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Summary

The theoretical method presented here gives improved accuracy and economy of operation, because it is
modelled on a very satisfactory method for steady subsonic flow and is programmed in an efficient machine
code for the KDF9 computer. There is no restriction on planform, provided that any cranks are rounded
to give smooth leading and trailing edges with continuous curvature. The method is programmed in two
parts, illustrated by flow diagrams and an example. An appendix describes various operative schemes for
obtaining generalised forces and chordwise loadings in phase and in quadrature with arbitrary wing
motion in rigid or elastic modes. Restrictions on size of solution are discussed, and the usable range of
chordwise and spanwise parameters should serve most needs.

The method is applied to elliptical, rectangular and tapered swept wings of small and large aspect
ratio at Mach numbers up to 0-8 and over a wide range of frequency parameter. Accuracy is established by
direct comparison with steady flow, by independent desk calculation, by reverse-flow relationships, by
asymptotic expansion for small frequency, and by studies of convergence. Results and computing times
compare favourably with those of other collocation methods in current use.

LIST OF CONTENTS

1. Introduction

2. Formulation in Steady Flow

3. Extension to General Frequency

4. Numerical and Program Data for KDF9
4.1 Planform Data
42 Mode Data
4.3  Choice of Parameters

4.4 Programs I and II

* Replaces R.A.E. Technical Report 71 147-A.R.C. 33 405.



LIST OF CONTENTS—continued
5. Calculated Examples

5.1 Elliptical Wing
5.2 Tapered Swept Wing (A = 2)
5.3 Rectangular Wing (A = 1-25)
5.4 Tapered Swept Wing (A = 6)
6. Conclusions
Acknowledgements
List of Symbols
References

Appendix I Evaluation of the Influence Functions and Their Behaviour at Small Spanwise
Distances A. R. Curtis and W. E. A. Acum

Appendix Il Notes on Programs and Alternative Usage P. S. Hampton
Appendix III  Illustrative Example

Tables 1 to 7

Tables 1.1 to 11.6

Tables 1111 to 111.4

lustrations Figs. 1 to 12

Detachable abstract cards



1. Introduction

Although the demand for a general linear theoretical treatment of oscillating lifting surfaces stems
primarily from requirements for flutter calculations, the objective cannot be achieved without a reliable
method to cover special cases of low-frequency stability derivatives and the loading on thin wings in steady
flow. Moreover, a method that is satisfactory over the whole frequency spectrum is applicable to problems
of time-dependent flow involving gust and response functions.

The problem of calculating the aerodynamic load distribution on a wing in harmonic motion in a
uniform subsonic stream has long been the subject of mathematical analysis and programming for
automatic calculation. The present contribution in this field is based on linear theory and is intended to
provide the improved accuracy and economy of operation that can be achieved respectively by modelling
the theory on a very satisfactory method for steady flow, and by using an efficient machine code.

The historical sequence leading to the present investigation has been an iterative one, in the course of
which subsonic lifting-surface methods have been extended from zero to small frequency, from small to
general frequency, and have then been found wanting in greater or lesser degree. The failings have arisen
from imperfections in numerical techniques in steady flow, which have to some extent been remedied. The
cycle has repeated itself more than once.

As a first generation, we may consider Refs. 1 to 4 Multhopp’s' theory, extended to low frequency in
Ref 2, was developed for general frequency by Acum® and Davies*. Both Refs. 3 and 4 are based on the
kernel function of the downwash integral due to Watkins et al.; in practical operation they differ in that
Ref. 3 includes collocation points along the centre line, while Ref. 4 has avoided this situation. It was
discovered that all four methods suffer from an integration routine that gives inaccurate downwash over,
say, the front quarter chord of the wing when the loading at the leading edge has the usual inverse-square
root singularity. None of them could therefore be expected to have sufficient accuracy if the number of
chordwise terms were increased above 2 or 3; this becomes more and more desirable as the frequency
parameter grows.

Downwash studies in steady flow then led to the low-frequency theory of Garner and Fox®, and later
to a corresponding improved method for general frequency by Long”. Just as Ref. 6 superseded Ref. 2
and became available as a program in Algol 60, so Ref. 7 became an improved version of Ref 4
re-programmed in Fortran IV. The innovation in this second generation was an additional parameter to
control the spanwise integration following the chordwise integration of the downwash integral. While
these methods are in current use and give desirable improvement in accuracy, which is sufficient for many
purposes, some limitations persist. Unfavourable conditions arise when particularly large numbers of
chordwise terms are needed; convergence with respect to the spanwise integration parameter is then
markedly slower, especially for wings of high aspect ratio typical of many civil aircraft. Although Ref. 6 is
restricted to at most four chordwise terms, Ref 7 is not limited in this way; nevertheless, converged
results for very high frequency or high-order chordwise bending would require many more chordwise
terms and consequent downwash points so near the leading edge as to demand excessive spanwise
integration points.

The sequel in steady flow is reassuring. Zandbergen et al.® and also Hewitt and Kellaway® have de-
veloped new and more efficient approaches to the evaluation of the downwash integral. Moreover, a joint
investigation involving solutions by the methods of Refs. 6, 8 and 9 for selected planforms at uniform
incidence has been published in Ref. 10. The best solutions by each of the three methods show excellent
agreement, but there is sufficient evidence to discourage the extension of Ref. 6 to more than four chord-
wise terms, while Refs. 8 and 9 should remain satisfactory for larger numbers. The present method for
general frequency is an offspring of Refs. 3 and 8. The influence functions used by Acum and the spanwise
integration routine of Zandbergen et al. are combined. After some mathematical manipulation the
resulting equations are programmed in KDF9 Usercode to determine generalised forces with arbitrary
modes and load distributions at arbitrary sections for any choice of planform, subsonic Mach number
and frequency parameter.

The re-formulated equations give numerical results consistent with those of Ref. 8 in the limiting case of
steady flow. The new program has been checked by hand calculation for an illustrative example for



moderately high Mach number and frequency parameter. Reverse-flow checks are applied, and compari-
son is made with several current theories for general frequency. The main applications are to wings of low
and moderately high aspect ratio and cover a wide range of frequency parameter, convergence with
respect to the number of chordwise terms being studied in both cases. The method is well suited to deter-
mine gust and response functions relating to the aerodynamic loading in time-dependent flow.

2. Formulation in Steady Flow

In presenting the principles and basic equations of Ref. 8, it is necessary to change the notation. This
will facilitate the use of Ref. 3 and avoid repetition of equations in the following Section 3. We take the
origin at a reference point on the centre line of the planform with x-axis horizontal along the stream of
uniform velocity U and density p, y-axis to starboard and z-axis vertically upwards. The wing is of zero
thickness and slightly displaced from the plane z = 0. The lincarised boundary condition on z = 0
expresses the local upwash angle as
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where s is the semi-span of the wing, x,(n) and x,(y') with #' = y'/s define its leading and trailing edges, {
denotes lift per unit area as a fraction of the dynamic pressure pU? and the kernel function is given by

Kix,yixsy) = — |1+ xox (2)
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where 2 = 1 — M? and M is the subsonic Mach number of the stream.
In choosing the standard form of I(x', y') it is supposed that x,(1} and x,(x") are smooth functions to give a
‘regular’ planform. Then we can write

I(x',y) = 5 i [UR) (D! 3)
Ity B, TN -

(

where () is the wing chord, the spanwise distributions I'(%') are to be determined,

cos(g — 1)¢" + cos g’

Yip') = : 4
q(¢) sin (b/ ( )
and the angular chordwise parameter ¢’ is given by

x" = xn') + zcly)(1 — cos @), (5)

With the substitution of equations (3) to (5) the upwash integral in equation (1) can be written as
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in terms of ‘influence functions’ F,(x, #; #"), which are integrals with respect to ¢". It follows from equation
(2) that the functions F, are conveniently expressed in terms of the two non-dimensional parameters

x — x/(n')
X =
(1)
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()



thus
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where X, = (1 — cos ¢").

The integrand of equation (6) has a strong singularity at ' = #, which has to be accounted for by taking
the second-order principal value as derived by Mangler in Appendix I of Ref. 1. Furthermore, the log-
arithmic singularity inherent in the integrand of equation (6) is removed by taking

2
Px,n;n") = F(x,n;9) — (%) E(x,m(n — 0y Inlg —n/, 9

where E (x, 1) is discussed later in Section 2. By means of equation (9), the upwash integral of equation (6)
is rewritten as
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The above equations provide the basis of Multhopp’s' method and its subsequent developments for
steady or oscillatory flow in Refs. 3, 6 and 8 for example. The solution of equation (10) for the spanwise
distributions I';() due to a given wing displacement z(x, ) is achieved by collocation at specified upwash
points x = x,, and y = y, on the wing planform.

A basic difference between Ref 8 and earlier methods for steady flow is that in the product
L, (1)P,(x, n;#’) of equation (10) the two functions are treated separately. The accuracy of the numerical
procedure for the first integral in equation (10) is improved by the construction of a ‘regularised’ influence
function R, (x,#;#7’), which may be represented by a higher-order polynomial than the loading I",(77').
The spanwise distribution is represented by the double Fourier series
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and the integer m can be either even or odd. The regularised influence function R,(x, 1;#’) is constructed
according to equations (A(2) and A(3) of Ref. 8 and becomes

Px,n:7) — Plx,n;m) — (o — nPx,n;
R,(x,7;7') = sin 9'{ . 131) q(ng,’j)n)z(n i q(x’"’")}, (13)
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and by equation (9) T (14)
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The numerator in equation (13) is of order (' — #)* in the neighbourhood of ' = #, so that the function
R (x,n;n’) is bounded and continuous and can be represented adequately as in equation A(4) of
Ref. 8 by
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where

An
A+1

A={am+1)— 1} . (16)

a = positive integer

n, = —cosf,; = ~cos( ) A= 1A

By taking the parameter a sufficiently large, we can achieve any desired accuracy in the representation
of R(x,n;#") to be used in equation (13). When the integrals in equation (10) are transformed to the
variable ¢ with the substitution of I' (1) from equation (11) and P,(x,n;#’) from equations (13) and (15),
a tractable form is obtained for w(x, y).

In the present method, the number and position of the upwash points x = x,,, y = y, are restricted
to the Nm values given by

xm=XMJ+%MJU—CM¢A=xW+%M—wm¢ﬂ} 7
¢, = 2np/2N + 1), p=11)N
and

ny = y,/s = —cosf, = —cos (,;%), v = 1(1)m. (18)

The integrals remaining in the upwash w(x,,, y,) are effected analytically with due regard to the principal
value and are denoted here as coefficients «,,, p,,, 6,,, T.,.* The algebraic formulae for the coefficients
with 0,, 0, and 6, defined according to equations (12), (16) and (18) are

(— 1Y sin 6, sin (An/a)

= 0
K4 = Yo + DA + Dicos 0, —cosd) 70
. , (19)
= —m 612 9,,1.6.,/1=ar
o sing {1l — (1)
P = T3(m + 1)(cos 8, — cos ,)? 0, # 0,
( ) , (20)
m -+
= = 9
4sin 0, 0, =0,
B sinf, {1 — (—1y*""}
P = T %m + 1)(cos 0, — cos 6,) 0. # 0,
, 21)
—0 6, =0,

and

TV"

1 , m {wsin uf, sin 0, + cos uf, cos 6,} sin uf)
= — | sin6,4cos 260, — L1n2) — v v €05 % @
s 1[sm (Gcos28, —31n2) ,Z:z WD (22)

* These correspond to the four integrals defined in equations A(6)(a to d) of Ref. § after multiplication
by the respective factors

1 sin 0 -
r —1 —Lland the substitution 6, for 6,.
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The values of the coefficients p,,, 0,, and t,, are governed solely by the value m chosen for the collocation
solution, whilst the values of k,, depend also on the value assigned to A through the integer a of equation
(16). Formulation of w(x,,, y,} at the points given by equations (17) and (18) therefore provides a set of
Nm linear equations in the unknown coefficients r,; thus

N m

_W = Z Z quQq(p’ v,7) )
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with
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where the abbreviated notation (p, v, 1), (p,v) indicates that the function corresponds to the values
(xpvs r’v , ’7/1)’ (xpv’ T]‘,, nv) respectively.

