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Summary.-Two aspects of the solution of the equations governing steady gas flow in a laminar boundary layer,
when the main stream velocity is non-uniform, are considered. In the first place it is shown that the equations can be
reduced to ordinary differential equations, whose solution implies the similarity* of the distributions of velocity and
temperature in planes perpendicular to the boundary, only in the case when the main stream velocity is uniform. In
the second part, an extension of Pohlhausen's method is used to determine the point of separation of the boundary
layer in an air flow in which the pressure increases with a uniform gradient.

PART I

1.1. Introduction.-Exact solutions of the boundary layer equations for a compressible fluid
flowing with uniform velocity in the main stream have been given by Busemann, and by Karman
and Tsien, for the special case in which the Prandtl number is equal to 1. Much more extensive
sets of solutions have been obtained by Brainerd and Emmons for a series of Prandtl numbers,
originally with constant values for the coefficients of viscosity and thermal conductivity 1(1941)
and later with these coefficients varying with temperature 2(1942). In both these cases conditions
depend only on one independent variableyjx1

/
2

, and consequently the solutions simply involve
the integration of ordinaly diffe~entialequations.

For an incompressible fluid with a uniform velocity in the main stream the solution is also a
function of yJX1

/
2 only. Otherwise, when the main stream velocity U is not uniform, it has been

shown by Goldstein 3(1939) that there are no solutions in which the velocity distributions are
similar for different values of x, apart from the cases when U - cxm or U == ceax

•

The corresponding question for a compressible fluid will be examined :-What special forms
of the variations of U with x allow solutions with similar velocity and temperature distributions
for different values of x ?

1.2. Boundary Layer Equations.-The steady flow of a compressible fluid along a fixed boundary
will be considered. With the co-ordinate axes of x and y along and at right-angles respectively
to the wall the usual approximations of boundary layer theory yield the equations

C
au au) _ ap a C· au)

p u oX + v oy - - oX + oy f1 oy ,

* In the sense that each distribution function is a function of a single variable of the form y times a function of x,
where x, yare distances measured along and perpendicular to the boundary.
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0==-- op
oy ,

o 0 op (0 U)2 3 ( 0T)pu - (cpT) + pv - (cpT) == ~t - + II - + - u-...
3x oy 0 x oy oy 0 y

The equation of continllity is

(2)

(3)

(6)

(9)

(11 )

(10)

(7)

(8)PI == RpITI .

From equations (6) and (7) it follows that

cpTI + iU2
- const. == cpTo•

It follows from equation (2) that the pressure is constant, for a given value of x, throughout the
boundary layer, and therefore that it is equal to the main stream vallIe for the same value of x.
Consequently, for all values of y,

p(x, y) T(x, y) == PI(X) TI(x) .

By using this relation, P can be eliminated from equations (1) to (5) which then give

u au + v au = T U dU + RT ~ (fl au)
ox oy T I dx PlOY oy'

00 r uT dU RT (OU)2RT 0 ( aT)u ~ (CpT) + v - (cpT) == -- - U - + - fl - + - - x - ,a,x oy T I dx PlOY PlOY oy

au + av= ~ U dU + 1 (u aT + vaT) .
ax oy RT1 dx T ox oy

When the main, stream velocity is uniform these equations can be reduced to three ordinary
differential equations involving the three unknowns, u, v and T,.which are functions of the inde­
pendent variable yjx1

/
2

• Brainerd and Emmons h3.ve integrated these ordinary differential
equations in several cases, for different main stream velocities \ivith different laws of dependence
of the viscosity coefficient fl on the temperature T.

a a
-- (pu) + - (pv) - 0 . (4)ox oy

It is assumed that the fluid is a, perfect gas so the relation between pressure, density and
temperature 'is

P == RpT. (5)

In the main stream, where the effects of viscosity and heat condition are neglected, the pressure,
density, temperature and velocity, are all functions of x only. They satisfy the following equations)
in which the suffix 1 refers to the main stream,

PI U dU = _ dPI
dx dx '

PI!:.. (Cp T I) = dPI,
dx dx

1.3. Reducibility to Three Ordinary Differential Equations.-The possibility of obtaining a
reduction from partial to ordinary differential equations when the main stream velocity is non­
uniform will now be examined. Suppose that by employing the substitutions

u(x, y) == F 1(x, y) u 2(r;) ,
v(x,y) == F 2(x,y) V2('7) ,

T(x, y) == F 3(x, y)T2 (Yj) ,
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where 17 is a function of x and YJ the resulting equations involve only one independent variable,1J.
These substitutions are not completely general, but at first sight they appear to be less restrictive
than those required by the assumption that the velocity and temperature distributions are
similar for different vallles of x. When these forms. for l~, v and T are used, the equations become

Fl FIx U 2
2 + F 12 1Jx U 2 u2' + FlY F 2 U 2 V2 + F l F 2 r;y u2' V2 - U(dU/dx) T1-l Fa T 2

- RPl-1 fl [F1yy Fa U 2 T 2 + (2F1y Fa rjy + Fl Fa 'Yjyy) u2 ' T 2 + Fl F a17y2 u/' T 2J

- RPI-1 (d,u/dT) [FlY Fa Fay U 2 T 22 + FlY F a2 r;y U 2 T 2 T 2 ' + F l Fa Pay 17y u 2 ' T 2
2

+ F l F a2 17 y 2 u 2' T 2 T 2'J == 0 ,

[ep F l Fax + U(dU/dx) Tl-l F I FaJ U 2 T 2 + Cp F 2 Fay V2 T 2 + Cp F1Fa rJx U 2 T 2 ' + Cp F 2F arJy V2 T 2'

- RPl-l
ft [F1y2 Fa U22 T 2 + 2Fl FlY Fa 'YJyU 2 u2' T 2 + F 12 Fa 'YJy2 U2'2 T 2J

- RPl-1 u [Fa F ayy T 22+ (2FaFay ny + F 32 'YJyy) T 2T 2' + F a2'YJy2 T 2T 2"J

- RPl-1 (dujdT) [Fa Fay2 T 23 + 2Fa2 Fay'YJy T 22 T 2' + Fa2 'YJy2 T 2 T 2'2J == 0 ,

(12)

(13)

(14)

In these equations, the suffixes x,y denote ajax, ajay, and the dash denotes a/a17. The specific
heat cp has been assumed to be constant.

