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Summary 

The flow physics for inviscid flow on an arbitrary two-dimensional streamsurface for application to turbo- 
machines are re-examined without specialising to a particular type of surface. This re-examination introduces 
streamfunction as a function of three space dimensions which is two dimensional in the locality of the prescribed 
streamsurface and does not involve the concept of a force normal to the surface as introduced by Wu 1 and 
used by Marsh 2 and Smith 3. A special principal equation of motion is developed (designated the N-principal 
equation) which is applicable to any streamsurface. This N-principal equation has several advantages over the 
principal equations formerly used, the most powerful being that rotation of axes as carried out by Marsh 2 
is no longer necessary and solutions become possible for annular ducting of increased geometrical complexity 
including flow around a toroidal surface as in a fluid coupling. Numerical advantages of the N-principal 
equation are a saving in computer store and improved numerical accuracy in certain regions of the solution. 

The co-ordinate form of the/~-principal equation is developed for application to hub-to-shroud stream- 
surfaces and for blade-to-blade streamsurfaces of revolution. The N-principal form of equation is compared 
to the principal forms of Marsh 2 and Smith 3 where it is shown that the N-principal form gains its advantage 
chiefly by its freedom from indeterminacy which inevitably appears with other forms. The latter are shown to 
be the equation of motion resolved in certain prescribed planes whereas the N-principal form is always resolved 
normal to the stream direction. However the N-principal form can be recovered from other forms if the equations 
are further developed. 

Other forms of indeterminacy and computational failure may arise from the choice of co-ordinate system 
used to express the derivatives and the manner in which the molecule grid points are chosen. Other failures 
or restrictions relate to the way in which the grid is set up. These are discussed and proposals made for ensuring 
their avoidance. 

* Replaces A.R.C. 34 317 
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I. Introduction 

Computer programs for the solution of two-dimensional inviscid flow on arbitrary streamsurfaces using 
fixed grids have leaned heavily on the form and development of equations in Wu's original work 1. Marsh 2 
developed one of the earliest programs to solve for rotational flow on an arbitrary meridional streamsurface 
and Smith 3 developed a similar program for application to a blade-to-blade streamsurface. All previous 
programs appear to have employed the principal equation of motion expressed in a fixed, prescribed direction. 
This feature places certain limitations upon the choice of machine geometry for which a solution is admissible 
and although the device of rotating the co-ordinate system used in Refs. 2 and 3 can alleviate this difficulty it 
does not remove it. Also, because the principal equation of motion is expressed in a prescribed direction, the 
resulting equation does not take the simplest form and when solved numerically offers a lower degree of 
accuracy and may also require more computation. 

2. The Basic Problem 

The arbitrary streamsurface (S') on which the flow is to take place may be expressed in terms of the co- 

ordinates (r, 0, z) thus 

S'(r, O, z) = O, (1 } 

so that the unit normal vector to the surface is given by 

~t 

= -- (3-components) (2) 
n r 

/ i ' =  VS' (3-components). (3) 

where 

In the absence of viscous stresses and heat transfer and for steady flow relative to a rotating blade row the 
physical laws may be expressed 

(continuity) ~s p W.  dS = 0, (4) 

and 

Os 
(energy) - -  = 0 (5) 

Dt 

(motion) W x (V x V) = VI - T V s  (3-components), (6) 

with equations of state for a perfect gas 

and 

and definitions 

p = p R T ,  (7) 

u = CuT  (8a) 

T _ R log P ,  s-s 1 = Cp log ~- P~ (9a) 

h - u + p (8b) --7 

P 



W 2 _ U 2 
l - h o -  U. V = h +  

and 

where 

V -  W +  ~ × R (3-components) 

R = R(r, 0, z) (3-components). 

Equations (4) to (10) form a set of 13 equations which determine the 13 variables 

p,p,T,s,u,h, 1, W, V, 

when the values of 

(9b) 

(10) 

(11) 

R, Cp, Cv,~,R 

are given. 

It may be shown that the continuity equation (equation (4)) (see Appendix) is satisfied for a streamsheet of 
normal thickness t by a streamfunction ~ satisfying 

V ~ = p t W x  ~ (12) 

This definition also implies that the flow is constrained to the surface i.e. 

w .  ~ = 0 ,  (13) 

and that ~, is constant along streamlines i.e. 

W. V~ = 0. (14) 

When required, the velocity W may be" recovered from the streamfunction ~ by equation (12) since 

1 
- - ~  × v~b = ~ × (W × ~) - W(~. ~) - ~(W. ~) = W. (15) pt 

3. The Equations of Motion 
The three equations of motion (equation (6)) must be satisfied by each particle in the flow, but since the flow 

is constrained to the surface, then the component of the equation of motion taken normal to the surface merely 
provides a value for the normal force necessary to achieve this constraint. This component does not determine 
the flow on the prescribed streamsurface and this equation is replaced by the geometrical constraint expressed 
by equation (13) and embodied in equation (12). 