The major part of the computation for Q(p,v,7) is in the evaluation of the regularised influence
functions from equation (13) rewritten as

R (p,v, ) = sin 0, {Pq(p, v,A) — P(p,v) — (ZA — 1,)P(p, V)}’ 29)
(77/1 - nv)
for g = H(I)N, p = 1()N, v = 1()m, A = (1A,
where by equation (9)
Bs\? 2
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Pq(pa V) = Fq(xpv S/ 77\») * (26)

Pyp.v) = Pyx,,,1,;1,), defined by equation (14)

For steady flow the required values of the influence functions Fy(x,y» 1,51, are determined by equations
(4) and (8) where in place of equation (7)

X(p, v, /1) — xpv - xl(ﬂ).) — xpv — X1
cln,) &) 27)
Yiv, 2) = Py = il
¢y

The particular value R, (p,v;A = av) requires a special formula, since equation (25) is indeterminate
when 7, = 73,.
The series development of F, from equation (8) with fixed X and small Y is of the form

Fo=F(X,Y=0)+ {Y?In Y}{E/(X) + O(Y)} + Y*{D(X) + O(Y?)}, (28)

where E (X) is equivalent to the quantity E (x,n) introduced in equation (9). It follows from equations
(4) and (8) that
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where X = 1(1 — cos ¢). We write

2 .
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Differentiation with respect to X gives
2| cos({g — o + cos
L0 = [ (4 = 1) qﬂ. an
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From the analysis in Appendix III of Ref 1, it is easily shown that
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o X) o(X) n[ sin ¢(1 — cos ¢) (32
An algebraic formula for D (X) can be deduced from equation A(18) of Ref. 8 to be
gsin(g — D¢ — (g — V)singdp =~ 2
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AX) Ty + lal = (g = D]
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where I, = 0, I, = (m — ¢) and there is the recurrence relation

2
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In practice, D,(X) has been calculated from the integral expression in equation (1.23) of Appendix I for
general frequency : in the special case of steady flow (1 — 0) this can be manipulated to give equation (33).
It can be deduced immediately from the limiting form of equation (13) as #” — 5 that

R,(p,v, A = av) = 3P;(p,v)sin 0,, (34)
where

O*Py(xpy 15 1)
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Substitution of equation (28) into equation (9) gives an expansion for P,(x,n;#'); after differentiation
with respect to ¢’

dF(X,Y=0) dY

Px,n:n) = J(n’)—m—z)—g ———————— + b?,-[{Y + 2YIn Y}E(X) + 2Y D (X)]
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where by equation (7) for X
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in terms of the differential coefficients x;(#") and ¢'("). Differentiation of equation (35) gives

’ ) o nAF(X, Y = 0) (X,Y=0
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it can be seen that the logarithmic singularities will cancel when " — #. With substitutions x = x,, and
n — n = n,, equations (7) become

where, since

X=X, =31 —cos
14 2( ¢P) ; (38)
Y=0
and equations (9), (31) and (35) reduce to
P(p,v) = 2L (X
w(P5 V) o X5) } (39)
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Similarly eguations (34), (36) and (37) reduce to give the required limiting form of equation (25)

2 " ﬁs 2 ‘BS
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The regularised influence functions R, are thus defined by equation (25) or (40), where F,, P, and its
limiting value and derivative are given in equations (8) and (26); the formulation also includes the
supplementary functions L, (X ,) and its derivatives, E (p, v) = E (X ), D(X ), J,, and J;, from equations
(30) to (33) and (38) to (41).

We can now return to equations (19) to (24) and relate the upwash angle to an arbitrary mode of
deformation by means of

s py

U Ul, ox’

where z(x, y} denotes an upward displacement of the wing. Equation (23) may then be rewritten as

0
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where the coefficients Q,(p, v,7) from equation (24) form a square matrix of order mN. It remains to
solve the linear simultaneous equations for (I',,); and to substitute in equation (3) for the wing loading

8s N
TCC, g=1
at the sections in equation (12) where
x = x;, + 3¢l = cos ¢), r=1{)m (45)

In general, there are force modes z = z/(x, y) and force coefficients

0= -5 f [ ztaxay, (46)

where d and D are the arbitrary reference length and area respectively and

cos (g — )¢ + cos q¢

= e 4
sin ¢ (7
with spanwise distributions [T (»)]; in accord with equation (11). With D = S and z; = z, = —d, for
example, equations (46) and (47) reduce to
. A n . T
=3C, = = e r,) sin—— 48
Qu =20 = 5y X, (Tor)ysin “5)

where C, is the lift coefficient and A = (25)%/S is the aspect ratio of the planform. Similarly, with
Z; =12, = —X

0:y = 4o = gl ¥ L) b + de) = (Do, e} sin (49)

where C,, is the nose-up pitching moment coefficient about the axis x = 0 with arbitrary reference length d.

The requirement, that the planform is regular, is closely allied to equation (41) for J,,, with its explicit
dependence on the second derivatives xj, and ¢}. It is necessary that the planform should have continuous
curvature at the collocation sections; moreover, it is desirable to remove irregularities due to cranks
wherever they occur (Section 4.1). Given a smooth planform, the subsonic Mach number and modes
z; and z;, there are still the basic parameters N, m and a to specify the collocation points and the terms
in the loading and to ensure sufficient accuracy in equation (15); some guidance is found in Section 4.3.
In Section 5.1 there is numerical confirmation that a solution of the preceding equations is consistent
with results obtained for steady flow in the original Ref. 8. Many of these equations continue to apply
in the formulation for general frequency that follows in Section 3, although the details are much more
complicated.

3. Extension to General Frequency

For lifting surfaces oscillating in simple harmonic modes at an angular frequency w, linearized theory
applies subject to the limitations indicated in Section 2 and provided that the oscillations are of small
amplitude about zero mean incidence or a steady state within the scope of Ref 8. As can be seen from
equations (24) to (27) of Ref. 3, the integral equation relating the complex upwash w(x, y) e’ and the
complex load distribution /(x', y') e* over the wing planform at time ¢ has the same form as equation (1)
but with an oscillatory kernel function K(x, y; x, ') dependent also upon v and M. As in the theory of

10



Ref. 3, it is convenient to take

w(x, y) = exp { — ivx/Z}w(x, ) (50)
and
with Ix',y) = exp {— I:'VX/E}l(x, ») 51)
s o S , ,
l(x H y) - 7tc(11') qgl [rq(ﬂ )Tq(¢ ):l

where ¥ = wc/U in terms of the geometric mean chord ¢ and the real chordwise distributions W (¢') are
given by equations (4) and (5). Again it is assumed that the spanwise distribution I (%) is smooth over
the wing span and can be represented by the interpolation polynomial of equation (11) with unknown
coefficients I ,, these now being the complex values I (1,). Equations (51) with # = 0 give I(x', y’) consistent
with the load distribution for steady flow in equation (3).

The integral equation of the upwash w(x, y) for general ¥ reduces by means of equations (50) and (51)
to an equation for the modified upwash

et N 1 ’ .t
W('x’ y) — l_ J I“q(”’ )Fq(x7l}127 T’] ) d ! (52)
U PX g Y n—n)
with
7 = 2 i I i (sin u@' sin p6,) (53)
qu _‘(m+1)r=1 qr”=1 K Ho,
where ' = —cos ¢ and #, = —cos {rn/(m + 1)}, r = 1(1)m. The oscillatory influence functions F, are
defined as
’ 1 " n2 l\—}(x - X’) ’ ’ ’ : ’ ’
Fxsn) = = [ L= 7 et TN K v, ) [ #y@) sin g dg (54
0

with the modified kernel function in the square brackets corresponding to the function defined by
equations (68) to (72) of Ref. 3 and used in Appendix L From the point of view of programming, it is
convenient to express F, as a function of the five non-dimensional parameters

M,\‘),@, X and Y,

with the two non-dimensional coordinates defined by equation (7). The form of the function F, in the
neighbourhood of Y = 0 is shown by equation (126) of Ref. 3; its extension in Appendix I of the present
Report is similar to the series developed in equation (28) for small Y, but with the functions F(X,Y=0),
E(X) and D (X) appropriate to the oscillatory problem. By equation (90) of Ref 3, F(X,Y = 0) is
independent of ¥ and in fact identical to equation (30). By equation (127) of Ref. 3,

E(X) = [—Li(X) + 2ipLy(X) + B*pLy(X)] (55)

in terms of the functions defined by equations (30) to (32) and with

(56)



The function D (X) is the complicated sum of integrals in equation (1.23) which is also dependent upon
u and has to be computed numerically.

Now we consider the integration for the modified upwash in equation (52). The resemblance between
the form of the integral for #(x, y) and that for the upwash w(x, y) in steady flow from equation (6) indicates
that the procedures of Section 2 may be applied directly to the evaluation of the modified upwash for
general frequency. It can be shown that a collocation solution for the oscillatory coefficients ', leads to
a set of Nm linear equations for w(x,,, y,), similar to equation (23) and with complex elements Q D v, 7)
now defined by equations (24) to (26) in terms of Fo(x,pu,1y51;) from equation (54) and E (p, v) from
equation (55} with the substitutions

1 27p
=X, =—1 —
X=% 2( COSZN—I-l)
(57)
B Ve,
/‘l—ﬂv_ﬁz(—:

consistent with the collocation points in equations (17) and (18). The limiting form of the regularized
influence function

I Bs\ 2 Bs
R (p.v, 4 = av) = sin b, S LX) + JoLy(X,) + . Dy(p.v) + E(p,v)In o (58)

v

is unchanged from equation (40), except that the quantities D (P, v) and E (p, v) denote their dependence
on both chordwise and spanwise location of the upwash point through X, and the local frequency
parameter p, from equations (57).

The boundary condition and wing loading for arbitrary modes in equations (42) to (49) no longer
apply when the flow is oscillatory. The modified upwash from equation (50) is obtained from the upward

displacement mode z (x, y) as
’ ah Vz.
w (’f “‘)*—exp{ H: +l-]:" (59)
U ¢ Ox é

In place of equation (23), the complex set of equations to be solved for (I”qr)j‘is

[==~
T o=
I

[¢]

>
o
e
f‘.l%‘?
\__\‘,_/

N m

Y L Qp i) = by, = —”L“Ui) (60)
q=1r=

where Q (p.v,#) is still formulated from equation (24). p = 1(1)N and v = 1(1)m. Hence the complex
loading from equations (51) is obtainable at each collocation section as

8s N

([r)j = Cxp { _l__t‘(} Z (rqr)_jqjq{d))* (61)
r q

e =

where x and ¢ are related by equation (45). The complete distribution /; follows by writing ¢(x) for ¢,
and replacing (T,,); by [T ()]; in accord with equation (11). The generalised force coefficients arc then
defined as before by the surface integral (46), which after chordwise integration becomes

Q= D Z [l"q(r()]jK,-q dn (62)



with

. 1 %,
K, = —exp {_1(3:;_0)”0 3exp{’“c ;’“”}W ($)sin $ dg. (©3)

For the simple modes z; considered in equations (48) and (49), the integrals K;, are expressible in terms
of Bessel functions as indicated in equations (149) and (150) of Ref. 3. In practice, however, equation (63)
is evaluated by numerical integration. The final spanwise integration in equation (62) is accomplished
by application of the interpolation polynomial (11) to the product I',K,,, which presupposes that K,
can be represented by a polynomial in 7 of order less than m. It is then sufficient to calculate

) sin 0, (64
D(m + 1) qzl rzl )

0y =
where (K,,); denotes the value of Klq at the section 5 = —cos 0, defined in equation (12). Table I1.4a of
Appendix II shows how provision is made to output (K,,);, if requlred
The summations with respect to r in equations (60) and (64) can be roughly halved in length as soon
as it is known whether the spanwise loading is symmetrical or antisymmetrical and whether m, the
number of collocation sections from tip to tip, is even or odd. The major part of the calculation lies in
evaluating the elements Q,(p, v, 7) of the aerodynamic influence matrix, and the success of the computer
program depends in large measure on the efficient handling of this process in KDF9 Usercode. There
are particular quantities 4, and x that are set to optimise the calculation of the complicated function
D,(p, v) required in equation (58) and derived in Appendix 1. There are, moreover, the variable parameters
) and ¢ that limit the smallness of interval in spanwise integration and control the tolerance in accuracy
(Appendix II). It is remarkable that the computation time for general frequency is less than twice that
for steady flow, unless the frequency parameter is very large (say, v > 963).

4. Numerical and Program Data for KDF9

The preceding formulation has presupposed than the planform is smooth apart from the possibility
of a pointed or steamwise tip. Elsewhere on the planform, discontinuities in slope require the artificial
rounding discussed in Section 4.1. The modes of oscillation are chosen and defined according to Section
4.2. Section 4.3 gives recommended values of the other parameters needed to specify the basic calculation.
Solution by collocation can then proceed.