Apart from the possibility of a common factor in each equation, the part of each term not
involving u2, V2, or T 2 must be a function of 'YJ only. Thus comparison of the coefficients of U 2V2

and U2'V2 in equation (12) leads to the equation F1-l FlY == GI(17)rJy, where GI is an
undetermined function of 'YJ. Consequently log F I == fGl('YJ)d'YJ + H1(x), where HI is an
undetermined function of x. This equation carl be written as Fl(x,y) == 11(rJ)K1(x), where
II == exp [fG1 (1J)d'YJ] and K l == exp H 1(x). But J1(11) must be unity since it is supposed that all
factors of u which are functions of 1] have already been absorbed into u2 ( 'YJ). It therefore follows
that F I (x, y) is a function of x only. Similarly comparison of the coefficients of v2T 2 and v2T 2 '

in equation (13) gives the result Fs(x, y) == Ks(x). Finally, from the coefficients of V2 and v2' in
equation (14) F 2(x, y) -== K 2(x). Now the coefficients of U 2

2 andu2u2' in equation (12) give the
equation F I -

1 FIx == K l -
1 (dKl/dx) == L1('YJ) 1]x, where L1 is an undetermined function of rl.

Integration of this equation gives log K 1 == fL1(r;)drJ + Ml(y), where M l is an undetermined
function of y. This is equivalent to Nl(n) == Kl(x) P1(y), where N l == exp [fLl(rJ)drJ] and
PI == exp [-Ml(y)J. There is no restriction in taking N1(rJ) equal to rj. For, if this is not the
case, a new independent variable' can be defined by the equation' == NI('YJ) and each of u, v
and T can be written in the formf(x)g(') where C == K1(x) P1(y). Thus the independent variable
in the ordinary differential equations is expressible as the product of a function of x and a
function of y.

This does not mean that the solution of the differential equations necessarily has the property
of similarity, whereby the distributions of the velocity component and temperature are similar in
the planes of constant x. Compare, for example, the distribution in the pla'ne through the
point (x, 0) with that in a standard plane x == %0. The ordinate y of the, point in the arbitrary
plane for which conditions correspond to those at the point (xo, Yo) in the standard plane is given
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by the equation PI(y)/P1(Yo) == KI(xO)/KI(x). The condition for similarity is satisfied o.nly if
this equation iml)lies that Y/Yo is indepel1dent of Y and )'0 individ.11ally. This is certainly the case
if .PI(y) is a power of y.

Now by comparison of the coefficients of u2'T2 and u2"T2 in equation (12) it is seen that the
expression (2FIy F s 17y + F1F sl1yy)/(F1F s 17y2) == (d2PI/dy2)/[K](dPI/dy)2J must be a function of 17.
It follows that Pl (d2PI/d),2)/(dP1/dy)2 must be .a constant, and therefore that either PI(y) == )Js or
PI(y) == eay. That the second alternative is not permissible is seen by considering the
behaviour of u(x, y) at the wall y == 0. If P1(y) == eay, then u == K 1(x)u2(KI eay), and at
the wall u == K 1(x)u2(KI(x)). It is not possible for the last expression to val1ish as required
for all values of x, unless either K1(x) is a constant or u2(r;) == 0 everywhere, and neither of these
conditions can be satisfied. The conclusion is that P1(y) is of the form yS and that a solution of
the ordinary differential equations must h.ave the property of similarity.

By considering the coefficients of u2 T 2 and u2T 2 ' in equation (13) it follows that the expression
[cpF1Fsx + U(dUjdx) T1-l FIFsJ/[cp FI'Fsr;xJ == [K3 -

1(dKs/dx) + U(dU/dx) (cpTI)-lJ/r;x
== [KS-l(dKs/dx) - TI-l(dTl/dx)J/[KI-l(dKI/dx) 17J

must be a function of 17. Consequently [Ks-1(dKs/dx) - TI-l(dTl/dx)J/[KI-I(dKl/dx)J == a,
where a is a constant. Hence, Ks/TI === AKla where A is also a constant.

Comparison of the coefficients of U 2 and u 2' in equation (14) shows that the expression
[FIX ~ U(dU/dx) (RTI)-l F 1 - F l F s- 1 FsxJ/[FI 17xJ

== [K1-I(dKI/dx) 7- y(y - 1)-1 TI-I(dTl/dx) - K s- I (dKs/dx)J/[KI- I (dKI/dx) r;]
must be a .function of 17. This requires that

KJ.-l(dKl/dx) + y(y - 1)-1 T1-I(dTI/dx) - K 3 -
I(dKs/dx) == pK1- l (dKI/dx) ,

where (3 is a constant; and this equation in turn requires that T1Y/(Y-I)/Ks == BK/J-\ where B is
also a constant. Hence ABKIa+fJ-I == TIl/(Y-I), so K l == TIn, where the constant factor has been
taken equal to unity, without loss of generality. Also K 3 (== AK1a T I) == TIm, where the constant
factor has again been taken equal to unity.

Finally from the coefficients of U 2
2 and T 2 in equation (12) it is necessary that

[U(dU/dx) T1-l FsJ/[F1F1xJ == - [cp T1-l(dTI/dx) KsJ/[K}(dKI/dx)J === ,- cp T1m-2njn
is a function of 17. But this expression is a function of x only and must therefore be a constant,
and so m === 2n.

Thus the expressions for u and Tare
u (x, y) === TIn (X) U2 ( 17),

where"1j - yST1n(x) .

As y -+ 00, 17 ---+°or 00 according as s 3. 0, and U 2 and T 2 must in either case become constant.
But T(x, (0) == TI so it is necessary to have 2n == 1. Consequently u(x, ex)) . U(x) == CTII/2,
where (" is a constant. In order to satisfy the equation cpTI + t U2. cpTo it is Ilecessary that
cj)T1+ i C2TI == cpTo, so Tv and PI, PI and [J are all constants.

If the boundary' layer equations are to be reducible to three ordinary differential equations by
substitutions of the type used above (which have been shown to imply solutions with the
property of similarity), then conditions in the main stream must be uniform.



PART II

2.1. In a recent paper Cope and Hartree4 (1945) have assessed the problem of solving the
boundary layer equations for compressible fluids when the main stream velocity is non-uniform.
Cope has examined the possibility of extending the approximate method of solution for
incompressible fluids given by Pohlhausen. He has found that the use of the equation of energy,
cpT + tu2 -== const., to express the density and temperature in terms of the velocity considerably
complicates the method. The different extension of Pohlhausen's method used here was
suggested by the treatment of the problem of forced convection in a laminar bOllndary layer at
a flat plate, given in Modern Developments in Fl~tid Dynamics5

• At a later stage it was found
that a similar method had been given previously in a paper by F!ank16 (1934). l'he accuracy of
the method is measured against an exact solution in the case of a uniform main stream velocity.*
The method provides a forecast of the position of separation in retarded flow.

2.2. Momentum a1td Energy Equations.-By considerillg the challge of lillear lTIOlnentum
in a semi-infinite section of the fluid, extending' from the boundary in the direction normal to
the boundary, the momentum equation is obtained. The same result is reached by integrating
equation (1) with respect to y from 0 to 00. Similarly the energy equation is obtained by
integrating equation (3) in this way. Infinite integrals are replaced by finite integrals by introducing
the so-called thicknesses of the velocity and temperature boundary-layers, denoted by band b'
respectively 5. At points further from the boundary th.an b the velocity u is indistinguishable
from the main stream velocity U to the extent that f~(U - u)dy can be neglected. Similarly b'
is such that f~ ,(T - T1)dy can be neglected.

