/0Y)]ym0 -
Aty=96,u=U,u/oy =0 (n=1,2,...).
Aty=¢",T=T,0T[ey'=0 (n=1,2...).

and from equation (3)

2.3. Application of Pohlhausen’s Method.
The solution of equations (15) and (16) is carried out by writing
=90, x=20'8, 0=pyofpr, uU=fn)andp/p=0+ (1—0)g/x),
and assuming suitable forms for the functions f(r) and g(n/x). Henceforward it is assumed that
r and » are constants. The boundary conditions in terms of f and g are
f(0) = 0, g(0) = 0, and either 6 or g’(0) is given,
f0) =4,

L/OF + ot | A L e OF — 0] =0,

M=LM1)=0n=1,2...),
gl)=1g"1)=0n=1,2...),

in which 4 = 6%p,(dU/dx)[u, M is the Mach number of the flow in the main stream and ¢ (= uc,/x)
is the Prandtl number.

For incompressible fluids, Pohlhausen took f as a polynomial in 7, of either first, second, third
or fourth degree, and Lamb suggested the form f = sin J=n. For the present consideration of
compressible fluids, some of these forms for f are also used and in each case g has the same form
as the corresponding f. Of course, the number of boundary conditions which can be satisfied is
determined by the degree of the polynomials adopted.

The particular case considered is that of the flat plate thermometer, which records the
temperature of the wall when thermal equilibrium has been attained. In this case there is no
heat transfer and accordingly g'(0) = 0.

2.3.1. Mawn stream velocity unsform.—When conditions in the main stream are uniform, 6 and
x are constants and equations (15) and (16) take the following simpler forms

pU [0+ (1= 0g(r—nan| 2 =~ p, . )
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L pU {<1~o[ff1—g>dn+x—1 — e} 2 =L [ a9

e
If
= [(f=ra, J=[ U—a(f—f)dn,
K=[fl—gdr+x—1)—[ gdyand L= f2ay,
then
yp ML= 0] — 11 % (1% = — uUf(0)
and
yp (1 — 0K] & (164 = (o — )MWUL,
SO
(1—9)[]+(f(1))M2§}=1. )

This is an equation between the two unknowns 6 and y. A second equation for 6 and x is
provided by the boundary condition

e SO = PO

It should be noted in reference to equation (20) that the expression for g is chosen so that
g"(0) #£ 0. Ortherwise the implication is that f'(0) = 0 and (d#/0y),_, = 0 everywhere along
the plate.

The values of 6 and y are obtained from equations (19) and (20) most easily in practice by
obtaining 6 for a series of values of x from equation (19), and then using equation (20) to give
the corresponding values of ¢. It is found that values of x between 1 and 2 give most of the
required range of values of 0. When the values of 6 and x have been obtained, the skin frictional
drag on the plate and the temperature of the plate are easily derived.

Since

yO M — (1 = 0)]] (d]dx)(35%) = pUf'(0)

o 2l
WO — (L= 071"

, g—glto - {plUs[l — (Zly; B)ﬂf'(())}llz .

The drag coefficient (for both sides of the plate) is given by

it follows that

and

— ngﬂ(au/ay)y=o ax _ 1/2
Cp = % = 4R Cy ,

where R, is the Reynolds number of the main stream flow, and
Co={fO) U — (01— 0)J1p"~.

The temperature of the plate (T',_,) can be expressed in terms of the actual temperature (7) and
the stagnation temperature (7,) of the main stream flow by means of the coefficient

oo Too— Ty _ 07— 1 _ 201—6) _ 200x%f(O)
‘ — T UeeT) 6y — DI g0
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When the main stream flow is very slow, M — 0 and 6 — 1, so from equation (19)
lim (1 — 6)/M* = (y — 1)IL/[Kf(0)]
M->0
and from equation (20) .
lim (1 — 0)/M* = o(y — 1)x°[f'(0)]*/g"(0)
M->0
x is then determined from the equation connecting these two expressions for the same limit, viz.

