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Summary.

The report gives particulars of a method of calculation, which has been programmed for a digital
computer, for linearized two-dimensional subsonic unsteady flow through a cascade of flat plates operat-
ing at zero mean incidence. Inputs to the calculation are motion of the blades due to either bending
or torsional vibration, wakes from moving obstructions upstream of the cascade, and incoming acoustic
waves. For each of these inputs the output gives the force and moment on the blades, the wakes shed
from the trailing edges, and the outgoing acoustic waves. The program therefore provides all the in-
formation necessary for calculation of forced and self-excited vibration of the blades, and for the genera-
tion, transmission, and reflection of acoustic waves by a cascade.

Two kinds of acoustic resonance are found, one corresponding to resonance of an annular duct without
blades, and the other being an acoustic resonance in the passages between the blades.

Results are presented which illustrate the generation of acoustic waves by wakes. Results on torsional
flutter indicate that compressibility has a very important effect. Whereas at low Mach number the worst
position for the torsional axis is at about 75 per cent chord, as the Mach number is increased this position
moves forward to the leading edge.

*Replaces A.R.C. 32 017.
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1. Introduction.

This investigation is directed towards the elucidation of two of the most urgent problems which have
arisen in the development of turbomachinery. These are blade vibration and generation of noise.

The blade vibration problem arises in two forms. First there is the question of what the amplitude will
be due to forcing of say a rotor blade by stationary wakes and other forms of maldistribution in the
inlet flow. Secondly there is the question of the conditions under which self-excited vibration or flutter
can occur. In order to answer these questions it is necessary to know the forces and moments which act
on the blade due to its vibratory motion and to the disturbances in the flow. These are now fairly well
understood for two-dimensional unstalled incompressible flow, but practical blades usually operate at
Mach numbers which are not small, so that the effect of compressibility is likely to be important. As soon
as compressibility is introduced, the possibility of acoustic waves radiated by the blades arises, and these
will be found to have a profound significance in the blade vibration problem.

In the noise generation problem it is recognized that there are a number of different ways in which
turbomachinery blading can generate noise. Here, the relevant mechanisms are the generation of discrete
tones due to wakes or other regular disturbances in the flow, and the generation of discrete tones due to
blade vibration. Some indication will also be obtained of the generation of white noise due to turbulence
in the inlet flow, but since this is really a three-dimensional problem, and the analysis to be given is
two-dimensional, the application here is less direct. In addition the theory gives results for the way in
which acoustic waves are reflected and transmitted by a cascade. Other mechanisms of noise generation
such as the generation within turbulent boundary layers and wakes, and due to vortex shedding at trailing
edges, are not relevant in the present context. This means that the results obtained will be of significance
at the lower end of the noise frequency spectrum.

The assumptions made in the analysis are as follows :—

(a) The system considered is two-dimensional, so that the bending modes of actual blades are repres-
ented by a translational motion of the two-dimensional aerofoils, and the torsional modes of actual
blades are represented by rotation of the two-dimensional aerofoils about a known axis. Only trans-
lational motion perpendicular to the chord line is considered.

(b) It is assumed that the blades do not stall, so that the flow always follows the blade surface.
(c) Effects due to camber and thickness are neglected, so that the blades are assumed to be flat plates.

(d) It is assumed that the blades operate at zero mean incidence, so that the mean deflection of the
flow is zero, and that the Mach number of the mean flow is less than unity.

(¢) The amplitude of the perturbations is assumed to be small. It follows that the wakes of the blades,
which are vortex sheets in which the strength varies sinusoidally with distance from the trailing edge,
can be taken to be straight. It also follows that the theory becomes linear, so that any two solutions for
the perturbations can be superposed to give a third solution.

(f) Tt is assumed that events on all blades are identical, except for a constant phase change between
each blade and the one above it. This involves no loss of generality, since any required solution can be
built up by superposing solutions of the type considered.

(g) It is assumed that the fluid has zero viscosity, and that the Kutta-Joukowski condition at the trailing
edges of the blades is satisfied.

Solutions of this problem have been given by Lane and Friedman!, Gorolov and Dominas? and by
Kaji and Okazaki®. The present work follows very closely the method due to Lane and Friedman, and
the notation has been chosen to be largely identical with their report. Lane and Friedman, however,
only computed the case of zero stagger with antiphase motion of the blades (corresponding to the wind
tunnel wall interference problem) and did not consider the acoustic waves generated.



2. Theory.

2.1. Basic Equations.
The linearized equation for the pressure perturbation is
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For harmonic time dependence the pressure perturbation may be written
p = pexp(iwt),
so that the basic differential equation becomes

?p &*p 2ioMp w*p
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It is convenient to solve this equation by making a Prandtl-Glauert transformation. Writing
p=/(1-M
then the coordinates in the Prandt!-Glauert plane are

x' = x/B,

and
y=y.
In this plane it is convenient to replace the pressure by the variable
Y =pexp(—inMx). (1)

The equation satisfied by i then becomes the reduced wave equation

o %y

2
X" =0,
0x/2 +ay/2+17 ‘//
where n = w/cf.

The solution of this equation which is periodic in the x direction with wavenumber o is

W= fexp{iax+iy Jirr—a?)}. 2)

The corresponding solution for the pressure is

p=f exp liwt+ix(a+yM)/pLiy /(n*—a?)}. 3)



The velocity perturbations can be obtained from the linearized equations of motion,
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and
U=.+"—[——ﬁ~—————— Mexp {iwt+ix(a+n M)/B+iy/ (> —a?)}. (5)
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The required solution for the cascade will be built up by superposing solutions of this type. But first
it is necessary to consider the acoustic wave solutions which can exist far upstream and downstream
of the cascade.

2.2. Acoustic Wave Solutions.
Since wavetype solutions can only exist when « is less than #, it is possible to write

x=ynsind. (6)
Then equation (2) becomes
V= fexp{in(x'sini—y cosi)}. ¥l

This represents a wave propagating in the Prandtl-Glauert plane at an angle A measured anticlockwise
from the y" axis. Four such waves are illustrated in Fig. 2, two propagating upstream and two downstream.
These waves are shown diagramatically immediately upstream and downstream of the cascade, but of
course close to the cascade there will be other effects due to the blades.

It is next necessary to determine what values of A are consistent with the assumed phase angle ¢ between
events on each blade and the one above it. At the origin, taken at the mid-chord of the reference blade,

p=y=1.