As described in Appendix 1T and illustrated in Appendix III, the method has been programmed in
KDF9 Usercode and the calculation can be run on a KDF9 computer in one or two stages. A brief
account of Programs I and II and their various uses is given in Section 4.4.

4.1. Planform Data

The derivation of the matrix of ordinary linear simultaneous equations (23) assumes that the leading
edge x,() and chord c(x) are twice differentiable. In practice, planforms with sweepback or taper have
discontinuities in slope at the centre section, and likewise at non-central sections if there are cranks
or non-streamwise tips. Under such conditions some artificial rounding of the planform becomes
necessary.

We consider first a straight- tapered swept wing with streamwise tips. In an arbitrary central region
Inl < n;z the true leading edge and chord are replaced by

x(n) = xp + f(Ax(n:0) — le]} (65)

cn) = cg + f(M)clnir) — ¢l

where 0 < A = |yl/nz < 1. Of the three shapes of rounding compared in Ref. 10, we choose from Refs. 8
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and 9 respectively

S =110 =%+ 22 — 14
- ﬁ,,ﬁ}' (66)

SO = H0) = F5 + 822 — s
The polynomial f,(2) is that of the lowest order to achieve continuity in x;(#) and ¢"(#). The even poly-

nomial f5(4) gives continuity in the third derivative at || = 7,z and in all derivatives at n = 0. The equation
(65) for c(n) is conveniently written in the form of an increment

cln) = [e(D]iue + &) [ctir) — crl (67)

where g(4) = 0 if 2 > 1 and from the respective equations (66) when 1 < 1 either

gl) = g,(4) = /il — 4 =31 — 1 (68)

or
g = g,(N) = foD) — 4 = {5(1 = DH5 + 44 + 22, (69)
The rounded leading edge is given by a corresponding increment

x(m) = [x{(M)]rue + 24 [xinir) — xi]- (70

Provision has been made to treat four classes of wing denoted by indicators

wing = 1 straight-tapered swept wing with streamwise tips,

wing = 2 straight-edged planform with extra non-central crank at || = Nks

wing = 3 straight-edged planform with cranks at |5| = 0, 5, and %,

wing = 4 planform with leading edge and chord and their first two derivatives specified numerically.

A rectangular wing is treated as a special case of wing = 1, as in equations (67) to (70); although neither
has any influence, it is necessary to specify the extent of rounding #,z and shape of rounding, round = 1
orround = 2 from the appropriate equation (68) or (69). In the case wing = 2, equation (67) is replaced by

M) = [cM]iwue + (cx — cRMirg(Ar)/ Mk, (7)

where ¢k and cg are the true crank chord and root chord respectively and A, = |%l/n;x- To equation (71)
is added an increment due to rounding the non-central crank over the region of arbitrary extent
7 — ngl < K, so that fory = 0

— 1
(=) = cln) = [e]ue + E—E1,080ix) + —[
Hk 2

Cr — Cg
1 —ng

- CRj] nixig(Ax) + glA_p)}, (72)
)3

where Ag = |n — ngl/nx and the last term with A_g = | + #.l/n caters for the possibility that the
region | — 14| < 1, may extend beyond the root. Similarly in the case wing = 3, the rounded wing
chord is given by

C4 — C 1lecg — ¢ Cy — C
o=n) = ) = [e]iwpe + ——"nipg(Ae) + —[ e “} 1:4{8(Aa) + glA_ )}
Na 2{ng— 1,4 Na
ler—cg c5— cA:l
Y - i A ), 73
2I:1—’13 ”B_WA nt(B ( )
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where cg, ¢4, cp are the true chords at n =0, 5y, 75, A4=1In— NalMiar A—a =10+ 14/Ma>
A5 = |1 — Ngl/Mis> M4 and 15 (< 1) are arbitrary, g(4) = 0 if 2 > 1 and equations (68) and (69) offer a
choice of function g(4). Again there is a corresponding equation for x,(—#) = x(n). The quantities 7z,
Hix> Mia and 7,5 should normally be of the same order as the spacing between consecutive collocation
sections. On the other hand, the two roundings at 5, and #, might be superposed to simulate a curved
tip.

When wing = 1, 2 or 3, it is sufficient to define the planform by numerical values of

wing, round, S, X;g, Cg, Mig> Xi7> CT
and intermediate data for each non-central crank, e.g.,

k> Xig> €k Nik

However, wing = 4 caters for planforms with curved edges or with shapes of rounding other than
round = 1 or 2. Then every element of planform data to be used in the calculation is input numerically
as set out in Table 112 of Appendix IL. The indicator round = 0 implies that the rounding, if any, is
different from that of equation (68) or (69).

The origin of coordinates is chosen on the centre line, such that the y-axis becomes the pitching axis.
The reference length d is taken as unity and determines the linear scale. The arbitrary reference area D
must be specified. The geometric mean chord ¢ and associated frequency parameter wc/U are required,
but the aerodynamic mean chord ¢ and frequency parameter wZ/U may replace these without affecting
the calculation. The aspect ratio A is not input, but it would normally appear in the descriptive title.

4.2. Mode Data
The mode data fulfil the dual rdle of defining the complex upwash

W x| [0z iz
— = —_— =+ = 74
U eXp{éJ(ﬁx+E) 4
and the generalised force coefficient
1 s xe(n)
0=~ | [ atxyaxay. (15)
2Dd —s vxi(n)
where z,/d = — Z, is the force mode. The oscillatory motion is expressed in terms of a linear combination
of modes as an upward deflection
J
Ax,y) = —d ), bZ{x/d, y/s). (76)
i=1

There are corresponding expressions for the non-dimensional loading

J
l(xa y) = Z:,l bjlj(x’ y) (7N

and the force coefficients

J
Q= ) b0y (78)
i=1
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where

s 1 xe(n)
05 =55 L [ zaxtd. i sy dx (79)

xi(n)

The basic modes Z; fall into four categories according to their spanwise symmetry or antisymmetry
and their analytical or numerical definition. The analytical ‘standard modes’ are selected from

Z = X°Y", ) (80)

where X = x/d, Y = 5 and the integers o (> 0) and 7 (> 0) satisfy ¢ + 1t < 4; thus, fifteen symmetrical
and ten antisymmetrical standard modes are available as indicated in Table 111 of Appendix 11. The
numerical modes are defined by values of Z; and 0Z;/0X at the collocation points where equation (74)
is to be evaluated. The weighting Z; in equation (79) is determined for each collocation section as a
polynomial in X of degree (2N — 1) consistent with the local values of both Z; and 3Z,/6X.

Spanwise symmetry is denoted by sym = 1, antisymmetry by sym = — 1, and both together by sym = 0.
Restrictions on the numbers of modes are discussed in Appendix II and are represented approximately
in equations (11.5) to (IL.7). If there are numerical modes when sym = 0, the parameter { is used to indicate
how many of these are symmetric.

4.3. Choice of Parameters

Given the rounded planform data and mode data outlined in Sections 4.1 and 4.2, it is necessary to
specify the subsonic Mach number M and frequency parameter ¥ to complete the definition of the acro-
dynamic problem. The facility wing = 4 for planform data and the use of numerical modes together
imply a prior choice of the parameters N, m and a, which should be as small as is compatible with the
desired accuracy.

The number of chordwise terms is dictated primarily by the behaviour of the complex upwash w/U
in equation (74). The higher the power ¢ in equation (80) and the higher the frequency parameter, the
larger N needs to be. It is reasonable to take

.
N>2+a+%, 81)

but low aspect ratio or high sweepback or high M may call for a further increase. The number of collocation
sections is governed primarily by the aspect ratio, but the demand is probably increased in cases of high
sweepback or high taper or an increase in the power t in equation (80). As a guide line we suggest
m = 10
(82)

4scg
m > 1T + ~=5=sec A,
c

where A, is the sweepback of the trailing edge. The spanwise integration parameter must increase with
the number of chordwise terms, lest the matrix elements Q,(p.v,r) in equation (24) should become
inaccurate at the forward positions p = 1. If m is determined from the second inequality (82), then a
satisfactory value of « is (2N — 4); in general we suggest

am + 1) > 2N — 4)(1 + 24). (83)

This should provide roughly three-figure or +4 per cent accuracy in the generalised forces.
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There are four other parameters to define the calculation of the basic matrix Q(p, v, r) in equation (23).
As stated in Appendix II, the values for routine operation are

My = 2° = 128, A = 3 }

(84)
tol = 107¢ = 1074, k=05

Refinement in accuracy is obtainable by taking é > 7 and & > 4, but only with a considerable penalty

in computing time according to equation (IL.9).

4.4. Programs I and 11

The preparation of data for the first stage of the program is summarised in Table IL2 and illustrated
in Appendix IIL. The indicators ‘stop’ and ‘print’ are introduced to control the end of the computation
and the output. The various options are included in Table IL.4. The larger the value of stop, the more the
computation is curtailed: the larger the value of print, the greater the output. In the normal calculation
with stop = print = 0, the matrix of complex generalised force coefficients Q;; is evaluated and printed
out together with the input data, the required storage from equations (I1.1) and (IL4), the solutions (I';,);
and the running time. With stop = print = 1, the computation does not proceed beyond the solutions
(T');» while the matrix Q(p, v, r) and right hand sides h,, from equation (60) are printed as additional
output. In matrix notation we write

[Q][T] = [A], (85)

where Q] is the square influence matrix of order mN with element Q(p, v, 7) in row {(p — )m + v} and
column {(g — )m + r} and in corresponding order [I'] and [h] are column matrices with respective
elements I'y, and h,,. With stop = 2, print = 3, only the matrix is calculated, but it is output on paper
tape as well as by line printer. Ten other combinations of stop and print appear in Table 114, and the
flow diagram in Figs. 1a and 1b shows the various methods of operation and safeguards.

The facility print = 3 provides the link between Program I and Program Il which has two main uses.
As explained in Table IL5, the output paper tape comprises definitive planform data and the matrix
Qp,v.7) and forms input tape A, the major part of the data for Program II. With the option stop = 0,
the force coefficients Q,; are calculated for arbitrary modes; this offers a large saving in running time if
additional or amended modes are necessary. With the option stop = 5, the computation proceeds further
to obtain the complex loading at chordwise positions

x=x,(11)+%c(11)(1 +cos$), p=1,2,...(V=1) (86)

where the integer V is arbitrary. The quantity /(x, y) from equation (61) is evaluated at all sections n = 7,
and, if desired, at T additional sections # = #,, for which the values of x,(,) and c(n,) must appear on the
supplementary input tape B as listed in Table IL5. The functions (K,,); from equation (63) with n = 7,
serve to calculate not only Q;; but the local lift and moment both of which are output when stop = 5. From
equations (61) and (63) the local lift coefficient is

" i 45 N
(Culy= | Gy dsingds =20 ¥ Kyl (87
Y e, g=1
where i = 1 denotes that z; = z, = —d. Similarly with
d d Xy,
Z; = _CT(X - Xy) = (“)22 - 'jl‘)zl
r ¥ F (88)
where
z;=—d and z;, = —x,
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the local pitching moment coefficient about the leadiﬁg edge is given by

as X ([d
~(Cdy === Y. {(4) (Ky)z = ()i) (K,,»,} () (89)

rg=1 c, C,

The general flow diagram is shown in Fig 2. The running time is trivial by comparison with that of
program L

There are slight complications when sym = 0, but the instructions in Appendix II should suffice.
There are also greater restrictions on storage in Program I when sym = 0, because it is necessary to store
the regularised influence functions R (p, v, 1). In cases outside the range of Table I1.6b and within the range
of Table II.6a it would be necessary to run the symmetrical and antisymmetrical calculations separately.

5. Calculated Examples

The present method has been applied to the four planforms in Fig. 3, which shows their origins of
coordinates and indicates the scope of the calculations. The numerical planform data are listed in Table
I, where the representative length d(= 1) and area D are defined for each wing,

The elliptical wing has been used for numerical checks in Section 5.1. and as the illustrative example in
Appendix [11. Like the elliptical wing, the tapered swept wing of aspect ratio 2 is selected from the examples
in Ref 11, where the results of several current methods are compared. Being a wing of high sweepback,
itis a suitable case in which to study solutions with odd and even values of m, respectively with and without
collocation points on the centre line (Section 5.2.). The low-aspect-ratio rectangular wing in Section 5.3.
makes little demand on the parameter m, but it serves to study convergence with respect to N at moderate
and at high frequency parameter. The final example in Section 5.4.,a tapered swept wing of aspect ratio 6,
has the most practical planform and provides a thorough examination of the present method at two Mach
numbers and over a wide range of frequency.

