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Summary. 

The vortex drag of a lifting surface depends only on its spanwise loading and is usually calculated 
therefrom. Deflection of a part-span flap gives a theoretical spanwise loading that can only be obtained by 
numerical approximation in non-analytical form. Subsequent evaluation of vortex drag therefore lacks 
precision, and two such direct methods are compared. A third method, on the reverse-flow principle, is 
introduced to determine vortex drag separately from the spanwise loading. For a particular wing-flap 
combination, the three methods are consistent within _+ 1½ per cent; this is more than adequate, and in 
the present state of knowledge no better accuracy is likely to be achieved. Although the third method is 
rather cumbersome, it provides a ready means of studying the influence of flap span and chord on vortex 
drag. 

Section 
1. Introduction 

2. Standard Method 

3. Alternative Direct Method 

4. Use of Reverse-Flow Theorem 

5. Discussion 

6. Conclusions 

Acknowledgement 

List of Symbols 

References 

Tables 1 to 3 

Illustrations--Figs. 1 to 4 

LIST OF CONTENTS 

t Now Aerodynamics Department, R.A.E., Farnborough. 
* Replaces A.R.C. Report 32 395. 



1. Introduction.  

Vortex drag is an elusive quantity to determine by experimental means. Although it is often the major 
part of the lift-dependent drag, other contributions make it difficult to isolate the vortex drag. In practice, 
the quantity may well be determined theoretically, and there is some demand for data sheets. For wings 
alone, the problems are usually manageable. There is, for example, a data sheet issued by the Royal 
Aeronautical Society 1 (1965) for uncambered and untwisted wings with straight leading and trailing 
edges in subsonic flow. The vortex drag factor 

,K = 1 + 6 = rcA CDv/CL 2 (1) 

is given for arbitrary aspect ratio A, taper ratio and leading-edge sweepback; accuracy better than 
5 per cent is claimed at subcritical Mach numbers. 

In Ref. 2 (1968), the author has suggested a simple approximate relationship 

75~ 2 f 4 "~2 
K =  l + ~ - ~ f l - - f ~ )  (2) 

between the vortex drag factor and the spanwise centre of pressure 

1 

0 

(3) 

where in terms of wing semi-span s, local chord c and local lift coefficient CLL at the section y = r/s 

= 1 c CLL/S. (4) 

The accuracy of equation (2) has recently been checked in Ref. 3, and the formula should serve within 
+_2 per cent for all the 64 planforms considered there. It should also suffice for wings with simple dis- 
tributions of camber and twist. In cases of complicated, but continuous, camber or twist the evaluation 
of vortex drag follows straightforwardly from a knowledge of the spanwise loading (Section 2). A more 
difficult theoretical problem is posed by peculiar planforms with severe cranks or cut-outs or chord 
extensions. Moreover, the wing-body combination cannot yet be treated with any confidence. 

Another case that needs careful consideration is that of a wing with deflected part-span trailing-edge 
flap, which forms the subject of the present investigation. In so far as linearized theory can model the 
aerodynamic loading in the presence of chordwise and spanwise gaps and strong pressure gradients, the 
spanwise distribution of lift defines the vortex drag. Analytical solutions are only available in special 
limiting cases, and one can be faced with markedly different numerical approximations to the spanwise 
loading dependent on the choice of method. There are proposals for data sheets to give the vortex drag 
on wings with a combination of flap deflection and angle of attack. As a guide to accuracy, a definitive 
value of K will be sought for the particular configuration in Fig. 1 with symmetrically deflected outboard 
flaps and zero angle of attack. Outboard flaps are chosen to minimize any uncertainty due to the central 
k ink of the untapered swept wing. The planform (A = 4, A = 45 degrees) in incompressible flow has already 
been the subject of theoretical study in Ref. 4 (Garner and Lehrian, 1969). The solution for spanwise 
loading 7(r/) in Table 1 is taken from Table 15b of Ref. 4 corresponding to flap chord 0-25c~ flap span 
0.45s < ]y[ < s (qa = 0"45) and a nominal flap setting of 1 radian in a vertical streamwise plane. 