At the mid-chord of the next blade above

and in the Prandtl-Glauert plane, where the blade spacing is d*, and the stagger angle is £*,

X' = s*/B = d* sin &*,
and (®)
y =5 = d¥cos£*,



Also on the next blade above
p=fexplio),
so that from (1)
Y= fexplioc—inMs*/B) = fexp(iQ), 9
where
Q=o0—nMs*f, (10)

and is the phase angle change in { on going from one blade to the next in the Prandtl-Glauert plane.
From (7) and (8}, on this blade

¥

Sfexp { in(d*sin £* sin A—d* cos &* cos 1)}

fexp{ —ind*cos(E*+)]. (11)
Comparing (9) and (11) gives
Q= —nd*cos(*+A)+2an,

where n is any integer.
If { is an angle defined by

sin({) = (Q-2mm)nd*, (—n2 <{<mn/2) (12)

then
cos (E*+ 1) = —sin(0)

and this is satisfied by two values of 4,

A= m2+{-C%,

and (13)
by = —mf2— (=&

These angles are illustrated in Fig. 2. { is the angle between the wavefronts (lines of constant ) and
the cascade direction. It will be noted that A, > —£* so that this always represents an upstream going
wave and 1, < —&*, so this always represents a downstream going wave. For the case illustrated in
Figs. 1 and 2 there are two such wave pairs, corresponding to n = 0 and 1.

The corresponding picture in the physical plane is shown in Fig. 1. In a time of one period of the oscil-
lation, one of the waves is convected from A to B at a velocity U, and is then propagated from B to C
at a velocity ¢. The wavefronts (lines of constant p) are perpendicular to BC, and their inclination is
given by the angle ¢. It is found that

sin ¢ = (M +sin A)/(1+ M sin 1),
and (14)
cos¢p = fcosA/(1+Msin 4).



Corresponding to equation (7) the pressure and velocity fluctuations are given by

p = fexp{inp(xsinp—ycosd)/(l—Msing¢)}, (15)
ii=—(f/pc)sin ¢ exp {in f (xsin ¢ —y cos ¢)/(1—M sin ¢)} (16)
and 5= (f/pc)cos ¢ exp {in f(xsind—ycos ¢)/(1—M sin §)} . an

The concepts of acoustic wave-energy density and acoustic wave-energy flux in a moving medium
have been discussed by Blokhintsev*, Bretherton and Garrett®, and Morfey®. Here the approach used
by Bretherton and Garrett will be followed, and mean acoustic wave-energy density is defined in a
frame of reference moving with the mean velocity of the fluid and is given by

1
E=%p<u2>+%p<v2>+§7)—?<p2>.

where the brackets < > indicate time average values. The first two terms give the kinetic energy and

the third term gives the potential energy. Substituting from equations (15), (16), and (17) and taking
the average value gives

E=|f|*2pc*.

Bretherton and Garrett also show that the wave-energy flux is equal to the group velocity (c;) times
the wave-energy density. In this case the group velocity has components

¢, =U—csing,

and
¢, =cCcos¢.

The wave energy flux is therefore given by

s |f1? -
E, =c¢, E =—(M—sin ¢)
2pc
and
E,=c E=Micos¢.
y y 2pC

The direction of energy propagation in the physical plane is given by the angle y (measured anti-
clockwise from the y axis) where

tan X= --E—x=81n¢—_M

= A.
5 cosd p tan

Hence the angle y in the physical plane corresponds to the angle A in the Prandtl-Glauert plane.

It is next necessary to recognize that acoustic wave energy is not conserved, since there can be energy
exchange between the acoustic perturbations and the mean flow through the acoustic Reynolds stresses.
However, Bretherton and Garrett show that under the approximations of geometrical acoustics a quantity
called “total wave action” is conserved. If @’ is the intrinsic frequency, that is the frequency that would



be observed by an observer moving with the mean flow, then the quantity (E/w’) is the wave action
density. It satisfies the conservation equation

AT EANGAYEAN
ot ox;)\w ) \ox; )\ )
This equation is true provided changes with time are small over one wave period and changes with
distance are small over one wave length. The equation can also be written

0 (E) d (ch>
=t~ |+7=l-—)=0.
ot\w') 0x;\ o
In the application of these theoretical results to practical turbomachinery problems, the flow of acoustic
power within the annulus of the machine is of less interest than the amount of acoustic power which
emerges from the machine. It is therefore the latter quantity which will be calculated. It is supposed
that the annulus in which the cascade is situated is fitted with a large contraction at inlet and a large
diffuser at outlet, so that there are planes far upstream and downstream where the mean velocity is
small. Tt is also supposed that the area variations are on a scale large compared to the wavelength of
the sound so that the geometrical acoustics approximations can be applied within them. If the acoustic
energy density is steady, then
2(5)-0
ot\ o'

2 (e8)o
0x;\ w

Applying the divergence theorem to the volume between a surface S, near the cascade and a surface
S,, where the mean velocity is low,

(nj¢; E is — | (MSEY 45
o’ o’ ’
S h

1 2

Hence

where #; is a unit vector normal to the surface, directed outwards from the machine.
On §, the velocity is low so that &’ = . Hence the acoustic power coming out is

W = JnjchdS = f(njchw/w’)dS.

S2 S1

The intrinsic frequency in the plane §, is found to be
o' = w/(l—M sin ¢).

So that if n; is a unit vector in the axial direction

2
W = {(U—csin @) cos & —ccos ¢ sin &} 2|£|02(1——M sin) S, .




This may be written

=|f|2ﬁ2Slcosécochos2¢‘

W
2pc cos £* cos?A

(18)

The existence of pairs of acoustic waves is governed by equation (12), since the angle { only exists if
|Q=2nn|<nd*.

For given cascade geometry, phase angle, reduced frequency (k = wb/U), and integer n, the Mach
number above which the wave pair exists is given by

1 kdib \ . ( k d/b )2
= i ) 1
M? 1+2<6—2nn) sin ¢+ 6—2un (19)

Alternatively, for given cascade geometry, phase angle, Mach number, and integer n, the reduced
frequency above which the wave pair exists is given by

kd  (6—2mn)Bcosc*
b Mcos&(Msin E*+1) (20)

At the point of appearance of the acoustic waves the angle { is +90°, so that the direction of energy
propagation is along the cascade, and no energy is removed by the waves from the vicinity of the cascade.
This gives a resonance condition, and also corresponds to the cut-off condition discussed by Tyler and
Soffrin”.

2.2. Cascade Solution.

The cascade solution will now be built up from the basic solutions given by equations (3), (4) and (5).
Initially the case when there is only one blade in the plane y = 0 will be considered.

'The choice of the sign ambiguity in these equations may be made from physical considerations. If
o is less than 5 then the solutions are wave-type and only waves propagating away from the blade are
admissible. If « is greater than # then the solutions are exponential with y and only those solutions which
remain finite as y becomes large and positive or negative are admissible. In both cases this means that
the lower sign must be taken in the upper half plane and the upper sign must be taken in the lower half
plane.

An alternative way of making this choice, which is more powerful mathematically, is to assume that
w, n and k all have a small negative imaginary part.

w=w;+iw,,
n=H+in,
k=k +ik,,
where ,, #, and k, are all small and negative. This gives
p=pexp(iw t—w,t)

This corresponds to a slightly divergent oscillation. Waves originating at large distances from the
cascade, which were emitted at much earlier times, are therefore small. Also, the strength of the vortex
sheet in the wakes of the blades becomes small far downstream, since the vorticity is convected at the



mainstream velocity U and was therefore shed at much earlier times. Then

JOF—a?) = i)+ ing ny//ni—o?)
to first order in n,. Hence, for the wave-type solution

exp{ £iy /I =o))} = exp{ £ iy /i-o)F nimayilri-oh)}.