5.1. Elliptical Wing

At the outset of the present investigation the method of Ref. 8 for steady flow was reformulated con-
veniently for the extension to oscillatory conditions. The case of a circular wing at M = 0 with N =
3R = 2),m = 5,a = 2in Table 2A of Ref. 8 furnished a good example on which to check the formulae by
hand calculation, and the results were reproduced to all six decimal places. The computation involved
non-zero values of the first and second derivatives of the planform geometry x,(») and c¢(x), which provided
the necessary generality.

The main calculation to be completed on a desk machine was for an elliptical planform at Mach number
M = 0-8 and frequency parameter

k:—.U:l (90)

and of the same reduced aspect ratio 4 as the circle. As a computational aid there was, fortunately, an
established program for the influence functions F, from equation (54), which had already been developed
in connection with Ref. 3. The greatest difficulty in arriving at the complex matrix equation (85) concerned
the computation of R, (p, v, 2) from equation (58) in the special cases 4 = av. The limiting expression in
steady flow from equations (38) to (41) is manageable enough, but for general frequency the quantity
D,(p,v) = D(X) in equation (1.23) of Appendix I requires special elaboration.

After the desk calculation for N, m, a = 3, 5,2 had been completed, a first version of the present program
became available ; this test case, used as the illustrative example in Appendix 111, confirmed numerical
accuracy to the fourth decimal place, the small discrepancies being accepted in view of the large computing
effort in evaluating D (p, v) to improved accuracy by hand.
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With reference to equations (81) to (83), it is reasonable to take N = 4, m = 11, a = 6 for simple modes
of oscillation ; instead of (3, £) = (7, 4) as in equation (84), the extra accuracy with (4, ) = (8, 6) is used in
the solution quoted in Table 2. The force coefficients

Qi = Qi + ikQ;; o1

for symmetric modes Z = 1, X, X?, Y? and antisymmetric modes Z = Y, XY agree with those of Ref. 11,
to the order of accuracy, 1 or 2 per cent, revealed by those comparisons.

Since the planform has streamwise symmetry, we may apply the reverse-flow theorem as given by the
identity in equation (19) of Ref. 12. Thus, from equations (32) of Ref. 12, we have the identity

Qi +0s + 2120 9

without the term in ¢, because the origin at the centre of the ellipse occurs in the transverse plane of
symmetry. Similarly there is the identity

Q25 + Qsz + 1(Qus + 202 = 0, 93)

where the modes 1,2 and 3 correspond to Z = 1, X and X? respectively. With the aid of equation (91) the
real and imaginary parts of equations (92) and (93) give

Q2+ 03, — 01, =0

Qi + Q3 +k7%Q1, =0

Qpa + Q32 — Q13 — 205, =0
33+ Q5 + k7HQ15 +205,) =0

(94)

The solutions in Table 2 with k = 1 give respective left hand sides 0-0002, 0-0004, 0-0004 and 0-0006,
which are consistent with results correct to the third decimal place. The left hand sides of equations (94)
have also been calculated for the other solutions in Ref. 11, and the next best set of values is 0-0000, 0-0021,
0-0009 and 0-0048 as found from Ref. 13 all the others show errors in the second decimal, possibly due to
taking only three chordwise terms. The root-mean-square error between the 32 force coefficients in Table
2a and the corresponding values from Ref. 13 is 00062, while for the antisymmetrical modes in Table 2b
it is only 00004 ; with reference to the value of Q7 , the damping derivative in heave (or roll), the worst of
the discrepancies is about 3 per cent and of no practical concern.

5.2. Tapered Swept Wing (A = 2)

As shown in Fig. 3, the planform has high leading-edge sweepback. The choice of artificial central
rounding is therefore a matter of importance, and we have used equations (67), (68) and (70) with

Hig = SIn

T
1_6) = 0-19509.

The reference length d = s, area D = s? and origin at mid-root-chord are taken in Table 1 to be consistent
with Ref, 11, so as to facilitate comparisons with other methods; for the same reason the Mach number is
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fixed at M = 0-7806 (f = 0-625) and the frequency parameter

ws «cC
=—— = =7 = 1. 95
k c=1u =" 95)

For the simple rigid modes of heaving and pitching, equations (81) to (83) suggest that it is reasonable to
take N = 4,m = 14, a = 2. Most of the present calculations have been made with N = 3 to correspond to
the original results for this wing in Ref. 3 and most of those in Ref 11. However, the calculated force
coefficients @, (i,j = 1 and 2) in Table 3a include one set obtained with N = 4.

The four solutions with N = 3 show the negligible effect of increasing (5, ¢) from (7, 4) to (8, 6) and of
increasing a from 2 to 3. Moreover, the increase in m from 14 to 15 barely affects Q;; or Qf; in the third
significant figure. Considering that this change in m produces full interspersion of collocation sections in
the central region, we may fairly conclude that the artificial rounding is effective. By contrast, a problem of
collocation error was encountered for the same planform at low frequency in Fig. 22 of Ref. 14 when the
method of Ref. 6 was applied with insufficient rounding and therefore with excessive curvature of planform
at the central collocation section. The procedures in Section 4.1. appear to avoid this difficulty.

The remaining solution with N = 4 shows much more effect of this parameter than any of the others,
changes of up to 4 per cent being found in Table 3a when N is increased from 3 to the recommended value
4. Perhaps cquation (81) is a little optimistic for such a high value of leading-edge sweep parameter as

B~ 'tan A, = 2.77.

Convergence with respect to N will be considered more fully for the remaining planforms in Sections 5.3.
and 5.4.

Table 3b shows comparisons of the present results with those of Ref. 3 and others quoted in Ref. 11.
Both Acum’s® original calculations and those by Laschka's'® method* with N = 3 and m = 15 are in
satisfactory agreement with corresponding results by the present method; the worst differences of about
2 per cent arc of the same order as the effect of increasing N from 3 to 4. The comparisons with N =
and m even (> 14) do not show the method of Ref. 13 in such a favourable light as the previous discussion
for the elliptical wing. The differences average above 4 per cent, and the worst discrepancies (in Q1, and
Q3,) may be written as 0-023Q7, by comparison with 0-006Q7, for the elliptical wing. The most likely
explanation lies in the severe kink at the apex of the leading edge. Neverthless the results by Long’s’
method with N = 4 are reasonably close to the corresponding values by the present method in view of
differences in assumed central rounding and the incomplete convergence with respect to N. Whilst an
increase in Mach number or frequency would aggravate the question of accuracy, none of the disparities in
Table 3b 15 likely to discourage the use of the various methods in flutter calculations.

5.3. Rectangular Wing (A = 1-25)

The rectangular wing is of such small aspect ratio 4 -= 1.25 that m = 11 is sure to suffice. We can there-
fore concentrate on the other parameters N, a, § and ¢ at the moderate and high frequency parameters
v = 15 and 60 in incompressible flow. The generalised forces in Table 4 correspond to the modes of
heaving and pitching about the leading edge.

Consider first the parameters d and & introduced in equation (84). Before the computer program was
optinused. the maximum number of intervals in the integration routine for the influence functions was
often fixed at 2% with § = & or 9: morcover the tolerance 10 7% was usually selected with ¢ = 6 or more.
With the recommended values (3. ) = (7.4), the influence matrix [Q] shows small inaccuracies in its
elements, but the equations are so well-conditioned that there are virtually no discrepancies in the final
caleutation of generalised forces. Table 4 shows that at both frequencies the changes in Qi and Q;; are
insigniticant to the fourth decimal place when & is increased to 8 and then ¢ is increased to 6. This same

* ?\’—L\nlts mu;un m&fV\« Report M-75,66 (B.‘ ll\\hI\l m Bohm, H. Schmid,“l-‘)é)ﬁ).
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negligible effect was found for the two previous wings and appears to be irrespective of Mach number and
frequency parameter. The facility to vary (d, £) appears to have served its purpose by more than halving
the running time as estimated in equation (I1.9) of Appendix I1.

Equation (81) suggests that N = 4and N = 7 should suffice when # = 1.5 and 6.0 respectively, and with
m = 11 the respective values a = 2 and a = 3 or 4 are recommended in equation (83). The calculated
generalised forces in Table 4 show slight changes in the fourth significant figure when a is increased from
4to 6 and N = 4. This is so small compared with the alarming effect of N when # = 60, that a = 4
is retained in the study of convergence with respect to N. This aspect of the results is illustrated in Figs. 4
and 5 by parabolic curves of pitching stiffness and damping against axis position, viz.,

Q22

Xo ;[ *o e [ X0
T) = sz(T) + Wsz(T
C C C

2
Q1,(0). (96)

= 0,,(0) — %“—[QIZ(O) + 0,00 + ("7

The curves for N = 3, 4, 5 and 6 become progressively closer until those for N = 6 and N =7 would
differ by no more than the thickness of a line. It is of passing interest that the threat of negative pitching
damping, predicted in Fig. 5 with N < 5, is dispelled by the more accurate calculations. The particular
derivatives Q}, and @3, for the quarter-chord pitching axis are plotted against N in Fig. 6. Whilst N = 4
appears to be more than adequate for the lower frequency parameter v = 1.5, one needstogdto N = 7 or
above to obtain comparable accuracy when v = 6-0.

A further illustration of convergence follows from reverse-flow checks similar to those in Section 5.1.
Since the y-axis on the leading edge is no longer an axis of symmetry and is therefore displaced unit
distance in the reverse flow, the first two of equations (94) now become

Q12+ Q5 — 01, — 07, =0 (97
and
" " " Qlll _
Qi + 05 — Q1 + Al 0. {98)

The left hand sides are calculated from the present solutions in the following table.

5 | N | a | Eqn(97) | Eqn.(98)
151 316 0-0004 00006
4|6 00001 0-0001
516 0-0000 0-0000
60 | 4 | 4 0-1053 00156
5 | 4 0-0208 00021
6 | 4 0-0061 0-0002
7 1 4 0-0046 —0-0001

While the results are wholly satisfactory for ¥ = 1-5, those for v = 6.0 show a convincing improvement as N

increases.
By application of the reverse-flow theorem, the present solutions have been used to obtain the lift
and pitching moment arising from an oscillating control surface, as recently reported by Drane and
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Destuynder'®. The range of frequency parameter in the associated experiments was particularly large, and
the corresponding theoretical calculations have accentuated the need to increase the number of chordwise
terms if convergence is to be maintained. It is with N > 4 that the facility to increase the parameter a
becomes crucial to accuracy in the influence matrix, and more especially in the following Section 5.4. when
the aspect ratio is no longer small.

5.4. Tapered Swept Wing (A = 6)

The fourth planform in Fig. 3 has been selected as being typical of designs for high subsonic cruise. In
all the solutions to be considered, including those by the method of Ref. 7, the central rounding is defined
by equations (67), (68) and (70) with fir = 0-19509. The calculations for M = 0-4 and 0-8 cover the wide
range of frequency parameter 0 < v < 4.345. The corresponding range of N from equation (81)is4 < N <
6, while equations (82) and (83) suggest m = 19 and 3 < a < 6. Most of the calculations use N,m, a=
6. 15,4, but the results in Tables 5, 6 and 7 include variations of each parameter.

The convergence with respect to N has only been studied in the worst case with the largest values of
M =08 and v = 4.345. In Fig 7, the cross derivatives 012.05,, 07, and Q3, are plotted against N
(4 < N <7). Although the presentation is less consistent than for the rectangular wing in Fig. 6, it suggests
that accuracy to three significant figures has been approached, apart from the smallest coefficient Q) ,. The
effect of increasing the spanwise integration parameter from a = 4 to a = 6 is also of order 0-01 and small
enough to encourage confidence that the extreme combination of Mach number and frequency parameter
can be handled satisfactorily.