It is not assumed that b' == b, necessarily. In the first place suppose that b' < b. At a
position y -== (j" such that 0' < 0" < (j, aT/ay == 0 and au/ay == 0 since 0" is outside the
temperature boundary layer but inside the velocity boundary layer. Hence equation (3) reads,
at y == 0", as

P1u(djdx) (cpT1) == u dPl/dx + fl(aujay)2 -== uPl(djdx) (cpT1) + fl(au/oy)2,

using equation (7), or

This involves a contradictioll, and therefore it is necessary to have 0' ~ b. So long as there is
dissipation in the flow the temperature boundary layer is at least as thick as the velocity
boundary layer.

In what follows, it is assumed that the gas is perfect, obeying equation (5), and that cp and Cv are
constant. ·

Momentum Equation
By using equation (4) and the facts that u == U at y == 00 and v ~ 0 at y - 0, it follows, after

integration by parts, that

Joo 0 Ioo
0pv - '(u -- U)dy == (u - U) - (pu)dy.

o oy 0 ox

Equation (1) can be written in the form
pU au/ox - pU dU/dx + pU dU/dx - p1U dU/dx + pV (%y)(u - U) -== (%y) (fl au/oy) .

When this equation is integrated with respect to y from 0 to 00 it gives

J6p (u au - 'U ddU)dy + U ddU J6
1

(p - pl)dy + J6 (u - U) ~ (pu)dy __ (I-' au)
o ax x x 0 () ox oy y=o'

* When this was written, in 1946, no solutions other than that for a uniform main stream were available, so far as
the author was aware.
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SInce

J
oo ()

(u - U) - (pu)dy == 0
o ax

and

Joo p roo T T(p - PI)dy == _1 1 - dy == o.
0' R . 0' TTl

T11is equatiol1 can be rearranged as

which is the same as

Energ_y Equatio1~

Again by use of equation (4), after integration by parts,

The energy equation (3) can be written as .

pu (ajax) [cp(T - T I )] + (p - PI) u (djdx) (cpTI ) + pv (ojoy) [cp(T - l~I)J

== ,u(ottjay)2 + (ajay) (u oT/oy).

Integration of this equation gives

0' a 0' d 0
4 a

f pu - [cp(T - TI)Jdy + f· (p - PI) u
d
- (cpTI)dy + f cp(T - T I) ~ (p·u)dy

o oX 0 x 0 uX

fo (OU)2 (aT)= . () It oy dy - u oy y ().

This call be written as

'-0'·0 .. 0'0 d 0' 0 (OU)2 (aT)
f ~ (pucjJT)dy - cpTI f - (pu)dy - PI -d (cpTI) f u dy == f fl ;-. dy - "~ '

o uX 0 ox x 0 0 uy uy y = 0

and finally in the form

d( Y fO') d fO' dU fO' fO (OU)2 (0 T)-d -I PI udy - cpTld- pudy + P1U
d
- udy == fh - dy - u ~ ·x y- 0 x 0 x 0 .. 0 oy uy y=o

6
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and from equation (3)

It is required to solve equations (15) and (16), together with (5), subject to the boundary
conditions which must be satisfied at the boundary y === 0 and at the lines of transition into the
conditions of the main stream, viz. y ==0, for the velocity, and y === 0', for the density and
temperature. .

In formulating ·the boundary conditions, two alternative ways of stating the thermal condition
at the solid boundary y == 0 present themselves. Either the temperature of the boundary is
known, and then the problem is to determine the rate of heat transfer between the flowing gas
and the wall, or vice versa the heat transfer is prescribed and it is required to find the temperature
of the wall. In both cases, of course, the gas in contact with the wall is at rest. In passing
from the boundary layer into the main stream there are no discontinuous changes in either the
velocity or the temperature.

Boundary Conditions
At y == 0, u == 0, v == 0 and either T or aT/oy is prescribed. Accordingly, from equation (1),

0== - dPI/dx + [(a/oy) (It au/ay)Jy=o ,

o== [fl (OU/oy)2Jy=O + [(a/ay) (x aT/oy)Jy=o.
At y === 0, u == U, onu/oyn == 0 (n === 1,2, CD •• ).

At Y - 0', T == Tv onT/ayn == 0 (n == 1, 2 ... ) .

2.3. Application oj Pohlhausen's Method.
The solution of equations (15) and (16) is carried out by writing

r; ::== y /0, X == 0' / 0, f) == Py = 0/ PI' u/U ==:;; f( r;) and P/ PI === f) + (1 - ()) g (r; /x) ,
and assllming suitable forms for the functionsj(r;) and g(r;/x). Henceforward it is assumed that
,a and x are constants. The boundary conditions in terms of j and g are

j(O} - 0, g(O) === 0, and either (j or g'(O) is given,

1"(0) == A,

[/'(0)J2 + 1 - e {2(1 - e) [g'(0)J2 ~ g"(O) 1= 0,
a(y - 1)A12x2()2 f) J

f(l) == 1, j(n)(l) == 0 (n == 1,2 ),

g(l) == 1, g<n)(I) == 0 (n - 1,2 ),

in which A == 02 PI(dU/dX)/fl, M is the Mach number of the flow in the main stream and a (== pcp/x)
is the Prandtl number.

For incompressible fluids, Pohlhausen took I.as a polynomial in r;, of either first, second, third
or fourth degree, and Lamb suggested the form I ==:: sin inr;. For the present consideration of
compressible fluids, some of these forms for j are also used and in each case g has the same form
as the corresponding I. Of course, the number of boundary conditions whicll can be satisfied is
determined by the degree of the polynomials adopted.

The particular case considered is that of the flat plate thermometer, which records the
temperature of the wall when thermal equilibrium has been attained. In this case there is no
heat tra11sfer and accordingly g' (0) == O.

2.3.1. Main stream velocity u11iform.-When conditions in the main stream are uniform, f) and
X are constants and equations (15) and (16) take the following simpler forms

P1U 2 U: [e + (1 - e)gJ(p - f)dl1} ~~ = - #~ 1'(0) ,

7
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If

and

so
- [ 1'(0) KJ -(1 e) ] + (I' _ 1)M2 L - J ·

This is an equatioll between the two unknowns f) and x.
provided by the boundary condition

a(y ~ D~2X2e2 g"(O) = [1'(0)J
2

•

(19)

A second equation for 0 and X is

(20)

and

It should' be noted in reference to equation (20) that the expression for g is chosen so that
g"(O) =1= O. Otherwise the implication is that 1'(0) == 0 and (oujoy)y=o:::=:: 0 everywhere along
the plate.