The flow on the streamsurface will be determined and must satisfy at every point, any two equations of 
motion taken in non-coincident directions and lying in the tangent plane to the surface. It is desired to choose 
two such directions which satisfy this condition and lead to the simplest forms of the equations. The simplest 
component equation is obtained when the direction of flow, W/W, is chosen. In this case the scalar product 
with equation (6) gives 

W T W Vs (16) 0 = ~ . v / -  w 

and since for steady flow 

D 
W. V - D-t' (17) 



(i.e. derivative with respect to time for a given particle) then equations (5) and (16) result in 

1 DI 
0--7 = 0, (18a) 

or simply 

DI  
0-5 = 0 (18b) 

since W # 0. This is here regarded as an equation of motion in the streamwise direction as by Wu ~ although I 
is an energy term and Marsh 2 regarded this as the energy equation. 

Since from equations (14) and (17) 

Oq, 
Dt = O, (19)  

then the energy equation (5) and streamwise equation of motion (18) may be written 

s = s(~) (20) 

and 

I = lOP), (21) 

and in this form will be shown to offer increased numerical accuracy, reduction in computation time and 
reduction of computer store requirement. 

The choice of the second (or principal) equation of motion in the tangent plane is now arbitrary, provided it 
is never allowed to coincide with the streamwise direction. Previous workers have always chosen a prescribed 
direction determined by the intersection of a prescribed plane with the tangent plane in order to express this 
last equation (see Comparison with Other Principal Equations, Section 9) and as a result there are some 
flows for which the computer program must in principle fail to give a solution (because the prescribed direction 
will coincide with the streamwise direction), although in practice it may result only in local inaccuracy. 

Since the streamwise equation of motion is satisfied by equation (21), the only other component of the 
equation of motion completely independent of it (i.e. not containing a component of the streamwise equation) 
that need be satisfied is that taken in a direction normal to the stream and lying in the tangent plane. This 
direction varies from point to point of the flow and changes as the solution is approached by successive approxi- 
mation ; it is not known in advance, but an expression for it leads to a much simpler form than those previously 
used for prescribed directions. If this direction is denoted by unit vector/V, then 

m 

W 
.,~ = ~-  x h (22) 

hence 

Wx R= Wx(~x a)- wn.  (23) 

If now the N component of the equation of motion, equation (6), is taken (hereafter called the N-principal 
equation) then 

N .  W x (V x V) = N . ( V I  - TVs);  

therefore 

m 

W 
W~.(V × V)= ~ x ~.(VI - TVs) ,  (24) 



and by equations (20) and (21), 

when by equation (12) 

V ' I dl ds ) 

_ dI  T~--~ V l -  T V s =  p tW x n ~ -  , 

which by equation (24) yields the N-principal equation 

_ r dSl ~.V x F =  pt ~ dg'l 

(cf. Ref. 4 for axi-symmetrical flow) since 

Equation (26) is much simpler in form than components resolved in arbitrary planes. 

(25) 

(26) 

4. General Co-ordinate Forms for the Operators 

To obtain a principal equation in ip it is necessary to substitute W from equation (15) into equation (26), 
observing equation (10). To give co-ordinate expression to the resulting equation it is then necessary to express 
the operators ~ x V and ft. V x in an appropriate set of co-ordinates. To do this, these operators are first 
expressed in their known forms for the r-O-z co-ordinate system, after which it is necessary only to transform 
the derivatives from this co-ordinate system to a new co-ordinate system, one co-ordinate of which is the 
prescribed streamsurface S, thereby ensuring that some derivatives lie on the streamsurface (Marsh's special 
derivatives2). Let the other two co-ordinates x and y be entirely arbitrary. The derivative transform from 
r-O-z to x-y-S may now be written and the surface derivatives 

separated from the off-surface derivative 

in the following manner. 

ll x I l i ly  I llOS I 

~xy ,  

 ;)xS I 
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,Ioxl 
(~)o 

+ laslx," 

where (see equation (3)) 

(~J) 0. 

~' = v s  = -; lyO l , , "  

is the surface normal vector. 
In r-O-z co-ordinates 

and substituting from equation (27) 

1 8 

v = v~ + ~asjx,, '  

where Vr contains only the surface derivatives. It may be verified that 

f i  x f i '  = O 

hence the operator 

fi x V = f i  x V r. 

In r-O-z form 

V x =  

-'-ml 
r t az 1,,o 

0 

, 71G-rto,~ 

= [ v x ]  

(27) 

(28) 

(29) 

(30) 

(31) 

(32) 

(33a) 

(33b) 



and when appropriate substitutions are made from equation (27) the above operator satisfies the transforma- 
tion 

It may be verified that 

where 

hence 

[V x ] = [VX]T 3t-[/'/'] I~-~l , 

! t 

0 - - r l  z n o 

p t 

rl z 0 - - n  r 

i p 

- -  n o n r 0 

0 

0 0 

( )xy 
0 0 

0 

(34) 

h . V x  = f f . [ V x ] r  (36) 

and contains surface derivatives only. 