Figs. 8 to 10 concern the effect of frequency, which is expected to be large when the aspect ratio is large.
The stiffness derivatives Q) |, Q},, @5, and 05, for M = 0-8in Fig 8 all change sign in the range0 < v < 5,
but their behaviour in the upper part of the range is reasonably consistent with the trend set in the lower
part. By contrast, still at M = 0-8, the corresponding curves of damping derivatives in Fig. 9 do not
involve any change of sign, but have unexpected points of inflexion near ¥ = 3. The direct pitching damping

2> has such a marked increase in slope in the region V > 3, that the question of reliability is raised,
although it would appear from the evidence in Table 6 that the effect is genuine. The trends with frequency
parameter are intensified at the lower Mach number M = 0.4, as illustrated for Q,, and Q3, in Fig. 10.
The stiffness derivative shows the usual smallish compressibility effect at ¥ = 0, but it changes sign at
much smaller ¥ when M = 0-4 and soon reaches negative values of much greater magnitude than the
static value. The behaviour of the damping derivative in Fig. 10 can be made to appear quite logical. The
initial slopes are known from equation (17) of Ref, 17, viz.,

oy _ 1
(F) o = 1—6A(Q1J'Qi2)v—>o
= 2077 and 3-107 when i = j = 2 (99)

for M = 04 and 0-8 respectively. These initial slopes, indicated by broken lines, are not maintained for
long and, as is usual, the rates of change of 0}, with respect to ¥ soon become relatively small. However, the
required limit from piston theory, which becomes exact as ¥ — cc, requires that

2 X — Xg W(x — x;)
0= s [ [1+ =2 axas (100)

From equation (100) and the definition of the planform in Table 1, it may be shown that

(Q52)v 0 = %( 14717 — ﬁ) (101)

C
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and

2 Xo
¢ = —| 2-4992 — 2.9434—
( M[ ) ? c +

229>

2
_"_0) ] (102)
c
= 12.496 and 6-248 when x, = 0

for M = 0-4 and 0-8 respectively. A dramatic increase in Q5 ,/0V is required when M = 0-4; although
much more gentle, the same trend is found necessary at M = 0-8. Without these explanations the double
cross-over of the two curves in Fig. 10 might appear unrealistic.

The influence of axis position on pitching damping is illustrated in the two remaining diagrams. In Fig.
11, the curves of Q4, from the imaginary part of equation (96) for M = 0-8 and selected values v = 0,05,
1-608 and 3-157 shown an initial shift in the axis position for minimum damping from x, = 1-06¢ when v
is very small to above x, = 1-45¢ when ¥ > 1. The limit from equation (102), plotted as a broken curve,
indicates what might be expected above ¥ = 3-157. Indeed, the calculated minimum when v = 4-345, i.e,

%, = 0:674, is about as small as its theoretical value for this wing can be when M = 0-8. Fig. 12 shows a
substantial reduction in the minimum when M = 0-4, though there is no danger of negative damping.

The relationships in equations (32) of Ref. 12 have been used to obtain numerical values of Q;; and @
from solutions for the complex generalised forces 0;; on the reversed planform with leading and trailing
edges interchanged. For M = 0-4, two such sets of results are included in Table 5; thus we calculate the
reverse-flow curve Q,(x,/¢) of short dashes in Fig. 12 with N,m,a = 6, 15,6 to compare with the full
curve from the corresponding direct solution. While the two curves are not in serious disagreement, the
difference between them suggests that convergence with respect to m may not be complete. Whereas for
the tapered swept wing of lower aspect ratio in Table 3 there was only a small effect of changing m from
15 to 14, the corresponding results for 4 = 6 in Table 5 show differences of the same order as those
revealed by the reverse-flow check. The comparative exercise has therefore been repeated with m = 22 and
23 and a reverse-flow check in the latter case. The discrepancies are significantly reduced and never exceed
0-05(,, as compared with 0-13Q7, with the two smaller values of m. While it is not possible to state with
any certainty that even values of m are preferable on wings of high sweepback, there is a remarkable
agreement in Table 5 between the direct 6, 22, 4 solution and reverse-flow result with N, m,a = 6,23, 4.

The final comparisons are between the present solutions and those by the method of Ref. 7 with m = 14,
N = 6 and variation of the spanwise integration parameter, denoted by g in Ref 7. There can be little
doubt that the two methods would yield identical results if, respectively, a and g were increased indefinitely.
Table 7 shows a tendency, which has also been noted from downwash studies in Fig. 3 of Ref. 18, that
convergence with respect to both g and g involves a maximum in the error prior to eventual convergence.
The result by the method of Ref. 7 with ¢ = 1 is virtually what would be expected by Davies™* method. On
each derivative the result for ¢ = 5 has overcorrected the initial integration error. As g increases to 9, the
error begins to subside towards the present result, which is only slightly altered by the change froma = 6to
a = 10 and converges from the opposite direction ; moreover, the ¢ = 9 solution differs from the converged
result by no more than the residual discrepancies in Table 5 from considerations of mand N.

A fair conclusion from Fig, 3 of Ref. 18 is that the present method, developed from Ref. 8, and the method
of Ref. 7, developed from Ref. 6, with ¢ = 2a are likely to yield similar accuracy for unswept wings at any
rate. However, the outstanding advantage of the present method lies in the economy of computation, as
emphasized at the foot of Table 7. Although Ref. 7 is particularly rapid when g = 1, the running time of the
present method only grows in proportion to a* over the usual range a < 8, in accord with equation (IL.8)
and as a result of the efficient use of machine code.

6. Conclusions

(1) A linear theoretical method is formulated for general subsonic Mach number and frequency and for
planforms with smooth leading and trailing edges in arbitrary modes of deformation. Procedures are
incorporated for treating wings with several cranks by selected artificial rounding (Section 4.1.);
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alternatively the planform may be defined numerically by leading edge and chord data including their
first and second derivatives.

(2) The method is programmed in two parts, the first of which expresses the wing loading for each mode
in terms of a set of complex numbers and provides a matrix of generalised force coefficients. Program I has
a facility for outputting the aerodynamic influence matrix on tape, which is input into Program II to obtain
generalized forces for additional modes and, if required, the load distributions at arbitrary sections.

(3) The program can be run for zero or very small frequency parameter, say v = 0-0001. Because it is
based on a highly satisfactory method for steady flow and on the efficient KDF9 machine code, it is
quicker and more accurate than the Algol program of Ref. 6 used previously.

(4) The restrictions on size of solution are indicated in Table I1.6a, and the usable range of parameters
should serve most needs. The requirement to handle wings of high aspect ratio demands quite large
numbers of spanwise terms (Section 4.3.); moreover, the requirement to treat high values of the frequency
parameter is shown to demand at least seven chordwise terins as compared with the four that are available
in Ref. 6.

(5) Accuracy has been established by direct comparison with the limiting case of Ref. 8 when ¢ = 0, by
hand calculation, by reverse-flow relationships, by asymptotic expansion for small frequency, and by
studies of convergence. Results have been compared with those of other collocation methods in current
use.

(6) Tlustrative results for a tapered swept wing of aspect ratio 6 show larger frequency effects in the
flutter range at low than at high subsonic Mach number. Because of its capability in the upper frequency
range, the method is of considerable potential in relation to non-harmonic time-dependent flows where
linear theory is applicable, in particular to the growth of lift as a wing enters a gust.
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(Kg)i

i(x', y)

P,,P,, P,
Py(x,n:n)

LIST OF SYMBOLS

Factor controlling number of spanwise integration points
Coefficients in equation (I.21)

Aspect ratio of planform; 2s/¢

Coeflicient of downwash mode in equation (76)

Local chord

Geometric mean chord; S/2s

c(n) and its first two derivatives at 4 = #,

Lift coefficient ; lift/(2p U2S) in equation (48)

Local lift/(4pU?c,) at n = 7, in equation (87)

Nose-up pitching moment/(pU2Sd) about y-axis in equation (49)
Local pitching moment/(pU?c?) about leading edge in equation (89)
Representative length (usually s or ¢)

Representative area (usually s* or S)

Function in equation (33) or (1.23); also written as D(p, v)

Function in equation (32) or (55); also written as E(p, v)

Shape of artificial rounding; f;(2) or f»(4) in equations (66)

Influence function in equation (8) or (I1.1)

Artificial rounding function; g,(4) or g,(4) in equation (68) or (69)
Contributions to kernel function in equation (I.1) and defined in Ref. 3
Element of right hand side of equation (85); —w /U

\/j or integer denoting force mode, e.g., lift (i = 1), pitching moment (i = 2)
Alternative integrals in equations (I.21) and (1.23)

Integer (< J) denoting downwash mode, e.g,, heaving (j = 1), pitching (j = 2)
Function in equation (36) and its derivative; see also equations (41)
Frequency parameter wd/U

Kernel function in equation (2); see also equation (27) of Ref. 3
Integrated chordwise loading in equations (63) and (64)

Lift per unit area/(tpU?) in equation (3)

Natural logarithm (to base ¢}

Modified complex loading in equations (51)

Complex loading at section n = #, in downwash mode j

Chordwise integral with first and second derivatives L (X) and Lj(X) in equations (29)
to (32)

Number of collocation sections

im or {m + 1) according as m is even or odd

Mach number of stream

Maximum number of intervals in evaluating the integral F,
Number of chordwise functions or collocation points

Integer 1(1)N denoting chordwise positions x = x,,

Functions in equations (1.7), (1.8), (1.9)

Modified influence function in equation (9) also written as Py(p, v, 1)

25



P, P OB, /on, 62Pq/611’2 in equations (35), (37) respectively

q Integer 1(1)N denoting particular function ¥ (¢')
q Factor in Ref. 7 (analogous to a)
0, Force/pU?D in mode z; in equation (75)
Qi Generalised force coefficient in force mode i and downwash mode J
Q.. O Stiffness and damping coefficients Qi; = Qi; + ikQj;
r Integer 1(1)m denoting loading station n = #,
R Quantity in equation (11.2)
R(x, ;%) Regularised influence function in equations (13) or (40)
s Semi-span of wing
S Area of planform
t Time
f X or (1 — X), whichever is the smaller
T Number of Sections 5 = 7,
T,,T,, T, Functions in equations (I1.16), (1.17), (1.18)
U Velocity of stream
v,V Integers in equation (86) for chordwise loading positions
w(x, ) Upwash velocity in equation (1); see also equation (59)
w Modified complex upwash in equation (50)
x Ordinate in streamwise direction (Fig. 3)
b Streamwise variable in downwash integral
Xo Location of pitching axis ; usually x, = 0, but see equation (96)
x,(n) Ordinate of leading edge
Xjys X7, First and second derivatives of x () at 4 = 5,
Xpy Ordinate of collocation point in equation (17)
x,(n) Ordinate of trailing edge
X Influence function parameter in equation (7); otherwise x/d or x/c
X, X, Chordwise variables 3(1 — cos ¢), }(1 — cos ¢,,)
y Ordinate in standard direction (Fig. 3)
¥ Spanwise variable in downwash integral
Yy Location of collocation section; —s cos ( " )
m+ 1
Y Influence function parameter in equation (7); otherwise y/s
Y Supplementary variable in equation (1.7)
z Ordinate in upward direction
2,2 Modes z(x, y) corresponding to i, j
AVA Non-dimensional mode —z/d = Z(x/d, y/s), e.g., equation (80)
Z um Non-standard mode defined by numerical values of Z pvand Z,,
Z,,Z,, Values of Z and 3 (j 3 at collocation point (x,,, y,)
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Ha
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8,9,

Kea

A Ak
’Q“int

A*
A Ay A
M iy

W oew = o=

g, T

Compressibility factor; (1 — M?*)?