In order to have a solution which decays far away from the blades, it is necessary, since 1, is negative,
to take the lower sign in the upper half plane and the upper sign in the lower half plane. This is the same
condition as before.

The solutions in the two half planes are matched so that they give the same velocity perturbation v
in the y direction in the plane y = 0. The complete solution for a single blade is then obtained by inte-
grating the basic solutions for all possible values of «. The result is

p= %sgn(y)Tf o) exp { it +ix (o +nM)/B— iyl > —o?) } dor, (21)
b
- sgn(y)J fol@) :‘j}% exp { ioot +ix (a+nMY/B— iy —o?) } da (22)
and iy
b= é% J fol@) J‘L?‘/M’ exp { icot+ix (u+nMYB— iyl —o?) } dot. (23)

The amplitude of the pressure jump across the y = 0 plane (pressure just above the plane minus pressure
just below the plane) is then given by

[p] = | fol@ exp {ix(a+nM)/p } do. (24)

+
- oC

This shows that [§] is the Fourier transform of the function f,, except for the effect of the #M term
which merely shifts the effective origin of &. The form of f () will have to be adjusted to make [p] zero
off the blade.

The corresponding jump in u velocity is

+ o

[ﬁ] = —pLUf Jol@)

-

a-+nM .
&+11/1erxP{lx (x+9M)/B } do. (25)

The solution for the m™ blade can be obtained from equations (21), (22) and (23) by writing x,, for
X, ¥ for y and f, for fg, where



Xy = X—ms*¥,
Y =Yy—ms,
fm= fOexp(imG)a

since on the m™ blade, pressures and velocities are advanced in phase by an angle ms. Summing the
effects of all blades gives for the amplitude of the upwash velocity

+ o m= +oc

5:5/% f fo(a)%(%‘/glx D, P M=y =) ima . 26

The series in this expression is a geometric progression and can be summed. The small negative imag-

ary part of ,/(n*—«?) is used to obtain convergence. Then for the range 0 < y < s the result is

<

f o =) 2 exp (ix M)

exp { i(y—s) /(n*> —o?) —is* (a+nM)/B+ic }
t—exp { —is\/(y* —a®)—is* (0 +nM)/B+ic }

exp { —ly\/n —a?)} }da @)

l—exp{ —is \/(n? 2)+zs"‘(oc—l—z1M)/ﬁ~ia}

It will be convenient to write these expressions in non-dimensional form. The quantities #, « and [,
are replaced by g, 1, and F,, where

n=up, (28)
o =1p/b, (29)

and
fol@) = Fo(r) pb U%/B. (30)

Then the pressure jump across the blade is given by

+

[p Uz:I J\FO yexp {ix (t+p M)/b } dr. (31)

The jump in u velocity across the blade is given by

+ o

-

The upwash velocity is, for y=0

11



%:gJFo(T)l/;%;A—TPeXP{iX(H‘MM)/b} X
e (33)
[ exp { —is B/(u*— )b —its*/b+iQ ; 1 i
l—exp { —is B /(w2 —?)b—its*/b+iQ} 1—exp{ —is p/(u* —12)/b+its*/b—iQ 3:| !

iB F )\/(,uz—rz)exp{ix('c+uM)/b}sin{sﬁ\/(uz—rz)/b}
o(® T+pu/M  cos(Q—1s*/b)—cos { sB/(w*—1))/b }

2.3. Upwash Velocities.

The form of the function Fy(t) is initially unknown, and has to be determined to give the required
upwash velocities on the surface of the blade. In this report five different kinds of upwash velocities
are considered.

First, due to bending motion of the blade the upwash velocity is g exp (iwt). This gives

=1. (35)

e

Secondly, due to torsional motion of the blade about an axis at the mid chord through an angle 6
exp (iwt) {anticlockwise positive) the velocity normal to the chord line is

(7—0U)exp (iwt) = x% {9 exp (iwt)} i

This gives

v .
Uézl—l—lkx/b. (36)

The third type of upwash velocity is that which would be generated by wakes from some kind of periodic
obstruction far upstream of the cascade under consideration. It is supposed that a Fourier analysis of
the wake profile has been carried out, and one component is considered. The wake spacing and the
relative velocity of motion of the obstructions determine the frequency w and the phase angle ¢ of the
disturbance felt by the cascade. It will be supposed that the upwash velocity which the disturbance
would induce at the origin (at the mid-point of the reference blade) if the cascade were removed is w,
exp (imt). Then since the whole disturbance is convected downstream at a velocity U, the upwash velocity
at any point {x, 0) is

w, exp (iwt —iwx/U) .
There is no pressure perturbation associated with this flow.
Since the total induced upwash velocity must be zero, this is equal and opposite to the velocity induced

by the pressure jump across the blades, ¢ exp (iwt). Hence

b= —w,exp(—iox/U) = —w,exp(—ikx/b). 37N



The fourth type of upwash vélocity is due to acoustic waves propagating in an upstream direction
from some other source further downstream. The upwash velocity is of the form given by equation (5),
with the value of o given by # sin A,. This may be written

b= —wyexp{ixnM+sinl)/B},
= —wyexp{ipu(M+sinid)x/b}. (38)

Similarly the fifth type of upwash velocity is due to acoustic waves propagating in a downstream direc-
tion from some other source upstream. The upwash velocity expression is

0= —wyexp{iu(M+sini)x/b}. (39)

2.4, Lift and Moment.
Equation (31) may be interpreted as showing that [p/p U?] exp (—ixuM/b) is the Fourier transform
of F (7). The transform may therefore be inverted to give

+

F, (1) = %t f [/—O—%—:I exp { —ix(t+uM)/b} d(x/b). (40)

- oC

Since [p] is zero off the blade the limits may be replaced by —b to +b. Then putting 7= —uM gives

+b

e
F,(~uM) =2—n”p’(’ﬂ]d<x/b),

L
- 41
2np U?D’ (1)

where Lis the amplitude of the aerodynamic lift acting on the blade.

If equation (40) is differentiated with respect to z and then 7 is put equal to —uM ,

+b

e
Fo' (—uM) = —ﬂﬂp’;z}(—ix/b) d(x/b),
b

iM,
R Ty “2)

where M, is the amplitude of the aerodynamic moment (positive nose up) about the mid-chord point.

2.5. Strength of the Shed Vortex Sheet.

The strength of the vortex sheet which replaces the reference blade and its wake is given by equation
(32). It is now required to find the strength of the sheet far downstream when x— + oc.

It will be found that the equation for the upwash velocity can be satisfied by taking for F,(t) an expansion
in terms of Bessel functions. These Bessel functions contain no singularity on the x axis. Thus the integral
in equation (32) contains just one singularity at the point © = — u/M. This singularity may be separated
out as follows,



+

il D .
[5} =J {T+M/M+E(-c)} exp{zx(r-i—uM)/b} dr.