IL g"(0) — oKx*[ f/(0)]* = 0.
Cp = AR, [LIF (O)]

lim (7,0 — T)/(To — T2) = 20x*Lf(0)*/g"(0) -
M->0

In this case

and

Forms for fand g
1. Quadratic
It is possible in this case to satisfy the boundary conditions

f0) =0, f(1) =1, /(1) =

and
80) =0, g1) =1, g'(0) = 0.
Hence
. f=21—n' g=(/x)*
o)
2 o2 L1 g2 111 4
T=5 J= @y T3¢~ 3+3"0}ZandL 3
2. Cubic ‘
In addition to the boundary conditions given in 1, there are
"(0) =0and g'(1) = 0.
In this case
f=rim—am’ &=30/x)*— 2n/x)°,
from which
39 39 71 1 9 1 3,11 3 1 6
I = = == — - - L = K=lx—-—:>+4+>=- —:—and L=
280’ J 280 40X2+20 8 2X 8+8x2 70x3an 5
3. Quartic
The boundary conditions are
f0) =0, f(0) = 0, f(1) = 1, j'(1) = 0, f"(1) =0
and
g0) =0, g'(0) = 0,g(1) =1, ¢g'(1) =0, g"(1) =0.
These give
f=2n =29+, g=06(@/x)*—8(n/x)°+ 3m/x)*
and so
=3 =3 U8 1, 471 281 1
315° 315 11585 x* = 693 x 20020 x*’
2 3 11 3 1 11 52
= Ty — = - - = — L =
K=" nT7y By o =55



4. Series of odd powers for f, even powers for g
With the same boundary conditions as in the case of the quartic,

J =g 151 — 107+ 3, ¢ =3/ — 3" + (n/x)°,

I = 445 J = 445 10585 1+ 2501 1 311 1

3696’ 3696 192192 x* ' 160160 x* 155584 x° '
16 5 51 3 1 1 1 45
K=, 2 3 951 9 1 1 1oandl=2.
BT T 6l 160 A48 " 64
5. f = sin dan, g = sin® fan/x
2 1
IT= "3
]:} 1 + 1 + sin z/y 1 —sina/y  xsinz/x  sinafx sinz/xy
n 4 2(1+4+2/x)  2=(1 —2/x) 4n 8(1+ 1/x)  8=(1 — 1/x)
1 x — 1 X .7 1 4 sin =/x 1 — sin z/x ?
K== — X &in ™ dL="T" .
= T 5 O T WA 2 2 =2 8

Reference to Brainerd and Emmons’s exact solution* for the flow along a flat-plate thermometer
shows which of the above approximations is the most satisfactory. In their paper, the drag
coefficient and the coefficient giving the temperature of the plate are tabulated for ¢ = 0, 0-25,
0-733, 1-0 and 1-20 at Mach numbers of 0, 1, 1-5, 2 and 4/10. For the purpose of making the
comparison the present approximations have been worked out only for Mach numbers 0 and 4/10.
The results are given in Table 1. In some cases, the approximation does not cover the whole
range of interest without violating the condition that y « 1. However, if an approximation is
adequate at M = 0 then it is adequate to cover the range at all Mach numbers.

Inspection of Table 1 shows that the approximation f = sin {n7n and g = sin® {an/x gives the
best results, although it does not quite cover the range of Prandtl numbers. In all the approxi-
mations the drag coefficient is given much more accurately than the temperature coefficient,
which is generally underestimated. Even with the trigonometric form for fand g the temperature
coefficient is as much as 26 per cent too low at M = 4/10 for a Prandtl number of 1-20. The
discrepancy becomes smaller as the Mach number is reduced, and it is also less for smaller Prandtl
numbers.

For atmospheric air, the results of Frankl’s generalisation of Pohlhausen’s method are quoted
in Table 2. Frankl assumes that x = 1, takes the quartic forms for f and g, and obtains more
accurafte results than the present method gives.

Although the choice of f and g is to some extent a question of ‘ trial and error * with the exact
solutions available as a guide, one may say that it is the form of g rather than f which is critical.
In the case of an incompressible fluid, the drag coefficient depends on the integral [, f(1 —f)dy
and f'(0), since C, = 4R,~"*[LIf'(0)]1*/%. The integral does not vary rapidly with £, and any form
of f for which f’(0) == 3/2 will give a good approximation to the drag coefficient. In the com-
pressible case, it seems to be g”(0), occurring in equation (20), which is particularly influential in
determining 6 and the density and temperature at the plate. The simple polynomials tried have
given values of g”(0) rather too small.

2.3.2. Main stream velocity non-unmiform.-—In this section it is no longer assumed that the
main stream flow is uniform. In the case when there is no pressure gradient in the main stream,
apart from the trigonometric form for f and g which does not cover the whole range of interest,
the cubic form gives the best results. However it is not suitable for use when there is a pressure
gradient.* Accordingly, the quartic form is used.