The values of () and X are obtained from equations (19) and (20) most easily in practice by
obtaining () for a series of values of X from equation (19), and then using equation (20) to give
the corresponding values of G. It is found that values of X between 1 and 2 give most of the
required range of values of G. When the values of () and X have been obtained, the skin frictional
drag on the plate and the temperature of the plate are easily derived.

Since

it follows that
02 == 2!1j'(O) x

P1U[I - (1 - 0)]] ,

(au) == { P1U3[I - (1 - e)JJf'(O) }1/2 .
oy y=o 2px

The drag coefficiellt (for both sid.es of tIle plate) is given by

C == 2f~p(ou/oy)y=o dx ==4R 1/2 C
D U2 1 V,

PI X

where R1 is the Reynolds number of the main stream flow, and
Cu - {tf'(O) [1 - (1 - O)JJ}1/2.

The temperatllre of the plate (Ty=o) can be expressed in terms of the actual temperatule (T1) and
the stagnation temperature (To) of the main stream flow by" means of the coefficient

C - Ty=o - 1'1 _ 0-1
- 1 _ 2(1 --- 0) _ 2aOx2[f'(O)J2

T - To - T 1 - U2/(2cpT 1) - O(y - 1)M2 - g"(O)

8



When the main stream flow is very slow, M ~ 0 and () -+ 1, so from equation (19)

lim (1 - O)/M2 == (y - l)IL/[Kf'{O)]
M-+O

and from equation (20)

CD -== 4R1- 1 /2 [i Jj'(0)]1/2 ,

linl (Ty=o - l~l)/(To - T1) == 2ax2[f'(0)J2/g"(O) .
M-+O

lim (1 - fJ)/M2 == a(y - 1)x2[j'(O)J2/g"(0) .
M-+O

X is then determined from the equatjon connecting these two expressions for the same limit, viz.
IL g"(O) - aKx2[j'(O)J3 == o.

In this case

and

Forms for f and g

1. Quadratic
It is possible in this case to satisfy the boundary conditions

Hence

j(O) == 0, /(1) == 1, /'(1) == 0

(g(O) - 0, g(l) == 1, g'(O) == 0 .

f == 2n- n2, g == (njx)2 ~

and

so
2 2 1 1

J = 15' J = 15 - 42 x2 '

2 1 .1 1 4K == -x - - + - - and L === - .
3 3 30 x2 3

In this case

2. Cubic
In addition to the boundary conditions given in 1, there are

f"(O) == 0 and g'(l) == 0 .

f == in - in 3
, g == 3(n/x)2 - 2(n/x)3 ,

from which

K = tx - ~ + 11 - 3 1 and L = ~ .
8 8 x2 70 x3 5

3. Quartic

The boundary C011ditions are

/(0) == 0, j"(O) -: (), f(l) === 1, /'(1) ~~ 0, f"( 1) == 0
and

g(O) == 0, g'(O) === 0, g(l) == 1, g'(l) ~== 0, g"(l) == 0.
These give

and so
37 37 118 1 47 1 281 1

J = 315' J = 315 - 1155 x2 + 693 x3 - 20020 x4 •

2 3 1 1 3 1 1 1 52K === -x - - + - - - - - + - - and L == - .
5 10 7 x2 35 x3 60 x4 35
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4. Series oj odd powers jor j, even powers jor g
With tIle same boundary conditions as in the case of the quartic,

1f = 8 (15n - 101J3 + 3n 5
), g = 3(n/x)2 - 3(n/x)4 + (n/x)6,

1.- 445 ] _ 445 _ 10585 1 + 2501 1 _ 311 1
-3696 ' - 3696 192192 x2 160160 x4 155584 x6

'

K - 16 _ 5 + 5 1 _ 3 1 + 1 1·.d L _ 45
- 35x 16 64 x2 160 x4 448 x6 an - 64 .

5 f . 1 · 21 /· ' == SIll -'2-n r; J g == SIn 2n 17 X

2 1
J==---"

7(, 2'

J - 1 _ ! + 1 + sin :n/ X + 1 - sin :n/ X _ X sin :n/ X _ sin :n/ X + sin :n/ X ,
n4 2n(1 + 2/x) 2n(1 - 2/x} 4n 8n(1 + l/x} 8n(1 - l/x)

K = 1 + X - 1 _ 1£ sin .::: + 1 .-j-- sin :n/ X + 1 - sin:n/X and L = ~2 •

n 2 2% X 2n(1 + 2/x) 2n(1 - 2/x) 8

Reference to Brail1erd and Emmons's exact solution4 for the flow along a flat-plate thermometer
shows which of the above approximations is the most satisfactory. In their paper, the drag
coefficient and the coefficient giving the temperature of the plate are tabulated for a === 0, 0- 25,
0·733, 1·0 and 1-20 at Mach numbers of 0, J, 1-5,2 and V10. For the purpose of making the
compariso,n the present approximations have been worked out only for Mach number3 0 and V10­
The results are given in Table 1. In some cases, the approximation does not cover the whole
range of interest without violating the condition that X {: 1. However, if an approximation is
adequate at M - 0 then it is adequate to cover the range at all Mach numbers.

Inspection of Table 1 shows that the approximation! == sin tn1] and g === sin2 in1]/x gives the
best results, although it does not quite cover the range of Prandtl numbers. In all the approxi­
mations the drag coefficient is given much more accurately than the temperature coefficient,
which is generally underestimated. Even with the trigonometric form for f and g the temperature
coefficient is as much as 26 per cent too low at M == V10 for a Prandtl number of 1· 20. The
discrepancy becomes smaller as the Mach number is reduced, and it is also less for smaller Prandtl
numbers.

For atmospheric air, the results of Frankl's generalisation of Pohlhausen's method are quoted
in Table 2. Frankl assumes that X '=== 1, takes the quartic forms for j and g, and obtains more
accurate results than the present method gives.

Although the choice of j and g is to some extent a question of ( trial and error' with the exact
solutions available as a guide, one may say that it is the form of g rather than j which is critical.
In the case of an incompressible fluid, the drag coefficient depends on the integral f: j(l -f)dr;
andj'(O), since CD == 4R1-l/2[!lj'(O)J1

/
2. ,The integral does not vary rapidly witllj, and any form

of f for which j'(O) : 3/2 will give a good approximatiol1 to the drag coefficient. In the com­
pressible case, it seems to be g" (0), occurring in equation (20), which is particularly influential in
determining () and the density and temperature at the plate. The simple polynomials tried have
given values of g"(O) rather too small. '

2.3.2. Main stream velocity non-unijorm.--In this section it is no longer assumed that the
main stream flow is uniform. In the case when there is no pressure gradient in the main stre'ain,
apart from the trigon~metricform for jand g which does not cover the whole range of interest,
the cubic form gives the best results. However it is not suitable for use. when there is a pressure
gradient.* Accordingly, the quartic form is used.

