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SutlllTl(try, 
To first order in frequency, subsonic lifting-surface theory is applied to arbitrary configurations of a 

thin wing and a trailing-edge control. The discontinuities in flow direction at the hinge line and parl-span 
boundaries are surmounted by independenl consider~lion of smooth equiva!enl slopes in l lw chordwise 
and spanwise directions; the combined equivalent incidences depend on the aerodynamic quantities to 
be evaluated. The present method yields satisfactory values for lift, pitching and rolling moments, hinge 
moment and the associated spanwise distributions, but does not determine Ihe complele load dislribulion 
due to an oscillating control. 

Illustrative examples cover four planforms, namely, rectangular and cropped delta wings for which 
there are experimental data on hinge moment, an untapered swept wing that has been studied by electrical 
analogue, and a tapered swept wing to be the subject of future experiments. The solutions for each 
planform are tabulated and plotted as functions of control chord, control span or Mach number and are 
examined from the standpoint of numerical convergence with respect to the number of chordwise 
collocalion points. Consideration is ~iven to the transformed aerodynamic problem on lhe reversed 
wing by application of the reverse-flow theorem, and these alternative numerical results strengfl~en 
confidence in. the present method and give some indication of the likely accuracy. The optimum central 
rounding of swept edges is discussed together with many other refinements of numerical technique. 

A broad conclusion is that significant wing forces can be calculated to at least two-figure accuracy. 
The approximations in the method are such that the true theoretical values of hinge moment are likely 
to be within 2 per cent of the calculated stiffness derivative and within 10 per cent of the calculated 
damping, provided that there is due attention to the choice of equivalent incidences. Comparisons with 
wind-tunnel data tend to show larger discrepancies, which can be reconciled with rough predictions 
from charts based on two-dimensional static tests. A simple empirical correction to the theoretical 
hinge-moment damping is suggested, which reproduces the available experimental data within ± 10 per 
cent. 
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1. Introduction. 

The aerodynamic problem to be considered is that of a hinged control surface extending streamwise 
from the hinge to the trailing edge and of arbitrary spanwise extent. The main wing surface is at rest in 
a uniform subsonic airstream and the control surface is oscillating with small amplitude. There is a 
requirement for a theoretical method of calculating the aerodynamic loading that would occur in 
linearized potential flow, but it is recognized that in practice the influence of boundary layers is para- 
mount; in consequence, such a theoretical method should be a prelude to semi-empirical develop- 
ment. The paucity of relevant theoretical and experimental data must therefore be overcome as a matter 
of some urgency. 

The theoretical treatment for a general frequency of oscillation is discussed in Refs. 1 and 2. The crux 
of the problem is the discontinuity in flow direction where the control surface adjoins the main wing. 
By means of the reverse-flow theorem, Davies 1 formulates a smooth mode of oscillation that gives 
smooth generalized forces identical to those resulting from the oscillating control; in other words, he 
formulates smooth 'equivalent slopes' that can replace the true discontinuous downwash condition in 
the original problem. The second author 2 has successfully developed and applied the principles of Ref. 1 
to determine lift and pitching moment; she has also examined the consequence of using the same 
'equivalent slopes' to evaluate hinge moments, for which the force mode is no longer smooth, and finds 
evidence of large inconsistencies without the possibility of assessing accuracy. It is therefore essential to 
consider an alternative approach to the calculation of load distribution or hinge moment, the latter 
being of special importance in flutter prevention. 

A feature of Refs. 1 and 2 is that, apart from the linear dependence on frequency of the downwash out 
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of phase with the control deflection, the equivalent '.slopes are little affected by changes in frequency 
within its practical range. It is therefore considered that an attack on the low-frequency problem will 
have wider applications. The relevant background to the treatment of slowly oscillating l{fting surfaces 
is provided in Refs. 3 to 6. Multhopp's 3 steady subsonic theory is extended to slow pitching oscillations 
in Ref. 4, which has been further developed in Ref. 5 by the first author and Fox; thenumerical technique 
has been improved so that up to four terms in the chordwise loading and the same number of solving 
points in the chordwise direction can be used without loss of accuracy (Section 2). Applications of the 
reverse-flow theorem are discussed in Ref. 6, in Section 5.2 of which the present authors formulate the 
lift and pitching moment due to control oscillations in terms of theoretical solutions for the reversed 
wing. These results for lift and pitching moment provide an important cheek on the approach to equivalent 
slopes adopted in the present report, where chordwise and spanwise discontinuities are considered 
separately (Sections 3 and 4). The combined procedure inSection 5.1 can be shown to be successful for 
lift and pitching moment; being applicable to spanwise loading and hinge moments as well, it can be 
used to determine these with some confidence. 

The rectangular, untapered swept, tapered swept, and cropped delta wings, for which illustrative 
calculations have been made, are chosen specifically to allow comparisons with results from other 
sources. By electrical analogy Enselme 7 has obtained the steady spanwise loading on the untapered 
swept wing with part-span controls. The tapered swept wing with outboard half-span controls is chosen 
partly because oscillatory experiments on this configuration are planned at the N.P.L., but also because 
it has been the subiect of theoretical investigation, both in Ref. 2 and by Woodcock 8. The rectangular 
wing with full-span control has been tested at low speeds, and Molyneux and Ruddlesden 9 give experi- 
mental values of the oscillatory hinge moment. For the cropped delta x~ing with full-span control the 
hinge moment has been measured by Bratt 1°, and these tests include the upper range of subsonic Mach 
number. The discussion of results for each of the four wings (Section 6) includes the effects of part-span, 
and in the cases of the tapered swept and cropped delta wings the spanwise distribution of hinge-moment 
damping is considered. 

The question of accuracy is difficult; apart from two-dimensional theory and slender-wing or classical 
lifting-line theory from which the equivalent slopes are derived, no exact solutions are available for 
comparison with the present method. Convergence with respect to the number of chordwise variables 
can be considered, and inconsistencies can be revealed by procedures involving the reverse-flow theorem 
(Appendix). The problem of control hinge-moment is further complicated by the different criteria of 
accuracy demanded by the theoretician and the practical aerolastician. The present objective is to achieve 
sufficient theoretical accuracy that, after suitable experimental data have been acquired, semi-empirical 
adaptation of the method will seem worth while. In the meantime the simplest form of empirical correction 
to damping derivatives is suggested in Section 7 with supporting evidence from measurements of hinge 
moment. 

2. Low-Frequency Lifting-Surface 7heory. 

The present investigation is essentially the application of Ref. 5 to the evaluation of aerodynamic 
derivatives associated with a control surface. The symbols relating to planform geometry are given in 
Fig. la, which also defines the mode of control rotation. The boundary condition to be satisfied by the 
upward component of velocity takes the usual form 

[-[Oz icoz'X i~,,-I 
= e _1' (1) 

where co is the circular frequency of oscillation and the mode is 

z = -Oo(X-Xo) for pitching about x = Xo (2) 



or for control rotation* about the hinge x = Xh(y) 

Z = --~o(X--Xn) on the starboard control surface "] 

z - e  ~o(X--Xh) on the port control surface I (3) 

z = 0 elsewhere on the planform 

with ~ = _+ 1 corresponding to symmetry or antisymmetry. In order to apply Ref. 5, the leading and 
trailing edges of the planform are, if necessary, rounded to have continuous curvature. As discussed in 
Section 6 of Ref. 11, the central rounding of swept planforms needs care; for uniform sweepback and 
straight taper the leading edge and chord over the range [Y [ < Yg are modified to become respectively 

xt(y) = xt(yi)f(2) / ' (4) 

J c(y) = c, + lc(y~)- e,}J(2.) 

where 2 = ]y ]/Yi. In Ref. 5 

f(2) = 2+-~(1 - 2 )  6 and Yi = s sin m+  1 ' (5) 

however, as discussed in Section 6.2, there are advantages in following Ref. 12 and taking 

f().) = ½ + 2 2 -½2 3 . (6) 

Both shapes of rounding will be used, but for general formulation it is immaterial whether equation (5) 
or (6) is chosen. 

Given a smooth planform, the load distribution can be taken as 

[ .  iooM2x'~ -] 

with the usual expression 

l(x, y) = ~ 7(}') cot ½4 + 4#(y) (cot ½4 - 2 sin 4) + 

+ ~(y) (cot ½4 - 2 sin 4 - 2 sin 24) + 

(cot ½4 - 2 sin 4 - 2  sin 2 4 - 2  sin 34) 1 , (8) +2(y) 

where •(y), #(y) . . . .  are complex and the angular co-ordinate 4 is given by 

x = xl(y)+½ c(y) (1 - cos 4). (9) 

"4o, the amplitude of control rotation relative to the stream direction, corresponds to a true rotation 
through the larger angle ~or = ~o sec A, about a swept hinge. 



The spanwise distribution of each function y(y), #(y) . . . .  is represented by Multhopp's interpolation 
polynomial from Appendix IV of Ref. 3 

O(0) = ( - 1 )  ~ m + l )  
( -  1)"- ~ sin 0, sin (m+ 1)0 

g(0.) , (10) 
(m + 1) (cos 0 -  cos 0.) 

t~7¢ 
where y = s cos 0, y, = s cos 0. = s sin m + ]- rn is an odd integer and u = ~(rn- 1). Thus, if N represents 

the number of functions 7(y), p(y) . . . . .  the quantity l(x, y) involves mN unknowns 

y(y,)= V,,p(y.) = #  . . . . .  (n = O, +_-1 . . . .  +_u). (11) 

With the aid of equation (1) the integral relation between w/U and l to first order in frequency from 
equation (5) of Ref. 5 becomes 

~,?x--+--U J 1 f12 U ] = -~ jj[(Xo_X,)2+//2(y_y,)2]3/2 1+ //2u dxo, 
- -  , x .  S 

(12) 

where for a subsonic Mach number M,//2 = I - M 2 and S denotes the area of the planform. It remains 
to satisfy equation (12) at the mN collocation points (x, y) = (xpv, Yv) given by 

x~v = x~(yv)+½cO'v) (1 -cos  ¢~) 

= x,v+½cv(1 - c o s  ~bp) 
, (13) 

~p = 2zcp/(2N+ 1) (iv = 1,2 . . . .  N) 

yv = s s in  _w__~__ (v = 0, + 1 . . . .  + u )  
m + l  

which are illustrated in Fig. lb. The resulting linear simultaneous equations will determine the unknowns 
indicated in equation (11). 

To evaluate equation (12), the integrations with respect to xo and x' are carried out analytically in 
terms of the influence functions in equations (12) and (13) of Ref. 5. The final spanwise integral takes 
the form 

S 

~x+~-)/'oz icnz'~ 1 ia~MZx~ -J = ~1 HI(x'y'Y)-~-5-~HE(X,y,Y) (y_y,)2 

- - S  

(14) 

where the geometric mean chord ? is used as reference length and the functions H1 and H 2 a r e  linear in 
y(y'), p(y') . . . .  and are defined in equations (11) of Ref. 5. The polynomial (10) is then fitted to H1 and H 2 ,  

but to achieve adequate representation the odd integer m is usually increased to 

= q(m+ 1)-- 1, (15) 



where q is an even integer. By mathematical integration for each collocation point equation (14) becomes 

fi 

y, ) -  ~ -~  2(x.~, y .  
n =  - - u  

1 [Oz iwz'~ ( iwM2xp~) (16) 
- 1 -  ) '  

where the functions H1 and H2 are defined in equations (18) to (21) of Ref. 5, ~ = ½(N-1), E' denotes 
that (h-qv) takes odd values only and 

~7~ 
b~ = ~ + 1) sec 

m + l  

a v f i  ~-- 

v~z ~rc 
4 cos m+ 1 c°s ~--+ 1 

vTz hrc )2 
(~ + 1)2 sin ~ -  sin ~ + 1 

(17) 

Unless q = 1, the summation E' in equation (16) involves only odd values of~ corresponding to sections 

t y~ = s s i n - -  (18) 
m + l  

that are intermediate to the collocation sections in the last of equations (13). Each of the quantities 
7(Yn'), tt(Yn ') . . . .  is therefore expressed in terms of unknowns in equation (11) by use of the polynomial 
(10). Each collocation point yields a linear boundary condition to be satisfied by the complex unknowns. 

It is convenient to write the mN equations in matrix form 

A -  iw~ B'~ flz U ]L= h, (19) 

where A and B are real square matrices of order raN, L is the complex column matrix of unknowns and 
h is a column matrix of the right-hand sides from equation (l 6). The inverse of equation (19) is 

L = ( A  -~+~iw~A-a  B A - ~ ) h + 0 ( w  2) (20) 

By equation (2) the elements of h to first order in frequency for pitching motion about x = Xo are 
written as 

~__~o I iwc f fl2- M 2 Xo ]-] 
h =  iX1 - I - - - ' ~  ~ g2  - - - -  tZ1 y l  (21) 



with 

el = 1 and ~2 = X/C. 

Equations (20) and (21) combine to give 

[ { f12-m2 1 L3 x_fi0Zl}l ' 
L= Oo L l - k / ~  ~ f12 L 2 + ~  c (22) 

where 

L. = A-1 h~ ] 

h~ has elements c%~/b~ I " 

h3 = BL1 

Similarly, by equation (3) for the mode of symmetrical control rotation to first order in frequency 
parameter 

with 

~o[- io)of fl 2 -M2 M 2 }] 
h = ~w [ ~ l f ' l -W ~ f12 ~2f----~O~4f 

pv 
(23) 

~ l f =  1 

x -  xh(y) O~2 f -- 

O~4f = xh(y)/c 

on the control surface, 

cqy = e2y = c~4y = 0 elsewhere on the planform. 

Then by equations (20) and (23) 

. V. i ( .o~( f l2-M2L2y+~2L3y_~2L4y}]  ' L =  (24) 

where 

L,: = A- l  h~: 

hrs has elements (ers)p~/b~ 

h3f = BL~g 

Let lr and Irl denote the distributions I(x, y) from equation (8) after the elements (11) of Lr and L~I 
respectively have been substituted in equation (10) to give polynomials Yr(Y),l#(Y),Tr.r(Y) and so on. 
Then by equations (7) and (22) for pitching motion 

Ap=½pU20o ~ l + - - ~ - L ~ - l l + - ~ 1 2 + ~ 1 3 - - c l  1 e i'' . (25) 



The aerodynamic coefficients and derivatives for wing forces associated with equation (25) are defined 
in equations (33) and (39) of Ref. 5. Hinge moments~ involve the integrals 

S: . (26) 

S: 

where S: and ~: are the plan area and geometric mean chord of the starboard control surface. With the 
definition 

F ( h i C ° ~ h }  1 H i n g e m o m e n t = p U 2 S : O z . ~ k J  " o+- U- o Oo ei''_ (27) 

it follows from equation 125) that 

(28) 

Similarly by equations (7) and (24) for an oscillating control 

[{ i  :M2x ,2 2 , ) } l  
Ap = ½pU2~o ~ Ii:+-U--~-fl~-11:-k f12 12:+-fl~la:-~Tl4: ei'°' • (29) 

Then we write for lift, rolling moment and pitching moment 

ILLS- nflA ~ n Tr 
m + l ?~:. cos m +~ 

~1 = - -U  

rcflA 2 2nn 
- I~,: - 4(m + I) ;,~:. sin --m+ 1 

n = - u  

- I*: - 4(m+ 1) hf.(xz.+~ c . ) - # , : ,  c. sin --m+ 1 
n = - u  

m + l ~ 7rs. (xt. + ¼ c.) - / ~ s .  c. cos m + l 
n = - - i ~  

n = - - U  

.- c.+gcn)-,u~f n • __ ,5"- ,,:. (x,. +~xz. (2xt. c .+¼~)+,c , . :  . (~6,. 2) c o s j ~ + i -  

, (30) 

tAs for the mode in equation (3), the convention is to use streamwise distances and ignore the factor 
cos Ah in the true definition of hinge moment Hr. 
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and for hinge moments 

_ , .  

With the definitions 

E{ ,o,~ 71 Lift = pU2 S~ --Z¢----O-Z~; ~0 eu°' 

Pitching moment = p U z S ~ N' me +--U-- m~ ~o go,, 

Rollingmoment=2pU2Ss~l[{l ioo~l ) ~o,,q 1 

Hinge moment = p U 2 S: ~: :Y~ [ ( ico~ ) i,o,7 
l ~+~-"~ ~°~ _1 

it follows from equation (29) that these control derivatives are obtained as 

1 I -,o=~(L,,) 

' I  ~ "~-~" ' ~1 
Xo/ z\ 1/ t - ' , :  -rt- ,)+~t-'°,:) 

• M 2 f12 _ M 2 --m+ --x-~-~(--z+)++[--~--(--I**:)-+ f12 (-Ira2/) + 11+ ' "~ M2{ \ ~t- -":-~-t-'=,)] 

,( ,) t = [--~-( ) ( I )+ 1 ( I ) M2( ) ]  M 2 f12_M2 ---~- --I14 f i - I * - s  + #2  - a: ~ - a +  - l +  ~-~ 

l(--Ihif) -he = 

- h~ = 2 , 8 1  f12 f12 (--Ih2f)+~2(--Ih3f)--~2 (--Ih4f 

131) 

(32) 

(33) 

, ( 3 4 )  

(35) 

(36) 

ll 



In the case of a model with reflection-plane symmetry, coefficients are required for the half-wing rolling 
or 'bending' moment and we define 

l u 

- I b r :  = f l A  7~: r/dr/ = 2 (n~- l )  b. ?~f, 

0 n =  0 

1 x t  

_ i , : = ~ A ! ! X l f r / d x d r  / , (37) 

i1=0 

where for m = 15 the factors b. are given by 

b o = 0.03994, b 1 = 0.37332, b 2 = 0.71033, b 3 =0.92235, 
b 4 =  1.00084, b5 = 0.92339, b 6 = 0'70738, b 7 = 0"38256. 

The bending-moment derivatives -b~  and -b~ are then given by equations (35) with the quantities 
- Ibr r and - 1~ r from equations (37) in place of - Itr: and - I~:. The table at the end of the List of Sym- 
bols gives the conversion factors required when the true control angle ¢r and true hinge moment H r 
are used in place of those based on streamwise distance. 