* See the note at the end of the paper.
10



The boundary conditions which can be satisfied are:

J0) = 0,7"(0) = =2, f(1) = 1, /(1) = 0,/"(1) = 0

and
g(0) =0, (1—0)g"(0)/[oly — 1)M>**0*] = [f(0)]%, g(1) =1,¢'(1) =0,g"(1) =0.
Then
f=2n— 20+ n* + $n(1 — n)*, g=6(n/x)*— 8(n/x)* + 3(n/x)*,
where
12(1 — 0)/[o(y — 1)M220%] = (2 + £2)%. .. .. .. .. (21)
In this case,
s 367 71 1 2027 1 914 1 8548 1
2 25 A2 — - - —
Jo pudy = pU {0<630 7560 T * 907z> + (=0 [ 1155 ;* 295 ° 15015 i
82 1 1 1 1 ]
A (1540 x? 10895 y° i 18018 X ) + 4 <1‘386() X 24948 4° - 144144 ;{M
= pU% I, say,
d
[, pudy = 3| 0( 5 + 7 13,)
131 671 1 1 11 ]1
_ oY il - = el - =
+( 0)[(7 x: 35 y* 12x>}_ <4 x? 210 x3+1008x“>[

= pUdF,,

o , 11
L de_‘Pl‘s :plé[—l-{—(l—@)(*%-l—l* z+§;€—3>] = poFy,

& L 3 17
Jo mly——Ué[x E+zm}_UaF4,

J:, p%d_’y = plUd{G(x — i% + 4 1—;0>

3 11,31 11 11 11 1 1 }
1—o)|(Sx—22+2° 2 2 (2 b o2
+ )Ks" 7 T3y 60T (140 7 310 5 T 1008 x*)]

= pUdF;,

The two differential equations (15) and (16) are

(d)d) (p, U Fy) — U(d)dx) (pUSFs) + U(dU]dx) p10Fy = — pU 6742 + 32)
(@dx) [y — 1) pUSF] — [yly — 1) py p,™] (4] d2) (p,US F5) + pUHdUdx)s F = U~ F,,
11



or
Ad)dx) (Fy— Fy) + 3 (F, — Fy) diJdx = — [2 + 34 4 A(2F, — F, + Fy)] U~*(dU/dx)
— 1A(F, — Fy) oy dpy)d%) 4 3A(F, — Fy) (dUJdx)~* (@U)ds?) . (22)

and
Mdldx) (Fy— F;) + MF, — Fy)dijdx = —A(F, — F;) UdU/dx) 4 4(F, + Fs) py ™ (dp,/dx)
+ [Fe+ (y — 1) AF ]y Hy — 1) p7 " p,U(AUdx) + L4(F, — F) (AU /dx)~* (d*U[dx?) . (23)

Although the functions F,, F,, I'; and F, involve the three dependent variables 4, 6 and x, the
equations can be written as first-order differential equations in the two dependent variables
4 and 6 by introducing x as a function of 6 and 2 according to equation (21).

Before proceeding to the solution of these equations for the flow past a flat plate, it is worth
noticing a similarity with the incompressible case which appears in the application to the flow
round a bluff-nosed body. The integration of the equations is started at the nose where U = 0,
aU/dx # 0, and is continued until the point of separation is reached at 2 = — 12. Equation (21)
shows that 6 = 1 at the nose and, further, that (1 — 0) cc U? in the neighbourhood of the nose.
The initial values of 2 and x can be obtained from equations (22) and (23). For equation (22) cannot
be satisfied when U = 0 unless, using the fact that 6 = 1,

116 79

iy} A? =U.
315 T 7560 © T 1536 0

A

—_ l H, — F frnnd —_—
This is the equation for the value of 1 at the forwaid stagnation point in the flow of an incom-
pressible fluid; the appropriate root is 4 = 7-052. Also, equation (23) can be written as
C.U + C,U? = 0 where C, and C, are certain coefficients. When U = 0, it is necessary that

C, = 0 and this gives, with 6 = 1,
ox*( 2—{—2/6 [( _ 3 1 1 1
5% 0 7

60 x*

3 1
8%

1
x* 5
11

1 1 1 1 ] 52
}. s P e Nt —_
+ (120 140 2 T 210 x® 1008 x* +

35 105’1+420

This gives, when the value 2 = 7-052 is used, the following equation for the initial value of x
o(0-4x® — 0-24123x* + 0:09249 — 0-05213x~* + 0-009671x % = 0-10535 .