Spanwise loading function in equations (3) and (11)

Loading coefficient in mode j; element of unknown column matrix in equation (85)
Accuracy parameter given by n,,, = 2°

Accuracy parameter given by tol = 107°

Number of symmetric modes Z,,,, when sym = 0

Spanwise ordinates y/s, y'/s

Extent of artificial rounding, e.g., |#| < #,z for central crank

r
Loadi tati = —
oading station # cos m+1)
Section #( n,) where loading is to be calculated
Am

Spanwise integration point where # = —cos(m
Collocation section # = —cos n )

m+ 1

Angular spanwise parameters cos” (—#'), va/(m + 1)
Parameter for subdividing chordwise integration (=3)
Coefficient in equation (19)

Integer 1(1)A in spanwise integration of downwash

Artificial rounding parameter, |§ — #nl/1:x for crank at # = ny
Number of terms used in estimating convergence of spanwise integration (= 3)
Number of spanwise integration points; a(m + 1) — 1

1A or YA + 1) according as A is even or odd

Angles of sweepback of leading edge, midchord, trailing edge
Local frequency parameters wc(y')/(B2U), we,/(B*U)

Integer 1(1)m denoting collocation section = #,

Frequency parameter wé/U

Chordwise variable equivalent to X

Density of stream

Coefficient in equation (20)

Indices in equation (80)

Parameters for running time in equations (I1.8) and (I1.9)
Coefficient in equation (21)

Word storage; ¥, or X in equations (IL.1) or (I1.3)

Coefficient in equation (22)

Angular chordwise parameters in equations (29), (5)

2np/(2N + 1}; values of ¢ at collocation point

Chordwise loading function in equation (4)

Circular frequency of oscillation

Element of aerodynamic influence matrix in equations (24) and (85)

Subscripts denoting cranks at y = 5,91 = —n, (wing = 3)
Subscript denoting crank at 5 = 5 (wing = 3)
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print
round
stop
sym
tol

wing

Subscript numerating force mode

Subscript numerating downwash mode

Subscripts denoting cranks at 4 = n,,n = —#n (wing = 2)
Subscript denoting leading edge

Subscript numerating chordwise collocation point
Subscript numerating chordwise loading function
Subscript numerating spanwise loading station n = 7,
Subscript denoting root section or central crank

Subscript denoting trailing edge

Subscript denoting optional section 5 = #, where load is calculated
Subscript denoting tip section

Subscript numerating spanwise integration point 4 = #,
Subscript numerating spanwise collocation point

Parameter to define output (Table 11.4)

Parameter to define artificial rounding (Table I1.1)
Parameter to define extent of calculation (Table [1.4)
Parameter to define spanwise symmetry (Tables I1.1, 11.2)
Parameter (=107") to regulate accuracy of calculation

Parameter to specify type of planform (Tables 11.1, 11.2)
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APPENDIX 1

Evaluation of the Influence Functions and their Behaviour at Small Spanwise Distances

By A. R. Curtis and W. E. A. Acum

A convenient form for the influence function F, is given in equation (114) of Ref. 3, namely
F, = Ll [G, + G, + Gy + G,1£,(Xo)dXo, (L1)
where
f(Xo) = %Xg%(l — Xo) *cos{g — 1)cos™ (1 — 2X,)} + cos{gcos™ (1 — 2X)}] (1.2)

and the functions G, G,, G; and G, are defined by equations (78)* to (82) of Ref. 3 and can readily be
expressed in terms of

X, =301 - COS¢),M,17,E£?-),Xand Y.
C

The quantities

_ 17
F, = ;L (G, + G, + Gy + G,)cos g¢ do (1.3)

are introduced, so that
EZ=F4_1+Fq, g=1,273,.... (L4)

It is possible so to arrange the formulae that only single quadratures of non-singular integrands over
finite ranges are necessary, and for such quadratures the method of Chebyshev integration due to Clenshaw
and Curtis'® was chosen, since it offered economy in the number of evaluations of integrands. However
many of the integrals can be expressed in the form

I= f S (cos ¢) cos rep dep (L3)
0
and may be approximated accurately and economically by
I, = g 3 f(cos Sf) cos X, (L6)

the dashes denoting the inclusion of a factor § for s = 0 and ». After some preliminary transformations,

* The exponential in equation (78) of Ref. 3 should read exp(—iM Y/B), where ¥ = ¥c(n’)Y/B¢.
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and y = 0-57721566 is Euler’s constant. The remaining part of D, is the coefficient of Y%in

t ! 7
[ (6 + A 4o = LOIG, + Gulyems — | LXo)52-165 + G.ldX,
0 0 0

=T+ T+,
where
T, = LX(;)D - ﬁ”g);JrX)Yz}%] exp {—ip(l — X + M[(1 — X)* + Y2*)}
T, = iﬂ%Lq—(l)f:_xexp{—m[u + M@ + YY) do
and

t Y? iuMY?
T = fo L“(X")[{(X XY T PR X+ YZ}

x exp {ifX — Xy — MI(X — X, + Y?1)} dX,.

The coefficient of Y2 in T,

. 1 -
=3k [(1 -X? 11—

;ﬂ exp { —iu(l + M)(1 — X)}

(L15)

(L.16)

(L17)

(L18)

(L19)

from a direct Taylor expansion of equation (I.16}). The contribution from equation (I.17) is obtained by

expansion of the exponential and use of the result that the coefficient of Y? in the integral

1-X
J [v + M@* + Y? T dv
¢]
is
0 r = 0)
IMIn@2 — 2X) + M =1

rM - . _
m(l"‘M)r 1(1"")() 1 (r—-2)

The coefficient of Y? in T, is therefore

2 (—igy( + My~'(1 - Xy
%mﬁZLq(l)[—m{ln @-2)+ g+ § I LD ]

a(l+M)(1-X) .
- %Ifﬁqu(l)l:ln Q-2X)+1+ f v e — 1) dv].

0

(1.20)

Although the term T, in equation (1.18) conveniently contains the factor Y2, one cannot obtain the
required coefficient of Y2 by removing the factor and setting ¥ = 0. In order to extract the terms that
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are O(1)and O(Y? In Y), it is necessary to split and rearrange the integration such that

t
T, = Yzf {LX — e + L(X + t)e” ™ — a, — bt*}

0

, N 1 iuM
x exp { — iuM(t* + Y2)2}|:(tz T YY) + 2t Yz] dt

i
+ Yzf (a, + b1 + iuM(? + Y2)3)
0

; 3 . dt
X €eXp {-I,UM(IZ + Yz)z} -1 + %(IMAM)Z(IZ + Yz)]r}ﬁ—j%‘
+ Y?f(a + b — MR + Y)Y 4yl (1.21)
o 4 7 E (ZZ + YZ)% ’ :

where  is the smaller of X and 1 - X,

a, = 2L(X), b, = —pPL(X) - 2iuLy(X) + LYX),

q q

and

I—fl_XL(X+t)ex{ iult + M(e* + Y} ! + M dt
-y e P (2 + Y 24 y?

or

X 1 iuM
- iplt — M(¢® + Y?)*
fl_x L(X — tyexp {ip[t — M(t? + Y?) ]}[(t2 TV Ty YZ] dt

according as X < 4 or X > L. In equation (1.21) all the integrands except the third are analyticat t = 0
and may be evaluated with Y = 0. The third integration may be carried out formally for general Y and
expanded in the form of equation (28) to give

F(X,Y=0)=a, }
(1.22)

E(X)= —b, — tau’M?|’

consistent with equations (30) and (55), and also the required term in Y2. The contributions 4.13), (I.19),
(1.20) and from 7}/Y? in (1.21) are added to give

D(X) = Lq(l)[%ew (—iu(l + M)(1 — X)}( L - M))

1—-x¢ 1-x

w(1+M)(1-X) .
+ %,uzﬂz(%ni + v 4+ In{ul + M)(1 — X)} +f v e — l)dv):l
0

—(a, + b1 + %MZMHZ)N] dt + a,{54AM? In (2 — L(1/2i2)}

+ b {In 20 — 1 + L2M?%2) + 1, (1.23)
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where

1-X 1 iuM
1= f L(X + yexp {—in(l + M)t} I:t_a + Liz ] dt
X
or
X ) 1 iuM
f L(X — tyexp {ip(1 — M)z} PIR dt
1-X

accordingas X < tor X > 1.

The three integrations occurring in equation (1.23) will need to be performed numerically ; in practice,
a program was based on the method of Ref. 19. The first integrand, although analytic over the range,
will be computed inaccurately near v = 0 due to cancellation, but the guarding figures inherent in a
machine with a 39-bit word will more than compensate for such inaccuracies when only six or seven
decimal places are required. In the second integrand, however, a severe cancellation will occur when
the integrand is evaluated near t = 0, although again the integrand is analytic. The remedy here is to
divide the range of integration (0, f) into (0, xf) and («f, I), where, as suggested in Appendix II, k¥ = 0.5
gives satisfactory results. The standard integration deals with the second range, but for the first it is
necessary to resort to term-by-term integration of the Taylor series. The integrand of I is finite at the
upper limit of integration, but has infinite derivatives at that point; provided a lower limit of 128 integra-
tion points is set (J = 7), sufficient accuracy is obtained.

35



APPENDIX II

Notes on Programs and Alternative Usage
By P. S. Hampton

The two programs have been written in KDF9 Usercode and, as such, are unique to an English Electric
Leo-Marconi KDF9 machine.?! The minimum use of peripheral equipment and the ability to calculate
exact storage requirements allow greater efficiency of machine use in the time-sharing mode. All input
and output routines are contained in English Electric library packages for KDF9 (e.g., Ref. 22), and the
8-hole input data tape must be compatible with the code used in these routines.

The respective flow diagrams for Programs I and II in Figs. 1 and 2 show alternative methods of
operation depending on the planform and the required output. The four* types of planform, with or
without artificial rounding of cranks, are defined by the parameters ‘wing’ and ‘round’ in Table I1.1;
the identifier ‘sym’ indicates whether the modes of deformation are symmetrical only, antisymmetrical
only or of both kinds. The format of input data for Program I is listed in Table I1.2, where provision is
made for arbitrary numerical input modes in addition to the optional standard modes included in Table
I1.1. Checks are performed on the correctness of the data in amount and format, and the storage allocation
is checked to prevent failure at a later stage. Failures lead to store prints, allowing the course of the
program to be checked ; the relevant failure messages are collected in Table I1.3. Two parameters ‘stop’
and ‘print’ control the point at which Program I ends and the various output options (Table I1.4a).

The main body of Program I employs influence function and integration subroutines written for KDF9
by Mr. A. R. Curtis. Entry parameters essential to the integration routine are as follows:

tol = 107¢, the tolerance of accuracy (¢ = 4),
n__ = 2°  which limits the number of iterations if the tolerance has not been achieved (5 = 7),
the number of terms compared in the integration procedure with optimum value 3,

k, a parameter for splitting the range of integration to deal with discontinuities ; the suggested
value is 0-5.

Having compiled the complex matrix Q = Q/(p, v, r), the program demands the solution I' =T, to
the complex matrix equation [Q][T'] = [4] for right hand sides h = h,,, corresponding to each input mode j.
This has necessitated the writing of routines to deal with matrices in the complex field, and these routines
have proved to be a valuable addition to the library of routines for use on KDF9.

Unless precluded by an instruction stop > 1(TableI1.4a), the final stage of Program I is the computation
of complex generalized forces Q;; corresponding to each input force mode Z;. The numerical procedure
of integration by quadrature varies in detail according as Z, is a standard mode defined by formula
(Table IL.1), or a numerical mode defined by Z,, and the slopes Z,, at all collocation positions. The
facility print = 3 (Table Il.4a) for outputting definitive wing data and the matrix from Program I on
paper tape enables generalized forces for standard and numerical modes to be calculated quickly by
means of Program II without the need to re-calculate the matrix. When additional or amended modes
are envisaged, this should prove a valuable asset with computer time at a premium. With stop = 5
(Table I1.4b), Program II goes on to calculate the load distribution and local lift and pitching moment
at the sections #§ = #, and, if required, at arbitrary sections , ; the format of input data is listed in Table IL5.
The example in Appendix III illustrates the preparation of data tapes and the printed output in a com-
putation involving both programs.

The storage requirement Z for the two programs is restricted to the capacity of the KDF9 computer,
so that £ < 29504 or £ < 31456 according as the programs are run in the time-sharing or non-time-

* A facility exists for a fifth type of planform (wing = 0), defined by a fifth degree spline fit and with
provision for an elliptic tip.
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sharing mode. The number of words of store needed for a particular computation depends upon the
combination of the parameters (N, m, ) and the identifier sym. For Program [ whensym = 1 orsym = —1,
the storage £ = X, is determined as

%, = (8300 + 6m,,, + (11N + 3N?) + (d4m* + 3m?) + 2Nm + (3A* + 2NA + mA) + 2N?R?], (IL1)

where A = a(m + 1) — 1, m* and A* are defined in Table 11.2, and

R =1im for m even and sym = +1
= Hm+ 1)  for modd and sym = 1 (IL2)
=4m—1) formodd and sym = —1
There is no difficulty with Program II, since smaller storage is required ; whether sym = 1 or sym = —1
or —2 (Table IL5)
X =2, = [Z; — 2000] (IL3)
is sufficient. The facility in Program I of sym = 0, i.e., solutions sym = 1 followed by sym = —1, requires

additional storage. The quantity Z; from equation (II.1) with sym = 1 is increased by an amount

N%mA for m even
. (IL4)

N¥m — 1A for m odd

Thus, there is the penalty of an extra storage requirement of order N2m?a in Program I when sym = 0.
A minor adjustment is made if a = 1 with m odd and sym = 1 or 0; in such cases the term given as 2NA
in equation (IL.1) is replaced by 2N(m + 1). The various combinations of the parameters (N, m, a) in
Table 1L 6a illustrate some possible computations which lie within the time-sharing capacity X, < 29 504
for Program I with sym = 1 and n,_,,, = 128 (§ = 7). When sym = 0, the capacity restricts the use of
Program I to much more limited combinations of (N, m, a) as is indicated by Table IL6b.