The preceding remarks on the application of low-frequency lifting-surface theory to control derivatives 
have side-stepped certain matters that call for clarification and will be considered in more detail later 
on. The question of central rounding in equations (4) to (6) is discussed for the swept wings in Sections 
6.2 and 6.3, where the hinge line has also to be considered. It is basic to the problem of control rotation 
that the incidences cq z, c~z: and c~4: in equation (23) are discontinuous; although the loading from equa- 
tions (7) to (10) becomes inapplicable, the objective is to modify the incidences so that these equations 
yield integrated forces to the desired accuracy. Chordwise and spanwise discontinuities are considered 
separately in Sections 3 and 4, and by synthesis in Section 5.1 smooth equivalent incidences c~,~, ~2e 
and ~,~,, are used in place of the discontinuous ones. It is not entirely satisfactory that such a procedure 
changes the quantity 5~3f implicit in equation 124) to c~3e = b~,. h 3 e ,  because h3e = gLle no longer involves 
the true Llf. It will appear, moreover, that, while e~,  e2~ and c~4~ will vary according as lift or hinge 
moment is to be calculated, the quantity N3e remains unchanged (Section 6.1). Some justification can 
be made by numerical example with the aid of checks on lift by the reverse-flow theorem (Section 5.3). 
Clarification is also necessary in respect of the double integrals for hinge moment in equations (26) and 
(31); the numerical procedure for their evaluation is formulated and discussed in Section 5.2. 

3. Chordwise Equivalent Slopes. 
In the incidences ~,: of equation (23), two types of chordwise singularity occur at the hinge, namely a 

discontinuity in cq: or cq: and a discontinuous gradient of ~2:. The chordwise incidences are treated 
independently on the basis of two-dimensional steady theory 13 for incompressible flow, so that they 
may be replaced by smooth equivalent slopes that give the same forces as the exact solutions. This treat- 
ment was proposed in Ref. 14 for the calculation of steady forces on wings with flaps and was subsequently 
used by Multhopp in Appendix II of Ref. 3. An extension to control surfaces oscillating at low frequency 
was considered in Ref. 15. In these references the application is to incompressible flow, but by the Prandtl- 
Glauert rule the principles also apply to linearized subsonic flow. 
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At any section, the incidences can be written as 

a~: = al(X) t ~2: (~) ~2(X) (38) 

where 

~,.(x) = o 

= I x + E -  1] r - '  

when 0 ~< X < ( l - E )  

w h e n ( I - E ) <  X~< 1 (39) 

The two-dimensional load distributions lr(X) corresponding to ~r(X) are known exactly. When r = 1, 
the analysis in Ref. 13 leads to the formula 

where 

4 ~o (sin j4  ' " 

j = l  

4 = cos- t (1 -2X)  ] 

4h = COS- t ( 2E-  1) 

; (40) 

this series for 11 (X) can be expressed as 

4[ isi.-+0.11 l, (X)  = (~ - 4h) cot ½4 + In I ~ { (4  - (%) (41) 

where In denotes the natural logarithm, and in this form the load distribution is obviously singular at 
4 = 4h. Similarly tbr r = 2, the formula for the loading in Appendix II of Ref. 15 gives in the present 
notation 

} 12 (X) = ( n -  4h) cos 4h + sin 4h cot ½4 + (~-- 4a) sin 4 -- (cos ~b- cos q~h) m ] ~ ~ I J "  (42) 

Thus, for r = 1 and r = 2, specified forces can be determined by exact integration of the respective 
distributions in equations (41) and (42). 

The control-surface problem is to be solved by the lifting-surface method of Section 2 with N chord- 
wise terms. When N = 4, for example, we consider the two-dimensional loading with the first N' terms 
from equation (8); apart from a few special examples in Sections 6.1 and 6.4, the standard procedure 
is to take N' = N. 
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Then 

I (X) = 4 IT,, cot ½05 + 4/~(cot  ½05 - 2 sin 05) + ~ce(cot ½05 - 2 sin 05 - 2 sin 205) + 

+ 2e(COt ½05 -- 2 sin 05 -- 2 sin 205 -- 2 sin 305)], (43) 

and the corresponding two-dimensional  incidence is 

~e (X) = I_ [Te + 4 #e(1 + 2 cos q~) + ~c~(l + 2 cos 05 + 2 cos 205) + 2e(l + 2 cos q~ + 2 cos 205 + 2 cos 3~b)]. (44) 
7~ 

The coefficients ~,/~e, /£e, '~e a re  chosen so that the smooth load distribution l(X) in equat ion (43) gives 
specified forces, of number  N = 4, that are identical to those due to the exact loading in equation (41) 
for r = 1 or in equation (42) for r = 2. In Sections 3.1 and 3.2 respectively, two distinct types of equivalent 
slopes are formulated, namely 

] (x) ¢?r(X, E) ~e 
~" (r = 1 ,2) ;  

~e (X) = Tr(X , E) 

for ar only wing forces are specified, whilst for z~ one of these is replaced by hinge moment .  

(45) 

3.1. Wing Forces. 

For  the purpose of calculating wing forces due to the control  motion,  it seems appropr ia te  to take 
equivalent slopes at. Thus, for the four-term formula in equation (44), the coefficients 7e, Pe, he, 2e are 
chosen so that equat ion (43) produces the exact lift (CL)r and first three moments  (C,,),, (C,,m# and (C . . . .  ),.. 
Referred to the quar ter-chord axis, 

1 

" l(X) d X  =- (CL),. 

0 

1 

f (¼- x)  t(x) dX = (C.O, 

0 

1 

f (¼- x )  2 t(x) dX  =_ (C,..,)r 

0 

1 

f ( ¼ - x )  3 t (X)dX =- (C,..,m)r 
O, 

(46) 

Substituting l(X) from equation (43) and integrating, we obtain the set of equat ions in matrix notat ion 
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I 2 0 0 0 

0 2 0 0 

1 - 4  1 0 

- 1  12 - 2  1 

I ?e 
Ke 

2e 

(Cz)r 
(Cm)r 

8(C, . , . ) r  

32(Cmmm)r 

(47) 

Inversion of the matrix gives 

Ye 

2e 

= ½(CL)r t = ½(Cm) r 

= [8(Cram)r-}- 2(Cm)r--½(CL)r] 

= [32(Cmmm)r-t- 16(Cram) ,. - 2(C,n)r --~CL)r] 

(48) 

To complete the formulation of the slopes al, the distribution I1 (X) of equation (41) is substituted in 
equation (46) to give 

(CL) 1 = 2 C~, 

8(Cm) 1 = - -  C.u 

8(C~mh = [C~,+¼ C.+ C~] 
32(Cmmm)t = [-- C r - ¼  C~, - 2 C~, -- C;,] 

(49) 

where 

C r = [(rc- ~b,) + sin 4'hi 1 

[ ¼C~, = [sin Ch-- ½ sin 2¢h] 

C~ = [ -  ½ sin 2q~ h + ½ sin 3¢h ] [' " 

J Ca = [½ sin 3¢h-  ¼ sin 4¢h3 

(50) 

The four-term formula for al is then completely determined by %(X) from equations (44), (48), (49) and 
(50). Similarly, when r = 2, equations (42) and (46) give 

(CL)2 = D~, ] 

L 16(Cz)2 = - Du 

16(Cmm)2 = [D~' +¼ Du + D~] I (51)  

J 64(Cmmm)2 = [ -  D~, 3 D~, - 2D~ - Dz] 

where 

D,, = [(rc- Ch)(½+ COS Ch)+ sin Ch +¼ sin 2¢h] 

¼ D. = [ ~ - -  Ch) + ¼ sin Ch + ¼ sin 2¢h-- ~2 sin 3¢h] 

O K = [¼ sin Ch-- 1~ sin 2¢h -- 1!52 sin 3¢h + ~ sin 4¢h ] 

D~ = [--1A~ sin 2q~h q-~4 sin 3q~h q-1  sin 4q~h-- 4~6 sin 5¢,] 

(52) 
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and equations (44), (48), (51) and (52) determine a2. It remains to evaluate a~ and cr 2 at the N = 4 collo- 
cation positions q5 = q~p defined in equation (13). 

If we consider N (or N') < 4, the formulation of a~ again starts from equations (43) and (44); only 
the first N terms are retained, and the unknown coefficients satisfy the first N conditions in equation 
(48). According as r = 1 or r = 2, the first N formulae in equations (49) and (50) or in equations (51) 
and (52) are used. Then, the equivalent slopes cr~ are determined by equation (44) with 2e = 0 when 
N = 3 a n d ~ : e = 2 ~ = 0 w h e n N  = 2. 

The formulae for a~ are obtained as functions of the chordwise positions ~b and qSh defined by equation 
(40) in tcrm.~ of X and E. In Fi~. 2a, values of the slopes a~ when E = 0.25 are plotted lor N = 2, 3 and 
4 respectively as linear, quadratic and cubic functions of X. These three curves differ most in the range 
0 < X < 0.2 : the N = 4 curve gives the steepest gradient at X = 0.75, the position of the discontinuity 
in the exact incidence shown by the dotted lines. 

The boundary condition of equation (23) is to be satisfied at the collocation positions q5 = 4~p 
(p = 1 , 2 . . .  N) defined in equation (13). Values of the slopes ar at the positions qSp are denoted as arp. 
In Tables 1 and 2, the values of alp and a2p respectively are tabulated for p = I(1)N corresponding to 
each value N = 2, 3 and 4 with E = 0.05(0.05)0.75. In Fig. 3a, for a rectangular wing at M = 0 with full- 
span control (E = constant), values of the lift damping derivative - z~  are plotted against E(~< 0.5). 
It is noted that, when M = 0, the contributions to -z~  from equation (33) reduce to the t e r m s  LLZf 
and IL3I corresponding respectively to solutions for c~2f and ~3I, the latter being derived from the solution 
for C~ll. The effect of using equivalent slopes a~o and a2p, for N = 4, is shown by the curve in Fig. 3a, 
whilst the exact boundary conditions at the collocation points give the dashed lines with breaks in 
- z~  at E = 0.03 and at E = 0.25. The fictitious discontinuities occur whenever a collocation point 
coincides with the hinge position, that is irE = ½(1 + cos qbp)' the equivalent slopes overcome this difficulty. 

3.2. Control Hinge Moment. 
Equation (45) indicates that in the calculation of the hinge-moment derivatives for control motion, 

the equivalent slopes z, replace a, from Section 3.1. In the four-term formula for rr, the unknown coeffi- 
cients 7e, PC, t%, 2e of equation (44) are chosen to satisfy the first three conditions in equation (46) together 
with the following condition for the exact two-dimensional hinge moment 

1 

E- ~ ( X -  Xh) I(X) dX = ( -  C~)~ 

Xh 

(53) 

where Xh = 1 --E. With l(X) from equation (43), this condition becomes 

½ [TeA~, +#eA~+ xeA~ +)teAz] =- ( -  Ch)r, (541 

where after integration 

(roE 2) A 7' = [(rc - qSh) (2 COS ~b h -  1) + 2 sin q~a - ½ sin 2~ba] 

(roE z) A, = 4[ - ( ~ r -  qSa)+ ½ s'in ~b a -~- sin 2~b h -  ~ sin 3qSh] f 

(roE 2) AK = [½ sin ~ba+ 1 sin 2 0 h - ~  sin 3q~a-~  sin 4~bh] 

(r~E2)Az = [~ sin 2~bh+ ~ sin 3qSh-- ~ sin 44~h--~0 sin 5~bh] 

(55) 
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Therefore, in place of the matrix equation (47), 7~,/~e, tee, 2e are now determined by 

2 0 0 0 

0 2 0 0 

1 - 4  1 0 

Ar A u A~ Aa 
i el IcLrl u~ (c,.)~ 

_~e 8(c,.,.)r 

2~ 2 ( -  Ch)~ 

(56) 

with the formulae for (CL),, (C,,)~ and (C~)~ given by equations (49) to (52) for r = 1 and r = 2. The 
respective formulae for (-Ch)~ are determined from equation (53) with l~(X) from equation (41) or (42); 
then after integration, 

[2 rt E 2 ( -  Ch)l] = [(r~--4)h) 2 (2 COS ~bh-- 1)+ 2(7t-- qSh) sin q~h+ sin 2 ~bh]] 

i 

[2 r~ E z ( -  Ch)z] [-(~ -- 49h) z COS z ~b h + (re - q~h) sin 2~b h + sin z 4h] 

(57) 

Unless Aa -- 0, the matrix on the left-hand side of equation (56) is non-singular and the coefficients 
7e, #e, ~Ce, 2e can be determined for a specified value of E and r = 1 or 2. The equivalent slopes ee(X) = rr 
are then given by equation (44). It is important to know the values of E for which Ax = 0 and the matrix 
is singular. The formula for A~ in equation (55) can be rearranged as 

(15n) A a = 8 sin ~bh(1 --cos qSh) (6 COS fib-- 1), (58) 

which only vanishes in the range 0 < E < 1 if 

cos ~b h = ( 2 E -  1) = ~. (59) 

Hence, for E = 0'58) it is not possible to obtain zr when N = 4. It should be emphasized that this sin- 
gularity has no basis in a physical sense and arises solely from the loading functions used and their 
lailure to represent the exact boundary conditions of equation (3). 

If equivalent slopes z~ are required for N (or N') < 4, then %(X) is represented by the first N terms 
of equation (44). The unknown coefficients are chosen to give correctly the forces (CL)~ and ( -  Chb whefi 
N = 2 or the forces (CL),, (C,,)~ and ( -  Ch)~ when N = 3. In neither case can the matrix of order N re- 
placing the left-hand side of equation (56) become singular in the range 0 < E < 1, because both A u 
and A~ remain non-zero; hence the equivalent slopes rr are never singular when N = 2 or N = 3. The 
difference between the slopes z2 when N = 2, 3 and 4 is illustrated in Fig. 2b by the distributions for 
E = 0.25 plotted as continuous functions of X. Comparison with the exact incidence for r = 2 from 
equation (39) shows a progressive approximation towards it as N increases. Values of rip and %p at 

the collocation positions p = l(l)N are tabulated for N = 2, 3 and 4 with E = 0"05(0.05)0-75 in Tables 
3 and 4 respectively. 

The importance of the equivalent slopes % chosen to satisfy the two-dimensional hinge moment, is 
illustrated in Fig. 3b. For  a rectangular wing with full-span constant-chord control, the equivalent 
slopes ~lp that satisfy wing forces only and the special equivalent slopes zxp are applied to give alternative 
solutions (N = 4) for the hinge-moment derivative - h  e. The results for a range of control-chord ratio 
E from 0.05 to 0.50 are plotted in Fig. 3b and show large differences when E < 0.25. Whilst the solutions 
with Z~p indicate a small change in - h  e as E varies, those with Gxp indicate a rapid variation, particularly 
for small E, which will be seen to be erroneous in Section 6.1. 

4. Spanwise Equivalent Slopes. 

For a part-span control surface, it is readily seen from equation (23) that the incidences Cry have span- 
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wise discontinuities at the sections where the control surface adjoins the wing. After the chordwise 
discontinuities within the control span have been removed by means of the equivalent slopes ¢L or z~ 
from Section 3, there remain spanwise discontinuities in the value and, in general, in the spanwise gradient 
of a~ and z~. Both types of discontinuity are treated by the use of spanwise equivalent slopes. As for the 
different chordwise slopes ~r~ in Section 3.1 and ~ in Section 3.2, we determine in Sections 4.1 and 4.2 
spanwisc slopes that are appropriate respectively to the calculation of wing forces and of sectional loads 
or hinge moments; the numerical procedure for the combined equivalent slopes is outlined in Section 

5.1. 
For an outboard control, the two types of spanwise discontinuity are represented by distributions 

of incidence 

=,(,7)= - 1  ,7 -,7, ] 

= 0  - r / , < r / <  r/~ I ' 

= +[~-~.],-' ~, ~< ,7 ~< 1 

(60) 

where t = I or 2 and, as in Fig. la, v, = sr/, locates the spanwise discontinuities: the symbol e, = +_1 
according as the control motion is symmetrical or antisymmetrical with respect to y. Controls of arbitrary 
span can be handled by superposition. 

4.1. Win9 Forces. 
The smooth spanwise slopes, which give correctly the wing forces such as lift and rolling moment 

corresponding to the incidence :t,(r/), can be formulated directly However, there is a simpler treatment 
on the reversoflow basis, as suggested by Davies ', and this approach and some applications are con- 
sidered in detail in Section 4.3 of Ref. 6. 

In the present context, the spanwise equivalent slopes are represented as 

~ [  (sin kO'~ ~, 
~ e ( r / )  = g'k\ sin O] ] 0 <~ 0 <~ ~, 

k = l  

(61) 

where 17 = cos 0 and the odd integer m defines the collocation sections in equation (13); the unknown 
coefficients E,k are chosen to satisfy the m conditions corresponding to the exact wing forces in the span- 
wise modes r/k- 1 k = l(ljm. By equations (5), (42j and (44) of Ref. 6, the reverse-flow relation between 
the incidences %(q) and ~,(q) becomes 

f f ~e(r/) 7(x, y) dx ay = f f ~,(~) 7(x, y) ax dy , 
S S 

(62) 

where 7(v, v) is a smooth lift distribution over the wing in reverse flow. This loading can be represented 
by the series of equation (8t with Ch replaced by (re-~h) to give the correct leading-edge and trailing-edge 
singularities for the reversed flow. It tollows, by transtorming to the non-dimensional parameters q~ and 
I/and integrating with respect to q~, that equation (62) reduces to 

t 1 

f ~e(q) 7(r/)dq = f ~t(r/)~/(q)dr/• 
-1 -1 

(63) 

Substitution of ~t(q) and ~e(r/) from equations (60) and (6l) gives 

18 



2[; E,k sin kO f(r/) dr/ = (I cos 01 - cos 0.) '- 1 f(r/) sin 0 dO, 
k = l  O 

(64) 

where I7o = cos Oa 

Oa i t ointc ra' f d0notos 
0 n - 0 .  