* See the note at the end of the paper.
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The boundary conditions which can be satisfied are:

1(0) == 0,/"(0) == -A, 1(1) - 1,j'(1) -- O,~f"(l) == 0

and
g(O) == 0, (1 - e)g"(O)j[a(y - 1)M2x2(j2J == [j'(0)J2, g(l) == 1, g'(l) == 0, g"(l) == O.

Then

wllere

III this case,

(21)

I: pu
2
dy = PIU2b{8(:~ + A7~~0 + A29O~2) + (1 - 8) [(i~~~ :2 - ~~~ :3 + ~:~~5 :4)
+ AC~~O :2 - 1~;95 :3 + 1:0\8 :4) + A2C3~60 :2 - 24~48 :3 + 144

1
144 :4)J}

== PIU2~F1' say,

I
6

' , [ (X 1 1 l)J~ pdy - Pib = Pib - 1 + (1 - 8) -"2 + 1 - x2 + "2 x3

(jl [3 1]I udy == Uo X - - +A - == U~F4
o 10 120 '

I
6 (OU)2 U

2 [52 4 2 1 ] U 2

o oy dy = T 35 + A lOS + A 420 = yF6 •

The two differential equations (15) and (16) are

(djdx) (PIU20Fl) - U(d/dx) (P1UoF2) + U(dUjdx) PlfJFS == - flU 0-1(2 + fA),

(djdx) [y(y - 1)-1PIUoF4] - [y(y - 1)-1 PI PI-I] (djdx) (P1UoFs) + p1U2(dUjdx) of, ==#U20-1 F6 ,

11



or

Although the functions F 1 , F 2 , Fa and F 4 involve the three dependent variables It, (j and x, the
equations can be written as first-order differential equations in the two dependent variables
It and () by introducing X as a function of (j and It according to equation (21).

Before proceeding to the solution of these equations for the flow past a flat plate, it is \vorth'
noticing a similarity with the incompressible case which appears ill· the application to the flow
round a bluff-nosed body. The integration of the equations is started at the nose where U == 0,
dUjdx =1= 0, and is continued until the point of separation is reached at It == - 12. Equation (21)
shows that (j == 1 at the nose and, further, that (1 - 0) oc U2 in the neighbourhood of the nose.
Th.e initial values of It and X can be obtained from equations (22) and (23). For equation (22) cannot
be satisfied when U ~- 0 unless, using the fact tllat (j === 1,

2 + ~ + ),.(2F1 - F 2 + Fa) = 2 - ~16 ),. + 79 ),.2 +~ ),.a = 0
6 315 7560 4536 .

This is the equation for the value of It at the forwatd stagnation point in the flow of an incom­
pressible fluid; the appropriate root is It == 7· 052. Also, equation (23) can be written as
C1 U + C2U 2 == 0 where C1 and C2 are certain coefficients. When U == 0, it is necessary that
C1 == 0 and this gives, with (j == 1,

ax2
(2 + Aj6)2 A [(~ _ ~ + ! ! _ ~ 1 + l l)

4 5 X 10 7 x2 35 x3 60 x4

+ A(1 _ 1 1 + 1 1 _ 1 1)J _52 + 4 ),. + 1 ),. 2 .

120 140 x2 210 x3 1008 x4
- 35 105 420·

This gives, when the value A == 7 ·052 is used, the following equation for the initial value of X

a(O-4x3
- O·24123x2 + 0·09249 - O·05213x-l + O·009671x-2 == 0·10535.

The range of application of the method in this case is limited to Prandtl numbers less than O· s.
The equation has the root X == 1 for (J === O· 505, but for all higher Prandtl numbers the roots are
less than 1.

2.3.3. Flat plate thermometer. Uniform pressure gradient.-Hartree4 has examined the
possibility of integrating the boundary layer equations on the differential analyser in the case
when the pressure in the main stream increases at a uniforlTI rate. This example will be
considered here.

Let the suffix i refer to conditions at the leading edge of the plate which is taken as the origin
of co-ordinates. If P( > 0) is the uniform pressure gradient, the pressure in the plane at
distance x downstream from the leading edge is given by PI == Pli + f3x. It is convenient to use
a new variable ~, defined by ~ === 1+ f3X/Pli, and conditions in tIle main stream can then be
expressed in terms of ~ as follows

PI/Pli == ~, Pl/PH == ~1/'Y ,U2 == Ui
2 + 2cpT li (1 - ~(Y~l)/Y)

and
M 2 == [M~2. + 2/(1' - I)J ~-(Y-l)/y - 2j(y - 1) .

12



If differentiation with respect to the variable .~ is denoted by dashes, then

U' (y - 1) ~-I/Y U" 1 V'
IT - y[(y - 1)Mi

2 + 2(1 - ~(Y-l)/Y)J' u' - y~ U·

Equations (22) and (23), become in terms of the independent variable ~,

A(d/d~)(FI- F 2) + t(FI - F 2) dAld~ ~ -- (U 'IU) [2 + i A+ tA(5FI - 3F2+2F3 )] - [A (FI -- F2)J/(y~),

A(d/d~)(F4- F 5) + t(F4- F 5 ) dAld~ ~ - (U' jU)[!A(F4 - F 5)J- [(y-1)F6 + A(F4 - F5)J/(y~) ·

From these equations eand A can be found in terms of ~ . The solution will refer the boundary
layer along the plate f~om the leading edge, where <5 ~ 0, A == 0, up to the point of separation
where Ii == -12. Since the range of values of A is knovyn previously, and especially since it is
the same range whatever the Mach number and Prandtl number of the main stream flow, it is
convenient now to regard A as the independent variable and () and ~ as dependent variables. The
differential equations are then

al dejdA. + bl d~/dA + CI == 0,

a2 de IdA + b2 d~ IdA + C2 == 0 ,

(24)

(25)

where
a1 == ;~(ojoe) (FI ~ F 2) ,

bI == A(O/oM) (F1 - F 2) dM/d~ + (U'/V) [2 + iii + tA(SFI - 3F2 +2Fa)] + [A(F1 - F2)J/(y~)

CI == A(OlOA) (FI - F 2) + i(Fl - F 2) ,

a2 == A(Oloe) (F4 - F 5) ,

b2 == A(ojoM} (F4 - F5 ) dM/d~ + (V'/V) [i A(F4 - F5)] + [(y - 1)F6 + A(F4 - F5)J/(r~) ,

c2 == l(ojoA) (F4 - F 5) + t(F4 - F5) •

With

_ [a(y - I)J1 /2 Mo
Z - 432 (1 _ 0)1/2 '

the quantities aI, bI, etc. may be written as
3 6

a l === a10 + ~ a1'ltzn+1 + 0-1 ~ aInZ n
-

2
.