-

Here E(t) is without singularity and D is given by

2
D= F, (a5 i F, (—ip).

When |x|—oc the E(c) term does not contribute anything. The contribution of the D term may be
evaluated by Jordan’s Lemma. This states that if Q(z) = N(z)/D(z), where N(z) and D(z) are polynomials,
D(z) has no real roots, and the degree of D(z) exceeds the degree of N(z) by at least one, then if z > 0

+ o

jQ(T)exp(irz)dr = 2mi L R*,

-

and
+ o

Q(t)exp(=itz)dt = —2niX R,

— o

where Z R™ and X R™ denote the residues of Q(z) exp (i 7 z) and Q(z)exp(—i T z) in the upper and lower
half planes respectively. In this case

Ho=py+ip,

where u, is small and negative. The pole is therefore just in the upper half plane.
Hence if x— —oc

and if x— +

|:%:|—> 2niDexp(—ipxp*/Mb)

=2mnikF,(—k/B*) exp(~ikx/b).

The amplitude of the vortex sheet far downstream is therefore given by

%=—-2nikF0(—k/ﬁ2). 43)

2.6. Strength of Acoustic Waves Far Upstream and Downstream.

The acoustic waves far upstream and downstream radiated from the cascade can be obtained in a
similar way from an examination of the singularities occurring in equations (33) and (34). There is one
singularity occurring at T = — u/M. There may also be other singularities occurring when



-sp \/(uz— ) /b—1s*/b+Q = +27n,

or
~sp (@ —Hb+s*b—Q = —2mn,

where # is an integer. The values of ¢ which satisfy these equations are

T, = psind,

and
T2 = ‘u SiI’l 12

where A, and 7, are given by equations (13). The singularities in the integral therefore correspond exactly

to the possible acoustic waves far upstream and downstream.
In the following the equations will be written as if just one pair of acoustic waves can exist, but the

terms for further pairs of acoustic waves can be added in exactly the same form.
Equation (34) for the upwash velocity on y = 0 can therefore be written in the form
+
B C D
= E i M)/b | d

where E(t) is without singularity and the constants B, C, and D are given by

B_iu_b F,(1;) cos?* i,
o 2d* (v, +p/M) cos{

C___L/_z_lz F,(t,) cos?i,
T 2d* (ty+ /M) cos{

ik sinh (ks/b)
D=7F(= k/B*) cos (Q-+ ks*/B%b) — cosh (ks/b)

When |x|—oc the E(r) term does not contribute anything, and the other terms may be evaluated by
Jordan’s Lemma as before. It is found that 7,, has a small negative imaginary part so that 7, is just in
the lower half plane, and similarly t, is just in the upper half plane. Also, the pole at 7 = —u/M is just

in the upper half plane.
Hence if x— —oc,
2 —2niBexp { ix(ty+uM)/b}.

This shows the acoustic wave propagating upstream, the amplitude of the upwash velocity being

. nbM F,(usinl,) cos® i,
—2mB = A Msin A, + 1) cosC

(43)

)
U

Alsoif x— + o,
= +2mi Cexp { ix (t,+puM)/b } +2xi D exp (—ikx/b).

Qltl



This shows an acoustic wave propagating downstream and the velocity associated with the shed
vortex sheets, which are convected downstream at the mainstream velocity U. The amplitude of the
upwash velocity in the acoustic wave going downstream is

b2 _ ,C_nbM F,(usin 4;) cos? A,
T (Msind,+1) cos{

(46)

‘The amplitude of the pressure fluctuations associated with these waves can be obtained from equations
(15) and (17). The pressure fluctuation in the upstream going wave is

P b cos i, .
= ————F . 7
S0P T eost Folrsind) (4)

with a similar expression for the downstream going wave.

It is interesting to note that the required output quantities, lift, moment, shed vortex sheet, and radiated
acoustic waves, are all determined by certain specific points on the F(r) function. The moment depends
on the slope of the function, and all the other quantities are given by the ordinate at the relevant point.
This situation is illustrated in Fig. 3.

It is also interesting to note what happens when u—0. Since y = wb/cf?, this occurs when the wave-
length of sound is much greater than the blade chord. Then both the lift and the amplitude of the acoustic

waves radiated depend on F,(0), and the relationship between the pressure fluctuation in the upstream
going wave and the lift is

P L cos 4,
pU? 2pU?Bd* cos(

(48)

This is a form of the well known relationship between lift and radiated sound waves, and can be shown
to be identical with equations (27) in a paper by Mani®.

The corresponding power per unit annulus-area radiated outside the machine is, from equation (18),

_ 28, cos? ¢ cos &*

= 75 49
8 pd*ccos( cos & (49)

This can be shown to be identical to Mani’s equations (28). It should be noted, however, that it only
applies to the acoustic power coming from a stationary cascade. If the cascade is moving then the work

done by the mean flow on the acoustic wave packet on its way out of the machine will be altered, and
the result will be different.

2.7. Expansion in Series. @%‘

It is next assumed that the pressure difference across the blade can be expressed as a trigonometrical
series, in the usual manner of thin aerofoil theory;

[p I()JZ:I =14, cot(y/2)+ ZA, sin ry,

r=1

where x/b = —cos p.*

This assumption automatically satisfies the Kutta-Joukowski condition at the trailing edges of the
blades, where the pressure difference is zero.

*Note that the 4, used here is double the 4, used in Lane and Friedman’s paper.



Substituting this into equation (40) and evaluating the integrals gives

Fot) = § A, { J, (t+uM)+iJ (x+puM)} +

+E%i"1Ar{Jr_1(r+uM)+J,+1(r+uM)}, (50)

r=1

where the J’s indicate the usual Bessel functions.
Putting © = — uM and using equation (41) gives for the lift force

L T

= —=(4 . 51

gy = 3 et A 1)

Differentiating equation (50) with respect to t, putting © = —uM, and using equation (42) gives for

the moment

M, n

—= — —(A,+A4,). 2

p UZ b2 4 ( ] + 2) (5 )

These two output quantities therefore depend on only the first three A, coefficients, but the other
output quantities depend on the whole series of A4, coefficients.

2.8. Evaluation of the Upwash Integral.

In determining the 4, coefficients, it will be assumed that the F,(7) function is sufficiently characterised
by taking the first n, of them. These n, coefficients are then determined by making the upwash velocity
at n, points along the chord match the required upwash velocities. It is therefore necessary to evaluate
the upwash velocities from equation (34), when F,(t) is given by each of the functions in equation (50)
by which the A4, coefficients are multiplied. These are

Foot) = 4 { Jo (t+uM)+iJ | (x+uM) }, (53)
For(T) = % it { Jr—l (T+uM)+Jr+1 (T+#M) }
\v‘; F
= L1yt .
3 7:+,uMJy(T+'uM)” > 0. (54)

The integrals have to be evaluated numerically. Two difficulties arise. The first is that the integrand
contains singularities, which have to be subtracted out and evaluated analytically. The second difficulty
is the behaviour at large values of z, since the integrand oscillates with amplitude proportional to |z ~ /3,
indicating slow convergence and requiring special numerical techniques.