The spanwise distribution of circulation f(r/) can be defined by equation (10) but is more conveniently 
expressed as 

j = l  

(65) 

When this series is inserted into both sides of equation (64), a set of m equations is obtained by identifying 
the terms of each coefficient K;. Thus, 

m 

~EEtkfsinkOsinjOdO]= f([cosO[-cosO~)r-XsinjOsinOdO, 
k = l .  0 

(66) 

whence 

Etk = --7~2 f ([ COS 0 ] -- COS 0,,)'- 1 sin kO sin 0 dO. (67) 

Then, for t = 1, 

E1 k 1 Fsin (k- 1)0 
=~L (EL-i] 

Oa 

s i n ( k + l ) 0 7  e l - s i n ( k - D O  

~; J+~L ~ 
0 

sin (k+ 1)0] 

~k~-i; J 
"i~ - -  O a 

= ~ L -(~-2-i~ -(k-+i) j (68) 

Similarly, for t = 2, 

~ = -El~coso.+~[1-~(-,)k]F sin(k-2)°o si~(k+Z)Od 
L -(k-L-~ (k+2) J' (69) 

In equations (68) and (69), e = 1 for the symmetrical case gives Etk = 0 for even k, whilst e = - 1 for the 
antisymmetrical case gives Etk = 0 for odd k. The spanwise equivalent slopes ee(r/) to represent c@l) of 
equation (60) follow immediately from equation (61) with equation (68) or (69), and respectively, we 
write 

%(q) = f~,(r/, r/,) for t = 1, 2.  (70) 
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The boundary condition of equation (23) is to be satisfied at the m collocation sections 
vn 

q = r/~ = sin m + l '  where ~t is denoted as ~t~ ; both ~ and ~2~ are illustrated in Fig. 4 for the outboard 

control r/~ = 0-5 in symmetrical deflection. The values of ~ ,  plotted against r/~ in Fig. 4a, show that 
m = 7 gives a very smooth but inadequate representation of the exact discontinuous incidence ~(r/), 
whilst with m = 15 the values lie very close to at(q) and show a steep gradient in the neighbourhood 
of r/a- For  ~'~2v in Fig. 4b, on the other hand, the values for both m = 7 and m = 15 closely represent the 
discontinuity in gradient defined by ~z(r/). In all the numerical examples we take m = 15, and the cor- 
responding values of ~t~ (t = 1,2) are listed in Tables 5 and 6, for the symmetrical and antisymmetrical 
cases respectively, with r/a ranging from 0 to 0.85. 

The importance of using smooth spanwise slopes in place of ~,(r/) of equation (60) is illustrated in 
Fig. 5a, by the values of the lift derivative - z~ for outboard controls on a rectangular wing in incompres- 
sible flow. Collocation solutions (m = 15, N = 3) with local chordwise equivalent slopes a~p~(r/~), 
having spanwise discontinuities, give the dashed lines that are discontinuous whenever r/a coincides with 
a collocation section. This difficulty is overcome if we use aap ~ ,  whence the continuous curve of - z e  
is obtained. 

4.2. Spanwise Loading and Hinge Moment. 
The construction of special spanwise equivalent slopes, for use in the calculation of local loads and 

hinge moments, is quite distinct from that of~t~ in Section 4.1. Here we work from analytical treatments 
of spanwise discontinuities, following Multhopp's a6 lifting-line theory for wings of large aspect ratio 
and De Young's ~7 theory for low aspect ratios. Bv applying either of these theories it is possible to re- 
present the discontinuous incidence at(q) of equation (60) by a smooth equivalent distribution Wt(r/, r/a) 
that gives the circulation correctly at all the collocation sections r/~. The local values ~P,,.(r/,) from the 
two theories are identical and therefore likely to apply to wings of arbitrary aspect ratio. 

In the low-aspect-ratio theory of Ref. 17, the boundary conditions along an unswept trailing edge 
relate the local incidence to the spanwise distribution of circulation 2Usy(r/) by the integral equation 

1 

1 f 1 tiT(r/') 
=(r/) = ~ (r/-r/') dr/' 

- 1  

dr/'. (71) 

Thus 7(r/) depends only upon the incidence at the trailing edge and is independent of such chordwise 
details as the position of the control hinge. De Young takes the incidence distribution ~l(r/) of equation 
(60) and satisfies equation (71) by an infinite series for 7(r/)- A more direct mathematical analysis, as used 
to treat equation (1) of Ref. 18, is to invert the integral equation; by this means equation (71) yields 

1 

I sin 0 I 
y(r/) = - ~x(r/') In sin 1(0 + 0') dr/', 

- 1  

(72) 

where r / =  cos 0 and r/' = cos 0'. By equation (72) we can determine the circulation yt(r/) corresponding 
to at(r~) of equation (60) with t = 1 or t = 2. Hence 

sin~O-Oa) -~(cosOa+cosO) ln cos~O+Oa) +( l+e)Oas inO (73) 7t(r/) = (cos Oa-cos O) ln sin ~(0+ Oa) 

and 
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V2(t/) = _ (cOSOa_COsO)21 n ~ _e(cosO,+cosO)21 n COS½(0--0,) 
COS 2! (0  "1- Oa) "q- 

+ (1 + e) (2 0a cos 0~ - sin 0,) sln 0 - (1 - e) (½0a) sin 201 . (74) 

With e = + 1 or - 1 ,  respectively for symmetrical or antisymmetrical deflection, equation (73) agrees 
with the closed expression derived for the deflected outboard control from the infinite series in Ref. 17. 

In the lifting-surface method of Section 2, the smooth distribution ?(r/) is expressed in terms of the 
values ~, in equation (11) by the polynomial of equation (10). An alternative form for this distribution 
in Ref. 3 is 

7(~/) = (m + 1-----} ~(r/.) (sin 20, sin 20) , (75) 

. =  --U 2 = 1  

where m is an odd integer and u = ½(m- 1). The unique smooth incidence distribution consistent with 
equations (71) and (75) is 

~ . ( q )  = _ _  

m '/~ 

2 r  cos 0 d0)l 
(m+ 1) J ( cos~-c0-s  0) 

n = - u  2 = 1  0 

,o,l,2 Jl 
n=- -u  ~ , = 1  

(76) 

At the collocation sections r /=  t/y, it can be shown that 

u 

IZe(t/~) = 2 b~ IV(t/0- ) - ]  { a~. 7(r/.) } ] , 
n = t~ 

(77) 

where E' denotes that ( v -  n) takes odd values only and the coefficients bv~ and av. are defined by equations 
(17) with N = m and ~ = n. Substitution of the values of ~t(t/.) from equation (73) or (74) into equation 
(77) defines the equivalent slopes 

~e(~v) = q~tJt/a) for t = 1 or 2. (78) 

It is important to recognize that there is no restriction in aspect ratio although Wt, has been derived 
on the basis of low-aspect-ratio theory. It can be shown that precisely the same spanwise equivalent 
slopes follow from the rigorous application of Multhopp's 1° lifting-line theory for part-span controls, 
whatever the aspect ratio. The circulation is proportional to at(t/)-~i(t/) where the induced incidence 
ai(q) is given by equation (71) with a factor ½ inserted on the right-hand side. The invariance of Wry follows 
from the condition that at(t/) must contain the same singularities as a/t/) of equation (60) to ensure a 
smooth distribution of circulation. 

Values of the spanwise slopes tPtJt = 1, 2) appropriate to m = 15 are tabulated in Tables 5 and 6 
respectively for symmetrical (e = 1) and antisymmetricai (e = - 1) spanwise loading, with the control- 
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span parameter varying from 0 to 0.85. A diagram similar to Fig. 4 would show that W~ and W2~ are 
close to the corresponding exact incidences. The effect of using the spanwise equivalent slopes W~, 
rather than the slopes f ~  of Section 4.1, in the calculation of the steady spanwise loading 7(~) is illus- 
trated in Fig. 5b for the rectangular wing with symmetrical constant-chord outboard controls q, = 0.25 
and q, = 0-85. The solution with equivalent incidences a~p ff2x~ is plotted as circles, whilst the incidences 
a~p qJ~ give the more precise curve of 7 against q. The former is a poorer representation of the loading 
in the neighbourhood of q = r/o. When ~/, = 0.85, 7(r/) is plotted for twice the control deflection (~ = 2 
radians) and the difference between the solutions with ff2~ and ud~ is more obvious. From these com- 
parisons the spanwise equivalent slopes W~ give a more satisfactory representation of the spanwise 
loading due to the control deflection. 

5. Numerical Procedures. 
The major part of the numerical work has been carried out on a KDF 9 computer by the Algol program 

of Ref. 5, and this has restricted the calculations to at most four chordwise terms. With m = 15 throughout, 
there is the further restriction q ~< 6 when N = 4: thus, by equation (15), a maximum o f ~  = 95 spanwise 
integration points is used. The program includes an automatic routine for incorporating the planform 
rounding of equation (5); however, most of the present calculations use equation (6) instead, in which 
case all the necessary values of the leading-edge ordinate xt and chord c have to be inserted numerically. 
The other input data that require preliminary calculation are the smooth equivalent incidences ~a~, 
~2~ and c~4~ which will vary according as lift or hinge moment is required. In general, these will involve 
the chordwise and spanwise equivalent slopes of Sections 3 and 4 respectively, and the technique of 
combining them is discussed in Section 5.1. 

The output data from the Algol program include column matrices Lr (r = 1, 2, 3) and L~ s (r = 1, 2, 3, 4) 
for pitching and control rotation respectively, from which the load distributions in equations (25) and 
(29) can be obtained; the output also gives values of the lift, pitching-moment and rolling-moment 
coefficients from equations (33) of Ref. 5 and from the present equations (30). The 'bending' moment 
coefficients in equation (37) are easily computed, but the hinge-moment coefficients in equations (26) 
and (31) are calculated by a procedure of interpolation and integration described in Section 5.2. Then 
all the aerodynamic derivatives from equations (39) of Ref. 5 and from the present equations (28) and 
(33) to (36) are simple to evaluate. 

Other numerical procedures explicitly related to applications of the reverse-flow theorem are explained 
in Section 5.3. Again, the hinge moments present the greatest difficulties, while the wing forces are evalu- 
ated more simply without resort to equivalent incidences. 

5.1. Combined Equivalent Slopes. 
The most general application of the chordwise and spanwise equivalent slopes, from Sections 3 and 

4 respectively, occurs for a tapered swept wing and part-span control. The spanwise variation in the 
wing chord c(y) or in the control hinge-line Xh(y ) obviously affects the incidences c(r I for r = 2 or r = 4 
in equation (38). Furthermore, at each section, equation (39) is replaced by the local chordwise equivalent 
slopes art or ~p corresponding to the control-chord ratio E = cr(y)/c(y); the spanwise variation of these 
slopes with E over the control span is denoted as a~p(E) or z~p(E). In the calculation of wing forces, when 
the slopes crop(E) are used, the incidences ~rl for r = 1,2 and 4 are therefore replaced along each line 
p = constant by the spanwise distributions 

~rp(n) = ~[fr07) Grp(E)] - 1  ~< ~ ~< - . .  ] 

= 0  - - r / a < q < r / a  t ' (79) 

where e = 4-1 according as the control deflection is symmetrical or antisymmetrical, O'4p(E ) ~ O'lp(E ) 
and, by equations (38), 
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A (0) = 1 

f2 (q) = c(y)/6 

74 (0) = xh(Y)/C 

(80) 

In order to treat the spanwise singularities in arv(0) at 0 = ___r/,, equation (79) is divided into three 
distributions. We consider 

~ = [f,(o,,) %,(~,,)] ,~ (0) 

~H = ( ~  Ifv(0) °'rp(E)l ) ~ 2 (0) 

ti' = r / a  

, - 1 ~ 0 ~  1, (81) 

where the spanwise singularities in c~z and eH are respectively defined by the incidence e~(q) of equation 
(60) with t = 1 and t = 2. In equation (81), we require the value of e,~,(q) and its gradient e'p(q) at 0 = 0a ; 
the latter is determined numerically as indicated in the next paragraph. Thus, given the distributions 
c~z and ~H from equation (81), the residual of the incidence c~,p(0) is determined as the distribution 

cqxI = [e ,p (0) -e t -~ i / ]  , - 1  ~< 0 ~< 1, (82) 

which is zero for 101~< r/a. Since c(y) and xh(y) are smooth functions, so is ~m(0). The procedure then is 
to replace ~,(0) in equation (81) by the spanwise equivalent slopes ~,~ for t = 1 and t = 2 from Section 
4.1. The resulting sets of equivalcnt values at the collocation sections r/,. arc then added to the actual 
values of the residual incidence (~m)~ from equation (82). Thus, the combined equivalent incidences 
are 

q=rta 

(83) 

(84) 

in terms of c%(q) from equation (79). 
The above procedure is illustrated in Fig. 6 tbr equation (79) with r = 1, p = 1 and spanwise symmetry 

(e = 1). Here the curve ore = a ~}01 = a~,(E) against 0 /> 0a corresponds to p = 1 in the solution (m = 15, 
N = 3) for the cropped delta wing with outboard control qa = 0.5. This example shows the large varia- 
tion in a~ ~(E) as E increases from 0"25 to 1. When this distribution is divided into three parts, according 
to equations (81) and (82), we obtain the three spanwise distributions labelled @ ,  @ and @ in Fig. 6. 
The third distribution is smooth, but the first two distributions are proportional to the exact incidences 
c~t(q) shown as broken lines in Figs. 4a and 4b and replaced by the values f~tv- The spanwise gradient 
in the second of equations (81) is estimated by means of a polynomial in 0 through 0:lp(Ea) and the values 
atp(E ~) at the four collocation sections 0v, v = 1(1)4, two on either side of the position r /=  qa = 0.5. 
At the sections qt = 0.195 and 02 = 0.383 we must use the values of alp appropriate to an extended 
control as indicated by the smooth dotted curve in Fig. 6. Once the gradient is determined by differentiat- 
ing the polynomial for ~rlp(E) and putting 0 = 0a, the combined equivalent incidences (~le)p,, for p = 1 
and v = 0(1)7 are calculated from equation (84) and plotted as circles in Fig. 6. The procedure for other 
values of r allows for the spanwise variation of both arp(E) and fr(q) in equation (79). 

The formulation of the equivalent incidences (c~,e),v, by equations (79) to (84), also applies if we replace 

23 



the chordwise slopes O'rp(E ) by zrp(E) or the spanwise slopes ~,~ by R~tv. The combination of chordwise 
and spanwise slopes is selected according to the aerodynamic requirements in the following table. 

Wing forces 

Spanwise loading 

Hinge moment 

Equivalent Slopes 

Chordwise Spanwise 

O'r p 

O'rp 

Trp 

~tv 

~tv  

For hinge moment, therefore, equation (84) is replaced by 

(O~re)p v = O~rp(Ylv)-{- O~rp(Yla) [I'IU l v -  O{l(Y/v)] "4- Offrp(Fla ) [kI/2v -- O{2(Y/v)] 

with ~p(q) = e, [f~(~/) z~(E)] - 1 ~< r/~< -r/~ 

= 0 - t la  < tl < qo 

(85) 

where r = 1, 2 or 4, g = _+ 1, r4v(E) - Zip(E) andfr(t/) is defined by equation (80). 

The procedure simplifies in a number of cases. For a symmetrical full-span control, ~,,  = qJt,. = 1 
at any collocation section r/,. When the control chord ratio E is constant across the control span we 
always have zero gradient and a H =  0 for r = 1, but this only remains true for r = 2 if the wing chord 
is also constant or for r = 4 if the control hinge line is unswept. Thus for a rectangular wing with constant- 
chord control, the last term in equation (84) or (85) vanishes and for each r the combined equivalent 
slopes simplify to give 

o r  

(O~re)pv = [fr (Trp(E) ~'~,v] for wing forces (86) 

for hinge moment (87) 

wherefa = f2 = 1 and f4 = I - E .  

5.2. Integration o f  Hinge Moment .  

The hinge moment on the control surface due to low-frequency pitching motion or control rotation 
is determined by equations (26) to (28) or by equations (31), (32) and (36). In each case, the double inte- 
grals are to be evaluated over the starboard area S r bounded by the hinge line Xh(y) and the trailing 
edge x,(y) wilb the range of 3' for outboard and inboard controls defined respectively as y,, ~< y ~< s and 
0 ~< y ~ y~; this definition holds for both symmetrical and antisymmetrical modes of oscillation. When 
an inboard or full-span control is swept, there arises the question of the kinked hinge line at y = 0; 
formerly in the calculation of Ref. 2 the actual hinge line was retained throughout the calculation while 
the planform was rounded. It now seems more appropriate to use a rounded hinge line consistent with 
the planform rounding either from equation (5) or from equation (6), as will be discussed in Section 6.3. 

The procedure for integration of the hinge moment will be formulated in detail for the derivatives 
- h e  and - h e  due to control rotation. These can be expressed in terms of the local hinge-moment dis- 
tributions across the control span, -hcL and -h~L , as defined by the integrals 
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-h, = f (-h,L)dn 
(88) 

where the control span and range of integration are defined for outboard and inboard controls respect- 
ively as 

and 

rla 

tl,f 

Sf = Sqf, f = f 

(8 ° ) 

By identifying equation (88) with the formulae for -he  and -h~ from equations (31) and (36) where 
S: = s: ~:, it follows that 

and 

Xt 

- -h~L=~ff (X--Xh)  llfdX 
Xh 

xt 
i f  rx 2 ,2_ 21 --h~L=-~C } (X--Xh) L ~ - I l y - F  ~ 2 :+~13: -~ -14 :  dx. 