It would be quite useless to consider equation (2) in this context. The difficulty in drawing the curve 
of spanwise loading in Fig. 2, especially near 17=0.45, is perhaps an indication that the validity of tile 
standard calculation of drag fl'om Section 2 requires to be checked. The alternative procedure in Section 3 
presupposes that the spanwise loading contains logarithmically infinite slope at the inboard end of the 
flap. This is consistent with the principles underlying the spanwise equivalent slopes (Ref. 4, Section 4.2) 



that are used in obtaining 7. Until there is a reliable linearized solution for the load distribution incorporat- 
ing both chordwise and spanwise discontinuities in downwash across the perimeter of the flap, the 
accuracy of 7 remains unconfirmed. In Section 4, therefore, a novel approach to the evaluation of vortex 
drag is described; by use of a reverse-flow theorem the factor K can be determined without prior know- 
ledge of the spanwise loading. 

2. Standard Method. 
All routine calculations of vortex drag involve the assumption that the spanwise loading can be 

represented by a finite Fourier series such as 

~(m+ 1) 

7= S A2v-1 sin (2p-  1) 0 with ~/=cos 0 ; 
p = l  

(5) 

asymmetrical spanwise loading would naturally introduce additional terms A2p sin 2pO. For convenience, 
the upper limit to the summation, p =½(m+ 1), is taken as the number of spanwise collocation positions 
on the half wing 

nT~ 
r/= r/n = sin m + 1 with n = 0, 1, . . . .  ½(m - 1). (6) 

A definition of vortex drag coefficient, consistent with Ref. 2 and with Multhopp's 5 method, is 

1 

Cov=A fT.,d,, 
- 1  

(7) 

where the so-called induced incidence 

1 

1 f d7 dq' 

- 1  

The resulting formula from equation (147) of Ref. 5 is 

~(m -  1) { ( m -  1) ~(rn- 1) 

- ~ 2 o + ~  G -  Gn2,7, ,  
v = l  v = l  n =  - ½ ( m -  1) 

(odd) (even) 

(8) 

(9) 

@ 

where the quantities 7n, and similarly 7,, stand for 7(qn) at the collocation sections in equation (6), spanwise 
symmetry imposes 7_n=Tn, and for In--v[ odd 

4(1 - ~ ) ( 1  -~)  
a~n=(m + 1) 2 (r/v __~]n)2 • (10)  



The corresponding lift coefficient is calculated as 

½ ( m -  1) 

2hA ~l nn 1. C 
n = l  

(11) 

Equations (9) and (11) with m=  15 have been used to calculate CDv and CL from the values of 7, in 
Table 1 obtained in Ref. 4 with the 15 collocation sections. The results in Table 2 corresponding to m = 7 
only involve the alternate values of 7 from the same solution. The lift coefficient increases by 6 per cent 
when the number of integration points is increased, but the result CL=0"751 from equation (11) with 
m = 15 is in close agreement with the lift derivative -2z~ = 0.752 from the different solution in Table 13a 
of Ref. 4. The drag coefficient is less sensitive, however, and only increases by 2½ per cent when m is 
increased from 7 to 15 in equation (9). The vortex drag factor K=4.02 is obtained, and the value is some 
30 to 40 per cent greater than the corresponding results from certain unpublished theoretical data 
intended for data sheets. This highlights the need for the present investigation. 

3. Alternative Direct Method. 
The spanwise loading for a deflected part-span flap is thought to have a logarithmically infinite slope 

at the position q=q,, which cannot be represented by equation (5). The distribution of 7, in Table 1 
is obtained by the method of Ref. 4, in which the implicit form of symmetrical spanwise loading is 

7 = ~__A2p-1 sin(2p-1)O+B1 7 1 - ] - B 2 7 I I ,  

p = l  

(12) 

flt,~ 

where from equations (73) and (74) of Ref. 4 with t/, = cos 0, and with a factor of 2 

2 20. sin 0 + (cos Oa-- COS O) In sin ½(0 + 0.) + 

+ (cos O. + cos O) In I cos ~(0 + 0.) 
cos½(0-0,) I ] 

and 

1 V 
[ 2 ( s i n  0 a - 20. cos 0.) sin 0 - 7II  = 
I_ 

-(c°sOa-c°sO)21nlSin~(O-O") I s i n  ½(0 + 0.) 