5. N-Prhacipal Equation for a Hub-to-Shroud Streamsurface 

For a meridional streamsurface which is proscribed from being multiple valued in 0 (i.e. n o # 0 everywhere) 
as would be the case for any real turbomachine, a suitable choice of co-ordinates free from multiple valued 
functions is 

X = r ,  y = z  

thus forming an r-z-S co-ordinate system. The transform matrix (equation (27)) for this case reads 

~o,~ ~o.~ 

 laOl. qaOl,,  

0 

so that by equation (32) 

f f x V = h x  

"7 
I 0 ~  
i - - i  

13rl~,s 

0 

I U |  
i - - !  

IVzl,,s 

ft. En'] = O, (35) 



and equation (15) reads 

where 

1 
wo l = - ~  

?J 

1 

pt' 

(°° / 
-- ~ 2",S 

t 
t' = - -  = tangential thickness of streamsheet. 

no 

By equations (10), (36) and (37) 

no ~ [~2~1 [Oz~_ l f W_ [~3(Pt')t - W_ (O(Pt')I l ~ l{n  [O(rV°)~ - ( ~ )  } 
ft.V × F=-~[~Z2jr.S-t-  ~Or2jz,S q- [ z~ Or Iz.S "10z ],.sJJ -t--~ zl-~--r ]z. s nr ,.s ' 

(37) 

so that the -N-principal equation (26) may be solved for ~ in the form 

ds) I 
or 2 J~,~ + ~ o~2 }r,~ - + - 

f w . ? ( p , ' ) l  . lalp,'ll (38) 

and always expresses the equation of motion normal to the stream direction. It will be observed that the only 
divisor on the r.h.s, is the non-zero value (rno) ; this feature makes the rotation of co-ordinates for solving flow 
with particular geometries, unnecessary. 

6. N-Principal Equation for a Blade-to-blade Streamsurface 

Blade-to-blade streamsurfaces are usually surfaces of revolution (i.e. n o = 0 everywhere) in order that simple 
cyclic boundary conditions may be realistically imposed on certain boundaries. The surface of revolution may 
be multiple valued in r and/or z making these co-ordinates unsuitable and the best choice of co-ordinates in 
this case is meridional distance m = m(r, z) and tangential co-ordinate 0, forming an m-O-S system. 

The following simple geometrical properties of this streamsurface will be found useful 

2 2 1, (39) rt r --}-r/z = 

(40) 

n~ = = (41) 
r,O O,z 



and 

aOl,,z = o 

( On~ I 
ydl,,~ = o. 

The transform matrix (equation (27)) for this case reads, 

'loml 11~o I 

and by equation (32) 

f i x V = ~ x  

so that by equation (10), equation (15) may be written, 

w0 = 

W~l 

t l  z W m n z 

wo = vo 

- -  n r W m  - r t  r 

nz 0 

1 
0 - 

r 

- - n r  0 

(o) 
-~r ~ O,S 

v~ 

1 

v~ 

By equations (36) and (46) and observing equations (39) to (43), 

~ ~ m l o , ~  - ,'~ ao Im,~ - "~ ~ + 

Wmlc~(pt) __ nz(co 

so that the N-principal equation (26) may be solved for 0 in the form 

am21o,s+r21aO21m,s =~pt) I~- T~ + p~,z ~ +  

(42) 

(43) 

(44) 

(45) 

(46) 
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+ ]o,s-  r 1 aO Ira,s J" 
(47) 

It is usual to consider the streamsheet normal thickness, t, to be constant in the 0-direction, so that 

Op (48) 

and it will again be observed that the only divisor in equation (47) (i.e. r) is non-zero, thereby making it un- 
necessary to rotate the co-ordinate system as in Ref. 3. 

It has also been customary to assume for axi-symmetric streamsurfaces that M/dO = 0 and ds/dlp = 0 so 
that equation (26) reduces to 

fi .V x V = 0 ,  (49) 

i.e. the component  of absolute vorticity normal to the streamsurface is zero, but this does not imply that the 
three dimensional flow of which this streamsurface is part, is necessarily irrotational. It does imply that such 
vorticity as may be present lies in the surface tangent plane. 

An equation for flow in the purely radial plane as analysed by Stanitz s is recovered from equation (47) in the 

form of equation (48) when 

n z = 1, 

m = r and S = z 

so that 

( 021P I l(OZ~ I ( ~f) W, [o(pt)l tW~[OP I 
Or2lo. + ?1~021,, =pt co+ + °l-Sr ]o,~- r lool,.~ 

(50) 

For  an ideal axial flow machine for which the particles are constrained on a cylindrical surface 

so that equation (47) reads 

m = z and S = r 

(020 / 1/020 / __ ,w400 / 
OZ2],,o+r21c?O2]r,, ° t OZ ]o., P k~O]~., 

(51) 