The range of application of the method in this case is limited to Prandtl numbers less than 0-5.
The equation has the root x = 1 for ¢ = 0-505, but for all higher Prandt]l numbers the roots are

less” than 1.

2.3.3. Flat plate thermometer. Uniform pressure gradient—Hartree* has examined the
possibility of integrating the boundary layer equations on the differential analyser in the case
when the pressure in the main stream increases at a uniform rate. This example will be
considered here.

Let the suffix 7 refer to conditions at the leading edge of the plate which is taken as the origin
of co-ordinates. If B(> 0) is the uniform pressure gradient, the pressure in the plane at
distance x downstream from the leading edge 1s given by $, = p,; + px. It is convenient to use
a new variable &, defined by & = 1 + Bx/p,;, and conditions in the main stream can then be

expressed in terms of & as follows
Dl = &, pifpu = &V, U = UP + 2¢,Ty; (1 — E¥=)
and
= [M2 4 2/(y — 1)] &7 — 2/(y — 1)..
12



If differentiation with respect to the variable ¢ is denoted by dashes, then
U’ (y — 1) & U _ U

U~ = DMFRI— ] T Ty U

Equations (22) and (23), become in terms of the independent variable &,

Md]dg)(Fy— Fy) + $(Fy—Fy) dajdé = — (U'|U)[2 + §4 + $A(5F, — 3F4-2Fy) | — [A(F— Fy) ]/ (v£),
Ma|de)(Fu— Is) 4 3(Fa— F5) dajds = — (U’ [U)[§A(Fo— F5)]— [y = 1) Fo + A(Fa — Fs) ][ (£)

From these equations 6 and 4 can be found in terms of &, The solution will refer the boundary
layer along the plate fiom the leading edge, where 6 = 0, 2 = 0, up to the point of separation
where 2 = —12. Since the range of values of 4 is known previously, and especially since it is
the same range whatever the Mach number and Prandtl number of the main stream flow, it is
convenient now to regard 2 as the independent variable and 6 and ¢ as dependent variables. The

(differential equations are then

ay dojdi -+ by dgldd + ¢, =0, .. . . S (24)
ay d6[dh + bydéldd 4+ ¢, =0, .. .. .. .. (25
where
= 2(8/20) (F, — F)
= A(0/oM) (Fy— F,) dM[dé + (U'(U) [2+ §4 + $A(5F, — 3F, 4 2I%5)] + [A(F.— Fy)]/(vé),
= 2(2/e2) (I, — Fy) + §(F, — Iy,
— A(8/00) (F, — Fy),
= 2(8[oM) (Fy — Fy) dM[dé + (U'|U) [3A(Fs — F3)] + [(y — 1) Fe + A(Fa — F3))/(v€) ,
= A(3/02) (F, — F;) + 4 F,— Fj).
With
oy — 1)71/2 ,
‘= [ (y432 1)] § %;)1/2 :

the quantities a,, b, etc. may be written as

3 6
a; = Ay + % aann—{J + 0—1 2 aanﬂ_‘2 :
n=1

b= (U[U) (b -+ (1= 0) (buZ ™ + b+ £ 027+ (7)™ [+ (1= 0)(Fu + = BuZ)],

4

€, = Cp + (1 — 0) (611 + 2’9 mZ”) ’

8
Ay = Ay 271 + sy + Aoy Z" + 07" (ayZ ™ + Z A

i M-

2

by = (U,,./U) [(1—0) (bzoz b by + Z bZnZn)] FE T B+ (1—0) (0l '+ ﬂzz‘f‘ég Bl )],
= (1 — 0) (coZ™" + €0 + % WAL

where the coefficients a,,, etc. are functions of 4 only, and are given in Table 3.
13



When 2 =0, § = 1 and @, = a, = 0 so equations (24) and (25) do not contain 46/d4, and they
can be solved to give the initial values of d¢/di and 6. By differentiating these equations with
respect to 42 and substituting the values just determined, one obtains two equations which can
be solved to give the initial values of d0/d2 and d*¢/dA*.

On the other hand at 2 = — 12, f/(0) = 0 and therefore g”(0) = 0, so the density p satisfies
the boundary conditions
opfoy = d*ploy* =0aty =0,
and
p = py, Op[oy = 0%p[oy* =0 aty =6".