n=l n=4

5 4

bi === (U' /U) [blo (1 - 6) (bI1Z- 1 1712 + ~ bInZn
-

2)J -t- (y~)-l [PIO -t- (1 - O)(fill -+- ~ f31nzn)J,
n=3 n=2

4

CI :::= CIO + (1 - ()) (CII --t- ~ c1nZn) ,
n=2

4 8

a2 == a20 Z-l + a21 + ~ a2nZn + e-1 (a 25Z- l + ~ a2nZn
-

4
) ,

n=2 n=6

4 5

b2 == (V'/U) [(1- 0) (b 20Z-1+b21 + 2: b2nZn )J + (y~)-l [1320 + (1- 0) ((321Z - 1 + (J22 + ~ f12nzn- 1)] I

n=2 n=3

4

C2 === (1 - 0) (C20Z- 1 + C21 + ~ c2nZ n
) ,

n=2

where the coefficients ars , etc. are functions of A only, and are given in Table 3.

13



When A. :=: 0, ~ -== 1 and a1 == a2 === 0 so equations (24) and (25) do not contain dO IdA, and they
can be solved to give the initial values of d~/dA. and o. By differentiating these equations with
respect to it and substituting the values just determined, one obtains two equations which can
be solved to give the initial values of dO/dlt and d2~/dlt2.

On tIle other hand at It == - 12, 1'(0) == 0 and therefore g"(O)== 0, so tIle density p satisfies
tIle bOllndary conditions

alld
P :::::: PI' op/oy == (j2 p/3y 2:::::: 0 at y === b' .

Since Phas been tal{en as a quartic in (17/X) the coefficients of all four powers of (n/x) are zero, and
P == Pl for all values of y at this position along the plate. It follows that 0 == 1, and the impli­
cation is that X === 0 at It == - 12. A solution which is continuous cannot approach the value
x· 0 as A-+ - 12, since the equations were formulated on the assumption that X ~ 1. It
should be emphasised, however, that this mathematical difficulty arises from the restrictions
involved by assuming that P is a qtlartic in 1]. Assuming that 1 - 0 t'..J (12+ A)n in the neigh­
bourhood of It == - 12, it i; necessary that n ~ 112, otherwise'X -+ 0 as It -+ - 12. Then dO /d~ ---+ 00

as 4 -+ - 12 and from equation (24) it follows that d~/d;" -+00. The difficulty of completing
the numerical integration as far as A. == - 12 has been skirted, in this approximate treatment of
the boundary layer equations, by extrapolating for the value of ~ over the interval from it :=: - 11
toA===-12.

The integration has been carried out in three cases of air flow (a === 0·715) past a flat plate,
when the incident stream has specific speeds of 0·1, 1·0 and -yl10. In the first case separation
occurs when the pressure has risen by one-fifth of one per cent of its value at the front edge; in
the second case the corresponding fractional increase is twenty per cent and at the highest speed
the pressure rises to nine times its initial value before separation occurs. The details of the
integration are given in Table 4.

The behaviour at a specific speed of 0 -1 should be much the same as in the incompressible
case. It is, therefole, of interest to compare the present result with the estimation given by
Howarth' (1938) of the point of separation for an incompressible fluid whose main stream velocity
is decreasing linearly. Howarth uses a variable which in the present notation is given by
(Ui - U)jUi and finds that separation occurs at ~he place where this variable has the value
0·120. At the point of separation estimated here, ~ == 1·0019 and (Ui - U)/Ui === 0·149 which
is close to the value 0·156 obtained by applying Pohlhausen's method to Howarth's case.

From the results for the other two specific speeds, it appears that, with a given linearly
increasing pressure, separation is delayed by increasing the Mach number of the incident stream.
For the same pressure gradient({3) and the same pressure (Pli) of the incident stream the distances
down the plate of the points of separation are in the ratio 1: 118: 4216 for Mach numbers of
0·1, 1·0 and -yllO respectively.

Note added in revision for R. &M.

Howarth8 (1948) has shown that the choice of a uniform pressure gradient that is independent
of the Mach number of the incident stleam is not a convenient basis for presenting the effect of
Mach number on separation. To obtain an alternative basis, write f3 - PIiUi2jl, where 1 is a
length independent of x; then, PI == PIi(l+ yMi 2xll) , and the values of xllat separation are in the
ratios 1 : 1· 18 : 4 ·22 for M i === O· 1, 1 and -yI 10. With the new assumption that 1is independent of
M i , these ratios are the ratios of the distances of the points of separation from the leading edge of
the plate.

Howarth considers a given main stream velocity, of the form U == Ui(l - xll'), where l' is a
length independent of u. He finds that the values of xll' at separation are in the ratios 1 :0· 95 :0· 69
forMi 0, 1 and -yI 10, and shows that these ratios are qualitatively consistent with the previous
ones, although at first sight they appear to be contradictory.
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Note on the choice of polynomial for f and g
The choice between the cubic and quartic forms for f and g when considering the flow with

a linear pressure gradient past a boundary is easily made on the following considerations.

For incompressible fluids, when the quartic form is used

ujU == (21] - 21/3 + rj4) - !Arj(l - rj)3
and

dA == ~ dU [7257'6 - 1549·44A + 39'84A 2 + A3
]

d~ U d~ 213·12 - 5·76A - A2
'

where~ == Pl/Pl'i and Pii is the pressure at the front edge of the plate.

When the cubic form is used

t-tjU. (~rj - !'YJ3) + t A1](l - 1])2

and

(i\)

(B)_dA = 1 ~u [1008 + 354JL + 17A2 +.A3
] •

d~ U d~ 46 ·8 - 1· SA - A2

Also U dUjd~ == - Pli/PI so that dUjd; is negative.

Equation (A) must be integrated from the front edge of the plate where A == 0 to the point of
separation where A == - 12. There is no difficl11ty in this, since the polynomials in It in the
numerator and in the denominator are both positive in the range 0 ~ It ~ - 12. On the other
hand, equatio:t:l (B) must be integrated from )w - 0 to It == - 6, and although the denominator
remains positive in this range the polynomial in the numerator changes sign from positive to
negative in passing £ro1)1 It . - 3 to A == - 4, and the value A == - 6 will not be reached. This
difficulty must also arise in the case of compressible fluids, at least for low enough values of the
main .stream velocity.
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TABLE 1