Xh 

(90) 

(91) 

In accord with the table after the List of Symbols --hcL and --h~L require the factor cos 2 A h when the 
control angle and hinge moment are defined truly in planes normal to the hinge line. In the present method, 
the load distributions l~.t., 12c and 1,,.: are determined for the equivalent incidences c% from equation (85). 
but lay is obtained from an incidence c~3e involving the matrix BA-1 in the notation of equation (24). 
When N = 4, Ir:(x, y) is represented by the real spanwise distributions 7r:(y), #r:(Y), xr:(y) and 2~:(y) 
together with the four associated chordwise functions of ¢ in equation (8). Then equation (90) reduces to 

A: y 
--hcz = ~- \~ f ]  F, (r/), (92) 

where in general 

(93) 

the chordwise integrals A~,, Au, A,,, A~ are expressed analytically in terms of Oh = COS-I (1--2E) by 
equations (55). For -h¢L in equation (91), the first term in the square bracket requires additional func- 
tions B~., B,, B,,, Bz defined by the integrals 
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Pq((°h) = i [COS (q -- l)(b + cos qqS] (cos ~b h -  cos q~)2dq~, q = 1(1)4 ; 

4,. 

(94) 

after integration, we obtain the set of  functions 

(nEe)B;, = P ,  = [0z-~bh)(1 --cos q~h-l-½cos 2qSh)--¼ sin 0h+-] sin 24~h--A sin 34~h] "] 

(nE2)B. = 4P2 = [(~ - q~h) (1 -- 4 COS q~h)-- 3 sin ~bh + 2 sin 2q~h -- ½ sin 3q~h -- 1 sin 4~bh] 

(~EZ)B~ = P3 = [¼(rt--qSh)-- ~ sin ~bh+~ sin 2 4 ~ , + ~  sin 34)h--~ sin 4q~h--r~o sin 5~bh] 

(rcEZ)Bx = P,~ = [ - ~ 2  sin q~h--~ sin 2qSh+ ~ sin 3q~h+~O sin 4q~h-- 1--~0 sin 5q~h-- 2-~0 sin 6q~h] 

(95) 

Values of the eight functions ,4., A,, A~, Az and B;., B,. B~, B~ are tabulated for E = 0.05(0.05)0.75 in 
Table 7. Thus, equation (91) can be evaluated from the expression 

--h~L = ~ ~ff /~-F~(~)-[- f12 F2(t / ) - l -~ 3 ( t / ) - 7 2  - F 4  ('~) , (96) 

where F.(q) is defined by equation (93) and 

C 2 
(97) 

The values of -h¢L and -h4L at the collocation sections y.  = sq. within the control  span are determined 
by equations (92) and (96) respectively with the values of 7r:. = 7~:(Y.), I~¢. = I~r:(y.) . . . .  from the collo- 
cation solution inserted into equations (93) and (97); in general, the planform data Xn, E and c and the 
functions A;. . . . .  B~ will all vary with rl. 

To  determine --hCL and --h~L at the extremity of the control  span, we require the values of F~(r/) for 
r = 1(114 mid F*(q) at q = r/. (or q:). In general, r/. does not coincide with a collocation section and the 
values of 7r:(Y.), I~:(y.) . . . .  must therefore be obtained by interpolation. Except for r = 3, it is necessary 
to simulate the singularity in spanwise loading associated with deflection of the s tarboard outboard  
control  ; each distribution 7,:(Y), I~,:(Y) . . . .  is represented by a four-term equation 

3 

k=l 
(98) 

where the distribution 

Iwt 11o  t°-°4l o sin 0 +'cos 0o-cos 0""lS n 0o)l / (99) 

is defined by equation (73) with c = 0. For  an inboard control,  it follows by superposit ion that equations 
(98) and (99) apply with 0. replaced by O: = cos -  lr/:. When r = 3, equat ion (99) is no longer appropriate  

to the interpolation and the last term in equation (98) is replaced by as r/3 . / i - r / 2 .  The arbitrary co- 
efficients ak, k = 1(1)4, are chosen for each r and each distribution 7r:., #r:  . . . . . .  so that G(q,,) is satisfied 
at the four collocation sections r/., two on either side of the position r/. (or r/:). The interpolation is illus- 
trated for -h~t. on an outboard  control  in Fig. 7 by the simple case of a rectangular wing with constant-  
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chord control. For  m -- i5, the interpolated value at q~ = 0.45 involves the values at q = q, for n = 1(1)4, 
as indicated by the 'range for interpolation'  in Fig. 7. 

To complete the evaluation of - h e  and -h~,  we require a numerical procedure for the spanwise inte- 
gration of equation (88). Basically, we apply Simpson's rule to the integrations with respect to the angular 
parameter  0 = cos-  ~ /over  each double interval 

I /'C /'/71:1 O n ~ 0 ~ On+ 2 On = 2 m~ 1 ' (100) 

where the integer n is even. Thus the integration over the greater part of the control span is effected in 
terms of the local hinge-moment coefficients --h~L and --haL at the collocation sections q,, but there 
remains a divided interval requiring special integration factors appropriate  to the value ~1, (or q r). On an 
outboard control, this interval is denoted as ~/a ~< q ~< qb where r/b is the outer end of the double interval 
that overlaps the position q,; qb may or may not be the collocation section nearest to ~/, and we have to 
consider both cases. By assuming a quadratic function of 0 through the values of -h~L and - h c z  at ~/, 
and the two nearest collocation sections within the control span, equations (88) are integrated over the 
range ~t, ~< ~ ~< qh. In the example of Fig. 7 for m = 15 and ~/~ = 0.45, the shaded areas denote the three 
ranges for integration; - h e  is calculated by using Simpson's  rule over the two double intervals 
~/~ ~< ~ ~< ~/~ and q~ ~< q ~< t/v, whilst over the divided interval ~/, ~< t/~< ~/4, the integrand is represented 
in terms of the values of --hcL at ~/ = q,, qa and ~/4. Thus, for the outboard control 7, = 0.45, 

7 

-h~ =re(in+ 1) (l --l~a ) f-hcL(rla) Ia(1-rl2)~+n~I-h¢L(rln)Inc°s( (101) 

where 1, = 0.10665 , I3 = 1.14365 , 14 = 0.70582 

Is = 1.33333 , 16 = 0.66667 , 17 = 1.33333 

The other case arises when the numerical integration procedure for m = 15 is applied to an outboard 
control ~/, = 0.25; there are three double intervals and the divided interval q~ ~< r/~< r/2 is represented 
by the values of --h~L at r/ = ft,. r/2 and r/3. The derivative - h  e is then given by equation (101) with the 
summation from n = 2 to n = 7 and 

I ,  = 0.30708 , Iz = 0.77464 , 13 = 1.29805 , 14 = 0.66667 

and I5 to I7 as given above. These numerical procedures have been found satisfactory in the present 
applications. Improved accuracy could be obtained over the divided interval from q = r/, to r / =  qb = 
cos Oh, if an additional interpolation were made for the position 0 = ½(0, + 0b) to permit the application 
of Simpson's rule. 

A similar numerical procedure is used to evaluate the hinge-moment derivatives - h o  and - h o  from 
equations (26) and (28) corresponding to pitching motion. Instead of equations (98) and (99), it is ap- 
propriate to use the smooth interpolation polynomial 

4 

k=l 

to evaluate each spanwise distribution at ~/= r/~. To the local hinge moments  we again apply the span- 
wise integration procedure illustrated in equation (101). 
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5.3. Applications of Reverse Flow. 
The reverse-flow theorem is applied in Section 5 of Ref. 6 to low-frequency oscillations in the pitching 

and symmetrical control-rotation modes. Expressions are derived on the basis of Mutthopp's low- 
frequency theory for the lift and pitching-moment derivatives, which are given for the two modes res- 
pectively by equations (71) and (77) of Ref. 6. Both sets of formulae are in terms of the same load distribu- 
tions,/A2, P), r = 1(1)5, appropriate to solutions tor the ~reversed wing' in simple modes. With the co- 
ordinate system (2, ~) defined by 

2 = c ~ - x  1 , (103) 
y = - y  

these solutions are referred to the origin at ~ = 0 on the leading edge of the reversed wing. Thus, each 
distribution ]~(,~, ~) is represented by equation (8) with a bar inserted over each symbol in the square 
brackets: the corresponding collocation solutions for the reversed wing follow the principles of Section 
2 with respective incidences 

~ a = l  t 

4z = 2/~ 

43 = b~B7~- ~ (4~/b~) . 

4~ = (2/~) ~ 

(104) 

where A and li are the matrices from the collocation solution for the reversed wing, analogous to those 
in equation (19). 

For pitching motion, equations (38) of Ref. 5 give the lift and pitching-moment derivatives in terms 
of the force coefficients lLr with r = 1(1)5, - i , ,~  and -ira2 for the reversed wing. A straightforward appli- 
cation of the Algol program 5 to the reversed wing gives the seven coefficients as output, and the pitching 
derivatives follow immediately. 

The program also outputs the values of the spanwise loading coefficients ;=(~,,), fi(~,) . . . .  which define 
the distributions It(2, ~). In the present notation, the formulae from equation (77) of Ref. 6 for the lift 
derivatives due to control rotation become 

and 
aff - z ¢  = ~ it d2dy 

sy 

- z ¢  ~ f  f F M 2 2 " i  ( ~ 2 - M 2 ~  - - M2 

Sf 

(lO5) 

where 2h(.V) = Cr--Xh(y), the wing area S = 2sg" and the starboard control-surface area S I = s I g'y is 
bounded by the control span, the leading edge xt(Y) and the hinge line 2h(.V) on the reversed-wing planform. 
Likewise, the formulae for the pitching-moment derivatives can be written as 
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and 

1 2 _ 

(106) 

To evahmte equations (105) and (106), the integrals are transformed to the non-dimensional parameters 
and q defined by 

= 2t(y)+½ c(y) [1 - c o s  ~] 

and I , (107) = sq 

where by equations (103) and planform symmetry 

x~(y) = o r -  [x~ (y) + c(y)]. 

Since Xh(y) = G--xh(y) gives qS h = rC--qSh, we need to consider chordwise integrals of the two types 

c I Q~(q) = ~-~ . ir sin ~ d ~ ,  r = 1(1)5, (108) 
0 

and 
~z-  Oh 

R~(q) = ~ (cos ~ -  cos ~h) i~ sin ~b &b, r = 1, 2. 

0 

(109) 

When the loading i~(~, y) is expressed as the series with N = 4 chordwise terms in equation (8) with 
bars inserted, equation (108) becomes 

Q"(q)=A[f'~(Y)C~'+K(Y)C,'+z"(Y)C"+Y~rff')c,~ 1 ,_ (110) 

where the chordwise integrals C v C~, CK and C~ correspond to the four chordwise functions associated 
with f, #, x and ,I respectively; these integrals are defined analytically as functions of the hinge-line 
parameter ~b h by equations (50). Similarly, equation (109) reduces to 

A[ ] Rr(O) = n ~r(Y) O1. + fir(Y) Du + fir(Y) D,~ + ).~(y) D~ , (111) 

where the functions D~., D~,, D,, and D~ are defined in terms of ~b h by equations (52). It follows that the 
derivatives of equations (105) and (106) can be expressed in terms of the spanwise functions Qr(q), r = 1(1)5, 
from equation (110), R 1 (q) and R2(q) from equation (111). Hence, for an outboard control, equations 
(105) reduce to the integrals 
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and 

1 

-z¢  = f Q1 dO 
rla 

1 

fr 2 ho/ 2 M ,c M2 1 31d 
rla 

(112) 

Similarly, equations (106) become 

and 

= 

1 

i" Q 2 df ] 

1 

[ m ~ _ _ z ~ C C r ~ o l l : I F m 2 X h  I/fl2--m2~ c 

qa 

(113) 

To complete the evaluation of the lift and pitching-moment derivatives, the values 9r(P,), fir(P,) . . . .  
from the collocation solutions are inserted into equations (110) and (111). In general, 0 = r/, does not 
coincide with a collocation section 0. and the interpolation polynomial of equation (102) is used to 
obtain the necessary values of ?r(v,,), tidY,) . . . .  Then the numerical procedure of Section 5.2 is applied 
to the spanwise integration of equations (112) and (113), whereby each derivative is expressed in terms of 
the values of its respective integrand at q = t/a and at the collocation sections f / =  f/, within the control 
span. This will incorporate any spanwise variation with f /of the planform data -Th(P), C(~) and also (hh = 
cos-~ (1-2E) through the eight functions C r . . . .  D z, which are defined by equations (50) and (52) and 
tabulated for E = 0-05(0.05)0.75 in Table 8. 

Application of the reverse-flow approach to the calculation of hinge moment due to symmetrical 
control rotation is considered in detail in the Appendix. From equations (A.2) to (A.4), we see that the 
problem of singularities in both the force and upwash modes persists into the reversed-wing formulation. 
The singularities in upwash are treated numerically by using appropriate chordwise and spanwise 
equivalent slopes, combined according to the procedure of Section 5.1. Altogether, the calculation of 
hinge moment to first order in frequency requires five additional reversed-wing solutions for the steady 
load distributions 1~(.~, ?) due to equivalent incidences ~ for r = 2,5,6,7,8. The followin~ table indicates 
the actual incidences that each ~ replaces and the chordwise and spanwise equivalent slopes from the 
Appendix. 

Chordwise slopes; Spanwise 
r ~re to replace special condition slopes 

( X -  Xh)/C o n  Sf 

Equation (104) with ~2f  

( ~ -  "2h)/g on S f 

[(~- ~OlC] ~ on  S s 

(Xh/C) ('2 - YCh)/e on S f 

e ; hinge moment 

ii : N th wing force 

( ; hinge reaction 

; hinge reaction 

; hinge reaction 

I~J t V 

£'2t v 

~tv 

~tv 
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Each of the chordwise slopes is chosen on a two-dimensional basis to satisfy conditions for the first 
( N -  1) wing forces and the special aerodynamic quantity listed above ; the 'hinge reaction' of equation 
(A.18), arising from the lift force on the control, gives a distinct condition relevant only to the reverse- 
flow formulation of hinge moment. The four types of chordwise slope are indicated by equations (A.16) 
when N = 4. Equation (A.15) in conjunction with equations (A.19) to (A.21) leads to the slopes e, and ~, 
whereas the .slopes ~," and l/s are dclcrnlincd by equation (A.15) with equations (A._'22i to (A.24}. In the 
case of a part-span control, the spanwise equivalent slopes flt~ and ~,~ of Sections 4.1 and 4.2 are selected 
according to the above table. 

In equation (A.26), the hinge-moment derivatives are expressed in terms of the five load distributions 
7,+(2, y) over the reversed v, ting by 

a n d  

-h+ - 

ss 

x -  Xh - 1 - M 2  x h  - - 

S f 

0 1 4 )  

For an outboard control, it can be shown that equations (114) reduce to 

a n d  

- h~ - -  

1 1 (;)2f 
l - -  rla Q6e dO 

tla 

1 

Rze+~gQs~+ Q6e-QT~- 

(115) 

where the spanwise functions Qre and R2e are determined by equations (110) and (l l l) with modified 
subscript. The evaluation of the spanwise integrals in equations (115) is effected by the numerical pro- 
cedure for hinge moment in Section 5.2. Thus, formulae for -h~ and - h  i are obtained in terms of the 
spanwise loading coefficients 7,e(Y,), fi,e(Y.) . . . . .  together with the corresponding values of C~ . . . . . .  D~ 
at the collocation sections ~, = sO,. To determine the values of the integrands at the lower limit of inte- 
gration in equations (115), the interpolation procedure of Section 5.2 is applied to the spanwise loading 
coefficients; the polynomial of equations (98) and (99) is used, except for Qse when the smooth poly- 
nomial of equation (102) is more appropriate. 

The evaluation of control derivatives by the reverse-flow approach, must be regarded with some 
reservations. For the indirect derivatives as well as for the hinge-moment derivatives, the calculations 
involve the integration of loading over the control area and this includes the leading-edge of the reversed 
wing, the region where collocation solutions are least reliable. In the case of the lift and pitching-moment 
derivatives in equations (105) and (106), there is no further difficulty since the reversed-wing solutions 
correspond to the simple modes of equations (104): the derivatives, so obtained, provide an important 
check that is independent of equivalent incidences. On the other hand, the derivatives -h~ and -17 i 
involve the special equivalent-incidence procedures and rather more lengthy computation from equations 
(114) than from equations (88) to (91) in direct flow. A further disadvantage is the greater extent to which 
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indeterminate chordwise equivalent slopes can arise, especially for compressible flow; as shown by 
equations (A.25), singularities occur when N = 3 if E = 0.375, and for three values E = 0.196, 0.417 and 
0.637 when N = 4. These limitations restrict the reverse-flow procedure to the role of providing altern- 
ative values of hinge moment in particular examples only. The simplest applications for a rectangular 
wing at M = 0 (Section 6.1) illustrate the difficnlties associated with singular solutions. In compressible 
flow the tapered swept wing with outboard control (Section 6.3) provides an example in which the range 
of E excludes any singularities in the equivalent slopes. 

6. Illustrative Calculations. 

Numerical applications have been made to the four planforms defined in Fig. 8. The examples have 
been chosen to demonstrate all aspects of the present method, and in each case to allow comparison 
with experimental or theoretical results from other sources. The principal objective is to evaluate the 
hinge-moment derivatives to reasonable accuracy, and their convergence with respect to the number 
of chordwise terms (N = 2, 3 and 4) is examined for each wing. 

The two untapered wings of aspect ratio 4 are considered with a wide range of control chord and 
span, but the calculations are restricted to incompressible flow and to constant values of the chord 
ratio E = Q/c over the control span. The results for the rectangular wing in Section 6.1 are mainly 
concerned with full-span controls and concentrate on the effect of E and the implications of the reverse- 
flow theorem in relation to chordwise equivalent slopes. The untapered swept wing is chosen partly 
because its spanwise loading due to part-span controls has been obtained by an electrical analogue v 
of the steady flow, and partly to illustrate the effect of sweepback. The calculations for Section 6.2, res- 
tricted to steady flow, show the influence on spanwise loading of the artificial central rounding in equations 
(4) to (6) by comparison with the analogue results for inboard controls. Stiffness derivatives for zero 
and 45-deg sweepback are compared for inboard and outboard controls over the whole range of span. 