7. Indeterminacy in the Principal Equation 

It has been remarked that the principal equation may be any equation of motion resolved in the tangent 
plane but that the direction of resolution should not coincide with the stream direction. It is shown below that 
if this event does occur then the principal equation may become indeterminate and therefore that the analytical 
solution is not defined. Consider two mutually normal but otherwise arbitrary directions (x, y) lying in the 
tangent plane. Let the x-direction, defined by the unit vector ~, make an angle 0 to the streamwise direction 
W/W, then resolution of the equation of motion (equation (6)) in this direction leads to 

ff. W x ( V  × V ) =  WsinO~.V x V = 2 . ( V I -  TVs), 

and since 

Wsin 0 = Wy 

11 



then 

1 
~.V x F =  - - 2 . ( V I  - TVs) (52a) 

W, lOx-  Ox]" (52b) 

If 2 coincides with the stream direction W/W, then as seen at equation (16), the numerator of the r.h.s, of 
equation (52) is zero but with this occurrence, W r becomes the velocity component normal to the stream 
direction which is simultaneously zero. In this situation, then the r.h.s, of the principal equation expressed in 
the form of equation (52) becomes indeterminate and the equation fails to define the flow. Equation (52) is a 
generalised form of the usual expression for the principal equation as used by most workers who have analysed 
flow with a gradient of I and s (Refs. 2, 3 and 4). 

The condition of indeterminacy of equation (52) will usually occur only on a given contour (or contours) 
in the flow field on which the direction of resolution 2 coincides with the flow direction. Whereas an analytical 
solution would fail completely in this event, numerical solutions usually do not. A numerical solution with 
such contours present will usually be successful but will be inaccurate in the neighbourhood of these contours 
and in subsonic flow the inaccuracy will remain local to the contours (unless of course Wy becomes zero to 
machine round-off at a grid point which would cause computation failure). 

This indeterminacy can be avoided by rotating the axes of reference (Ref. 2) so that the direction ff may be 
anticipated not to coincide with the direction of flow at any part of the solution. This device can be successfully 
applied (Ref. 2) then, if 

(a) the direction of flow deflects through less than 180 degrees in the plane of reference and 
(b) there are no eddies in the flow field (really a corollary of(a)). 

With hub-to-shroud streamsurfaces, eddies do not usually appear in inviscid flow and in that part of the machine 
normally under investigation, the deflection in the r-z plane is frequently less than 180 degrees. With blade- 
to-blade streamsurfaces the situation is more restrictive in that inviscid eddies do appear on blade surfaces 
of mixed flow impellers when indeterminacy will be inevitable. 

There are however other difficulties with eddies present in that the distribution of I and s within them, is 
not defined by the upstream boundary conditions. 

It is usual in blade-to-blade flows on a surface of revolution to assume that VI and VS are zero and so to 
omit these terms from the formulation when the r.h.s, of equation (52) is identically zero and the indeterminacy 
will not occur. 

It will be noticed that for the N-principal form of the equation (26) the r.h.s, is always determinate, so that 
there are no limitations on its application and the rotation of axes is unnecessary. If equations (20) and (21) 
are observed it will be seen that the general form of the principal equation (52) may always be reduced to the 
N-principal form since 

and 

when 

(see equation (26)). 

~ . V x  

l/ *t , 

_ a /ov, / 

(53) 

(54) 

(55) 
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8. Numerical Accuracy and Computer Store Demand 
In Section 7, attention is drawn to the numerical inaccuracy that will result when the direction of resolution 

of the principal equation is close to the stream direction. In practice of course this inaccuracy is always present 
in a numerical solution and reduces to a minimum when the direction of resolution is normal to the stream 
direction as is always the case with the N-principal equation. 

With the derivatives of I and s in the partial form of equation (52) it is necessary to store values of I and 
s at all grid points in order to compute these derivatives numerically. With the N-principal form of the equation 
(26) it may be seen from equations (18b), (19) and (21) that 

Dtld¢, I = dOWdy, 1 Dt = O, 
(56) 

and that therefore (dI/d~) being constant along a streamline, may be determined from the upstream boundary 
values alone and only these values need be stored. Equations (5), (19) and (20) show that similar remarks apply 
to s. Where computer store is at a premium this can be a considerable saving. 

9. Comparison with Other Principal Equations 
Using the generalised transform equation (30), the equation of motion (26) may be written 

- _ 1 1 l o p /  / 
W x (V T x V) = V T I  - -  T V T S  -I- n - - -  - -  

Ip[aS]x,, 2 (57) 

where it will be re-called that V r contains only surface derivatives (see equation (27)). It may be seen clearly 
from equation (57) that only a component in the tangent plane will eliminate the vector 

Lp  I. - asl 2 I . J  
(58) 

which is normal to this plane and is not defined by properties on the surface. This vector has been regarded 
as a force f (Refs. 2 and 3) normal to the streamsurface and has been eliminated by resolving equation (57) 
into the tangent plane by using two only of its three r, 0, z components. 