The singularities will be subtracted out, not in the way used in equation (44), but with the exponential
terms included in the coefficients.
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[ B0 exp i -+ b} sin {58/ ~2b)
- T+ k/B* cos(Q—1s*/b)—cos {sB/(u* —1?)/b}

— L

B_c LD T
T—1T, T—1, ‘H—k/B2 T—1, 'c—rz t+k/B?

Here

B = Bexp{ix(t,+uM)/b;,
= Cexp{ix(t,+uM)/b},
D'=Dexp{ —ikx/b}.

Since 7, is just in the lower half plane

+x
B’
j dt = —inB'.
T—T,

Also since 1, and (—k/f?) are just in the upper half plane,

and
+ o

D dt +in D’
———dt = +i .
kB2 4

It is then convenient to divide the integral into three ranges. First there is the inner range —pu < v < + .
In this range it is convenient to make the substitution

T=psind.

Also in this range the subtraction of the singularity at t = — /M is unnecessary, and this can be evalu-
ated analytically

+u

D’ 1+M
—|————dt = ~D'log——.
j Mt BT M
-

The second range includes both —1, < v < —p and pu < 7 < +1,, where 7, is chosen to be large
enough to make the special methods used for the infinite integral accurate, and is certainly greater than
11/ M. In this range the subtraction of the singularities at 7, and 7, is unnecessary, and these can be evaluated
analytically.



+1s

By

—1s

(u+14) (ts—14) (H+15) (15— 13)
= —Blog —-2 2 (C'log . 2s 20
B'log (ts+ 1) (u—1y) ° (Ts+12) (u—13)

The third range includes both t < —7,and 7 > t,. In this range all the singularity terms can be evalu-
ated analytically. :

—1s

[ =
J (t=7) (1—w) (+u/M)

—u/M
— ___BrlOgTS+TI_C/]OgTS+T2_D/10 Ts lu/ .
Tg— Ty Ts— Ty T+ u/M

The complete expression for the upwash velocity is then

+rf2

7 f [iﬂ,uMcosA Fo, (usin A)exp { i p x (sin A+ M)/b } sin {sfu cos A/b}
5= _

2(Msin2+1) cos {sfucos 4/b} —cos{Q—us*sin /b !

—7nf2

B’ C
sinl—sind; sinl—sin i,

}cosidl+

+1s

+[T+ f ][~iﬂ J @ —1?) F,, (1) exp {ix (t+pM)/b} sinh {sp /(u*—1)/b}

2(z+k/B?) cosh {sf \/(u* —7%)/b} —cos {Q—15%/b}

— ol dt+
k2 |

. N - if \/(t*> — u®) F,, (t) exp {ix (z +uM)/b} sinh {sp /(*—12)/b} Fan
2(x+k/B?) cosh {sf/(u*—t2)/b} —cos {Q—15*/b}

-« +1g

1—sind, l—sind, (ts+k/B5Y (1 —M)
’ l 1__ ’ 2 ' .
+B {Og_m1+sinil m} +C {log_‘h1+sin/12+m} +D {IOg(rs—k/,Bz)(l+M)+m (55)

The first two integrals in this expression can be evaluated by numerical quadrature. A Gaussian
5-point formula is used, and is applied over each strip between the ends of the range, the points A = +&*
and the singularities. This is satisfactory except when the Mach number is just below that at which a
pair of acoustic waves appears. Then the integrand grows a large peak at the point where the corres-
ponding singularities are about to appear, at 4 = +¢* , and the quadrature becomes slightly less accurate.

Similar methods are used for the second range, except that the maximum width of strip used for the
application of a Gauss 5-point formula is 1-0.



2.9. Euvaluation of Infinite Integral.

In evaluating the integrals with infinite limits in equation (55) it is first noted then if 7 is sufficiently
large, the factor

sinh {sf /(> = p*)/b}
cosh {sB \/(t*—u?)/b} —cos {Q—15*/b}

is nearly unity. If 7, is chosen so that

s B2 —p2Yb=115,

then the maximum error is 0-00002.

This simplifies the integral, and also means that it becomes independent of the cascade geometry and
the phasing between blades. If, therefore, calculations with a number of different phase angles are required,
then the infinite integral can be pre-tabulated and used in each case. The integral is the same as that
which would occur with an isolated aerofoil.

Since the integral is slowly convergent, Euler’s transformation, Ref. 9, will be used for its evaluation.
However, this transformation only applies if the integrand is a periodic function with slowly decreasing
amplitude, and the period must be known. Some rearrangement is necessary in order to put the integral
in the required form.

Since the argument is large, the Bessel functions in equations (53) and (54) may be evaluated by the
asymptotic series

J, (z) = \/(f—z> {P, cos(z—rn2—m/4)—Q,sin(z—r rc/2—n/4)} ,
where
(4r* —1)(4r>—9)

Pr@) = 1=—57%.p

and
@2 —1) (@r*—1)(4r2—9)(@4r*—25)
8z) 31(82)°

Qr (Z) =
After some manipulation the integral for » = 0 may be written as

m B (02— p?) }%
T+ k/p* | 128 m(t + puM)

Ty

[ {—i P,(t+uM)+Q,(t+uM)—iP, (r+uM)+Q‘(r+,uM)} expi {(r+uM)(1 +x/b)—7r/4}+

+ {—iPo(r+uM)—Qo(T+uM)+iPl(f“"”MHQl(H'“M)} exp—i {(T+I~LM)(1—X/[7)—7Z/4}:\ dr+

N B (*—p?) |*
—1+k/p? ) 128 n(t— pM)

Ts

[{—iPa(f—#M)—Qo(T—#M)—iPl(T-MM)—Ql(T*ﬂM)} exp—i {(T—#M)(l +x/b)—7r/4} +
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4 {.__iPO(T_MM)-{-QO(‘L'—MM)-{—iPl(T—/-lm_Ql(T”‘ﬂM)} exp i {(rﬁuM)(l —x/b)—n/4 H dr.

(56)
Similarly the integral for » > 0 may be written as
T 2rp (t2—p? }*
(t+k/B?) (r+uM) | 128  (t+ uM)
[{—P,(r+uM)—iQ,(r+y,M)} expi {(r-l—,uM)(l +x/b)—7r/4} +
+ {—Pr(t+uM)+iQ,(‘c+/1M)} exp—i {(r—l—,uM)(l—x/b)—nM—m }]dr-l—
[ 2rp (=4 }
R )| 128 7 (x + )
[{Pr (t—uM)—iQ, (T—MM)} exp—i {(T—uM) (1+X/b)~7r/4}
+ {P, ('c—uM)+iQ,(1—ﬂM)} expi{(r—/,LM)(l——x/b)——Tc/4—rn }} drt. (57)

In each integral the integrand is periodic with a period of either 2n/(1 + x/b) or 2n/(1 — x/b). All the
other terms in the integral are slowly varying. The integrals may therefore be evaluated by applying
Euler’s transformation twice, once for each of these periods.

In the choice of 7, it is necessary to ensure that

Ty > 6+r3/10+uM ,
in order to ensure an accuracy of 1077 in the asymptotic series P, and Q,, and also
7, > 3Kk/p?,
in order to keep well clear of the singularity at t = —k/p2.