The basic storage requirement of each program, specified by the 8300 words in equation (IL.1), includes
2000 words allocated for the input of Data 5 (Table I1.2) for numerical modes Z_, . and the retention of
the complex coefficients I, for all modes j. Although some extra store of variable amount is also employed,
there is a limit on the number of modes Z,,, that can be accommodated for a specified combination
(N, m, a); the greatest restrictions arise when sym = 0 and standard and numerical modes are input for
both the symmetric and antisymmetric cases. It is noted that even with the failure message ‘TOO MANY
MODES’ (Table 113), the programs do not fail completely, but will proceed to evaluate I, for the
maximum number of modes j consistent with the available store. It is not easy to define the limits on
Z .m Drecisely; the following formulae are suggested as guide lines. Let

u = number of standard modes selected when sym = +1,
= number of symmetric standard modes when sym = 0, and

v = number of numerical modes when sym = 1, —1 or 0.
When sym = =1, the restriction on Input Data 5 gives

1000
<

< — IL5
v < NR (IL.5)
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and there is an overall limitation on modes

1000
2o |7T=N — . .
u+ 2v [ +m+a+NR] (11.6)
When sym = 0, the limitation is
1000 .
u+ 20 < [2 + 7\]‘1?] with R for sym = 1, (IL7)

which is always more restrictive than the inequality of equation (IL5).

If the storage restrictions on I, are satisfied, the other consideration is the computer time to run Program
I. This is mainly dependent on the size and accuracy of the matrix through the parameters (N, m, a) and
(4, £), but itis found that the combination of Mach number M with aspect ratio A and frequency parameter
v also influences the running time. From a correlation of times actually taken in seventy applications
with (3,¢) = (7,4) and a limited number of applications with (6, &) = (8, 4), (7, 6), (8, 6), the empirical
formula

Running time = (tN*m*a?) seconds (1L.8)

has been deduced to an accuracy of +10 per cent; for sym = +1 the quantity t approximates to

glpA +2 -
T = g(m) forv=20
and e ] (IL9)
g =+ v -

with o = 4,5,7,9 for (6,¢) = (7,4), (8, 4),(7, 6), (8, 6) respectively.
An increase of up to 10 per cent in the value of ¢ should be allowed when sym = 0. With values t = 1
when sym = 1 and 7 = 1.2 when sym = 0, appropriate to an example with

A=6 M=08(B=06), v=153 and (5, = (7,4),

the respective running times from equation (I1.8) are given in Tables 11.6a and I1.6b for various examples
just within the time-sharing mode. For large 4, it is expected that the running time will become propor-
tional to a; as equation (I1.8) is likely to underestimate running times for « > 8, such estimates are omitted
in Table II.6a. It seems, however, that capacity is a more severe restriction than running time, especially
when sym = 0. Only in exceptional cases that might demand larger values of the accuracy parameters
(4, &) would running time become the critical factor as a result of the increase in 6. For the examples given
in this Report (3, ¢) = (7, 4) gives sufficient accuracy for the specified combinations (N, m, a). To ensure
completion of a long run, it is suggested that 10 per cent should be added to the estimated time in the
operating instructions.
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APPENDIX III
Dlustrative Example

The example for the elliptical wing at M = 0-8 with N,m,a = 3, 5,2, used for the desk calculations
discussed in Section 5.1, is convenient in size and scope to illustrate the input and output as summarized
in Tables IL.1 and ILS5. Since the planform has continuous non-zero curvature, we set wing = 4 and
round = 0. The calculation will include symmetric and antisymmetric standard modes, so that sym = 0.
From Table I1.4a, we choose stop = 0 and print = 3, so that the generalized forces are calculated in
Program I and the output tape provides the aerodynamic influence matrices (symmetric and antisym-
metric) for Program II.

With reference to Table 11.2 and the planform data in Table 1, Data 1 and 2 are input and then output
as shown at the top of Table III.1. As reference length, the semi-span s is unity; the frequency parameter
k = ws/U = 1 becomes ¥ = wé/U = 0-3m. Instead of at the centre of the ellipse as in Fig. 3, the origin
is taken at the leading edge of the centre section, and Data 3 require prior evaluation of

A
X, = 0-6|:1 — sin (A : 1)]

= 1(1)A%,
¢; = 12sin i
2 A+1i
where A + 1 = a(m + 1) = 12 and A* = 6, and
X, = —06cot|—2 |, xi = 06cosec’|—~
m+1 m+1
v = 1(1)3.
¢, = 12 cot o, ¢l = —1-2 cosec®
m+1 m+1

These also appear in Table II1.1, followed by the definition of the symmetric and antisymmetric modes i or
j corresponding to Data 4

1;1;0;0;0;1;0;0;0;0;0;0;0;0;0;

1;1;050;0;050,0;0;0; }
Data 5 (including {) are omitted as there are no numerical input modes. The storage is then calculated, so
that failure from insufficient storage would preclude the start of the main computation (Table IL.3).

The remainder of the output from Program [, described in Table I1.4a, consists of the symmetric matrix
[Q] with elements Q (p, v, ) (Table I11.2), the solutions [I"] with elements (I',,);and the matrix of generalised
force coefficients Q,; (Table I11.3), followed by the corresponding antisymmetric results (not illustrated).
Each row in Table I11.2 represents the real and imaginary parts of Q (p, v, r) first with v = 1 and then with
v = 2 and 3, while the last three rows in Table IIL.3 give similarly the real and imaginary parts of @, ,, viz.,
Qs kO, Qiz> kO Qi s kQf5.

The input for Program II is listed in Table IL.5. The first half of the output tape from Program I is
detached to provide input tape A for the symmetrical case sym = 1. Input tape B requires Data 8 and 9;

thus stop = 5, ¥V = 8 and T = 3 indicate that load distributions are to be obtained at local chordwise
positions

ijo

1 vm
= 1 B — = - J—
4 2( + cos V)’ v=12,...(V=1)
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at 3 sections in addition to the loading sections # = #,. Then Data 10 of Table ILS5 specify 7,, x, and c, at
these 3 sections, so that the loading can be evaluated from equations (51), (53) and (86). To reduce output,
only the first two standard modes are included in Data 4 and again Data 5 are omitted in the absence of
numerical modes.

Table I1.4b summarizes the complete output from Program I, the initial and final parts of which are
reproduced in Table II1.4. For each value of £ the real and imaginary parts of (I,) ; are given side by side
for the appropriate values of #, and #,. The corresponding local lifts and moments are computed from
equations (87) and (89) with interpolation from equation (53) as necessary. Separate tables are printed for
each value of j. The short running time of 15 seconds illustrates that this is trivial by comparison with that
of Program L
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TABLE 1

Planforms used in Numerical Examples

Planform Elliptic | Tapered swept | Rectangular | Tapered swept
A 20/(37) 2 1.250 6
s t i 0625 3
¢ 0-3x 1 1 1
XiR —0-6 —0-808013 0 0
Cr 1-2 1-616025 1 15
X 0 0-924038 0 2:232051
cr 0 0-383975 1 0-5
round 0 1 1 1
Hir — 0-195090 any 0-195090
d s s ¢ ¢
D 5 s? 258 2s¢
TABLE 2

Generalised Forces for Elliptic Wing (M = 0:8, k = as/U = 1)

Solutions with (N, m, a) = (4,11, 6),(J, &) = (8, 6) and origin at centre of ellipse

(a) Symmetric modes

Z=1 Z=X 7 = X?> 7 = Y2
i
Qi Qi Qi 0 Qis Qi3 Qi Qia
1 | —-08731 32056 37071 1-6371 1-5810 | —06271 | —0-1308 0-7563
2 | —05013 | —0-7636 | —0-8969 0-9203 0-8256 0-3167 | —0-1111 | —0-1412
3 0-0531 0-3759 0-3883 | —0-1033 | —0-1035 0-0384 0-0180 0-0660
4 | —01308 0-7563 0-8675 0.2722 0-3008 | —0-1563 | —0-0532 0-2450
(b) Antisymmetric modes
i
i i Qi Qi
1 | —02123 0-4084 04261 | 03291
2 | =00177 | —0-1166 | —0-1309 | 0-0553
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TABLE 3

Generalised Forces for Tapered Swept Wing (4 = 2, M = 0-7806, v = 1)

(a) Present solutions

Origin at mid-root-chord

Force
mode N m a ) &
0 Qi 0., 25
3 15 2 7 4 —0-7289 2-5815 26549 2-7488
7.1 3 15 3 8 6 —0-7291 2-5821 26551 2-7492
D 1 3 14 3 8 6 —0:7312 2-5802 2:6507 2:7532
'= 3 14 3 7 4 —07311 2-5802 26506 27532
4 14 3 7 4 —0-7268 2-5990 2-6944 2-7632
3 15 2 7 4 —0-4952 0-7390 0-5218 1-6661
7 x 3 15 3 8 6 —0-4956 0-7389 0-5215 1-6660
B ) 3 14 3 8 6 —0-4933 07374 0-5194 1-6609
= 3 14 3 7 4 —0-4933 07374 0-5194 1-6609
4 14 3 7 4 —0-5086 0-7548 0-5399 1-7111
(b) Comparisons with other methods
Method Q1 11 01> 12 Q5 21 05, 05,
N=3
Ref 3 —0742 2-588 2-640 2765 —0-496 0-735 051t 1-650
Ref. 15 —-0-726 2600 2-:679 2748 -0-512 0-741 0-515 1.686
Present -0-729 2-582 2:655 2749 —0-496 0-739 0-522 1-666
N =4
Ref. 13 —0-687 2:554 2:635 2744 —0-494 0-710 0-480 1-668
Ref. 7 —0-747 2:616 2706 2-802 —-0-506 0-740 0-517 1.704
Present —-0-727 2-599 2694 2763 —0-509 0-755 0-540 1-711
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TABLE 4

Heaving and Pitching Derivatives for Rectangular Wing (4 = 1-25, M = 0)

Solutions with m = 11 and pitching axis x, = 0

V |[Nja|d|e 01, 11 0, 12 02, 031 03, 22
151314714 —10768| 0-8365 0-3147 | 1.1620 | —0-5548 | 0:1536 | —0-1670 | 0-5301
36|74 —1.0763| 0-8364 03150 | 1-1617 | —0-5545 | 0-1537 | —0-1667 | 0-5301
41674 —1.0783| 0-8369 0-3154 | 1-1632 | —0-5567 | 0-1530 | —0-1691 | 0-5326
5(617|4| —1.078| 0-8371 0-3154 | 11635 | —0-5569 | 0-1530 | —0-1693 | 0-5327
51684 —1.0786| 0-8371 0-3153 | 11635 | —0-5569 | 0-1530 | —0-1693 | 0-5327
5{6(8|6| —10786| 03371 03153 | 1-1635 | —0-5568 | 0-1530 | —0-1693 | 0-5327
60 |3(6|7 4| —11.2885]| 0-0853 | —6-1793 | 03426 | —46912 | 0-1180 | —2.7647 | 02218
414(7|4]—163973| 05492 | —8-0731 | 0-8870 | —7-6697 | 0-1333 | —4-4216 | 04054
514174178113 07592 | —82209 | 1-1120 | —8-8104 | 0-1441 | —5.0071 | 0-5044
6|47 |4 —-179991 | 07978 | —8:1735 | 1-1516 | —9:0217 | 0-1464 | —5-1090 | 0-5280
714174 —180093| 0-8013 | —81621 | 1-1550 | —9-0413 | 0-1465 | —5-1184 | 0-5307
604|474 -163973| 05492 | —8-0731 | 0-8870 | —7-6697 | 0-1333 | —4-4216 | 04054
414]18|4|—-163972| 05492 | —8-0731 | 08870 | —7-6697 | 0-1333 | —4-4216 | 0-4054
41486 —163972| 0-5492 | —8-0730 | 0-8870 | —7-6697 | 0-1333 | —4-4216 | 04054
41618 |6]—164007| 05492 | —8-0752 | 0-8872 | —7-6718 | 0-1333 | —4-4230 | 04055
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TABLE 5

Heaving and Pitching Derivatives for Tapered Swept Wing (4 = 6, M = (-4)