The two tapered wings in Fig. 8 are considered in compressible flow, and the complete sets of pitching 
derivatives are calculated including the hinge moment from equations (27) and (28). Both wings have 
control surfaces with fixed hinge lines, a spanwise variation of E and a range of span; they therefore 
involve the most general procedure for combining chordwise and spanwise equivalent slopes (Section 
5.1). On the cropped delta wing, in particular, E has an extreme variation from ~ at the root to 1 at the 
tip, and the influence of Mach number is studied. The tapered swept wing has been treated theoretically 
for small frequency in Ref. 8, and derivatives from that source for an oscillating outboard control are com- 
pared with the present calculations ; a further important check on the wing forces from the present equiva- 
lent slopes is obtained by application of the reverse-flow theorem to slowly oscillating control surfaces, as 
formulated in Section 5.3. Two other special investigations for this wing are included in Section 6.3. Anti- 
symmetrical, as well as symmetrical, control deflections are considered, and both rolling and hinge 
moments in the case of antisymmetrical ailerons are compared with the corresponding theoretical quanti- 
ties when reflection-plane symmetry is assumed, as in a half-model experiment. The need to round the 
central region of a swept wing introduces the further question of rounding the swept hinge line in the full- 
span case, and the importance of this is examined. For  the tapered swept wing in Section 6.3 and the 
cropped delta wing in Section 6.4 the spanwise distributions of hinge-moment stiffness and damping are 
illustrated, together with the effect of Mach number on the latter wing. 

The ultimate objective is to adapt the present method to include some allowance for aerofoil section 
and boundary layers. There are insufficient experimental data to establish a practicable semi-empirical 
scheme, but measured hinge-moment derivatives are available in Refs. 9 and 10 for the rectangular and 
cropped delta wings. Sections 6.1 and 6.4 include relevant comments on the discrepancies between these 
measurements and the present theoretical results. Section 7 suggests a simple means whereby a known 
discrepancy in the stiffness derivative can be utilized to estimate a rather smaller discrepancy in the 
damping derivative. 
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6.1. Rectangular I44ng. 

The rectangular wing of moderately large aspect ratio A = 4 with control surfaces of constant chord 
does not introduce much interaction between chordwise and spanwise characteristics. The smooth 
equivalent incidences for part-span controls are easily determined from the appropriate equation (86) 
or (87), and as a further simplification the flow is taken to be incompressible. Only control oscillation is 
considered, and the six derivatives of lift, mid-chord pitching moment and hinge moments have been 
calculated from equations (32) to (36) by the present method with m = 15, q = 6 and N ~< 4. The various 
results from direct and reverse flow in Tables 9 to 12 serve to clarify many basic features of the theory. 
The discussion of the derivatives for part-span controls in Tables 10 and 11 is partly delayed until Section 
6.2; we now concentrate on full-span controls, and especially on the effect of chord ratio E. The particular 
aspect ratio with E = 0.2 enables us to make comparison between the theoretical hinge moments and 
the wind-tunnel measurements of Molyneux and Ruddlesden 9. 

The dependence of the lift-damping - z~  on E with its changing sign near E = 0.4 is illustrated by 
the curve in Fig. 3a. From the results in Table 9, - z~  and the stiffness derivatives - z e  and -m~ are 
less sensitive than -m~ to the number of chordwise terms N. Even so, the curves of pitching-moment 
damping against E for N = 2, 3 and 4 in Fig. 9 show good convergence, with nearly-indistinguishable 
curves for N = 3 and N = 4. Similarly good convergence for part-span controls is found in Table I0, 
and again N >/ 3 gives sufficient accuracy. Table 10 also includes a set of results for E = 0.35, in which 
the spanwise factors ~1 ~ for wing forces are replaced by ~1 ~. that would normally occur in the equivalent 
incidence for the spanwise distribution of lift or hinge moment. Although the effect on lift and pitching- 
moment derivatives is quite trivial, the distinction between ~1~ and ~1~ is seen to be significant in the 
application to spanwise loading in Fig. 5b. 

While the lift and pitching moment require equivalent incidences based on a,p in the present direct- 
flow method, Z~p is used in the calculation of hinge moment. This applies without question to the stiffness 
derivative -he ,  as is suggested in Fig. 3b and demonstrated conclusively in Fig. 10. The upper diagram 
of - he against E shows to large scale the very satisfactory convergence with respect to N, slightly marred 
when E increases above 0.4 as will be discussed later. By contrast, the small-scale lower diagram of Fig. 
10 shows the chaotic picture that emerges when a~p is used in place of r~v; only for the larger values 
o fE  > 0.4 is there any semblance of convergence with respect to N, and even for N = 4 there is a resulting 
error in -h~ of more than 25 per cent when E = 0.2. The high order of convergence with the special 
chordwise equivalent slopes z~p is maintained in Table 1 la in the examples by direct flow where the 
control has part-span from r/~ = 0.45 to the tip. 

The corresponding situation for the damping derivative -h~  differs in two respects. In the first place, 
the imaginary part of the boundary condition (1) and the quasi-steady incidence aal  in equation (23) 
are continuous at x = Xh; therefore the distinction between G2p and r2p is less crucial than between 
a~p and zip. Although the solutions with azp in the lower diagram of Fig. 11 show poorer convergence 
than the recommended ones with z2p in the upper diagram, the discrepancies between the two for N = 4 
only becomes appreciable when E < 0.2. In the second place, the damping -h~ in the second of equations 
(36) involves the coefficient --lhaf corresponding to the incidence ~3f indicated in equation (24) by 
means of the matrix operation BL~y. The most precarious assumption in the present method is that 
equivalent incidences ~ e  can be used to replace L~s by LI~ in this particular operation and so derive 
aa~ instead of 0~3f. It is recommended that, whereas --Ihlr (likewise - - I~¢  and --Ih4 f when M :p 0) 
is based on z~p and ~1~, the coefficient --]h3f should involve a different a~  based on aap and f ~ .  In 
Table 11 b there are a few examples where, instead, the same ~1 ~ = z ~ ptp ~,. has been used for both - I hl f 
and - l h 3  f. The convergence of -h~ with respect to N remains fairly salisfactory, but incomplete, which- 
ever - lh31 is used. Except for the smallest control E = 0.15, the two procedures show smaller differences 
when N = 4 than when N = 3 but these discrepancies are quite as significant as the incomplete con- 
vergence. 

Some support for the recommended procedure for - lhay,  based on a ap and ~ can be drawn from 
the evidence of solutions for the rectangular wing by reverse flow in Table 9. For the damping derivatives 
-z~  and -m~:, in Table 9b, the reverse-flow calculations depend only upon solutions in modes that 
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involve neither equivalent slopes nor any question of principle concerning R3f' The upper diagrams of 
Fig. 12 show equally good convergence when - m e  and - m e  by direct and reverse flow are plotted 
against N" in this example of full span and E = 0.25 the derivatives almost agree to four decimals when 
N = 4. Throughout Table 9 the lift and pitching-moment derivatives agree within 0.005 and 0.001 
respectively for all E. This justifies the use of the chordwise equivalent slopes a~p for wing forces, and in 
particular the procedure for %e involving the loading lle from the equivalent incidence Cqe. There is no 
fundamental reason why the same incidence e3e should not apply as well to hinge moment  in direct flow. 

As discussed in Section 5.3, the calculation of hinge moments by reverse flow involves additional 
types of chordwise equivalent slopes and is no simpler than the present method in direct flow. Although 
the two calculations of - h e  and - h ~  show fair correlation against N in the lower diagrams of Fig. 12, 
there are two undesirable features, the disparity in - h  e for N = 4 to be considered later and the rather 
slow convergence in -h~. The following table for r/, = 0 and E = 0.25 shows that --lh3: is solely res- 
ponsible for the slow convergence. 

N 

2 

3 

4 

- -  I h l  f - -  l h 2  f - -  I h 3  f 

0"7295 

0"7363 

0'7363 

0.2549 

0.2593 

0.2617 

0-0760 

0.1270 

0'1559 

It is likely that - lh3y would converge more rapidly with respect to N, if only c~3y could be obtained 
from a loading l~: that incorporated the correct mathematical singularities at the hinge. Then by use 
of an equivalent incidence --Ih3 f might be calculated as successfully as - I h l :  and --Ih2: in the table 
above. Without such precise treatment more chordwise terms are needed and the restriction is one of 
computation. With N = 4, the damping derivative cannot be trusted to much better accuracy than 
l0 per cent, which in practical terms is marginally adequate. 

Although the disparity in -h~  for E = 0.25 and N = 4 in Fig. 12 is a mere 1 per cent, the phenomenon 
can be seen in a more acute form for E = 0.20 in Table 1 la, where by reverse flow for N = 4 this derivative 
is clearly about 8 per cent too high. This raises the numerical difficulty that the chordwise equivalent 
slopes ~ arc indeterminate whenever the matrix, such as in equation (56), becomes singular. This situation 
cannot arise for wing forces since in direct flow the matrix, such as in equation (47), is always triangular 
with non-zero diagonal elements, and in reverse flow there is no problem of singularities in incidence. 
For hinge moments, however, the chordwise equivalent slopes become increasingly hazardous as N 
increases, and the critical values of E are listed in the following table. 

Singularities in hinge moment  N = 2 N = 3 N = 4 

Direct flow None None E - ~2 

Reverse 

flow 

- h e and - h a 

- h  e 

- h  a (M = 0) 

None 

None None 

E -  
12 i -h4 (M 4:0) 

The problem is more severe in reverse flow, where with N = 4 there is danger near E = 0-196, 0-417 
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and 0.637 in compressible flow. In direct flow the chordwise equivalent slopes rip or rzv escape trouble 
when N = 3 and only succumb near E = 0.583 when N = 4. This provides the explanation of the be- 
haviour of - h e  for N = 4 and E > 0.4 in the upper diagram of Fig. 10. The small discrepancy of about 
1½ per cent at E = 0.5 will clearly grow as E approaches 0"583. The complete story for - h e  and - h  i 
in the case of incompressible flow and N = 4 is depicted in Fig. 13 over the range 0.05 ~< E ~< 0-75. 
Because of the weaker singularity in ~2.f than in c~1 r, the singularities in -h~ at E = 0.583 in direct flow 
and E = 0.417 in reverse flow are very localized, and it is only necessary t o  avoid the critical values 
of E by +2  per cent for the discrepancies to become negligible. For  the stiffness derivative the region 
0.4 < E < 0.7 is fraught with uncertainty, but an estimate over the whole range could be made from 
a faired curve of the direct-flow results for 0.05 ~< E ~< 0.40 and 0.65 ~< E ~< 0.75 and the reverse-flow 
results for 0.40 ~< E ~< 0.60. There would be worse confusion for N > 4, since the critical conditions 
would occur at more values of E. 

These singularities have no physical aerodynamic significance and are implicit in the present use of 
equivalent slopes. It is important to consider how to get rid of the difficulty by further approximation. 
A satisfactory expedient is indicated in Fig. 14, where the first N' terms in the polynomial (44) are used 
to represent the chordwise equivalent slopes "c,.p(N' <~ N). The individual plots of - h e  against N for 
five full-span values of E are analysed for convergence in three ways: 

(i) the standard N' = N (full lines), 
(ii) fixed N'  = 2 (long dashed lines), 

(iii) fixed N = 4 and variable N'. 

In all these respects the convergence is good, except when E = 0.05 and 0.50. The small value of E slows 
down convergence with respect to N, but not to any serious extent : the large value of E is approaching 
the critical value for the singularity in rip, but the result for N' = 3, N = 4 is quite reliable and is the 
best substitute for the standard N = 4 solution in these circumstances. This smaller value of N' has 
negligible effect on the corresponding values of - h  e in Fig. 14. The results - h e  = 0.3456 and - h  e = 
0'3902 from Table 12 when E = 0'50, N' = 3 and N = 4 compare satisfactorily with the respective 
quantities 0.3451 and 0.3891 for N = 4 by reverse flow from Tables 1 la and 11 b. The expedient of reducing 
N' becomes necessary in Section 6.4, when E varies continuously from + to 1 along the span. 

Experimental data from Ref. 9 for a full-span control of chord ratio E = 0"2 are included in Figs. 10 
and I 1. The factor E - z  = 25 converts H a and He in Table 3 of Ref. 9 to h e and h e in the present notation. 
Both measured derivatives have smaller magnitude than the best available theoretical values with 
N = 4, the ratios being 0.56 and 0.69 for - h e  and -h ¢  respectively. These discrepancies are of higher 
order than any errors from theoretical or experimental technique and are attributable to the combined 
effects of thickness and viscosity, analysed in steady two-dimensional flow by the first author 19. Given 
the aerofoil section, the Reynolds number and the position of boundary-layer transition, the stiffness 
derivative for low frequency may be determined as one half of the hinge-moment derivative b2 from 
charts in Figs. 2a, 4, 5, 10 and 11 of Ref. 19. The 10 per cent thick RAE 101 aerofoil has trailing-edge 

- h e  

Thin aerofoil 

Thick aerofoil 

Thin wing 

Thick wing 

Theory 

0.461 

0.406 

0.376 

Ref. 9 or Ref. 19 

xtr = 0"lc 

0"291 

xtr = 0"6c 

0"312 

0.212 

Experiment 

' Theory (thin) 

0"63 or 0"68 

0"56 
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angle 2 tan -1 0.089, the Reynolds number in Ref. 9 is between 0.4x 106 and 2-3 x 106, but the state of 
boundary layer is not recorded. Thus the two-dimensional -h~  = - ½ b  2 has been determined for a 
representative Reynolds number 106 and boundary-layer transition (x,r) alternatively at 0.1 chord and 
0.6 chord; the preceding table shows some correlation between the data for the RAE 101 aerofoil and the 
rectangular wing. The results indicate that, of the 44 per cent discrepancy between thin-wing theory and 
experiment, 12 per cent due to aerofoil thickness and about 25 per cent due to viscosity can be predicted 
from two-dimensional considerations. A rough empirical method of bridging the rather smaller dis- 
crepancy in -h~  is suggested in Section 7. 

6.2. Untapered Swept Wing. 
Although the calculations for this wing are restricted to steady incompressible flow, there are several 

new features to be considered. Lift, pitching moment and hinge moment due to symmetrical part-span 
controls, outboard and inboard, are discussed : comparison with results for the rectangular wing of the 
same aspect ratio 4 shows the influence of 45" sweepback over a range of control span. The introduction 
of sweepback raises the question about artificial ceiatral rounding posed by the alternative shapes in 
equations (5) and (6). Arguments in favour of the latter are supported by independent evidence from 
electrical analogue v on stiffness derivatives and spanwise loading. The present method has been applied 
with m = 15, N = 2, 3 and 4 and q = 2N, as was found satisfactory for this planform in Ref. 11. The 
results, illustrated in Tables 13 to 15, include spanwise distributions of local centre of pressure and 
hinge moment. 

The evaluation of hinge moment is discussed in Section 5.2; the procedure involves the calculation 
of local hinge moments, defined by h~L in equation (92), and subsequent integration over the span of 
the control. Typical distributions of --h~L for the swept wing with outboard and inboard controls 
(E = 0.25) are shown in Fig. 15. Results with the outboard control of extent 0.45 ~< Ir/I ~ 1 (r/a = 0-45) 
are obtained from solutions with N = 2, 3 and 4, and from Fig. 15a it is apparent that insufficiency of 
chordwise terms leads to an underestimate near the inboard end and an overestimate near the tip, where 
the convergence of -h~L with respect to N is slowest. The corresponding picture for the inboard control 
of extent 0 ~< Ir/I ~< 0.45 (qf = 0.45) in Fig. 15b again shows the most variation at the centre and out- 
board and with respective tendencies to underestimate and overestimate -h~L when N is too small, 
but the whole distribution seems to converge with respect to N. The relatively large local hinge moment 
near 77 = ~ follows from the expected build-up of loading in the region of the trailing edge which is better 
rcprescnted by the collocation points as N increases. This characteristic of the swept wing is emphasized 
by comparison with the full curve in Fig. 15b for the rectangular wing with inboard control of the same 
span and chord. Although, from calculations with N = 4, the swept wing gives nearly 20 per cent more 
hinge moment at 11 = 0, the integrated value of the derivative -h~  = 0.292 is 14 per cent below the 
corresponding value - h e  = 0.340 for the rectangular wing. 

For outboard controls the hinge-moment stiffness is some 20 per cent lower for the wing of 45 ° sweep- 
back. This is shown in the upper diagram of Fig. 16, where the solutions with N = 3 for the two wings 
give similar variations in -h~  against r/,; the percentage reduction due to sweepback increases slightly 
as the span extends further inboard. The remainder of Fig. 16 illustrates by graphs against N the adequate 
convergence of -h~  for both wings with various values of rta and E. In all cases there is a substantial 
reduction in -h~ due to sweepback. An increase in control chord also reduces - h  e, since the hinge 
moment is divided by the product of control area and control chord; this effect is very small for the 
swept wing with full-span control, but becomes more marked when there is zero sweep or a part-span 
outboard control. 