Comparison of Drag and Temperature Coefficients with the Exact Values

Approximation I Quadratic
II Cubic

III Ouartic
IV Odd powers
V f = sin!7l:'lJ

M=yIO

Approximation I II III IV V Exact
solution

(1

Cu * 0·234 0·255 0·262 0·236 0·218
1·2

Cp * 0·749 0·711 0·62 0·82 1·105

Cu * 0·236 0·257 0·266 0·238 0·222
1·0

Cp * 0·693 0·658 0·57 0·76 1·000

Cu * 0·240 0·260 0·270 0·241 0·228
0·733

Cp * 0·608 0·578 0·49 0·67 0·838

Cu 0·276 0·254 0·274 0·281 0·254 0·248
0·25

Cp 0·52 0·393 0·373 0·32 0·43 0·247

-

M == 0

Approximation I II III IV V Exact
solution

(f

Cu 0·351 0·323 0·343 0·336 0·328 0·331
. 1·2

Cl' * 0·988 0·904 * *

Cu 0·351 0·323 0·343 0·336 0·328 0·331
1·0

Cp * 0·907 0·831 * 1·00 1·000

Cu 0·351 0·323 0·343 0·336 0·328 0·331
0·733

Cp * 0·783 0·720 * 0·87 0·852

Cu 0·351 0·323 0·343 0·336 0·328 0·331
0·25

Cp * 0·480 0·437 0·34 0·53 -

* Denotes that the result is outside the range X ~ 1.
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TABLE 2

CoejJicie'nts for Drag and Temperature (see Figs. 1, 2) using the Quartic .Forms for f and g

M 0 0·5 1·0
I

1·5 2·0 vIO

(J

Co 0·343 0·337 0·325 0·310 0·292 0·255
1·2

Cl' 0·904 0·890 0·865 0·830 0·792 0·711

Cu 0·343 0·337 0·327 0·311 0·294 0·257
1·0

Cp 0·831 0·819 0·797 0·765 0·732 0·658

Cu 0·343 0·338 0·328 0·312 0·296 0·259
0·8

Cp 0·749 0·740 0-721 0·694 0·665 0·599

Cu 0·343 0·338 0·328 0·314 0·298 0·262
0·6

Cp 0·657 0·650 0·635 0·613 0·589 0·532

Cu 0·343 0·339 0·330 0·317 0·301 0·267
0·4

Cp 0·549 0·543 0·531 0·515 0·496 0·451

Cu 0·343 0·339 0·332 0·321 0·308 0·276
0.2

Cp 0·406 0·402 0·395 0·385 0·373 0·343

Cu 0·343 0·343 0·343 0·343 0·343 0·343
0

Cp 0 0 0 0 0 0

(J = 0-733

M Exact solution Frankl's solution Present solution

Cu 0·326 0·333 0·338
0·5

C'!' 0·864 0·78 0·71

Cu 0·312 0·326 0·328
1·0

Cx 0·855 0·76 0·69

Cu 0·294 0·310 0·313
1·5

Cx 0·850 0·76 0·67

Cu 0·274 0·290 0·297
2·0

Cp 0·852 0·77 0·64

Cu 0·228 0·245 0·260
VIO

CT 0·838 0·82 0·58

17
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TABLE 3
-

A a lO all al2 al3 al4 al5 a16

0 0 0 0 0 0 0 0
- 1 0·1184 -25,66 235·9 -648 25·65 -283,1 864
-2 0·2383 -43,87 369·6 -928 43·87 -443,5 1237
-3 0·3589 -55,02 420·1 -954 55·02 -504,1 1272·
-4 0·4797 -59,70 408·0 -828 59·70 -489,6 1104
- 5 0·6000 -58,72 353·5 -630 58·72 -424,2 841
-6 0·7191 -53,11 275·8 -424 53·11 -331,0 565
-7 0·8363 -44,06 191·9 -247 44·06 -230,3 329
-8 0·9510 -32,95 115·5 -119 32·95 -138,6 159
-9 1·0625 -21,28 56·32 - 43·8 21·28 - 67·59 58·4
-10 1·1702 -10,71 19·01 - 9·9 10·71 - 22·82 13·2
-11 1·2734 - 2·998 2·68 - 0·70 2·998 - 3·21 0·93
-12 1·3715 0 0 0 0 0 0

A blo bll bI2 biS b14 1~b15

0 2-0000 0 0 0 0 0
-1 2-4377 0·03636 -0,6043 75·86 - 640 166
- 2 2-8957 0-08000 -1,229 130·1 -1004 238
-3 3-3723 0-1300 -1,872 163·7 -1143 245
-4 3-8660 0-2000 -2,533 178-2 -1112 213
-5 4·3750 0-2857 -3,208 175·9 - 966 163
-6 4-8976 0-4000 -3,898 159-6 - 755 109
-7 5·4324 0-5600 -4,599 132·9 - 526 64
-8 5-9775 0·8000 -5,311 99·7 - 318 31
-9 6·5313 1·200 -6,031 64·7 - 155 11
-10 7·0922 2·000 -6,759 32·7 - 53 3
-11 7·6586 4·400 -7,492 9·2 - 7 0
-12 8·2287 00 -8,229 0 0 0

A PIO PI1 fJJ2 Pl3 P14

0 0 o ~ 0 0 0
- 1 0·11841 -0·1184 7·631 -37,0 41
-2 0·23827 -0-2383 13-05 -58-0 59

3 0·35893 -0,3589 16-37 -66-0 60
-- 4 0-47972 -0-4797 17-76 -64,1 52

5 0·59998 -0,6000 17·47 -55-5 40
-6 0·71906 -0-7191 15·80 -43,3 27
-7 0-83628 -0-8363 13·11 -30,1 16
-8 0·95099 -0·9510 9·80 -18,1 8
-9 1·0625 -1'062 6·33 - 8·8 3
-10 1·1702 -1,170 3-19 - 3·0 1
-11 1·2734 -1'273 0·89 - 0·4 0
-12 1·3715 -1-371 0 0 0
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TABLE 3-continued
.-

A cIO CII C12 C13 C14

0 -0·058730 0·058730 -7·356 58·60 -145,5
- 1 -0·060042 0·060042 -4·534 +25·50 - 39·9
-2 -0·060803 0·060803 -1-818 - 1-46 + 32·4
-3 -0-061013 0·061013 +0-687 -21·70 74·8
-4 -0·060672 0-060672 2-88 -35-05 92-4
- 5 -0·059780 0·059780 4·67 -41-79 91·2
-6 -0,058337 0·058337 5·98 -42·54 77·3
-7 -0·056342 0·056342 6·73 -38·33 57·1
-8 -0·053797 0-053797 6-86 -30·50 36·0
-9 -0·05070 0·05070 6·29 -20-69 18·2

. -10 -0·04705 0·04705 4·99 -10·84 6·3
-11 -0·04286 0·04286 2·90 - 3·14 0·92
-12 -0·03811 0-03811 0 0 0