2.10. Matrix Form of the Equations.

In order to determine the first n, of the A, coefficients, it is necessary to match the upwash velocity
at n, points along the chords of the aerofoils. In choosing these points it is necessary to avoid the ends
of the aerofoil, x = +b, since equations (56) and (57) show that the period of the integrand becomes
infinite for these points, and the Euler transformation no longer works. The points are therefore chosen
so that

*1’ lgjgna' (58)
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The required upwash velocities at these points are given by equatiéns (35), (36), (37), (38) and (39),
for the five different types of input disturbance. If all five types of disturbance are present together, then
the total upwash velocity may be written as follows

b= [1,(1+ikxj/b),exp(—-ikxj/b),exp{i,u(M-l-sinlll)xj/b},exp{iu(M-l—sin/lz)xj/b]]

- -
q

Uo

X — Wy

._Wl

L _WZ_

=VU, (59

where V and U are the matrices shown. The equations are written for the case when there is just one
wave pair. If there were n,, wave pairs, then V would have n, rows and 3+ 2n,, columns, and U would
have 3+ 2n,, rows. The choice of signs in these matrices, and the dimensionalizing factor U in U, has
been made to make the resulting coefficients consistent with those used in Ref. 10.

The upwash velocities induced by the 4, coefficients may be written as follows

v
— =BA. 60
- (©0)
Here the matrix B (which is n, by n,) has elements b;,, where b, is the velocity induced at x; by the
coefficient of 4, , and A is a column matrix of the A4, coefficients with n, rows. b ;i 1s obtained from equations
(55), (56), and (57).
Equating the upwash velocities given by equations (59) and (60), and solving for the unknown matrix
A gives

1\ ..
A=(5>B VU, (61)

The required results are obtained from equations (51), (52), (43), (45) and (46), and may be written
in the form

L2npbU =U (—% -t 0 o . . A
—M,jdrnpb?>U +% 0 +4& O Ay
£ ~2mik Fo(—k/p? A,
_ b M F, {usin i,) cos? i,
b d* 1+ Msind;, cos{
; nb M F,, (usin 1,) cos? 4, }
| 2 d* 1+Msini, cos{ J | |

=UDA.

Here D is a matrix with 3+ 2n,, rows and n, columns.
Eliminating the matrix A between equations (61) and (62), the final result may be written in the form
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rzpbU | =Cc [ q 1, (63)
_M/4npb®U U9
€ - W,
Uy — Wy
U2 — W3
where C=DB7!V. (64)

The matrix C is the principal output from the computer program, and is obtained from equation (64).
Equation (63) shows how these results are to be interpreted. C is square and has 3+ 2a,, rows and columns.

Elements in the first two rows and first three columns correspond to the coefficients Cp,, Cp,, Cry
Chtq > Crrz and Cyy,, used in Ref. 10, but they are referred to an axis position at the mid-chord point instead
of the axis position at the leading edge used in that Report.

3. Computer Program.

A computer program to carry out the calculation has been written in ASA Fortran. The program was
initially developed on a small IBM 1130 computer, but it was found to be too big to be convenient on
this machine, since it was necessary to divide the program into three sections and to call them up from
the disc store into the core store in turn for execution. This gives long running times. The program was
therefore transferred to TITAN, a much larger computer in the Cambridge University Mathematical
Laboratory. On TITAN the time to compute each point is approximately 4n? seconds. The programme
requires 16 K of core store. The present programme is limited to two wave pairs and to a maximum
n, of 7.

4, Results.

In this report no extensive or systematic investigation of any particular effect has been carried out,
since this would require a large amount of computer time. Instead, some comparisons with previous
work have been carried out, in order to check the correctness of the program, and some specific examples
which illustrate important points have been computed.

4.1. Comparison with Incompressible Results.

The comparison with some incompressible results taken from Ref. 10 is shown in Table 1. These
results have been referred to an axis position at the leading edge of the blade.

It is seen that there is good agreement between the two sets of results. The greatest discrepancy is
0-0180, which occurs with the high stagger angle of 75 degrees. These results were taken with the upwash
velocities matched at four points (n, = 4), and the accuracy could be improved at the expense of longer
computing times by taking larger values of n,. However, n, = 4 appears to give an accuracy which is
quite sufficient for engineering purposes, and this value has been used for all subsequent results except
for the comparison in the next two sections.

4.2. Comparison with Lane and Friedman.

The comparison with some of Lane and Friedman’s results' is shown in Table 2.

For this cascade geometry and phase angle, the frequency parameter at which waves appear (from
equation (20)) is 1-4320. The comparison between the two sets of results shows good agreement at all
frequency parameters, but the agreement is slightly less good at a frequency parameter of 1-4. This iltus-
trates the previous statement that the numerical integration techniques which have been used become
slightly inaccurate at frequency parameters or Mach numbers just below those at which a pair of acoustic
waves appears.
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4.3. Comparison with Kaji and Okazaki.

Kaji and Okazaki® have given results for the case of an upstream going wave approaching the cascade
from downstream. Their results in one particular cascade are shown in Fig. 4, and four points, 4, B, C,
and D calculated by the present program (with n, = 3) have been superposed. The full line shows the
amplitude of the transmitted wave and the dashed line shows the amplitude of the reflected wave. At
A the incident wave front is normal to the mainstream flow, and the wave goes through with no reflection.
At B the phase angle (o) is zero. At C the reflected wave front is normal to the mainstream flow, the down-
stream going wave does not interact with the cascade, and the amplitude of the reflected wave is zero.
At D, which is very close to cut-off conditions, there is almost total reflection of the incident wave with
no transmission.

These four points all show good agreement between Kaji and Okazaki’s results and the present pro-
gramme.

4.4. Example of Wave Generation at Low Mach Number.

Fig. 5 shows results which have been obtained for comparison with a current experiment. A rotor
with 23 blades is to be run in an airstream with 24 obstructions at inlet, which produces wakes which
interact with the rotor blades. The cut-off condition occurs at a Mach number of 0-0867, and above this
one wave pair can exist. The amplitude of the pressure fluctuations in the generated waves going up-
stream and downstream is shown. The amplitude is very large just above the cut-off condition and
decreases rapidly. The amplitude of the downstream wave becomes zero at a Mach number of 0-2. At
this point the wavefronts in the downstream going wave are normal to the mainstream flow, and this
wave does not interact with the cascade. It may be of practical interest to note that if the number of
rotor blades was one more rather than one less than the number of obstructions, then it would be the
upstream wave strength which would go through a zero.

Fig. 5 also shows the magnitude of the lift fluctuation on the blades due to the same wakes. The lift
rises just below the cut-off condition. Immediately above the cut-off condition the lift is zero, but it
rapidly rises to a value not very different from the incompressible result. This is of significance in con-
nection with the traditional method of calculating noise generation, which is to use an incompressible
theory to calculate the lift fluctuation, and then use this in a purely acoustic calculation, equivalent to
equation (48), to get the sound waves produced. Fig. 5 shows that this will give good estimates except for
the region just above the cut-off condition where the results are quite wrong.