Since p has been taken as a quartic in (y/x) the coefficients of all four powers of (n/x) are zero, and
p = p; for all values of v at this position along the plate. It follows that 6 = 1, and the impli-
cation is that xy = 0 at 2 = — 12. A solution which is continuous cannot approach the value
x = 0 as 14— — 12, since the equations were formulated on the assumption that y > 1. It
should be emphasised, however, that this mathematical difficulty arises from the restrictions
involved by assuming that p is a quartic in ». Assuming that 1 — 6 ~ (12 4 1)" in the neigh-
bourhood of 2 = — 12, it i3 necessary that #n < 1/2, otherwise’y — 0 as A — —12. Then d6/d —
as 24— — 12 and from equation (24) it follows that d¢/di —. The difficulty of completing
the numerical integration as far as 4 = — 12 has been skirted, in this approximate treatment of
the boundary layer equations, by extrapolating for the value of & over the interval from 2 = — 11
to 4 = — 12.

The integration has been carried out in three cases of air flow (¢ = 0-715) past a flat plate,
when the incident stream has specific speeds of 0-1, 1-0 and 4/10. In the first case separation
occurs when the pressure has risen by one-fifth of one per cent of its value at the front edge; in
the second case the corresponding fractional increase is twenty per cent and at the highest speed
the pressure rises to nine times its initial value before separation occurs. The details of the
integration are given in Table 4.

The behaviour at a specific speed of 0-1 should be much the same as in the incompressible
case. It is, therefoie, of interest to compare the present result with the estimation given by
Howarth” (1938) of the point of separation for an incompressible fluid whose main stream velocity
is decreasing linearly. Howarth uses a variable which in the present notation is given by
(U; — U)/U; and finds that separation occurs at the place where this variable has the value
0-120. At the point of separation estimated here, £ = 1-0019 and (U; — U)/U; = 0-149 which
is close to the value 0-156 obtained by applying Pohlhausen’s method to Howarth’s case.

From the results for the other two specific speeds, it appears that, with a given linearly
increasing pressure, separation is delayed by increasing the Mach number of the incident stream.
For the same pressure gradient (8) and the same pressure (p,;) of the incident stream the distances
down the plate of the points of separation are in the ratio 1: 118: 4216 for Mach numbers of
0-1, 1-0 and 4/10 respectively.

Note added in revision for R. & M.

Howarth® (1948) has shown that the choice of a uniform pressure gradient that is independent
of the Mach number of the incident stieam is not a convenient basis for presenting the effect of
Mach number on separation. To obtain an alternative basis, write g = p,;U?*/l, where [ is a
length independent of x; then, p, = (1 + yM*x/l), and the values of x/lat separation are in the
ratios 1:1-18:4-22 for M; = 0-1, 1 and 4/10. With the new assumption that /is independent of
Zl}{,,-, these ratios are the ratios of the distances of the points of separation from the leading edge of
the plate.

Howarth considers a given main stream velocity, of the form U = U,(1 — «x/I'), where I is a
length independent of ». He finds that the values of x/I’ at separation are in the ratios 1:0-95:0-69
for M; = 0, 1 and 4/ 10, and shows that these ratios are qualitatively consistent with the previous
ones, although at first sight they appear to be contradictory.

14
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Note on the choice of polynomial for f and g
The choice between the cubic and quartic forms for f and g when considering the flow with
a linear pressure gradient past a boundary is easily made on the following considerations.

For incompressible fluids, when the quartic form is used
U = (2n — 29" + n') — &2n(1 — )

@ — _l_fl_(_] [7257'6 — 1549-4411 + 39-842% + ;LSJ )
d¢ U dg 21312 — 5-761 — 22 : . . (s

where & = p,/p,;; and p,, is the pressure at the front edge of the plate.

and

When the cubic form is used
/U = (31 — dn’) + Lan(l — n)?

and

ar _ 14U [1008+ 3544 + 1742 + 23} -
daE U d& 46-8 — 1-81 — 22 . - .. .. .. ..

Also U dU[dé = — py;/p, so that dU/d¢ is negative.

Equation (A) must be integrated from the front edge of the plate where 4 = 0 to the point of
separation where 4 = — 12. There is no difficulty in this, since the polynomials in 4 in the
numerator and in the denominator are both positive in the range 0 = 2 > — 12. On the other
hand, equation (B) must be integrated from 2 = 0 to 4 = — 6, and although the denominator
remains positive in this range the polynomial in the numerator changes sign from positive to
negative in passing from 2 = — 3 to 4 = — 4, and the value 2 = — 6 will not be reached. This
difficulty must also arise in the case of compress1ble fluids, at least for low enough values of the

main stream velocity.
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TABLE 1