For  a hub-to-shroud streamsurface, Marsh 2 offers a choice of resolution using either the r and 0 or the z 
and 0 components thus resolving the equation in the r-O or z-O planes respectively. When this resolution is 
carried out so as to eliminate f ,  the resulting equation of motion is expressed in the direction of intersection 
of the r-O and tangent planes or the z-O and tangent planes, respectively. See Fig. 2. With this choice of co- 
ordinates (x = r, y = z) 

2 Ix,, = 2 = o 

it is apparent that either of these directions will coincide with the stream direction at all points of the flow 
where Wz = 0 or W~ = 0, respectively, with consequent indeterminacy (previously mentioned) at these points 
and the two necessary equations of motion will there fail to be satisfied. The implications for turbomachine 
flow are that the first choice of principal equation will fail to define the flow in regions such as the outlet from a 
centrifugal impeller or the diffuser of such a machine or similarly through the nozzle ring or entry to the 
impeller of a centrifugal inflow turbine where W~ = 0. However for an axial-flow machine to which Marsh 
applied the program, the first choice of principal equation which he used seems to be entirely satisfactory. 

By an analogous argument to that above, the application of the second choice of principal equation would 
fail to define the flow through an axial flow machine, at inlet to a typical centrifugal impeller or outlet from a 
typical radial inflow turbine impeller where I4/, = 0. 

If either of Marsh's principal equations (Ref. 2, equations (24) and (25)) viz. 

oP I + az I,,s a,. l Or (log 

(5%) 

13 



and 

Or 2 ]z.s + I ~z I r,s = ~r z.s ~rr (log (rpt))z, s + ~z  r,sOz(l°g(rpt))"s 

Wr ~,S I ~z ] r,s -- ~ -  (rVo)r,s - fz (59b) 

is further developed by substituting for f,  and f~ from the 0-component equation and cognisance is taken of 
equations (13), (53), (54) and (55) the N-principal equation (38) results. 

Smith 3 undertakes a similar analysis to that of Marsh 2, applied to a blade-to-blade surface of revolution. 
Smith offers a choice of principal equation resolved in either the r-0 or the r-z plane so that his equations 
(Ref. 3 equations (27.15a) and (27.15b) viz. 

rl OO2 ]z,s + I ~zZ ]o,s -~0 z,s + ~zz(lOg (pt))°'s o,s 

p t {  1[~I I TIOS I Wztan2 c~ ( __W r0)} 
W~ - r~O]~,s + r IQO]~,s + -r ~0 (W~ tan 2)z.S + W~ tan 2 2 + (60a) 

and 

1 [02@/ 1~2~/ 1 0 
r21~i)Z-]z,S+ ,3Z2Jo.s-r2?~o(l°g(pt))z 's(~)z .s+ ~z(l°g(pt))°'S(~z)o.s 

- + + f~ + W~ tan 2 (W~ tan 2)o,s 
+ Wo o,s I zlo,s 

(60b) 

express the component of the equation of motion in the direction of the line of intersection of these planes 
with the surface tangent plane. See Fig. 3. Since in fact the 0-component already lies in the tangent plane to 
a surface of revolution then no component o f f  appears in this equation and the resolution is null. Resolution 
in the r-z plane is however necessary and results in the equation being expressed in the meridional direction 
when at all points of the flow for which W 0 = 0, this direction coincides with the stream direction and indeter- 
minacy ensues. Again, further development of equations (60) substituting for fz from the r-component equation 
and observing equations (13), (53), (54) and (55) leads to the determinate, .N-principal form equation (47). 

Equation (60a) which satisfies the equation of motion in the 0-direction will be indeterminate on contours 
in the flow field where W,, (and therefore W z) is zero. Such will be the case everywhere on a certain contour 
joining the two stagnation points within an eddy on a blade surface. Smith's second principal equation (60b) 
will be indeterminate for contours on which W o is zero which would be particularly serious for many turbo- 
machine impellers such as the top half of typical centrifugal compressor blades where the blades, being straight 
and radial, cause the streamwise direction to coincide with the meridional direction over a considerable part 
of the blade chord. Other types of blading suffering from this condition would be typical inlet guidevanes. 
outlet guidevanes and impulse blading. 

As Smith appears ultimately to restrict application to flows having no gradient o f / o r  s as is usual for stream- 
surfaces of revolution, then as pointed out (see Section 7) the indeterminacy vanishes as may be seen from 
equation (27.18) Ref. 3. Smith points out that his rotation of axes in this situation is to make his streamsurface 
S single valued in the space co-ordinate x and thereby maintain finite derivatives, and not to avoid indeter- 
minacy of the equations (see Section 6). 

10. C h o i c e  o f  M o l e c u l e  

While computational failure may arise from a poor choice of principal equation, it may, as mentioned 
by Marsh 2, also arise in the process of determining the derivatives. The derivatives at a given grid point, 
referred to as 'nodal', are normally estimated as in Ref. 2 by assuming a local polynomial fit (in the form of 
a truncated Taylor series) to be made to a selected number of grid points, including the nodal one, the whole 
set of such points being referred to as a molecule. The number of points selected depends upon the order of 
derivative to be determined and the order of discretization error to which it is required, while the location of 
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the points  is to some extent arbitrary.  Represent ing the function f at molecule point  i by f~ and  part ial  surface 
derivatives in a rb i t ra ry  surface directions x and y at the nodal  point  by f j  as below, the t runcated Taylor  series 
may  be expressed. 