I c°s½(°+°.) I ] - (cos 0, + cos O) z In cos ½(0- 0,) ' 

(13) 

(14) 



When equations (12) to (14) are substituted in equation (8), it can be shown that 

-nj (2p - 1) a2p_ 1 sin (2p - 1) 0 
ai = 2 sin 0 

p = l  

(0a < 0 < n - 0.) 

~-~ (2p - 1) A2p- 1 sin (2p-  1) 0+  

/_, 2 sin 0 
p = l  

+B~ + B2(I cos 0 [ -  cos 8.) 

,(0 <0 <,0., n-:O.<O<n) 

(15) 

The discontinuities in ct i are basic to the alternative method. Although they imply unrealistic spanwise 
discontinuities in downwash in the wake, these are necessary :to satisfy a true ~[inearized solution for the 
part-span flap. Then by equations (7), (12) and (15) 

COOA = i ~ i  sin 0 dO 
0 

=~y~½(2p-1)A2p-lsin(2p-1)OdO+ 
,0 p= 1 

Oa 

0 n - O ~  

-grcI ~-~j(2p- 1)A~p-l+ 
p =  1 

+l~f(2P-J)Azp-lsin(2p-1)O{Bl?,,+BETH}dO+ 
p = l  0 

Oa 

+2Z fAzp-lsin(2p-1)O{Bl+B2(cosO-cosOa)}sinOdO+ 
p = l  0 

Oa 

0 

P - c o s  0a)} sin OdO. 
(16) 



In the present application, with constant flap chord ratio E, the procedure in Ref. 4 for spanwise 
equwalent slopes includes Yl but not 7H; we therefore set Bz=O and an upper limit of summation 
p=½(m-1) to give ½(m+ 1) coefficients in equation (12). Then, after some manipulation, equation (16) 
yields 

~ ( m -  1) 

~.e ¼~ ~ (2p-1)A2p_l + A 1 B 1 (20a-sin 20,)+ 

p = l  

~(m - 1) 

+ A2p-lBt P-lsin2pO.-2cosO. sin(2p-1)O.+p_ 
p = 2  

+4BZl{OZ~-O"sin20"-2c°sZO"ln]c°sO"'} " (17) 

The corresponding formula for lift coefficient is 

/ t  

C--z=f A 7 sin 0 dO 
0 

=½ zc A1 + B1(20.- sin 20.). (18) 

It remains to determine the coefficients A2p_ 1 and B1 so that equation (12) satisfies the ½(m+ 1) values 
of 7, in Table 1, to substitute the values in equations (17) and (18), and finally to evaluate K from equation 
(1). 

The calculations are made for m= 15 and as if m= 7. The linear simultaneous equations give the 
following solutions. 

m 

15 

A1 

-0"4025 

-0"3065 

A3 

-0.0439 

-0"0154 

As 

0"0309 

0-0263 

A7 

-0"0037 

A9 

-0-0001 

All 

0-0015 

Aa3 

-0-0013 

B1 

0.5870 

0-4777 

The extra coefficients in the case m= 15 are commendably small. Table 2 shows that the lift coefficients 
in the two cases are much closer than those from equation (11) used in the standard method of Section 2; 
likewise the vortex drag factors are much closer. The value K = 3'92 with m = 15 is only 2 t per cent below 
the result from Section 2; incidentally, the difference arises from individual discrepancies in CL and 
Co,, of less than 1 per cent. 

4. Use of Reverse-Flow Theorem. 
The comparisons between the direct methods of Sections 2 and 3 suggest that, given the spanwise 

loading, there are adequate numerical techniques for obtaining the vortex drag factor. There remains, 
however, an element of uncertainty regarding the spanwise loading itself. In the absence of a definitive 
solution to the linearized problem, without the use of equivalent slopes, a suspicion of inaccuracy will 
remain. 