Comparison of Drag and Temperature Coefficients with the Exact Values

Approximation I Quadratic
IT Cubic
IIT Quartic
IV Odd powers

V f=sinlan
M = +/10
At : Exact
Approximation 11 111 v \% colution
ag
Cy * 0-234 0-255 0-262 0-236 0-218
1-2
Cr * 0-749 0-711 0-62 0-82 1-105
Cy * 0-236 0-257 0-266 0-238 0-222
1-0
Cr * 0-693 0-658 0-57 0-76 1-000
Cy * 0-240 0-260 0-270 0-241 0-228
0-733
Cyr * 0-608 0-578 0-49 0-67 0-838
C, 0-276 0-254 0-274 0-281 0-254 0-248
0-25
Cr 0-52 0-393 0-373 0-32 0-43 0-247
M=0
C ot Exact
Approximation I II IIT1 Iv A% solution
[
Cy 0-351 0-323 0-343 0-336 0-328 0-331
" 1.2
Cr * 0-988 0-904 * * —
Cy 0-351 0-323 0-343 0-336 0-328 0-331
1-0
Cyr * 0-907 0-831 * 1-00 1-000
s 0-351 0-323 0-343 0-336 0-328 0-331
0-733
Cyr * 0-783 0-720 * 0-87 0-852
Cy 0-351 0-323 0-343 0-336 0-328 0-331
0-25
Cr * 0-480 0-437 0-34 0-53 —

* Denotes that the result is outside the range x > 1.
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Coefficients for Drag and Temperature (see Figs. 1, 2) using the Quartic Forms for f and g

TABLE 2

(96124)

M 0 0-5 10 1-5 2-0 41/10
1(.’2 Cy, 0-343 0-337 0-325 0-310 0-292 0-255
Cr 0-904 0-890 0-865 0-830 0-792 0-711
10 Cy 0-343 0-337 0-327 0-311 0-294 0-257
C, 0-831 0-819 0-797 0-765 0-732 0-658
08 Cy, 0-343 0-338 0-328 0-312 0-296 0-259
Cp 0-749 0-740 0:721 0694 0-665 0-599
06 Cy, 0-343 0-338 0-328 0-314 0-298 0-262
Cr, 0-657 0-650 0-635 0-613 0-589 0-532
0.4 Cy 0-343 0-339 0-330 0-317 0-301 0-267
Cr, 0-:549 0-543 0-531 0-515 0-496 0-451
0.9 Cy 0-343 0-339 0-332 0-321 0-308 0-276
) Cr 0-406 0-402 0-395 0-385 0-373 0-343
0 Cy, 0-343 0-343 0-343 0-343 0-343 0-343
C, 0 0 0 0 0
¢ = (0-733
M Exact solution Frankl’s solution Present solution
05 C, 0-326 0-333 0-338
Cr, 0-864 0-78 0-71
10 Cy 0-312 0-326 0-328
Cr 0-855 0-76 0-69
L5 Cy, 0-294 0-310 0-313
Cr, 0-850 0-76 0-67
9.0 Cy, 0-274 0-290 0-297
Cr, 0-852 0-77 0-64
Cy, 0-228 0-245 0-260
/10
Cr, 0-838 0-82 0-58
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TABLE 3