where 

L = A, j~  (61) 

f )= 1 -= f ,  A l l  ---- 1, 

, V  
f~= 2 = ~ ,  Ai2 = x~ - Xo, 

O f  
f j = 3  - -  ~ y y ,  A i 3  = Yi - -  YO, 

f i = 4  -- c~2f Ai4 = (xi - Xo)2/2! 
(~X 2 ' 

02f Ai5 = (xi  -- Xo)(Yi - Yo), 
f ~ :  5 - Ox~y '  

etc etc. 

and i = 1 refers to the nodal  point. 
The  derivatives f~ are now determined f rom equat ion (61) thus 

f j  = ( A i ) ) -  l f l  (62) 

and  are defined only in the case of  A;j being non-singular.  It  is impor tan t  to establish what  choice of  molecule 
points  will result in singularity of  Aij with consequent  computa t iona l  failure or  inaccuracy (in practice). 

The  simplest cause of failure, not likely to arise in practice except by a p r o g r a m m i n g  error,  arises if the 
molecule contains the same grid point  chosen more  than once. In this event two or more  rows of Aq and the 
cor responding  f~ are identical and the equat ions  are indeterminate.  

Fai lure  can occur  in a less trivial and obvious  manner .  Consider  the case of  a three point  molecule for which 

la d 
1 0 0 Yo) ,  
1 ( x ~ - x o )  ( y l -  

1 ( X 2  - -  XO) (Y2 YO) 

(63) 

clearly if x 0 = Xl = x2 the second co lumn is zero and if Yo = Yl = Y2 the third co lumn is zero. The matr ix  
is then singular if all three points  lie on the same co-ordinate  line i.e. either x or  y, which is not surprising since 
then, one or other  of the first derivatives which the matr ix  A defines, is not defined by the three functional 
values given. More  generally the matr ix  is s ingular  if all three points lie on any straight  line, since then 

[JAil = 

Yl -- Yo Yz -- Yo 
X 1 - -  X 0 X 2  - -  X 0 

0 0 

1 Yl - Yo 
X 1 - -  X 0 

i Y2 - Yo 
X 2 - -  X 0 

- -  (xl - Xo)(X2 - Xo), 

(64) 
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by equation (64), 

I[A]] = 0 

0 

= 0 .  

l O  o] 
0 0 (X 1 - -  

1 x2YZ- Y~ool 
Xo)(X2 - Xo) 

(65) 

For molecules with a greater number of grid points the argument and proof of failure becomes increasingly 
burdensome and tedious and so is not here pursued but the following simple rules should ensure [A] does 
not become singular. 

Fig. 4 illustrates a distribution of grid points from which the matrix A may be set up to ensure that a given 
order of discretisation error is achieved for derivatives of each successive order. 

The form shown in Fig. 4 is a suitable distribution of points for derivatives to be determined at the lower 
left hand corner of a grid when the lower left hand grid point would be the nodal point and all derivatives 
with respect to x and y would of necessity be by forward differences. The purpose of the figure is more to illus- 
trate the relative positioning of grid points for derivatives of different order and to indicate the total number 
of grid points required to determine that derivative by the basic procedure of equation (61). The total number 
of grid points required is indicated along the y-axis and is the number of grid points contained on and within 
the triangle of which there is one to each order of derivative. The triangle is formed by the hypotenuse (to which 
numbers relate) and the x and y axes respectively. The total number of points required for a derivative of given 
order is of course also the number of terms in the Taylor series up to and including all derivatives of that 
order. 

Fig. 4 is intended to illustrate, not that the grid points must be arranged as shown but that for instance, 
if second order derivatives are required to third order discretisation error, then since all third order and fourth 
order derivatives will be required to be defined and a total of fifteen grid points will be needed then as indicated, 
there should be five points at one level of y, four grid points at a second level of y, three grid points at a third 
level of y, two grid points at a fourth level ofy  and one grid point at a fifth level of y. If the grid is regular, failure 
to arrange points in this way will lead to [A] being singular. For  irregular grids singularity of [A] is likely only 
through mischance but it should be remembered that since irregular grids have grid points lying on defined 
contours (i.e. they are not random) then as the grid is refined it approaches regularity so that it is nontheless 
wise to observe the above rules. Moreover an irregular grid may, since it is defined anew for each application, 
become regular in certain domains and in particular applications. 

The nodal point is chosen near the centre of the molecule if the magnitude of the discretisation error is to 
be kept small. The arrangement of six grid points for the second order Laplace operator (i.e. first order dis- 
cretisation error) is accordingly best made as in Fig. 5a in which the dispositions make the nodal point fairly 
central except with respect to one point of the molecule. This unsymmetrical point serves strongly to define 
a value for O2f/~x Oy, which value may possess a lower magnitude of discretisation error because of lack of 
centrality. Since the Laplace operator is determined entirely by the symmetrical points if the co-ordinates 
x and y are orthogonal (Fig. 5b) then for this case the coefficient corresponding to the unsymmetrical point 
will always be zero and the molecule effectively contains only five points. For convenient non-orthogonal 
grids (illustrated in Fig. 7) the six points are essential. 