A a2u a21 a22 a23 a24
.,

0 0 0 0 0 0
- 1 0·01818 -0·3083 36-30 -301·1 776
-2 0·04000 -0·6333 62·86 -476·2 1119
-3 0·06667 -0·9750 79·84 -546·7 1160
-4 0·1000 -1·333 87·77 -536-4 1014
-5 0·1429 -1·708 87·50 -469-6 779
-6 0-2000 -2·100 80·23 -370·3 528
-7 0-2800 -2,508 67-50 -260·4 310
-8 0·4000 -2·933 51·20 -158-5 151
-9 0·6000 -3,375 33·56 - 78·1 56
-10 1·000 -3·833 17-14 - 26·7 13
-11 2·200 -4·308 4·87 - 3·8 1
-12 00 -4·800 0 0 0

A a25 a26 a27 a28

0 0 0 0 0
- 1 0·03636 -36,30 361·3 -1034
-2 0·08000 -62,86 571·4 -1492
-3 0·1333 -79-84 656-1 -1547
-4 0-2000 -87·77 643·7 -1352
-5 0·2857 -87,50 563·5 -1039
-6 0·4000 -80·23 444·3 - 704
-7 0·5600 -67·50 312·5 - 413
-8 0-8000 -51·20 190·2 - 202
-9 1·200 -33·56 93·7 - 75
-10 2·000 -17·14 32·0 - 17
-11 4·400 - 4·87 4·6 - 1
-12 00 0 0 0
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TABLE 3-cont-inued

A b20 b21 b22 b23 b24

0 0 0 0 0 0
- 1 -0-01818 0-4625 - 63-5 541-9 -1422
- .2 -0-04000 0-9500 -110-0 857-1 -2052
-3 -0-06667 1·462 -139·7 984·1 -2126
-4 -0-1000 2-000 -153·6 965-5 -1859
- 5 -0-1429 2·562 -153·1 845·2 -1428
-- 6 -0·2000 3·150 -140·4 666·5 - 967
- 7 -0·2800 3·762 -118·1 468·7 - 568
-8 -0-4000 4·400 - 89·6 285·3 - 277
-9 -0-6000 5·062 - 58-7 140·6 - 103
-10 -1-000 5-750 - 30·0 48·0 - 23
-11 -2·200 6·462 - 8-5 6·8 - 2
-12 - 00 7·200 0 0 0

A fJ20 fJ21 fJ22 fJ23 fJ24 fJ25

--

0 0·60171 0 0 0 0 0
- 1 0-58725 -0·04372 0-3083 -10-80 47·3 -49
-2 0-57471 -0-09620 0·6333 -18-70 74·8 -71
-3 0·56411 -0,1603 0·9750 -23·75 85·8 -73
-4 0·55543 -0-2405 1·333 -26·11 84·2 -64
-5 0-54868 -0·3436 1·708 -26·03 73·7 -49
-6 0·54386 -0·4810 2·100 -23·87 58·1 -33
-7 0·54096 -0-6734 2·508 -20-08 40·9 -20
-8 0·54000 -0-9620 2·933 -15·23 24·9 -10
-9 0-54096 -1·443 3·375 - 9·98 12·3 -4
-10 0·54386 -2·405 3·833 - 5-10 4·2 - 1
-11 0·54868 -5·291 4·308 - 1-4 0·6 -0
-12 0·55543 - 00 4·800 0 0 0

A c2u C21 C22 C23 C24

--

0 0·016667 -0·1500 10·286 -74,06 172·8
- 1 0·021488 -0,1625 6·639 -33·7 + 49·8
-2 0·028000 -0·1750 + 2-998 0 - 36·1
-3 0-037037 ,-0·1875 - 0·482 +26·0 - 87·9
-4 0-050000 -0,2000 - 3-66 43·9 -111
-5 0·069388 -0-2125 - 6·37 53·6 -110
-6 0·10000 -0-2250 - 8·49 55·5 - 95
-7 0·15200 -0·2375 - 9-84 50·9 - 71
-8 0·25000 -0·2500 --10 -29 41·1 - 45
-9 0·46667 -0·2625 --9,68 28·3 - 23
-10 1·1000 -0·2750 - 7-86 15·1 - 8
-11 4·6000 -0,2875 - 4-68 4·4 - 1
-12 00 -0-3000 0 0 0
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TABLE 4

Flow Along Flat-plate Thermometer. Linear Pressure Gradien-t

(J == 0·715
Mach number of incident flow === O· 1

A ~ M () X
~-

0 1·0000 0·1000 0·9986 1·22
- 1 1·0004 0·0973 0·9987 1·29
-2 1·0007 0·0952 0·9989 1·36
-3 1·0009 0·0933 0·9990 1·45
-4 1·0011 0·0917 0·9991 1·56
- 5 1·0013 0·0904 0·9992 1·68
-6 1·0014 0·0893 0·9994 1·83
- 7 1·0016 0·0882 0·9995 2·03
-8 1·0017 0·0874 0·9996 2·31
--9 1·0017 0·0867 0·9997 2·72
-10 1·0018 0·0861 0·9998 3·46
-11 1·0019 0·0855 0·9999 5·23
-12 1·0019 0·0851 1·0000

~

Mach number of incident flow == 1

A ~ M () X

0 1·000 1·000 0·878 1·28
- 1 1·035 0·970 0·891 1·34
-2 1·066 0·944 0·902 1·41
-3 1·093 0·922 0·913 1·50
-4 1·116 0·903 0·924 1·60
-5 1·136 0·886 0·934 1·71
-6 1·154 0·872 0·943 1·87
-7 1·170 0·859 0·952 2·06
-8 1·183 0·848 0·961 2·34
-9 1·196 0·838 0·970 2·74
-10 1·206 0·830 0·978 3·51
-11 1·215 0·822 0·988 5·14
-12 1·224 0·815 1·000

Mach number of incident flow == VIO

A ~ M f) X

0 1·00 3·16 0·463 1·61
- 1 1·29 2·99 0~503 1·64
-2 1·71 2·80 0·549 1·68
-3 2·28 2·62 0·599 1·73
-4 2·97 2·44 0·650 1·80
-5 3·75 2·30 0·699 1·89
-6 4·56 2·17 0·744 2·01
-7 5·36 2·07 0·788 2·18
-8 6-13 1·98 0-829 2·44
-9 6·87 1-91 0·868 2·83
-10 7·59 1·84 0·907 3·53
-11 8·28 1-78 0·947 5·29
-12 9·01 1·73 1·000
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FIG. 1. Drag coefficient CD as a function of G.
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FIG. 2. Temperature coefficient Cp as a function of va.
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FIG. 3. Variation, for a = 0·733, of ufU in the boundary layer.
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Variation, at a Mach 'number of yIO, of ujU in the boundary layer.FIG. 4.
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FIG.. 5. Variation of temperature in the boundary layer for G == O· 733.
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FIG. 6. yariation of temperature in the boundary layer for M == YIO.

23
(96124) Wt. 14/806 R.S 1/53 Hw. PRINTED IN GREAT BRITAIN