A 10 a3 1o a3 2 4T 16
0 0 0 0 0 0 0 0
— 1 0-1184 —25-66 235-9 —648 25-65 —283-1 864
— 2 0-2383 —43-87 369-6 —928 43-87 —443-5 1237
— 3 0-3589 —55-02 420-1 —954 55-02 —504-1 1272
— 4 0-4797 —59-70 408-0 —828 59-70 —489-6 1104
— 5 0-6000 —58-72 353-5 —630 58-72 —424-2 841
— 6 0-7191 —53-11 2758 —424 53-11 —331-0 565
— 17 0-8363 —44-06 1919 —247 44-06 —230-3 329
— 8 0-9510 —32-95 115-5 —119 32-95 —138-6 159
— 9 1-0625 —21-28 56-32 — 43-8 21-28 — 67-59 58-4
—10 1-1702 —10-71 19-01 — 99 10-71 — 22-82 13-2
—11 1-2734 — 2-998 2-68 — 0-70 2-998 — 3:21 0-93
—12 1-3715 0 0 0 0 0 0
A by by b b3 b1 015
0 2-0000 0 0 0 0 0
— 1 2-4377 0-03636 —0-6043 75-86 — 640 166
— 2 2-8957 0-08000 —1-229 130-1 —1004 238
— 3 3-3723 0-1300 —1-872 163-7 —1143 245
— 4 3-8660 0-2000 —2-533 178-2 —1112 213
— 5 4-3750 0-2857 —3-208 175-9 — 966 163
— 6 4-8976 0-4000 —3-898 159-6 — 755 109
— 7 5-4324 0-5600 —4-599 132:9 — 526 64
— 8 5-9775 0-8000 —5-311 99-7 — 318 31
— 9 6-5313 1-200 —6-031 64-7 — 155 11
—10 7-0922 2-000 —6-759 32-7 — 538 3
—11 7-6586 4-400 —7-492 9-2 — 7 0
—12 82287 © —8-229 0 0 0
A B B Bre B1s Bra
0 0 0. 0 0 0
— 1 0-11841 —0-1184 7-631 —37-0 41
— 2 0-23827 —0-2383 13:05 —58:0 59
— 3 0-35893 —0-3589 16-37 —66-0 60
— 4 0-47972 —0-4797 17-76 —64-1 52
— 5 0-59998 —0-6000 17-47 —55-5 40
— 6 0-71906 —0-7191 15-80 —43-3 27
— 7 0-83628 —0-8363 13-11 —30-1 16
— 8 0-95099 —0-9510 9-80 —18-1 8
— 9 1-0625 —1-062 6-33 — 88 3
—10 1-1702 —1-170 3:19 — 30 1
—11 1-2734 —1-273 0-89 — 04 0
—12 1-3715 —1:371 0 0 0
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TABLE 3—continued

A C10 ‘i C12 C13 C14
0 —0-058730 0-058730 —7-356 58-60 —145-5
-1 —0-060042 0-060042 —4-534 +25-50 — 399
— 2 —0-060803 0-060803 —1-818 — 1-46 + 32-4
— 3 —0-061013 0-061013 +0-687 —21-70 74-8
— 4 —0-060672 0-060672 2-88 —35-05 92-4
— 5 —0-059780 0-059780 4-67 —41-79 91-2
— 6 —0-058337 0-058337 5-98 —42-54 77-3
— 17 —0-056342 0-056342 6-73 —38-33 57-1
— 8 —0-053797 0-053797 6-86 —30-50 36-0
-9 —0-05070 0-05070 6-29 —20-69 18-2
—10 —0-04705 0-04705 4-99 —10-84 6-3
—11 —0-04286 0-04286 2:90 — 3-14 0-92
—12 —0-03811 0-03811 0 0 0
2 Az g Y] 23 @24
0 0 0 0 0 0
— 1 0-01818 —0-3083 36-30 —301-1 776
- 2 0-04000 —0-6333 62-86 —476-2 1119
— 3 0-06667 —0-9750 79-84 —546-7 1160
— 4 0-1000 —1-333 87-77 —536-4 1014
-5 0-1429 —1-708 87-50 —469-6 779
— 6 0-2000 —2-100 80-23 —370-3 528
— 7 0-2800 —2-508 67-50 —260-4 310
— 8 0-4000 —2-933 51-20 —158-5 151
-9 0-6000 —3-375 33-56 — 78-1 56
—10 1-000 —3-833 17-14 — 26-7 13
—11 2-200 —4-308 4-87 — 3-8 1
—12 0 —4-800 0 0 0
2 4] Q26 Y A8
0 0 0 0 0
-1 0-03636 —36-30 361-3 —1034
— 2 0-08000 —62-86 571-4 —1492
— 3 0-1333 —79-84 656-1 —1547
— 4 0-2000 —87-77 643-7 —1352
-5 0-2857 —87-50 5635 —1039
— 6 0-4000 —80-23 444-3 — 704
— 7 0-5600 —67-50 312-5 — 413
— 8 0-8000 —51-20 190-2 — 202
— 9 1-200 —33-56 93-7 — 75
—10 2-000 —17-14 32-0 — 17
—11 4-400 — 4-87 4-6 — 1
—12 o) 0 0 0