Fig. 5 also shows the acoustic power radiated from the machine, calculated on the assumption that
the blades are stationary, so that the obstructions would have to be rotating, using equation (18). The
important point is that the acoustic power just above cut-off is quite finite, although the associated
pressure fluctuations are infinite. This is because the energy is propagating in a mainly tangential direction,
so that the axial energy flow does not become large.

4.5. Example of Wave Generation at High Mach Number.

Fig. 6 shows an example of wave generation in which the first pair of acoustic waves appears at a
Mach number of 0-7998, and the second pair of acoustic waves appears at a Mach number of 0-959.
There is therefore only a comparatively narrow range of Mach number over which there is just one
wave pair, but within this range the behaviour of the acoustic waves and the lift fluctuation is similar
to the previous example. There is however a difference in the behaviour of the lift force just below the
cut-off point, since in the high Mach number example the force appears to be tending to zero at the cut-
off point, whereas in the low Mach number example the force appears to be increasing as the cut-off
point is approached.

4.6. Comparison with Parker’s Resonance Condition.

In Ref. 11, Parker has calculated the frequency of acoustic resonances in a cascade of flat plates at
zero stagger, when there is no mean flow through the cascade. This corresponds to a special case of
the present theory, when the frequency parameter tends to infinity, the Mach number tends to zero,
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but the product of these two quantities remains finite. Comparison of the two theories should therefore
be possible.

The present program cannot be run at very high frequency parameters for several reasons. Some of
these reasons are fairly trivial, and arise from the use of U as a non-dimensionalizing factor. More
fundamental difficulties arise owing to the singularity at t = —k/f? occurring at large negative values
of 7, and because the upwash velocity shows very rapid fluctuations along the chord, so that very large
values of n, would be required to represent it properly. However, the program has been run at a frequency
parameter of 10, and the results are shown in Fig. 7.

This figure shows the real and imaginary parts of the blade force coefficient, due to bending motion
of the blades. This represents a convenient way to excite the acoustic resonance. The Mach number for
cut-off is 0-1975, and the Mach number at which resonance is predicted from Parker’s'! calculations is
0-172. The resonance appears very clearly. The real part of the force coefficient shows a large negative
peak, and the imaginary part shows a zero with negative and positive peaks close either side of it.

This is exactly the behaviour to be expected from forced vibration of a single-degree-of-freedom
damped oscillator. At the resonant peak a large aerodynamic force is obtained from a small movement
of the blade. The position of the resonance does not quite agree with Parker’s calculation : this is probably
due to the steady flow at a Mach number of about 0-16 modifying the acoustic resonant frequency of the
system. However, the general prediction of the effect is excellent.

4.7. Bending Vibration.

Bending flutter of blades is controlled by the real part of the coefficient Cp,. If this is positive the aero-
dynamic forces do work on the vibration, and if there is no mechanical damping, bending flutter occurs.
No case of bending flutter has been found from the present program. Although no systematic search
has been carried out to look for this effect, it seems likely that it does not occur under the present assump-
tion of zero incidence. It is known that for incompressible flow, bending flutter depends on steady loading
of the blades'2 It therefore appears that there would not be much significance in looking for bending
flutter until steady lift can be included in the compressible theory.

As a by-product of runs carried out for other purposes, information has been obtained on the amplitude
of bending vibration forced at resonance by wakes from obstructions upstream, assuming that there
is no mechanical damping. Some of this is shown on Fig. 8, where the resonance factor given by

lq/WOI = ICFW[/’@ (CFq)

is plotted against Mach number for two cases.

Since the lift force on the blades tends to zero at the cutoff condition for the acoustic waves, and there-
fore the aerodynamic damping disappears, it might be thought that the forced vibration would be very
great at this point. This is not so because the aerodynamic exciting forces also tend to zero, and the
resonance factors shown in Fig. 8 tend to finite limits just above the cut-off condition. In fact in the low
Mach number case it looks as though the forced vibration tends to zero at this point.

The behaviour just below the cut-off point is different in the two cases. In the high Mach number
case the forced vibration becomes large, but in the low Mach number case it becomes small.

4.8. Torsional Flutter.

If there is no mechanical damping, then it is shown in Ref. 13 that the marginal condition for torsional
flutter is

s (CMoz)x =0 >
where the coefficient (C,; ), is referred to an axis position x corresponding to the position of the node

in the first torsional mode of the blades. The imaginary part of this coefficient does work on the vibration,
and if it is positive then flutter can occur.
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This coefficient is related to the coefficients referred to the mid-chord point by the equation

2
(CMa)x = CMoc - <%> CFa - l(Zk) (2_xb‘> CMq+ l(2k) (%) CFq .

The condition for marginal torsional flutter is therefore

X

4 (cMa)—(z-l;) f(cpa)—(zk)(;—b> ge(chH(zk)(

% \2
2—5) R(Cry) = 0.

For given cascade geometry, Mach number, frequency parameter and phase angle, this equation
may be regarded as a quadratic for (x/2b) which may or may not have real roots. The program has been
arranged to find the real roots, if there are any. Some results are shown on Fig. 9, where the values of
(x/2b) are plotted against phase angle.

These critical axis positions form loops, and inside the loops the imaginary part of (C,,,)_ is positive
so that flutter can occur. Since flutter can occur at any phase angle to suit itself, it is the extreme values
of axis position for each loop which are of main interest.

The cascade shown in Fig. 8 has a geometry fairly typical of a trans-sonic tip section, but the frequency
parameter is only about one third of what would be allowed in practice so that severe flutter occurs.
At the lower Mach numbers the region of instability is centred around an axis position at about 75 per
cent chord, but as the Mach number increases the axis positions move forward, and at 0-8 the centre
of the region is located forward of the leading edge.

5. Conclusions.

The method of solution proposed by Lane and Friedman has been found to be capable of extension
to calculate acoustic waves and the vorticity shed from the trailing edge, and to accept inputs of acoustic
waves and vorticity shed from upstream obstructions. The method leads to a computer program which
provides all the data necessary to predict the generation, transmission and reflection of acoustic waves
by a cascade, the behaviour of blades in bending and torsional vibration, and the interactions between
the acoustic waves and the vibration. The accuracy achieved is more than sufficient for engineering
purposes, but the amount of computer time needed is fairly substantial.

It has been found that two different types of acoustic resonance are important. The first is an acoustic
resonance of an annular duct without blades and corresponds to the cut-off condition for transmission
of waves down the duct. At this condition the blades can vibrate with no aerodynamic force on them.
The second type of acoustic resonance is one which may occur within the cascade, and is the type cal-
culated by Parker. The effect of a uniform velocity through the cascade is to introduce damping of the
resonance. At this resonance, in the limit of no flow, the blades can have a finite aerodynamic force on
them with no blade motion or any other type of forcing.