Let us suppose that the spanwise loading in equation (5) is replaced by the infinite Fourier series 



co 

~ / = 2 A 2 p  - 1 sin (2p -  1) 0. 
p= 1 

(19) 

Then, by equations (17) and (18) with B 1 =0, we have 

co 

 Acoo (A2,_1  2 
K -  C~ - ( 2 p -  1) \ - - ~ - I  ,] ' 

p = l  

(20) 

Although equation (19) is expected to be a slowly convergent series, that for vortex drag, involving the 
squares of the coefficients, should converge relatively quickly. It follows from equation (19) that 

A z p _  1 = ~  ysin(2p-1)OdO. 
0 

(21) 

Consistent with equation (4), the non-dimensional circulation can be written as 

if y =  ~ I dx  , (22) 

where I is the local wing loading as a fraction of the stream dynamic pressure and the integral is taken 
from leading to trailing edge at the section y = s  cos 0. By equations (21) and (22), Azp_ t can be expressed 
as a generalized force coefficient 

1 f f l W z p _ l d x d y  (23) A 2 p -  i - -  2~zs 2 

s 

where S denotes the area of planform and the force mode 

sin (2p -  1) 0 (24) 
W z v -  1 - sin 0 

Now we can invoke the general reverse-flow theorem due to Flax 6 (1952), to transform the double 
integral (23) so that 

1 ffi~,-iWdxay A z p-  ~ = 2zcs ~ 
S 

(25) 

where 12p-1 is the non-dimensional loading on the wing with reversed stream and the downwash mode 
or twist distribution from equation (24), and the force mode W corresponds to the downwash angle 
associated with the loading l, namely 

W = 1 on the flaps ~. 

W = 0  offthe flaps 
(26) 

7 



For the untapered wing, equation (25) reduces to 

1;f Azp- 1 =~--~ izp- 1 d(x/c) dtl, (27) 

where the integral is taken over the area of the two flaps. 
Although the region of integration includes typical leading-edge singularities in Izp_ ~, this loading 

on the reversed (swept-forward) wing corresponds to the smooth downwash mode of equation (24). 
Reliable solutions for Izp- 1 can therefore be obtained, provided that p is not too large in relation to the 
number of spanwise collocation points. The loadings are calculated from a version of the lifting-surface 
theory of Zandbergen et al v (1967), re-programmed by Mr. P. S. Hampton of the Division of Numerical 
and Applied Mathematics, N.P.L. As there are 4 chordwise by 23 spanwise collocation points and 95 
spanwise integration points between the wing tips, the results are expected to be reasonably accurate up 
to about p = 8. 

The loading on the reversed wing takes the form 

4- 

72p-1 =--8S Z Fq(o) C°s(q-1) (a+c°s qgp 
~ c  sin q5 ' 

q = l  

(28) 

where in terms of the leading edge of the actual wing 

x-xz=½c( l  + cos ~b). 

The flaps correspond to regions (0 < 0 < 0~, 0 < ¢ < Cn) and ( ~ -  0, < 0 < ~, 0 < ~b < Ch), where 

cos q~h = 1 - -2E.  

By equations (27) to (30) and by spanwise symmetry 

1 ~h 4- 

AZp-l=z74 ff~Fq(O){cos(q-1)~a+cosq(o}dOdq 
t/a 0 q : l  

(29) 

(30) 

Oa 

4rE = ~  r t  (0) (4~h + sin 4~h) + Fz (0) (sin ~bh+ ½ sin 24~h) + 

0 

+ F3 (0) (½ sin 2¢h+½ sin 34~h) + 

+ F4 (0) (k sin 3qSh+ ¼ sin 44~h)] sin 0 dO. 
d 

(31) 

The integrand is readily evaluated when E=0-25, and numerical spanwise integration for each p with 
0, = cos-  1 (0.45) gives the coefficients Azp_ 1 in Table 3. The final step is to calculate K from equation (20) 
with a variable upper limit of summation p=½ (m+ 1)= 1, 2 . . . . .  8. The results in Table 3 show a useful 



degree of convergence; two terms are insufficient and give no better accuracy than would equation (2), 
nor are four terms quite enough as is shown by the value K=3.84 included under m=7 in Table 2. When 
all 8 coefficients are used, there is the final value K=3"97, which lies midway between the values for 
m = 15 from the preceding direct methods. The discrepancies are less than + 1½ per cent, and it is reasonable 
to conclude that the present calculation of vortex drag approximates to the true linearized result to this 
order of accuracy. 

5. Discussion. 

It is possible to discuss the nature of the errors in approximating to equation (20). Since every term is 
positive, truncation of the series with exact values of Azp- 1 would clearly lead to an underestimate of K. 
On the other hand, collocation with any fixed number of spanwise stations (23 in the present application) 
would inevitably introduce errors, and eventually random divergence, in A2p- 1 if(2p - 1) were to approach 
and then exceed that number; such a calculation would lead to an overestimate of K. In the present 
calculation with 2 p -  1 ~< 15, the two types of error are thought to be reasonably small and of the same 
order of magnitude. 