In the preceding examples for the untapered swept wing the central rounding has been defined ac- 
cording to equation (5), as originally recommended in Ref. 5. Later analysis in Ref. 11 has established 
certain advantages from increasing the central rounding, for example, by taking equation (6) instead of 
equation (5) with the same spanwise extent lYl < Yi; the central displacement proportional to J(0) is 
then doubled, and as a result the collocation error is much reduced. However, unless the wing has small 
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sweep, the doubled rounding introduces a spurious effect of its own. It is shown in Ref. 11, that this 
rounding error is of the same order of magnitude as the collocation error and that, by chance, in steady 
flow more accurate results for wings at incidence are achieved with the central rounding of equation 
(5). Now it may be argued that aerodynamic forces due to the oscillation of trailing-edge controls are 
unlikely to be influenced much by the doubled rounding of equation (6), since the leading apex is at zero 
incidence: on the other hand, collocation error from the less gentle shape of equation (5) is likely to 
persist. There is reason to suppose that accuracy will be gained by changing the shape of rounding from 
equation (5) to that of equation (6). Tables 13 to 15 contain several illustrations of the changes in aero- 
dynamic loading so produced. In the first place, the results at the foot of Table 14a show that the hinge 
moments for E = 0-25, already discussed, are virtually unchanged; Table 14b shows that a 6 per cent 
decrease in local hinge moment - hcL at r/ = 0 is offset by smaller increases elsewhere. The lift and pitching 
moment in Table 13a are increased by about 3 per cent when Y/a = 0 and the control extends to the 
centreline, but the effect diminishes below 1 per cent for r/a t> 0"25. Table 15 shows that the preferred 
rounding from equation (6) increases the central lift by as much as 16 per cent, but over the outer part 
of the span the increment falls to 2 per cent and below. Likewise in Table 13b, the local centre of pressure 
as a fraction of local chord, 

Xcp(~l) = 1__~,  (116) 
7 

is seriously affected in the central region only. 
In the absence of exact theoretical results, we look to the analogue experiments in an electric tank 

for the particular planform. Enselme v uses two models of the flow past a lifting surface, in which the 
electric potential is identified with the perturbation velocity potential and the perturbation acceleration 
potential respectively. In the velocity-potential analogue, from which we are to take results, there is a 
tank of liquid with its free surface representing the half plane of the wing and with one wall as the plane 
of symmetry y = 0. The velocity potential is represented by a large number of small electrodes over the 
planform and by narrow conducting strips in the wake of potential such that the Joukowski condition 
is satisfied along the trailing edge. The boundary condition at the wing or control surface requires an 
electric current proportional to local incidence; when this is satisfied, the potentials of the electrodes 
determine the aerodynamic loading. There are data from the velocity-potential analogue in, Figs. 7 to 
11 of Ref. 7 that can be compared with the results of the present method. Moreover, in Figs. 7 and 9 
of Ref. 7 there are independent results from the acceleration-potential analogue that confirm the lift, 
pitching moment and spanwise loading from the velocity-potential analogue for full-span and part-span 
controls. 

The data in Fig. 7 of Ref. 7 are converted to the present notation in the plots of - z  e and - m  e against 
fir in Fig. 17. These show distinctly better comparisons with the present method when the central rounding 
from equation (6) is used in place of that from equation (5). Fig. 17 also illustrates the effect of sweepback 
which is quite small on lift until the inboard flap extends beyond r /=  0.4; but the moment about the 
mid-root-chord pitching axis is negligible for the rectangular wing when E = 0"25, while its variation 
with increasing r U for the swept wing shows the expected aft movement of centre of pressure. The con- 
vergence of - z  e and - m  e with respect to N in Table 13a is nearly as convincing as for the rectangular 
wing in Tables 9a and 10a and, from the practical standpoint, leaves little to he desired. 

To obtain the spanwise loadings in Table 15 and the values of Xcp in Table 13b, the equivalent incidences 
trip(E) ~l~(rl,) are required. The one comparison between N = 2 and N = 4 in Table 15a indicates the 
small effect of N on loading over most of the span. Likewise, for the two cases in Table 13b, solutions 
for N = 2, 3 and 4 show good convergence properties of Xcp, except at the centreline and outermost 
collocation section i,/= 0.9808, where there are discrepancies of order 0.01. To this order of accuracy 
there is excellent agreement between the calculated X~p and the analogue data in Fig. 11 of Ref. 7. To 
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compare spanwise loadings, the quantities 7 from Figs. 8 to 10 of Ref. 7 are converted by the factor ½ and 
.used to obtain the plotted analogue results for outboard controls (E = 0"25) in Fig. 18a and for inboard 
controls (E = 0.15, 0.35) in Fig. 18b. Note first the good agreement between the present method and the 
electrical analogue in Fig. 18a when r/, >~ 0"45. The agreement is less satisfactory for the remaining 
broken curves in Fig. 18; however, with the central rounding of equation (5) collocation error is antici- 
paled whenever the control extends close to or includes the centreline. It is gratifying that the full curves, 
corresponding to the preferred rounding of equation (6) with yl/s = sin [~/(m+l)] ,  are in so much 
better agreement with the analogue results. 

6.3. Tapered Swept Wing. 
The planform of aspect ratio 2 and its swept hinge line are defined in Fig. 8; the control chord ratio 

E varies from 0.232 at the root to 0.326 at the tip. The wing is considered in compressible flow of Mach 
number M = 0-7806 such that the reduced aspect ratio flA = 1.25. The same configuration has been 
used in the related theoretical investigation for general frequency in Ref. 2 with outboard controls 
r/, = 0, 0-25, 0.50 and 0.75. The present results for low frequency therefore include some that were pub- 
lished in Ref. 2 and were calculated prior to the advance in lifting-surface theory in Re['. 5. Certain other 
improvements in the treatment of control surfaces have subsequently been introduced, especially with 
regard to equivalent incidences and the artificial rounding of planform and hinge line. Since this parti- 
cular example is the most general one to be considered and all aspects of Sections 4 and 5 are taken 
into account, we shall study the numerical significance of the various refinements. Another factor, govern- 
ing the choice of configuration, is that a half-model of the wing with oscillating control of part-span 
0.5 < r/ < 1 is to be tested at the N.P.L. in subsonic and transonic flow. Since this is intended to represent 
an aileron, it is necessary to examine the effect of the reflection plane on rolling moment and hinge moment 
by comparing calculations for symmetrical and antisymmetrical spanwise loading. 

The pitching derivatives for the tapered swept wing have been discussed in Ref. 11, notably with 
reference to Fig. 22 of that paper. Checks by reverse flow have revealed quite large discrepancies in 
- z  o and -mo when the artificial rounding in equation (5) is used, and these are attributed to collocation 
error. The doubled rounding from equation (6) virtually eliminates the trouble, but it is necessary to 
compensate for the effect of rounding or to ensure that this is reasonably small, as is thought to be the 
case for these particular derivatives in Table 16a. Good convergence with respect to .N(= 2, 3 or 4) is 
found for both lift and pitching moment and also for - h o  and - h  o in Table 16b. These cross derivatives 
of hinge moment, defined in equations (27) and (28), show a small dependence on the choice of planform 
rounding, but are more sensitive to the parameter q from equation (15) and to the question of rounding 
the hinge line. The analysis in Ref. 11 establishes that q = 6 often suffices where the original method 
(with q = l) does not, and that the errors with q = 1 tend to increase as N increases: in the present in- 
stance 8 per cent of -h0  is at stake for the full-span control when N = 3. For  the untapere d swept wing 
in Section 6.2, the hinge line is rounded to remain parallel to the leading and trailing edges and to pre- 
serve the control area. Now, however, the sweepback of the hinge line is unrelated to that of the leading 
or trailing edge: consistent with equations (4) and (6), we take 

xh(y) = Xh~+{Xh(Y,)--Xhr}f(2) over lYl < Y,, (117) 

where Xhr is the true hinge ordinate at the root, 2 = l y I/Yi, 

f(2) = ½ + 2 2 - ½ 2  a and y, = sS inm+ ~ (118) 

This is thought to be preferable to leaving the hinge line straight, and Table 16b shows in the full-span 
case a reduction of 5 or 6 per cent in the calculated values of - h  0 and - h  0. 

The wing forces due to control rotation are included in Tables 17a and 18a. The following table lists 
the available results for the full-span control and N = 3. 

38 



Hinge 

Straight 

Straight 

Straight 

Eqn. (117) 

Planform 
rounding 

Eqn. (5) 

Eqn. (5) 

Eqn. (6) 

Eqn. (6) 

0.946 

0.918 

0.942 

0.937 

0.595 

0.587 

0.592 

0.594 

-z~  

-0.083 

-0 .052 

-0 .079 

-0 .092 

0.110 

0'111 

0'109 

0.102 

The lift derivatives are more sensitive than those of pitching moment about mid-root-chord. The first 
set with q = 1 is from the original low-fi'equency data used in Ref. 2. Although the effects of increasing 
q to 6 and of increasing the central rounding to that of equation (6) largely cancel each other, both are 
more significant than the influence of the rounded hinge line. A striking result is that, while - z~  and 
-Zo are of similar magnitude, the derivative z4 is only 7 per cent of - z o  for the pitching axis through 
mid-root-chord, but it is pertinent that -z~  passes through zero as the axis traverses the hinge line. 
Fig. 19 shows the effect of part-span q, ~< r/~< 1 on the lift derivatives. Of the three solutions indicated 
in the legend, the full curves are preferred to the results with the planform rounding of equation (5). 
It is fortuitous that the q = 1 solution lies so close, for its accuracy is impaired not only by the choice 
of rounding but by the lack of two other refinements; in place off21 ~ in equation (84) the spanwise equiva- 
lent slopes ~1 ~ tor spanwise loading are used and, furthermore, the gradient term involving ~"~2v is omit- 
ted altogether. The greatest differences in Fig. 19 at r/, = 0 have already been discussed; some confi- 
dence can be placed in the relatively flat curve of - z~  near q, = 0, so as to cast doubt on the original 
behaviour for q = 1, which is now thought to arise from collocation error due to insufficient planform 
rounding. The revised values of all four wing derivatives with q = 6 in Tables 17a and 18a show excellent 
convergence with respect to N and agreement within 0.003 of the values obtained by Woodcock s for 
r/, = 0.5. Moreover, the checks by means of reverse flow in Tables 17b and 18b are convincing, as illus- 
trated in the graphs of the damping derivatives -z~  and - m e  against N in the upper diagrams of Fig. 20. 

Corresponding results for hinge moment are less satisfactory as regards reverse-flow checks and 
convergence with respect to N. The lower diagrams of Fig. 20 are prepared from values of - h~ and - h~ 
for r/~ = 0.5 in Tables 17 and 18. Whilst -h~  converges well enough with respect to N in direct flow, 
the sarnc is not true of the calculations by reverse flow: by contrast, -h~ satisfies the reverse-flow check 
to reasonable accuracy, whilst the convergence is rather slow. Although difficulties in - h e  with four 
chordwise terms have been encountered for the rectangular wing in Fig. 13, these do not arise in the 
relevant range of control chord ratio 0.25 < E < 0-33. Without offering an explanation of the discrepancy 
in - h e  obtained by reverse flow, we regard the result as further evidence to discourage the application 
of reverse-flow principles to hinge moment (Section 5.3), especially when there is the complication of 
control taper. Unlike that for the rectangular wing in Section 6.1, the rather slow convergence in -h~ 
is not primarily due to the hinge-moment coefficient - Iha l ,  as the following table shows. 

N 

2 

3 

4 

- - I h l f  

0.3164 

0.3706 

0'3792 

- -  Ih2 f 

0.0912 

0.1117 

0'1217 

--[haf 

0.0598 

0.0917 

0'1075 

- -  Ih4 f 

0.5617 

0.6619 

0.6786 

- -  I h  I f 

0.5938 

0.6934 

0"7051 

From equation (36) it is seen that the compressibility factors with/~ = 0.625 ( f l - 3  : 4.1) aggravate the 
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problem, so that the coefficients are needed to better accuracy than for incompressible flow. Nevertheless, 
the present results with N = 4 are probably adequate for semi-empirical use at sub-critical Mach numbers. 
The comparisons with the values - h e  = 0.363 and - h  i = 0.197 from Ref. 8 show that the former is 
unsatisfactory, because in effect the equivalent incidences in Ref. 8 correspond to chordwise slopes 
alp and, as we have seen in Fig. 10, it is essential to use Z~p; as in Fig. 11 with N = 4, the use of'rzp in 
place of o'2p iS less critical, and therefore the value of -h~ from Re['. 8 is well within the present uncertainty 
arising from incomplete convergence. 

The dependence of hinge moment on control span is presented in Fig. 21, where the full curves from 
direct flow are regarded as the best available for N = 3 and show how both stiffness and damping decrease 
in magnitude as q, increases. Apart from the less accurate results by the reverse-flow method, the only 
significant differences in -h~ arise from the choice of rounding in the full-span case. Another value 
- h :  = 0.481 for r/, = 0 in Table 17a shows that the hinge rounding has more effect than planform 
rounding in this case. The same is probably true of -h~: the large discrepancies between the full curve 
and the circles in the lower diagram of Fig. 21 arise primarily because, in common with the original 
calculations with q = 1, the solutions corresponding to the planform rounding of equation (5) use the 
equivalent slopes r~p or rzp and WI~ throughout. It has been demonstrated in Section 6.1, however, 
that the combination alp and f2~ should be used in the matrix operation to obtain c~3~, even for the 
purpose of evaluating - lh3f, and this procedure has been followed in the calculations with q = 6 and 
the doubled rounding of equation (6) in Table 18a. It may be helpful to set out the refinements leading 
from the original method to the present standard method in five stages: 

(a) to replace q = 1 by q = 6, 

(b) to replace planform rounding of equation (5) by equation (6), 

(c) to include spanwise gradient correction hu2,. in addition to Wh,, 

(d) to replace Zlp by a~p in the evaluation of --Ih3 I, 

(e) to replace WI~ and W2v by f~t~ and f~2~ respectively in the evaluation of - l ha l .  

The following table illustrates the effect of each stage on the hinge-moment damping for N = 3 in the 
case t/, = 0.5, chosen to avoid the complication of rounding the hinge line. 

Rounding 

Eqn. (5) 

Eqn. (5) 

Eqn. (6) 

Eqn. (6) 

Eqn. (6) 

Eqn. (6) 

Eqn. (5) 

I 
q 

1 

6 

6 

6 

6 

6 

1 

Slopes for o%i 

"Clp ~ k]'/1 v 

- 174 

O ' l p  ~ I'I'/1 v 

0"2113 

Zip, Wl~ 0"2058 

'rip, byte, 0-2055 
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Stage (a) produces a change of about 3 per cent: neither stage (b) nor (c) is really significant, and it seems 
true in general that the aerodynamic derivatives are not very sensitive to whether the discontinuous 
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gradient at q = r/, is included, but the change of spanwise equivalent slope in stage (e) contributes 2 per 
cent: the large decrease of 12 per cent in - h  i is due to stage (d), and the first and last values of - h  e 
show that a similar decrease is achieved when alp replaces Zip in the original calculation of --lha:. As 
in Section 6.1, the derivative by reverse flow, - h  i = 0.1695, tends to support the method that is now 
recom men d ed  

The spanwise distributions of hinge moment are formulated in equations (90) and (91) and are illus- 
trated for the part-span case r/a = 0"5 in Figs. 22 and 23. The steady distribution -heL, with average 
value equal to the stiffness derivative -he ,  is plotted against r/ for N = 2, 3 and 4; Fig. 22 shows the 
largest differences over the inner half of the control span. Referring back to Fig. 15a for the untapered 
swept wing, we see the same tendency to underestimate --heL over the inner half and to overestimate 
-h~x ~ near the tip, if too few chordwise terms are taken. Nevertheless, the distributions with N = 4 
have probably converged well enough. The full curve of -h~s, in Fig. 23 gives the corresponding dis- 
tribution of the damping with N = 4, and the other three curves represent particular contributions 
from equation (91). In the first place we consider the quasi-steady problem in which the imaginary part 
of the boundary condition in equation (1) is treated in isolation; thus by equation (3) and the definition 
of ~zs in equation (23) 

= - w / U  = (icoe ~ o / U )  ~ 2 : ,  

and equation (96) becomes simply 

A fL'~ 2 Fz (r#) (119) 
=-,it 

This quasi-steady contribution accounts for about half of the damping. Another distinctive term in 
equation (96), on which the discussion has centred, is the third term in the square brackets associated 
with the loading 13s and proportional to f l-2;  in Fig. 23 this second contribution is slightly larger than 
the quasi-steady part and of opposite sign, so that the remainder of the damping turns out to be rather 
larger than - h ~ .  By inspection of equation (96), it can be seen that this third and largest contribution 
is proportional to M 2 fl-z, which stresses the growing importance of numerical accuracy as Mach 
number increases. 

The calculations include cases in which the port and starboard controls oscillate antisymmetrically; 
the lift and pitching moment vanish identically, but the derivatives of rolling and hinge moment from 
equations (35) and (36) are required. It is planned to estimate the rolling moments from half-model 
experiments with the tunnel side-wall, as reflection plane. Since the measured quantity will correspond 
to a 'bending moment '  with force mode proportional to ]r/i and symmetrical spanwise loading, the 
special derivatives - b~ and - b~ have been computed from the formulae 

1 [ -M2f  • x x f12 M 2 M 2 
(12o) 

with the aid of equations (37). The formulae for hinge moment and the method of calculation in Section 
5.2 apply to symmetrical and antisymmetrical cases alike. The available derivatives are given in Table 
19, and the results for N = 3 are plotted in Fig. 24. The ratio ljb~ decreases rapidly as t/~ decreases, 
and the value 0.874 for qa = 0-5 is the correction factor that must be applied to the measured half-wing 
rolling moment as part of the tunnel-wall constraint. The corresponding ratio of the two values of h e 
is 0.966 and shows, as expected, that the starboard hinge moment is less influenced by the sense in which 
the port control oscillates. The damping derivatives - l~ and - b~ are small, but of opposite sign : unless 
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measurements of the latter derivative confirm theoretical prediction, no wall correction can be attempted. 
Provided that r/a >~ 0'25, -h~  is virtually uninfluenced by the reflection plane; in this respect the half- 
model experiments will be fully representative. 

6.4. Cropped Delta V~ng. 

The fourth and last planform, defined in Fig. 8, has the lowest aspect ratio 1.8 and high taper with 
cr = 7c, The full-span control with unswept hinge and constant chord c r = c t has been the subject of 
an oscillatory experimental investigation by Bratt et al, 1° who determined the direct hinge-moment 
derivatives - h~ and - h~ over a range of Mach number. The present calculations also cover outboard 
part-span controls. To enable comparisons to be made with the measured derivatives, the theoretical 
results are obtained for the four Mach numbers 0, 0.553, 0.745 and 0.866 corresponding to equally spaced 
values of/~. An important feature of the planform geometry is the rapid spanwise variation of the chord 
ratio E from ~ at the root to 1 at the tip. This contains the special value E = 0"58) for which the chord- 
wise equivalent slopes rrp are unobtainable when N = 4. The expedient of reducing N'  from 4 to 3, 
already discussed in Section 6.1, is successfully applied to the evaluation of the spanwise distribution 
of hinge moment.  