Solutions with N = 6, (4, s) = (7. 4) and axis at root leading edge
(@) (N,m, a) =(6,15,4)

v Qi On Qs 01, 05 21 Q32 22
0-0001 0-0000 | 2-0979 2:0979 | 2.7948 0-0000 | 2-639% 26398 | 40197
0-2484 0-0225 | 19611 20150 { 3-0550 0-0262 | 2-4581 2:5163 | 4-3541
0-5000 | —0-0010 | 1.7972 1-8613 | 3-1466 —0:0162 | 2.2378 2:2682 | 44714
1.0257 | —0-3903 | 1-6330 1.2626 | 3.2231 —0-5854 | 2.0098 1-2758 | 4-5647
1-6085 | —1.3572 | 1-6409 0-0861 | 3-3509 —1.9816 | 2:0036 —0-6919 | 4.7281
2:2936 | —3-1373 | 1.8168 | —1.9268 | 3.6223 —4-5850 | 2:2107 —4.1413 | 50941
31569 | —6-0487 | 22581 | —5-0469 | 41338 —9.0342 | 2.7699 —9:8289 | 58320
4-3451 —9:8930 | 3-0458 | —9:3838 | 4.9274 | — 156069 | 3-8874 | —18-6114 | 7-1461
(b) ¥ = 3-1569
Mecthod | m | a 01 " 0, 1, Q5 a1 Q35 03,
Direct | 14]|6] —62908 | 2.2318 | —53548 | 41850 { —9-2140 | 2.7331 | —10-1222 | 58539
1516 —6-0688 | 22643 | —50652 | 41452 | —9:0664 | 2.7773 —9-8672 | 58479
2214 —62283 [ 22683 | —51966 | 41949 | —92024 | 2:7683 | —10-0157 | 58784
23141 —61401 | 22743 1 —5.0909 | 41806 | —9-1228 | 2.7791 —99064 | 58716
Reverse | 151 6| —6:2951 | 22470 | —5.3040 | 41991 | —9:2182 | 2.7455 | —100917 | 5-8695
flow |23 4 —62226 | 2:2667 | —51945 | 41938 | —91977 | 2.7682 | —10-0159 | 58804

44



TABLE 6

Heaving and Pitching Derivatives for Tapered Swept Wing (4 = 6, M = ¢-8)

Solutions with m = 15, (J, ¢) = (7, 4) and axis at root leading edge

N a v 014 1 Yy 12 05, 21 3, 3,
6 4 | 0-0001 0-0000 | 2.5505 | 2-5505 | 2.1404 0-0000 | 3-2483 32483 | 3.5731
0-2484 0-0812 | 2-2790 | 2:4532 | 26382 0-0888 | 2.9087 31018 | 42255
0-5000 0-1422 | 2.0071 | 23723 | 2-8476 0-1242 | 25770 29378 | 4-5315
1.0257 00205 | 1-8595 | 2-2495 | 29701 | —0-2088 | 2-4549 2:5960 | 4-8105
1-6085 | —0-2648 | 1-8948 | 2-0313 | 3-0067 | —0-7836 | 26211 2-1521 | 49511
22936 | —06104 | 19864 | 1-7379 | 3-0579 | —1-3808 | 2-8390 1-5956 | 5-0871
31569 | —1-1343 | 2.0790 | 1-1315 | 3-1148 | —2.2012 | 3.0113 0-5531 | 51981
43451 | —1-8024 | 22413 | 01334 | 32659 | —3-2530 | 32943 | —1.1774 | 54744
4 4 | 43451 | —1.8407 | 24433 | 0-7881 | 3-6158 | —3-4001 | 34617 | —0.8504 | 58266
5 4 —1.5743 | 2:2245 | 0-5549 | 32144 | —3-0410 | 3-2923 | —0-7541 | 54551
6 4 — 18024 | 2.2413 | 0-1334 | 3-2659 | —3-2530 | 32943 | —1-1774 | 54744
7 4 —1.7425 | 2.2489 | 0-2266 | 32815 | —3-2309 | 33054 | —1-1457 | 54968
7 6 ~ 17471 § 2:2552 | 02289 | 3-2917 | —3-2397 | 3.3154 | —1.1476 | 5.5140
TABLE 7

Direct Comparison of Computations by Present Method and that of Ref. 7

Tapered swept wing A = 6, M = 04,% = 3-1569, N = 6,m = 14

Ref. 7 Present
Method
q=1 g=>5 qg=29 a==56 a= 10
0, — 5661 — 6398 —6-354 — 6291 — 6297
" 2098 2.259 2250 2232 2234
0\, — 4-646 —5376 —5.354 —5.355 —5.364
" 3.849 4226 ' 4216 4185 4190
0, —8.273 ~9.322 —~9.276 —9.214 —9.228
. 2.542 2740 2.741 2.733 2.736
0,, —~8890 | —10203 |—10167 |—10-122 | —10-143
. 5.367 5.877 5878 5.854 5.862
Time in 5 64 113 29 44
minutes
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TABLE II1.1

Definitions of Wing, Round and Standard Modes

wing = 1 Planform of arbitrary aspect ratio, taper ratio and sweepback (crank at n = 0)

wing = 2 As wing = 1 with additional crank at |g] = #,

wing = 3 As wing = 1 with additional cranks at |y} = 4, and || = 5,

wing = 4 Planform with arbitrary curvature, defined by numerical input x,,, ¢;, X,, X}, ¢\, Cy
round = 0 Case where wing = 4 and round 1, #2
round = 1 Artificial rounding from equation (68) at all cranks
round = 2 Artificial rounding from equation (69) at all cranks

Optional standard modes Z(X = x/d, Y = y/s)

sym = 1 LX, X2 X3, X% Y2 XY2 X2Y2 X3Y2, Y4, XY4 X2Y4 Y8, XY6 Y8

sym = — 1 Y, XY, X2Y, X3, Y3, XV, XY Y3 XYS, Y7

sym = 0 15 modes for sym = 1 and 10 modes for sym = —1
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TABLE 11.2

Format of Input Data Tape for Program I

Data Case Input tape, with Data 5 if any Fig. la
1 Descriptive title with end message
M;v;sym; N;m;a; ng,,;tol; A, x; Initial data
2
stop; print; wing; round; s;¢; D; Stop and print values in Table B4
wing = 1 X+ CrMirs Xirs €5
wing = 2 X1p5 Crs Mg s N> Xuk s €k Mig s Xirs €
. Xir3 Cr3 Mirs a5 Xias €45 Mids Additional data appropriate to
3 wing = 3 ; o . .
N3 Xigs Cps Migs Xirs Cp value of wing. Wing and round
are defined in Table (11.1)
Xpghe eeeornnnnnes Ch3 enennnvannnns
wing = 41| X5 ... Xy e
Chl e Coy e
sym = 1 1{orQ0);......... iStimes.........
Indicators 1 (Yes) or 0 (No) used
4 sym= —1 1l{or0);......... 10 times. ........ for standard modes in Table
(IL1)
sym = 0 TorQ);......... 25times.........

sym =0 ¢; ( = number of symmetric modes Z,,,,)| Omitif sym = + 1

> 2y s Numerical input modes, all
(pv = 11,12,...1R,21,22,. .. NR) Z e R from eqn. 11.2

End message

+ 2 = 1{1)A* where A* = A or Z(A + 1) according as A is even or odd, and v = 1(1)m* where m* = im
or 4(m + 1) according as m is even or odd.
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TABLE 11.3

Messages on Printout for Failure of Programs I and 11

Message output

Reason for failure

Remarks

NEGATIVE NUMBER -
IN DATA

Negative number in initial data
excluding sym, on input tape

Applies only to Program 1

BASICPM ................
with 271 in top row of
nesting store

Insufficient standard mode data

Insufficient data or incorrect
format of input tape with no
Data 5

R.H.S. FAIL

Wrong amount of numerical
mode data

Can arise from excess standard
mode data

STORAGE EXC.

Allocated storage insufficient

Required STORAGE ....... ..
printed on previous line

SERIES OVERFLOW
BASICPM ..............

Store exceeded in a calculation
of Fp.v, A)

Applies only to Program .
Matrix store printed out

MATRIX FAIL

Singular matrix generated

Matrix expected to be well
conditioned

TOO MANY MODES

Store insufficient for Data 5
and all ([);. See equations

(IL5) to (11.7)

Message replaces (I,;); where
excess modes j are ignored.
Calculation continues to end
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TABLE 114
Output for Alternative Combinations of Stop and Print

(a) Program I

" Extent of calculation
*
Additional o (L) Q,p,v,r) Data 6
output
stop = 0 stop = 1 stop = 2 stop = 3
print = 0 — J J
. Q(p.v,r)
— q
print = 1 h,, if stop <1 v J v
Q,p,v, 1)
print = 2 h,, if stop <1 v
(qu)i
. Q.(p,v, ¥
=S q
print = 3 Output tape Y ’ Y
F(p.v, )
print = 4 D (p.v) v J J
Q,p,v,7)

* Compulsory output is defined by stop and the following data:
Data (1 + 2) of Table I1.2 plus Data (3 + 6) of Table IL.5 with sym=1or —1or0;
Modes i, j (= 1,2,3...) given by Data 4 (indicator 1) and Data 5 (if any) of Table 11.2;
storage 2; (I7,);; Q;;; running time in seconds.

(b) Program I1

Extent of calculation and output

Q;;[sym = 1 or sym = — 1(—2)]

stop =0 Output for print = 2 of Program |

stop =5 As above but also loading at #,, and at », (optional)
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TABLE 11.5

Format of Input Data Tape (4 + B) for Program II

The output from Program I with print = 3 gives tape A labelled as follows:

Input tape 4 with matrix
Program |
Symmetric Antisymmetric
sym =1 sym = 1 —
sym = —1 — sym = —1
sym =0 sym =1 sym = —2

Data Input tape A Remarks
1 Descriptive title with end message To beinserted by hand ifsym = —2
2 Data 2 of Table 11.2 Excluding stop and print
3 Data 3 of Table I1.2 Only if wing #4
6 Data 3 of Table I1.2 for wing = 4 preceded by wing = 1,2,3 or 4
P
7 Real;mmaginary; ........ ... ... . ... ... ... ..
elements of matrix Q,(p, v, r)
Delete end message, if any Cut tape before Data 2 with
sym = — 2
Data Input tape B Remarks
8 stop (=0 or 5); See Table 11.4b
9 V, T(=0); Only if stop = 5
10 T T O O Onlyif T =1
Repeat for t = 1(1)T
4 Data 4 of Table 11.2
Treat sym = —2assym = —1
5 Data 5 of Table 11.2

End message
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TABLE I1.6

Usable (V, m, a) and Running Times with 8 = 7 in Time-Sharing Mode

(a) sym =1
N m a Eqn. (IL8) witht = 1
<5 31 3 < 56 min
<7 23 4 <68 min
<10 15 6 <75 min
4 <38 2 <44 min
4 <34 4 <53 min
4 <30 8 <62 min
4 23 <17
4 15 <44
4 11 <76
(b) sym =0
N m a Eqn. (IL.8) with T = 1.2
<2 23 4 <12 min
4 <15 4 <19 min
4 11 <8 <17 min
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Read and

Y

Read M,v,sym,N,m,
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/ / Y4 "
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YES +

(to Fig.1b)

FiGg. 1a.  General flow diagram for Program 1.
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(from Fig. [a)
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FIG. 1b. General flow diagram for Program 1.
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U @ Elliptical wing
A=2-1221 ,cg=Il-2s
O'SCR

' M=08 , ws/U=1|
Illustrative example

sym=0

Tapered swept wing
A=2 , tan At =0-5

M= 0-7806,ws/U=1

Effects of a and m
{odd and even)

Rectangular wing
0 -y
f A=1-25, M=0
c AYd
v= — =15,60
l N
¥ Effects of N,8 ¢
X

Tapered swept wing
A=6, Ay,=30"

Y

M=0-4 and 0-8

Effects of vand m

2]

aond N (7=4-345)

FiG. 3. Planforms and scope of calculations.
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FiG. 4. Convergence with respect to N of high-frequency pitching stiffness derivative against axis position
for rectangular wing.
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FiG.5. Convergence with respect to N of high-frequency pitching damping derivative against axis position
for rectangular wing,
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FiG. 6. Convergence with respect to N of direct pitching derivatives for rectangular wing at moderate and
high frequencies.
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F1G.7:  Convergence with respect to N of cross derivatives for tapered swept wing at high subsonic Mach
number and frequency.
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Fic. 8. Stiffness derivatives against frequency parameter for tapered swept wing at M = 0-8.
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FIG. 9. Damping derivatives against frequency parameter for tapered swept wing at M = 0-8.
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F1G. 10.  Direct pitching derivatives against frequency parameter for tapered swept wing at two Mach
numbers.
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F1G. 11.  Pitching damping against axis position for tapered swept wingat M = 0-8 and varying frequency
parameter.
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F1G. 12. Pitching damping against axis position for tapered swept wing at frequency parameter v = 3.157.
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