19



TABLE 3—continued

A o by bas bas bag
0 0 0 0 0 0
— 1 —0-01818 0-4625 — 63-5 541-9 —1422
— 2 —0-04000 0-9500 —110-0 857-1 —2052
— 3 —0-06667 1-462 —139-7 984-1 —2126
— 4 —0-1000 2-000 —153-6 965-5 —1859
-5 —0-1429 2-562 —153-1 845-2 —1428
— 6 —0-2000 3-150 —140-4 666-5 — 967
— 7 —0-2800 3-762 —118-1 468-7 — 568
— 8 —0-4000 4-400 — 89-6 285-3 — 277
— 9 —0-6000 5-062 — 58-7 140-6 — 103
—10 —1-000 5-750 — 30-0 48-0 — 23
—11 —2-200 6-462 — 8-5 6-8 — 2
—12 — 7-200 0 0 0
4 Bao B Bas Bas B Bes
0 0-60171 0 0 0 0 0
— 1 0-58725 —0-04372 0-3083 —10-80 47-3 —49
— 2 0-57471 —0-09620 0-6333 - —18-70 74-8 —71
— 38 0-56411 —0-1603 0-9750 —23-75 85-8 —73
— 4 0-55543 —0-2405 1-333 —26-11 84-2 —64
-5 0-54868 —0-3436 1-708 —26-03 73:7 —49
— 6 0-54386 —0-4810 2-100 —23-87 58-1 —33
-7 0-54096 —0-6734 2-508 —20-08 40-9 —20
— 8 0-54000 —0-9620 2-933 —15-23 24-9 —10
-9 0-54096 —1-443 3-375 — 9-98 12-3 — 4
—10 0-54386 —2-405 3-833 — 5-10 4-2 — 1
—11 0-54868 —5-291 4-308 — 1-4 0-6 — 0
—12 0-55543 — 4-800 0 0 0
2 Co0 o Cop Cos C2q
0 0-016667 —0-1500 10-286 —74-06 172-8
— 1 0-021488 —0-1625 6-639 —33-7 + 49-8
— 2 0-028000 —0-1750 + 2-998 0 — 36-1
— 3 0-037037 -—0-1875 — 0482 +26-0 — 87-9
— 4 0-050000 —0-2000 — 3-66 43-9 —111
— 5 0-069388 —0-2125 — 6-37 53-6 —110
— 6 0-10000 —0-2250 — 8-49 55-5 — 95
-7 0-15200 —0-2375 — 9-84 50-9 — 171
— 8 0-25000 —0-2500 —10-29 41-1 — 45
-9 0-46667 —0-2625 — 9-68 28-3 — 23
—10 1-1000 —0-2750 — 7-86 15-1 — 8
—11 4-6000 —0-2875 — 4-68 4-4 — 1
—12 0 —0-3000 0 0 0
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TABLE 4

Flow Along Flat-plate Thermometer.

Mach number of incident flow = 0-1

= 0-715

Linear Pressure Gradient

A & M 0 %
0 1-0000 0-1000 0-9986 1-22
— 1 1-0004 0-0973 0-9987 1-29
— 2 1:0007 00952 0-9989 1-36
— 3 1-0009 0-0933 0-9990 1-45
— 4 1-0011 0-0917 0-9991 1-56
— 5 1:0013 0-0904 0-9992 1-68
— 6 1-0014 0-0893 0-9994 1-83
— 7 1-0016 0-0882 0-9995 2:03
— 8 10017 0-0874 0-9996 2-31
—9 1:0017 0-0867 0-9997 2:72
—10 1-0018 0-0861 0-9998 3-46
—11 1-0019 0-0855 0-9999 5-23
—12 1-0019 0-0851 1-0000
Mach number of incident flow =1
A & M 0 %
0 1-000 1-000 0-878 1-28
— 1 1-035 0-970 0-891 1-34
— 2 1-066 0-944 0-902 1-41
— 3 1:093 0-922 0-913 1-50
— 4 1-116 0-903 0-924 1:60
— 5 1-136 0-886 0-934 1-71
— 6 1-154 0-872 0-943 1-87
— 7 1-170 0-859 0-952 2:06
— 8 1-183 0-848 0-961 2-34
— 9 1-196 0-838 0-970 2:74
—10 1-206 0-830 0-978 351
—11 1-215 0-822 0-988 5-14
—12 1-224 0-815 1-000
Mach number of incident flow = 4/10
0 1-00 3-16 0-463 1-61
— 1 1-29 2-99 0503 1-64
— 2 1-71 2-80 0-549 1-68
— 3 2-28 2-62 0-599 1-73
— 4 2:97 2-44 0-650 1-80
— 5 375 2-30 0-699 1-89
— 6 4-56 2:17 0-744 2:01
— 7 5-36 2:07 0-788 2-18
— 8 6-13 1-98 0-829 2-44
— 9 6-87 1-91 0-868 2-83
—10 7:59 1-84 0-907 3:53
—11 8:28 1-78 0-947 5-29
—12 9-01 1-73 1-000
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