The derivatives for pitching motion about an axis through the mid-root-chord are given in Table 20. 
The wing derivatives for M = 0.745 in Table 20a show that the factor q is much less critical than for the 
tapered swept wing with similar reduced aspect ratio flA ; the small effect of increasing q from 1 to 6, 
with N = 3, is thought to be associated with the unswept trailing edge. The results in Table 20a also show 
remarkable convergence with respect to N for all the derivatives - z  o, -too, - z o  and -mo.  The effect 
of Mach number is shown in Table 20b, and from M = 0 to M = 0.866 compressibility has caused the 
lift derivatives to increase by about 14 per cent and those of pitching moment  by roughly 60 per cent. 
The hinge-moment derivatives in Table 20c introduce the control-span parameter  r/a, and it is found 
that the trend of - h 0  against r/, reverses as M increases from 0 to 0.866. For r/a ~< 0'5 this derivative 
varies by less than 14 per cent, while - h  o shows a large dependence on Mach number similar to that 
of -too. The calculations from equations (28) present no special difficulty. The chief uncertainty arises 
from lack of experimental data on - ho, especially in view of the expected large effects of boundary layers 
on the stiffness derivative. 

The wing forces due to control oscillation are presented in Figs. 25 and 26 as functions of M and ~, ; 
these results for m = 15, N = 3, q = 6 and the planform rounding of equation (6) are taken from Tables 
21b and 22b respectively. The stiffness derivatives - z~  and - m ~  are plotted against Mach number in 
Fig. 25 for the particular values r/a = 0, 0"25, 0"50 and 0'75. Both derivatives show a steady decrease as 
the control span s(1 -r/a) decreases, and the greatest effect of M occurs in the full-span case. The damping 
derivatives in Fig. 26 are plotted against qa for the four Mach numbers M = 0, 0'553, 0.745 and 0.866. 
There is again a progressively larger effect of compressibility as control span increases, until for r/a = 0 
the value of - z~  decreases from 0.12 to -0-21 as M increases from 0 to 0.866; the smaller effect on - m ~  
is limited to an increase of at most 22 per cent. The further results for the four derivatives in Tables 21a 
and 22a show quite small dependence on the spanwise integration parameter q and satisfactory con- 
vergence with respect to the number of chordwise terms. 

Before discussing the integrated hinge-moment stiffness and damping, we consider their spanwise 
distributions in Figs. 27 and 28. The case of greatest theoretical interest is the steady distribution of 
- h~j in Fig. 27a over the half-span outboard control, for which E varies from 0.25 to I and passes through 
the special value E = 0.585 at r/ = 0.881. Although this position is nearly midway between the collcation 
sections r / =  sin (wr/16) with v = 5 and 6, the implied singularity in rtp, discussed in Sections 3.2 and 
6.1, clearly disrupts the standard solution with N = 4. The effective remedy is to reduce by one the order of 
the polynomial representing the chordwise equivalent slopes; the designation N' = 3 implies a quadratic 
variation in ~e(X) at all sections, and the combination N = 4, N'  = 3 means that the four chordwise 
terms and collocation positions are retained. The dot-dash curve in Fig. 27a is preferable to the standard 
solution N = N' = 4 in the peculiar circumstances and should also be more accurate than the result with 
N = N'  = 3. In the case of the inboard control ~7 r -- 0.5 in Fig. 27b, E ~< 0-25 and the same difficulty 

42 



does not arise; the standard N = 4 solution is then the best available and gives some idea of the deficiencies 
of the solution with N = 4, N' = 3. The general impression from Fig. 27 is the inadequacy of the standard 
N = 2 solutions for hinge moment and accuracy of the order _ 10 per cent in the solutions with N' --- 3. 
The distributions of hinge-moment damping for the four Mach numbers in Fig. 28 are given for q, = 0.5 
by standard N = 3 solutions that present no difficulty. The quantity --h~L from equation (91) or (96) 
is more sensitive to Mach number away from the wing tip, and this results in a more peaky maximum 
near q = 0.75 as M increases. Since - h~ is the average value of - h¢L, the large compressibility effect on 
this damping derivative in Table 22b can be associated with the inner part of the control span. The 
values of - h  e and - h~  in the last two columns of Tables 21a and 22a show rather less dependence on N' 
than might be expected. Changes of sign in the discrepancies between the full and dot-dash curves in 
Fig. 27a lead to considerable cancellation of errors in the integrated derivative -he ,  and the resulting 
difference is no more than 5 per cent, and in the case of - h e it is only 3 per cent. This smaller discrepancy 
could be anticipated from the direct-flow results (N = 4) for the rectangular wing at M = 0 in Fig. 13, 
where the divergence of -h~  near E = 0.583 reflects the localized effect of the weak singularity in c~2i 
in contrast to the wider influence of the discontinuity in c~is on the divergence of - h  e. Of course, for 
compressible flow the step discontinuities in ~1i and ~4i influence -h~  through the coefficients - Ih*  I 
and - Ih4 f of equation (36), and there is reason to prefer the results from the last column of Table 22a. 

In Fig. 29, the two hinge-moment derivatives in the full-span case are plotted against M and compared 
with the experimental results of Ref. 10 tbr an amplitude of oscillation Q = 1 ° and frequencies of 27 
and 104 cycles per second. The present theoretical results in the limiting case ~--*0 are used for the lower 
frequency; but, since ~ is shown to range from 0.6 to 0.25 for the higher frequency, - h i has been corrected 
for frequency effect by equation (17) of Ref. 20, whence for sufficiently small 

- he = ( -  h~) ~-*0 + ( A 9 / 1 6 )  (z¢ ho) ~-.o. (121) 

With the aid of the derivatives in Tables 20c and 21b and the graph of 9 in Fig. 29, the small correction 
to - h  e is indicated by the curve of long dashes, which is somewhat closer in shape to the experimental 
points ( x ) for the higher frequency. The greatest differences occur in - he, whose ratio of experimental 
to theoretical value varies from 0-72 at M = 0.553 to 0.58 at M = 0.866. At the lower Mach number the 
Reynolds number based on ~ is about 1.5 x 106, and the chord ratio at mid-semi-span is E = 0.25 ; when 
the charts of Ref. 19 are applied to this particular 10 per cent RAE 102 aerofoil section at M = 0 with 
boundary-layer transition xtr = 0-35c, the two-dimensional quantity - h  e = -½  b2 = 0.330 is estimated 
to be 0.70 times its theoretical value 0.474 for a thin hinged plate. It is not known how much Mach number 
affects this ratio 0-70, but it is of the correct order to explain the low experimental values of - h e in Fig. 
29. The measured damping derivative shows relatively small discrepancies due to the combined effects 
of thickness and viscosity until the Mach number exceeds 0"8. However, a curve through the preferred 
theoretical value (+)  at M = 0-745 would give somewhat larger differences, which are rather similar 
to that for the rectangular wing in Fig. 11. 

7. Empirical Correction to Damping Derivatives. 
The predictions of the present linear theory and the available measurements of oscillatory hinge 

moment on the rectangular and cropped delta wings have shown a consistent tendency towards better 
agreement for damping than for stiffness. Whilst experience from steady flow gives some indication 
of non-linear effects on stiffness derivatives at low frequencies, there is no such direct approach to the 
damping. The available two-dimensional experiments are of little help, because the theoretical damping 
derivatives at low frequency usually contain a dominant term in log 9 that does not arise for wings of 
finite aspect ratio. A greater barrier to the understanding of the three-dimensional problem is the un- 
predictable behaviour of unsteady boundary layers and their possible influence on the damping deriva- 
tives, especially those that involve control surfaces. The greatest uncertainty and the greatest need are 
felt in the upper subsonic speed range; the saving grace is that predictions within + 10 per cent will 
suffice in practice and, therefore, a much simpler empirical approach to the problem can be adopted. 
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Damping forces due to control oscillation are split into the quasi-steady contribution from c~ = (z2f 

and the residual part with the application of respective correction factors kl and k 2. Thus we write the 
corrected hinge-n oment damping in the form 

---- k I 1 I _ (-h4)c ~(-lh2f)q-k2I-h~-~fl(- h2f) 1 (122) 

with some prospect of determining kL and the possibility that k 2 will not be very different from unity. 
In the absence of further information we approximate to k l by putting 

(-h~)c = k,(-h~) (123) 

and identifying (-h¢)c with the measured stiffness derivative. From the following table it emerges that 
(- h¢),. is a fair approximation to the measured damping derivative when k 2 = 1, that is, when the residual 
part of the damping is taken to be insensitive to aerofoil thickness and boundary layers. 

Wing 

Rectangular 

Cropped delta 

Cropped delta 

N ,  N '  

4,4 

3,3 

4,3 

M 

0"553 

0'745 

0"866 

0"745 

kl 

0'56 

0"72 

0"66 

0"58 

0'68 

-h~  --lh2f) ( -  h4)~ ( - -  h~)~x p 

0.167 0.106 0.121 0.114 

0.133 

0-156 

0.187 

0.199 

0.250 

0.354 

0.288 

0.236 

0.302 

0.433 

0.340 0.164 

0.226 

0.264 

0.333 

0.264 

Although this is probably an oversimplification, it succeeds to an accuracy of at worst +_ 10 per cent 
in all the present examples. The resulting formula from equations (122) and (123) with kz = I, 

( -  h~)c = - h 4 - [  l (h~)c~] -hTl  Ih2+) (124) 

where (h~)c is taken from experiment, gives a significant improvement in all cases except the cropped 
delta wing at M = 0.553. Even so, for this Mach number the preferred solution N = 4, N' = 3 would 
probably give a larger value of -h~ in Fig. 29, and correction by equation (124) should then give a satis- 
factory improvement. Thus the preferred result with empirical correction for M = 0.745 is illustrated 
by the point c * ) in Fig. 30. At lower Mach numbers excellent comparison with experiment would be 
obtained, while at higher Mach numbers under transonic conditions the empirical correction would 
fail through being too small. 

The principle of equation (124) may be applied just as easily to estimate the order of magnitude of 
corrections to theoretical values of other damping derivatives. It is necessary to evaluate the stiffness 
derivative either from steady-flow measurements or from some semi-empirical procedure. It remains 
to be seen how successfully the procedure will fit the measurements of -z~, -m~, -b~ and - h  i to be 
made on the half-model of the tapered swept planform (Section 6.3). 

As a further illustration, the cross derivative - h  0 in equation (28) would be corrected by the formula 
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q (125) 

A rough estimate of the importance of the correction term can be deduced from a two-dimensional value 
of (ho)c/ho" in the following table (ho)¢ is obtained as ½ bl = ½0Ch/O~ from the charts of Ref. 19 and ho 
is the corresponding quantity from thin aerofoil theory, while the Reynolds numbers (R.N.) and positions 
of boundary-layer transition xtr are those already used in Sections 6.1 and 6.4. 

Aerofoil E 

10% RAE 101 0"20 

10 .°/0 RAE 102 0.25 

R.N. 

1"0 x 10  6 

1"5 x 10 6 

Xtr 

C 

0"10 

0"60 

0"35 

( - ho)c 

0.102 

0.120 

0.144 

- h o  

0"250 

0"250 

0"283 

(ho)c 
ho 

0"41 

0"48 

0"51 

Thus, for the respective rectangular and cropped delta wings with mid-root-chord pitching axis, we 
apply equation (125) and calculate the following results. 

Wing M 

Rectangular 0 

Cropped delta 0"553 

XO 

0.500 

0.875 

- - Ih l  

213 

0.124 

0.106 

- -  I h 2  

2~ 

0.249 

0.340 

(ho)c 
ho 

0"41 

0'48 

0"51 

-ho 

0-329 

0-329 

0.537 

(-ho)~ 

0"219 

0'232 

0.416 

The indications are that the cross derivative -ha from linear theory may require larger corrections than 
- h  E, with the corollary that measured values of - h  0 may be more dependent on Reynolds number. 

8. Concluding Remarks. 
(1) A linear theoretical method is presented for the treatment of arbitrary configurations of wing 

planform and trailing-edge control surface in low-frequency oscillatory motion in a uniform subsonic 
stream. Calculations of wing forces and control hinge moments and the associated spanwise distributions 
are illustrated and discussed for rectangular, untapered swept, tapered swept and cropped delta wings. 

(2) The present method uses combinations of chordwise and spanwise equivalent slopes to determine 
smooth equivalent incidences without discontinuities at the hinge-line and part-span boundaries. The 
equivalent incidences vary according to the aerodynamic quantity being evaluated and include allowance 
for wing and control taper. The example of the tapered swept wing introduces the full complication 
of a swept hinge line, spanwise variation of control-chord ratio E and additional terms due to com- 
pressibility. 

(3) Particular attention is given to h e and h E, the direct control derivatives, and to the corresponding 
distributions over the control span. Several refinements in technique have been investigated numerically, 
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especially those associated with the choice of chordwise equivalent slopes z,p, the incidence ~3e, the 
spanwise integration parameter q, and the central rounding of swept edges. An important consideration 
is the degree of convergence as the number of chordwise terms N is increased up to 4, a process greatly 
accelerated by the use of equivalent slopes. 

(4) The reverse-flow theorem yields wing forces due to control rotation without recourse to equivalent 
slopes. Results so calculated confirm that the present method is highly satisfactory for wing forces, and 
the special equivalent slopes for hinge moment are therefore applied with some confidence. The reverse- 
flow approach to hinge moment requires different equivalent slopes, as discussed in the Appendix; 
in application this alternative has proved less successful. 

(5) Derivatives of lift and pitching moment are calculated to a theoretical accuracy of 2 or 3 significant 
figures or decimal places. Theoretical errors in the hinge-moment derivative h e are usually reduced by 
an order of magnitude to within 2 per cent as a result of the special equivalent slopes. The damping 
derivative -h~ converges less well with respect to N, but with N = 4 it is thought to lie within + 10 per 
cent of the true linear solution. Smooth variations with flap chord, control span and Mach number 
are predicted for all derivatives. 

(6) The present method has limitations in addition to those of inviscid flow, thin wing, sub-critical 
Mach number and others associated with linear lifting-surface theory. The analysis is restricted to first 
order in frequency and to N ~< 4, and it covers spanwise loading but not the complete load distribution ; 
attempts to remove these limitations are envisaged in the final remarks below. Rigorous treatment of 
discontinuities at corners of a control surface is becoming possible on the principles of Ref. 21, but this 
cannot be incorporated in the present method. 

(7) The practical problem of a wing with fuselage remains unsolved. With a central body, it is probably 
best to extend the leading and trailing edges through the body side to define a gross wing. The present 
method can then be applied to the gross wing, suitably rounded, in combination with an oscillating control 
surface of given geometry. It should be noted that the expedient of rounding the central kink of a swept 
wing is a purely numerical artifice, the spanwise extent of the rounding being unrelated to body diameter. 

(8) The untapered swept wing is of special interest in relation to available comparisons with an elec- 
trical analogue of the steady flow. It is shown that the calculated spanwise lift distribution due to control 
deflection is in close agreement with the analogue results, especially when the artificial central rounding 
is increased so as to reduce collocation error. 

(9) The tapered swept wing is later to be tested as a half-model with aileron. Consideration of sym- 
metrical and antisymmetrical spanwise loading shows that reflection-plane symmetry has an important 
effect on rolling-moment stiffness and damping, while that on hinge moment is practically negligible. 

(10) Experimental hinge moments are available for the rectangular and cropped delta wings. In each 
case the large discrepancies between the measured and calculated h e are closely related to predictions 
from charts based on two-dimensional static tests. The damping derivative from the present method 
fits the experimental data much better, but the calculated values are larger in magnitude and the dif- 
ferences often exceed the 10 per cent accuracy that is claimed from a theoretical standpoint. 

(11) A simple empirical correction to -h~ is suggested in Section 7. The theoretical result is split into 
the quasi-steady damping and a residual contribution, the former being corrected by the factor required 
to reconcile the calculated and measured values of h e. At low speed and over a range of Mach number 
the available measurements of - h  i are thus reproduced within ± 10 per cent. The procedure suggests 
a method of estimating the likely order of magnitude of scale effect on other damping derivatives in the 
absence of experimental data. 

(12) While available measurements of oscillatory hinge moment are all too scarce, there is even less 
information on wing forces due to control rotation. The urgent need for relevant experiments is widely 
recognized ; in view of the greater difficulties of measuring cross derivatives, the use of pressure plotting 
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may well play an important part in future developments. 

(13) An extension of the present method to include chordwise load distributions is in course of in- 
vestigation. Whether the approach is through new chordwise equivalent slopes or through results already 
known at the collocation sections, there are basic difficulties to be overcome. For the rectangular wing 
with full-span control consistent results have already been obtained by the two approaches. 

(14) Just as there is a singularity in each of the chordwise equivalent slopes zrp when N = 4 and 
E = 0'583 and more numerous singularities in reverse flow, so similar difficulties would occur for more 
values of E as N increases. The extension of the present method to N > 4 would certainly improve the 
solution associated with aae without the above difficulties, because the equivalent slopes zrp are not 
involved. The other incidences a,, for hinge moment could probably be treated, if necessary, with N' < N, 
as became expedient in the present calculations for the cropped delta wing when N = 4; the contributions 
from are (r,~ 3) seem less sensitive to the number of terms in the chordwise equivalent slopes. 

(15) Previous investigations in Refs. 1 and 2 have shown on the basis of reverse flow, that equivalent 
incidences are virtually linear in frequency. It may be possible to use the equivalent incidences from the 
present low-frequency method to formulate the equations and obtain satisfactory solutions for an arbi- 
trary frequency, when a suitable computer program is available. 
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LIST OF KEY SYMBOLS 

A 

A~,,Au, A~,A~ 

A,B 

A,B 

b,~ 

be, b~ 

B: B u, B~, B z 

c(y) 

c:(y) 

Cn, Cv 

Cr~ C t 

6f 
(Ch)~ 

(CL)~ 

(C,.)~ 

(C,.,.)~ 

(Cmm~)~ 

C~.. C,. C~. C~ 

D~,, D u, D~, D~ 

E 

Ea 

Etk 

.~.) 