11. Choice of Co-ordinate System 

In setting up the equations of motion to be solved, directly or indirectly, three co-ordinate systems are 
involved. These are (Fig. 6): 

(a) the co-ordinates defined by the direction of resolution of the equations of motion e.g. S and N ; 
(b) the co-ordinates chosen to express the derivatives occurring in these equations e.g. r and z; and 
(c) the co-ordinates defining the contours on which the grid points shall lie e.g. straight quasi-orthogonals 

and contours arbitrarily conformal with boundaries (Fig. 7). 
There is no necessity, and it is usually numerically inconvenient as well as restricting the area of application, 
to choose these co-ordinate systems to coincide. It is shown in previous sections that the most convenient 
system for resolving the equations of motion to obtain the simplest expressions, guaranteed from indeter- 
minacy, is that of the streamlines and their normals. By the preceding section the numerically determined 
streamsurface derivatives are in those co-ordinates used to locate the grid points. To avoid rotation of axes 
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and the occurrence of infinite derivatives as in Ref. 3, it is necessary to choose this co-ordinate system in such 
a manner that the streamsurface is single valued in the co-ordinates chosen, while it is convenient in order to 
avoid mathematical transformations within the computer program, for these co-ordinates to be those in which 
the geometric data is readily to hand. In the hub-to-shroud solution these two requirements are compatible 
and (r, z) are suitable, but in the blade-to-blade problem (m, 0) satisfies the first requirement whereas the data 
is more likely to be available in (r, 0, z) co-ordinates. The choice of contours on which the grid points shall lie 
may be selected arbitrarily and is independent of the choice for (a) and (b) above, however because engineers 
are usually interested in hub, shroud or blade surface values of the solution, there is some merit in choosing 
one set of streamwise contours to conform with and include these surfaces. Such a choice avoids special extrapo- 
lation procedures to determine surface values of the solution and simplifies the programming necessary to 
define the grid. Such contours will not normally be expressible by analytic mathematical expressions, but this 
is of no consequence since the equations to be solved involve only the co-ordinates chosen for (b) above. The 
remaining set of cross-stream grid contours is again arbitrary, but it is necessary in order to avoid indeter- 
minacy in evaluating the derivatives, to ensure that the two sets of grid contours will nowhere coincide (i.e. 
possess a common tangent). Additionally for this reason Marsh 2 found it necessary to rotate his co-ordinate 
system in which these contours are parallel straight lines but even so, the flow is always restricted to 180 degrees 
deflection in the (r, z) plane. The safest such contours are the true orthogonals to the streamlines which are 
not suitable due to the difficulty of their determination and their necessary re-determination at each iteration. 
It is sufficient to pre-define, fixed quasi-orthogonals for these contours as by Smith 3 for blade-to-blade flow 
or the author's program for hub-to-shroud flow (also suggested but not used by MarshZ), however it is still 
necessary to choose the molecule points as in the preceding section in order to avoid the indeterminacies 
there mentioned. 

The lack of true orthogonality of the grid arising from the above proposals, does not alter the order of 
truncation error if the rules of the preceding section are observed. Nor does it necessarily imply a higher 
magnitude of this error, since this is a function of the local solution, and in every case vanishes in a region where 
all the derivatives in the error term approach zero. A numerical error due to round-off does however arise and 
is amplified by lack of orthogonality but in practice where some ten decimal places are being worked to, this 
will be quite insignificant. 

12. Conclusions 

The equations for inviscid flow on an arbitrarily prescribed streamsheet can be generalised both in respect 
of the equations of motion and of continuity. The principal equation of motion can be expressed for a direction 
(N) of resolution which is always purely normal to the flow direction while lying on the prescribed stream- 
surface. Because the other equation of motion is always resolved in the stream direction, there is no possibility 
of indeterminacy arising from accidental coincidence of these equations. The N-principal equation is both 
simpler in form and offers a higher numerical accuracy as well as a reduction of computer store demand, 
compared to previous forms of principal equation. The previous concepts of a force acting normal to the 
streamsurface and of the non-physical integrating factor in the continuity equation can be dispensed with. 

The location co-ordinates (e.g. r, 0, z) and the choice of grid system may be chosen arbitrarily and indepen- 
dently of each other when giving expression to the N-principal equation. Quasi-orthogonal grid systems 
offer the simplest means of avoiding accidental coincidence of grid co-ordinates while making possible calcula- 
tion of flows with large deflections (greater than 360 degrees) without the need for rotation of reference axes. 
When setting up numerical expressions for the derivative operators with such grids, care must be taken of the 
way in which the operator molecule points are chosen, especially for higher orders of discretization error, if 
indeterminacy in calculating the numerical operator coefficients is to be avoided. 
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LIST OF SYMBOLS 

A general function 

Enthalpy 

Contour 

Meridional co-ordinate 

Unit surface normal vector 

Surface normal vector 

Static pressure 

Radial co-ordinate 

Entropy 

Time, streamsheet normal thickness 

Streamsheet tangential thickness 

Internal energy 

Arbitrary co-ordinates 

Axial co-ordinate 

Specific heat at constant pressure 

Specific heat at constant volume 

Rothalpy (see equation 9) 