The results for the generation of acoustic waves by wakes entering the cascade from some other moving
obstruction upstream show that the waves appear suddenly, as the Mach number is raised, at the cut-off
condition with very large amplitude of pressure fluctuations. However, these waves are travelling very
nearly in the tangential direction, and the amount of acoustic power which emerges from the machine
is finite. If the blade chord is much less than the acoustic wavelength, then there is a simple relationship
between the blade force and the strength of the acoustic waves generated. This is the basis of the tradi-
tional method of calculating the wave generation, and it is usual to use an incompressible theory to
obtain the force fluctuations. The results obtzined here show that the traditional approach will give
reasonably accurate answers provided that conditions are not close to the cut-off condition. But as
cut-off is approached the traditional approach predicts infinite acoustic power generation, whereas the
more accurate approach used here shows finite acoustic power.

No case of pure bending flutter has been found, but it has been found that compressibility has a major
effect on torsional flutter. Whereas incompressible theory predicted that a torsional axis position at
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75 per cent chord is very bad for torsional flutter, it is found that at high subsonic Mach numbers the
worst axis position tends to move forward along the chord. This matter appears to be of considerable
practical importance, and further investigation is clearly required.
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LIST OF SYMBOLS

Some of the notation used is illustrated in Figs. 1 and 2.

A,
B, B
cC
D, D

Coefficients in pressure jump expansion.

Strength of singularity associated with upstream going acoustic wave.
Strength of singularity associated with downstream going acoustic wave.
Strength of singularity associated with shed vortex sheet.

Acoustic wave energy density.

Acoustic wave energy flux.

Function of T without singularity.

= B f,/pb U% Non-dimensional form of f,.

Coefficient of 4, in expansion of F,.

Bessel functions.

Aerodynamic force per unit span.

Mach number.

Aerodynamic moment, positive nose up, about point (x, 0) per unit span.
Asymptotic series for Bessel function evaluation.

Annulus area.

Area of control surface outside machine.

Mainstream velocity.

Acoustic power output.

Blade semi-chord.

Speed of sound.

Blade spacing.

Blade spacing in Prandtl-Glauert plane.

Amplitude of pressure fluctuation.

Amplitude of pressure-jump solution for m™ blade.

= ,/(—1). Indicates component leading 90 degrees in phase.
Integer specifying matching point along chord.

= wb/U. Reduced frequency. (2k = Frequency parameter).
Integer specifying number of blade.

Integer specifying phase angle for acoustic waves.

Number of points taken in numerical approximation.
Number of wave pairs.

Pressure.
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LIST OF SYMBOLS—Continued

Blade velocity due to vibration.

Integer specifying number of 4, coefficient.

Gap distance, measured normal to chord.

Stagger distance, measured parallel to chord.

Time.

Velocity perturbations.

Amplitude of perturbation velocity due to incident wakes.
Amplitude of perturbation velocities due to incident acoustic waves.
Coordinates parallel and normal to chord lines.
Coordinates in Prandtl-Glauert plane.

Wave-number in x’ direction in Prandtl-Glauert plane.

= /(1-M?).

cos y= —x/b. Substitution for x .

Amplitude of vortex sheet shed from trailing edge.

Angle between waves and cascade in Prandtl-Glauert plane.
= wfcf.

Torsional displacement of blade.

Propagation direction in Prandtl-Glauert plane.

Values of A for upstream and downstream going waves.

= bn/f = wh/cp?. Non-dimensional form of 4.

Stagger angle.

Stagger angle in Prandtl-Glauert plane.

Density.

Interblade phase angle.

= bo/f. Non-dimensional form of a.

Wave angle in physical plane.

Direction of energy propagation in physical plane.
Modified pressure for Prandtl-Glauert plane.

Angular frequency.

Intrinsic frequency.

Interblade phase angle in Prandtl-Glauert plane.
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LIST OF SYMBOLS—Continued

ne %< (3+2n,,) Columns of A4, coefficients.

1, X Ry, Induced velocity matrix.
(3+2n,)x(3+2n,) Results.

(3+2n,) x n, Matrix giving output quantities.
3+2n,)x1 Input column.

ne % (3+2n,) Input induced velocities.

Indicates peak amplitude.
Indicates jump across blade of quantity inside brackets.
Indicates time average.
Indicates real and imaginary parts.
Six of the elements of the matrix C will be referred to as follows,
CFq Cro Cpy — — —
CMq Cua Crw — — —
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TABLE 1
Comparison with Incompressible Results.

Frequency Parameter = 2-0

Mach No. =0
Space/Chord = 10
n, =4
E=0 o2n=05
Bending Torsion Wakes
—0-7303 —0-3820 —04384 — 14372 —03245 +03743
o —-07318 —0-3817 — 04409 —1-4382 —0-3249 +0-3752
—0-2026 —02363 +0-0408 —0-6594 —0-0900 +0-1038
Cu -0-2035 —0-2362 +0-0395 - 06602 -0:0903 +0-1043
=145 ¢/2n =075
Bending Torsion Wakes
—0-6840 —0-3160 — 04673 —1-3036 —0-2680 +0:3548
o — 06796 —0-3180 —0-4596 —1-3020 —0-2671 +0-3518
—0-1903 —-0-2073 +0-0197 —0-6015 —0-0745 +0-0988
Cu —0-1875 —0-2080 +00239 —0-5998 —00737 +00971
=175 ¢/2n =08
Bending Torsion Wakes
—0-2841 —0:3792 +00309 —07971 —0-2806 0-0116
“r —0-2686 —03821 +0-0428 —0-7822 —0-2741 —0-0064
~0-0757 —-0-2210 +0-1598 - 04561 -00710 0-0066
Cu —0-0685 —02264 +0-1658 —0-4573 —0-0661 —0-0050

Notes—For each coefficient first the real part and then the imaginary part is shown on the same line.
The first line gives the result from the present program. The second line gives the result from Ref. 10.
These coefficients are referred to an axis position at the leading edge.
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TABLE 2
Comparison with Lane and Friedman.

Space/Chord = 3-8
Stagger =0

a/2n =05
Mach No. =05

n, =3

Frequency Parameter = 1-0

Bending Torsion
—07212 +0:0665 —-0-8277 —0-0866
Cr
—0-7200 +0:0672 —0-8266 —0-0856
+0-1509 —0-1051 +0-1826 —0-1496
Cu
+0-1506 ~0-1052 +0-1824 —0-1497
Frequency Parameter = 1-2
Bending Torsion
—0-7546 +0-0962 —09137 —0-0660
Cr
—0-7538 +0-0959 —09127 —0-0664
+0-1323 —-0-1301 +0-1733 —0-1964
Cu
+0-1323 —0-1300 +0-1733 —0-1961
Frequency Parameter = 1-4
Bending Torsion
-0-3383 +0-4648 —-0-5077 +0-5073
Cr
—0-3433 +0-4670 —0-5158 +0-5077
—0-0303 ~0-1167 —0:0319 —0-2319
Cy
—0-0306 —0-1180 —0-0310 —0-2344

Notes—For each coefficient first the real part and then the imaginary part is shown on the same line.
The first line gives the result from the present program. The second line gives the result from Ref. 1.
These coefficients are referred to an axis position at the mid-chord point.
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