The reverse-flow theorem is such that, having made calculations for a particular flap, we can use the 
same sets of coefficients Fq (0) at the collocation sections to evaluate K for any other size of flap; for 
the given planform, the modes W2p_ 1 and loadings 12p_ ~ in equations (24) and (28) are independent of 
flap geometry. A simple change of flap span only affects the range of integration in equation (31), 

O<O<O,=cos-ltla for outboard flaps ~. 
(32) 

c o s - l t / r = 0 i < 0 < ½  ~ for inboard flaps 

The calculation 

½(m+ i )  

K = ~ (2p-  1) \ ~ )  

p = l  

(33) 

with m= 15 has been made for fixed chord ratio E=0.25 with variable qa or ql, and Fig. 3 illustrates the 
sensitivity of the vortex drag factor to flap span. 

An infinite limit is expected as q , ~  1 or qs~0.  It is worth noting that, if B1 were the dominant co- 
efficient in equation (12) as r / ,~ l ,  then equations (17) and (18) would give K=0(1- t / a )  -~. To simulate 
the limit r/;--.0, we might set A x = - 2 B  1 as dominant coefficients in equation (12) and deduce similarly 
that K=0( log t / I  -~). These limiting forms would apply to a slender planform with unswept trailing 
edges (Ref. 8); they also provide some qualitative explanation of the behaviour of the respective curves 
of K in Fig. 3. 

To study the effect of flap chord, the spanwise integrals in equation (31) are evaluated before the 
numerical values of q~h are substituted. For fixed qa= 0.45, the vortex drag factor has been evaluated for 
the full range of E, 0 < ~bh < n in equation (30). Fig. 4 shows that, althougfi there is less variation in K with 
flap chord than with flap span, its dependence on E is far from negligible. In preparing data sheets on 
the theoretical vortex drag of wing-flap combinations, flap chord ratio is a necessary parameter with 
more influence than one might have expected. 

6. Conclusions. 
(1) Two direct methods of calculating vortex drag from a prescribed spanwise loading and a novel 

third method, on the reverse-flow principle without a definitive spanwise loading, are applied to an 
untapered swept wing with symmetrically deflected outboard flapS. The results are consistent within 
_ 1½ per cent. 



(2) The calculations provide a reliable check point for the purpose of data sheets on the theoretical 
vortex drag of wing-flap combinations. No better accuracy is required or is likely to be obtainable in 
the present state of linearized theory. 

(3) The third method (Section 4) is rather cumbersome to apply to flaps of fixed geometry, but it is 
well suited for studying the influence of flap span and chord (Section 5). The vortex drag factor is shown 
to be highly dependent on flap span and to vary significantly with flap chord ratio. 
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TABLE 1 

Spanwise Loadin9 on an Untapered Wing (A=4,  A = 4 5  °) with Outboard Flaps (E=0"25, r/a=0"45) at 
Symmetrical Unit Deflection. 

m = 7  m = 1 5  

2 

0.1951 

0.3863 

0.0143 

0"0187 

0.0427 

3 0-5556 0.1467 

2 4 0-7071 0.1770 

5 0-8315 0.1728 

3 6 0.9239 0.1419 

7 0.9808 0.0805 

TABLE 2 

Calculated L(ft and Vortex Dra9 by Various Methods. 

m = 7  m=15 
Method 

CL Co, K CL CDo K 

Section 2 0.710 0'1760 4'38 0-751 0.1804 4.02 

Section 3 0'768 0'1892 4-03 0.758 0.1791 3.92 

Section 4 0.749 0.1714 3-84 0-749 0.1774 3.97 
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TABLE 3 

Coefficients and Vortex Dra9 Factor from Reverse Flow. 

p or  

~(m+l) 
2 

A2p_ 1 0 " 1 1 9 2  0 " 1 1 5 0  -0'0095 -0"0051 0'0114 -0'0066 -0"0004 0'0041 

K 1"000 3"794 3"826 3'839 3"921 3"955 3"955 3"973 
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FIG. I. Planform geometry of wing and flaps. 
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F~o. 2. Symmetrical spanwise loading with flaps at unit deflection. 
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