Gas constant, location vector 

Functions defining streamsurface 

Temperature 

Blade speed 

Inertial velocity 

Velocity relative to blade row 

Density 

Streamfunction 

Angular velocity of blades 

Inertial stagnation value, nodal value 

Datum value, matrix element 

Matrix elements 

Meridional vector component 

Radial vector component 

Axial vector component 

Tangential vector component 
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Operators 

V 

Vr 

D 
Dt 

OX y,S 

× 

Symbols 

[]  

II 

Gradient 

Surface component of gradient 

Time derivative for particle 

Space derivative 

Integral over closed surface 

Integral around closed contour 

Scalar product 

Vector product 

Vector quantity 

Matrix 

Determinant 
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APPENDIX 

Consider an arbitrary element of a streamsheet having a local normal thickness t and an edge contour l 
(Fig. 1). The equation of continuity (equation (4)) for the closed surface of this element may be written as the 
sum of the surface integrals taken over the three surfaces which form the element. Since however two of these 
surfaces are streamsurfaces by definition of streamsheet then integrals of mass flow 

~ p W. dS (A1) 

on these surfaces are zero. The only remaining surface of the element is its edge defined by the contour I so 
that continuity may be expressed 

~ s P W .  d , =  f p W .  d , = O .  (A2) 

An element of this edge surface dS is defined by 

dS = tfi x dl. (A3) 

hence by equation (A2) 

~ s P W ' d S = f ~ o  pW.tnxdt- 40 p t W x ~ . d i = O  

=-- dS'~. V x (pt W × fi) = O 

where dS' is the area of streamsurface contained by the element. 
Since therefore 

m 

V x ( p t W x  f i )=O 

(A3) 

(A4) 

p t W  × ~ =  V~b (A5) 

where ~k is a scalar function on the surface. Since by equation (A5) 

~. V~k = pt W × n . n - O, 

then there is no variation of ~ normal to the surface and in this sense qJ is locally two dimensional having 
variation only on the surface. 
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S=O 

\ - -  St reamsurface S=O 

FIG. 1. Two neighbouring streamsurfaces S and S + dS forming a thin streamsheet from which may be cut 
a small segment described by contour I. 

Shroud line 

Intersection of r - e 
and tangent ptanes 

(eq. 59b)  / Intersection of z - e  
and tangent ptanes 

(eq. 59ta) 

z 

- e  
l i ne  

l u b - t o - s h r o u d  
[ $ 2 )  surface 

z ( ax is  of 
rotat ion ] 

FIG. 2. The direction of resolution of Marsh's two principal equations. 
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f l n te rsec t i on  of 
r-z and tangent 
ptanes (eq. 60 b) 

Z 

/ 
Nytt resotutio~ 
('eq. 60a) f-- 

;urface of 
revolution 

z ( axis of 
rotation ) 

FIG. 3. The direction of resolution of Smith's two principal equations. 

FIG. 4. 

etc / MolecuLe point 

Totctt number '5 " "~ ~ ~ 
of molecule I1~, ~-~"',~X,,~'~x, 
points required £~ ~ .Q~" ' , , . ' , ~" , ,~  

1 2 3 4 5 6 7 etc (order of derivative) 

Scheme providing the number and basic arrangement of grid points suitable to set up [A] for increasing 
orders of derivatives in two dimensions. 
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Nodal 
point 

Molecule / Grid 
point J 

f4"\ Grid contour 

contour 

FIG. 5(a). Suitable arrangement for irregular grid showing necessary unsymmetrical point. 

Nodo[ point 

3: 1 ~ 

(Grid contour) 

J M o l e c u t e  point 

~, ~ x (Grid contour) Y 6 '  

Fro. 5(b). Suitable arrangement for regular orthogonal grid. (Grid contours and location co-ordinates 
coincident). 
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Co-ordinates defining 
the contours on which 
grid points lie (c) r-- 

/ 
/ 

/ 

Streamw ise 
resolution 

/ 
/ 

/ 
Principal 
resolution / 

Streamsurface 

Co-ordinate defined 
by the direction of 
resotution of the 
equation of motion (a) 

Co-ordinates in which derivot='ves 
and vectors ore expressed (b) 
[Geometrical data ctvaitable in 
these co-ordinates]. 

axis of rotation) 

FIG. 6. The three co-ordinate systems implicitly involved in the problem. 
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Blade trail.ing edge 

i" 

T ~.Z 
"Blade leading edge 

FIG. 7(a). Suitable quasi-orthogonal grid for computation on an $2 surface in a centrifugal turbomachine. 
This grid permits close definition where required and the positioning of quasi-orthogonals at blade L.E. and 

T.E. 

0 

T 

/ 

/ / 

/ / 

/ / 

/ 

~,, N'I 

FIG. 7(b). Suitable quasi-orthogonal grid for computation on an S1 surface in a turbomachine (after Smith, 
D. J. L.). This grid permits easy imposition of boundary conditions with close profile definition where required. 
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