FA,) 

FT(,) 

h, 

h,y 

ho, ho 

h e, h~ 

h~L, h4L 

Aspect ratio of wing; 2s/~ 

Chordwise integration functions for hinge moment in equations (55) 

Real square matrices of order mN represented in equation (19) 

Corresponding matrices for reversed-wing planform 

Quantity defined in equation (17) 

Bending-moment derivatives due to control rotation in equations (120) 

Chordwise integration functions for hinge moment in equations (95) 

Local chord of wing 

Local chord of control surface 

c(y.), c(yv), including any planform rounding where l y] < Yi 

Root chord, tip chord of wing 

Geometric mean chord of wing 

Geometric mean chord of control surface 

Two-dimensional hinge-moment coefficient in equation (53) 

Two-dimensional lift coefficient in equation (46) 

Two-dimensional pitching-moment coefficient about quarter-chord axis 
in equation (46) 

Second pitching-moment coefficient in equation (46) 

Third pitching-moment coefficient in equation (46) 

Functions of ~h in equations (50) 

Functions of q~h in equations (52) 

Local control-chord ratio; Cg/C 

Value of E at section y = Ya 

Coefficient in equation (61) for ~e(rt) 

Function in equation (5) or (6) defining central rounding 

Planform geometry in equations (80) 

Functions in equation (93) defining local hinge moment (r = 1, 2, 3, 4) 

Spanwise function in equation (97) 

Column matrices for equation (22) and pitching motion 

Column matrices for equation (24) and control rotation 

Hinge-moment derivatives in equations (27) and (28) due to pitching 

Hinge-moment derivatives in equations (32) and (36) due to control rotation 

Local hinge moments in equations (90) and (92), (91) and (96) 
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HT 

Ibrf, [*brf 
I;., I ;*,. 

lhrf, l*hr: 

ILrf .... l'mr f 

KD ~2 

l(x) 

l,.(x) 

l(x, y) 

l~,I,~,l~: 

It, Ire 

1~, l~ 

In 

L, L~, L~: 

m 

mo~ 17"10 

m~, me 

M 

N 

N' 

P 

q 

Q,.,Q~e 

R1, R2, R2e 

s 

s I 

S 

S: 

True hinge moment (see table of conversion factors) 

Coefficients for bending moment in equations (37) due to control rotation 

Coefficients for hinge moment in equations (26) due to pitching 

Coefficients for hinge moment in equations (31) due to control rotation 

Coefficients for lift, rolling moment and pitching moment in equations (30) due to 
control rotation 

Empirical correction factors in equation (122) 

Two-dimensional smooth load distribution; equation (43) when N' = N = 4 

Two-dimensional loading due to G(X); l l(X), 12(X) in equations (41), (42) 

Non-dimensional load distribution in equations (7) and (8) 

Loading l(x, y) due to incidence G, C~re, ~r: 

Loading on reversed wing; equation (8) with a bar over each symbol in square 
brackets 

Loading 7(~, y) on reversed wing due to e~, 0~re 

Rolling-moment derivatives in equations (32) and (35) due to control rotation 

Natural logarithm 

Column matrix of unknowns from equation (11) in equations (19), (22), 24) 

Number of collocation sections; m = 15 in examples 

Spanwise integration parameter in equation (15) 

Direct pitching derivatives from equation (32) with ~ replaced by 0; derivatives in 
equations (39) of Ref. 5 

Pitching-moment derivatives in equations (32) and (34) due to control rotation 

Mach number of free stream 

Number of chordwise terms to be used in equation (8) 

Number of terms (~< N) in polynomial for c%(X) 

Integer denoting chordwise position of collocation point in equation (13) 

Unity or even integer; (~+  1)/(m + 1) 

Functions used in reverse-flow calculation of wing forces, hinge moment ; 
equation (110) corresponding to G, ~e 

Function in equation (111) corresponding to ~1, ct2, ct2e 

Real part of 

Semi-span of wing 

s(1 - G )  for outboard control; stl: for inboard control 

Area of wing planform; 2s0 

Plan area of starboard (or port) control ; s: ~: 
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t 

U 

w(x, y) 

x, y , z  

XO 

xh(y) 

xl(y) 

Xln, Xlv 

Xpv 

x,~) 

Xtr 

x , y  

X ,  X h 

Xcp 

Y, 

Yl  

Yi 

Y,, y~ 

Z 

- -  Z O ,  - -  Z 0 

- -  Z { ,  - -  Z ~  

O( 

~(x) 

9[ r 

~(x) 

O~re 

~rp(';) 
~,(tl ) 

time 

integers ~(m -- 1), ~ - -  1) 

Uniform velocity of free stream 

Upwash velocity over planform 

Rectangular co-ordinates with origin at root leading edge (Fig. la) 

Pitching axis (Fig. la); Xo = ½cr in examples 

Hinge line of control surface 

Leading edge of wing 

xt(y.), xl(y~) including any planform rounding where l Yl < Yi 

Streamwise position of collocation point in equation (13) 

Trailing edge of wing 

Chordwise position of boundary-layer transition 

Rectangular co-ordinates for reversed wing in equations (103) and (107) 

Hinge line on reversed wing; cr - Xh(y) 

Leading edge of reversed wing; cr -x t ( y )  

Non-dimensional chordwise parameter in equation (39), (53) 

Local centre of pressure in equation (116) 

Spanwise ordinate defining span of outboard control in Fig. la 

Spanwise limit of inboard control 

Spanwise extent of central rounding in equations (4) and (117) 

s sin [n•/(m+ 1)], s sin [vn/(m+ 1)] (n or v = 0, _ 1 . . . .  ! u )  

Upward displacement ; mode of oscillation 

Lift derivatives due to pitching in equation (32) with ~ replaced by 0: derivatives in 
equations (39) of Ref. 5 

Lift derivatives in equations (32) and (33) due to control rotation 

Local incidence 

Chordwise equivalent slopes to represent ~r(X) ; equation (44) when N' = N = 4 

Spanwise equivalent slopes in equation (61) or (76) to represent ~t(rl) 

Steady incidences in equations (21) and (22) for pitching mode (r = 1, 2, 3) 

Singular distributions of incidence in equations (39) (r = 1, 2) 

Smooth equivalent incidences to represent ~r¢ 

~r~ at collocation point in equation (84) or (85) 

Steady incidences in equations (23) and (24) for control-rotation mode (r = 1,2, 3, 4) 

Singular distributions of incidence in equation (79) 

Singular distributions of incidence in equations (60) (t = 1, 2) 
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0~I~ O~II~ O~IlI 

~'(q°) 

~re 

~(y), ~. 

~,(~) 

~, l~ e, K~, 2~ 

~:(y),/~,:(y) . . . .  

~:~:~, l a r c h ,  • . .  

7,(rt) 

~ (Y),/L (Y) . . . .  

~,e(.~), ~,.~(Y) . . . .  

,~,e, ~, ~0 

q 

0, 0~, 0. 

00 

~:(.v), f~. 

A 

AL, A T, Ah 

~(y), ~. 

~o 

~T 

~0T 

Three contributions to err(q) in equations (81)and (82) 

Spanwise gradient of a(q) at q = q. 

Steady incidences for reversed wing in equation (104) (r = 1, 2 . . . .  5) 

Smooth equivalent incidences for hinge moment by reverse flow (r = 2, 5, 6, 7, 8) 
as in Appendix 

Compressibility factor; (1 - M Z )  ~ 

First term in l(x, y), its value at y = y. 

Non-dimensional spanwise loading; circulation/(2sU) 

Arbitrary coefficients in l(X) and c~e(X) 

Particular distributions of 7(Y),/~(Y) . . . .  for loading It: 

Values of 7r:(Y.), #r:(Y.) . . . .  

Non-dimensional circulation for incidences a,(~/); 
)'t (q), Y2 (7/) in equations (73), (74) 

Distributions for reversed wing at incidence 5r 

Distributions for reversed wing at incidence ~re 

Chordwise equivalent slopes used in reverse flow (Appendix) 

_+ 1 according as control rotation is symmetrical or antisymmetrical 

Non-dimensional spanwise ordinates; y/s, y./s, yv/s 

Parameter for outboard control; y./s 

Parameter for inboard control ; y:/s 

Non-dimensional spanwise ordinate for reversed wing; y/s 

Angular spanwise positions; cos-  lr/, cos-  it/., cos-  lq. 

Amplitude of oscillation in pitching mode (radians) 

Third term in l(x, y), its value at y = y. 

[yl/y,(~< 1) 

Fourth term in l(x, y), its value at y = y. 

Angle of sweepback 

Sweepback of leading edge, trailing edge, hinge line 

Second term in l(x, y), its value at y = y. 

Integer denoting collocation section y = Yv 

Frequency parameter; coUU 

Angle of control deflection relative to stream direction (radians) 

Amplitude of oscillation in control-rotation mode (radians or specified in degrees) 

True angle of control deflection in plane normal to hinge line; ~secA h 

True amplitude in control-rotation mode (see table of conversion factors) 
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P 

O" r 

a,p(E) 

T, r 

4, 

~ h  

q' Atl, tl~) 

~,(tt, qo) 

~,.(tto) 

C 

e 

f 
H 

P 

r 

Density of free stream 

~e(X) to satisfy wing forces in Section 3.1 (r = 1,2) 

Chordwise equivalent slopes at positions ~b = ~bp (r = 1,2) 

ae(X) to satisfy hinge moment in Section 3.2 (r = l, 2) 

Chordwise equivalent slopes at positions q~ = q~v (r = 1, 2) 

Angular chordwise position in equation (9) 

~b on hinge line; cos-  1 ( 2 E -  1) 

2np/(2N + 1) (p = 1, 2 . . . .  N) 

Angular chordwise position on reversed wing in equation (107) 

Hinge-line parameter on reversed wing; (n-q~h) 

Representation of ~,(q) to satisfy sectional loads in Section 4.2 

Spanwise equivalent slopes at positions r /=  r/v (t = 1,2) 

Circular frequency of oscillation 

Representation of ~r(r/) to satisfy wing forces in Section 4.1 

Spanwise equivalent slopes at positions r/ = r/v (t = 1, 2) 

Subscript denoting empirical correction in Section 7 

Subscript indicating use of equivalent incidences 

Subscript denoting control-rotation mode, inboard flap or control-surface geometry 

Subscript numerating loading station y = y, 

Subscript numerating chordwise position of collocation point 

Subscript relating to steady incidence ~,, a,I, ~(X), 8,  ~e 

Subscript numerating collocation section y = y~ 

Conversion factors when hinge line is swept 

Quantities Conversion factor 

~, 3o sec hh 

Hinge moment cos Ah 

b~, b~, l~, 1~ cos Ah 

m~, rn~, z~, z~ cos Ah 

ho, h~ cos Ah 

h~, h~, heL, h~L COS 2 Ah 
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APPENDIX 

Hinge Moments by Reverse Flow. 

The reverse-flow theorem is applied in Section 5.2 of Ref. 6 to an oscillating control surface when 
the frequency parameter ~ 0 ,  expressions for the lift and pitching-moment derivatives being obtained 
in terms of integrated steady loads on the reversed wing. Now, a similar formulation of the direct control 
derivatives is considered for the symmetrical control-rotation mode. Relative to the stream direction 

where 

Hingem°ment=ff~6(x'y)Ap(x'y)dxdy'. 
S 

f (x, y) = - ( x -  Xh)/O on the control surface 

= 0 elsewhere on the planform 

(A.I) 

(A.2) 

and Ap(x, y) is the loading on the wing due to the control-deflection mode z(x, y) of equation (3) with 
= + 1. If equation (A.1) is identified with equation (5) of Ref. 6, it follows from the reverse-flow relation 

in equations (11) and (12) of Ref. 6 that 

~Z Z Hingemoment = f f gI~x+i~]A~idxdy, 
s 

(A.3) 

where Ap~ is the load distribution over the wing in reverse flow due to an upwash 

~, = N [ U  f(x,y)d'~'] ; (A.4) 

the direction of the free stream is reversed, but its magnitude and the frequency of oscillation remain 
unchanged. Inspection of the above equations shows that the gradients Oz/Sx and 8wi/Sx are both dis- 
continuous at x = Xh. Therefore, the reverse-flow formulation of hinge moment in equation (A.3) retains 
singularities in force and upwash modes with the associated difficulties encountered in the direct-flow 
problem. The singularities in ~i have to be removed by the use of smooth equivalent incidences in the 
collocation solution. 

To express equation (A.3) in terms of solutions for the reversed wing, we take a new origin at its root 
leading-edge and co-ordinates 

= (c~- x) and ~ = - y .  (A.5) 

Then, equations (A.2) and (A.4) transform to give the upwash distribution on the reversed wing as 

U e io~ on the control surface 

= 0 elsewhere on the planform 
(A.6) 

where xh(Y) = [Cr--Xh(y)] by planform symmetry. With z(x, y) from equation (3) and APi(ff, P) denoting 
the load distribution in the new co-ordinates, equation (A.3) becomes 
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Hinge moment 
(A.7} pU2S(2 =-~°f;[1-i f ' (~-~'~h-)]  Ap'('~'')d'ydfe½pU 2 S 

S.f 

where S l = s I es is the starboard half of the control area, which for an outboard control is bounded by 

~t(Y)~<ff~<~h(y)andy. 4Y~< 1. 

The solution for the loading Afi~(~, ~) to first order in frequency is formulated by applying the theory of 
Section 2 to the reversed-wing planform' a bar inserted over any variable parameter will refer it to the 
co-ordinate system (.~, 9). In particular, the boundary condition in the notation of equation (23) is deter- 
mined from equation (A.6) as the column matrix 

'I 1 = ~ ~ 2 i - i 9 ~ 5  (~vf+-~s S) , (A.8) 
_ pv 

where 

{Z2f = - -  

{X7f = - -  

x h ( Y )  _ 

{Z8f = - - - ~  ~ 2 f  
C 

on the control surface (A.9) 

and ~zs = ~Ts = ~ss = 0 elsewhere on the planform. If 7rs(~,.v) denotes the steady load distribution 
corresponding to the column matrix hrs = (~:,ffbvO, then to first order in 

{ [ ' M 2 x .  1 - M 2-  M 2-  "~ "} ia~tq 
m p i ( X , f ) )  : 1 p  U 2 ~  '2f-'l-i~k~12f-t-[,~15f--~-lT,--?~-18f)}~'~ J '  (A.IO) 

where the loading -lsf corresponds to the incidence ~sy determined by 

(~sf/b~v) = hs,t" = B A- 1 (~2f/bvv)p v (A.11) 

with matrices A and B for the reversed-wing analogous to those in equations (19) to (22). Formulae for 
the hinge-moment derivatives defined in equation (32) follow from equations (A.7) and (A.10), whence 
to first order in 

and J 
- he - 2 Ss  cl izf dX d~ 

s, 

. .  ( A . 1 2 )  

-h~-esSoy  J L - \ - a  2- /lk-~7-' ) 2Y+~ sY+~(~]zl - - lvY- '8 t  d,Yd•,- 
Sf 
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In order to apply the collocation method of Section 2, each 7,i(.~ , ~) must be replaced by a smooth 
load distribution ]~,,(,2, ~). The remaining problem is, therefore, the choice of smooth equivalent incidences 
~,~, at the collocation positions C~,~,.V~), to represent the incidences 5#1 of equations (A.9) and (A.11). 
By inspection of equations (A.12), we see that the first term in the integral for - h s  is a hinge moment 
o n  S t. due to the loading/2r, but that the other four terms in - h a  and the one term in - h e  can each be 
interpreted as a 'hinge reaction' proportional to the integral of 7,¢ over S I. The following table sum- 
marizes the five sets of equivalent incidences (8~)p,,, r = 2, 5, 6, 7, 8, used in the calculation of - h e  and 
-h~. 

Eqn. (A. 12) 

- -  h e  

- -  h~ 

Ternl 

1st. 

Incidence 
eqn. (A.9) 

O{2f 

0~2f 

Chordwise 
slopes 

Cp 

8p 

Spanwise 
slopes 

q',,. 

tp,, 

2nd. 85j 

3rd. 821 

4th 57r 

5ih. 8st 

'/% %,, 

~, %,, 

Equivalent 
incidences 

(•2e)pv 
(.~.~<.),,,. 
(o~,<.),,,. 

(~s<,)~,, 

Thus, the terms in - / k involve four different chordwise equivalent slopes that require special formulation ; 
as regards ~sr, the chordwise slopes/~p relate to tile smooth incidence to replace 82r in equation (A.11). 
121 the case of a part-span control, the symmetrical spanwise slopes tpl,. and ~x,. of Section 4.2 apply, 
except  as regards 8s.r when Dlv and f22~. are more appropriate. The equivalent slopes are combined by 
the numerical procedure of Section 5.1. 

It remains to formulate the four sets of chordwise equivalent slopes, c, 6, ~ and ~b, by analogy with the 
two-dimensional principles of Section 3. At any section within the control span, we write the incidences 
of equation (A.9) as 

~71 = ~2 (R) (A.13) 

where 

with 

~=(X) = - ( R -  E )  ~ 

= 0  

L ~,(v) l 

when 0 -%< X < E 

when E < X ~< 1 

and E : [-~h(.V)- ffl(Y)] 
L  (75 J 

(A. 14) 
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By analogy with equation (44) with N = 4 terms, we write 

~e(X) = ~[9~+4~e(~ +2~s(~)+~:~(l + 2~s~+2~s2~)+7te(~ +2c~s(~+2~s2~+ 2c~s3~)~(~.~5)~ 

where ~ = cos-~ (1-2.g) .  The unknown coefficients 7e, /7 . . . . .  are chosen to satisfy the conditions for 
the first ( N -  1) wing forces together with one special condit ion;  when N = 4, 

each ~e(X) gives (CL),, (C,,)~, (C,,,,)~ (s = 1 or 2), 

~(.g) = e. gives the correct (Cu),, 
~elX) = 6 gives the correct (C ..... )~, 

"2e(~ ) = ~" gives the correct (CR)I, 

~ ( ~ )  = 0 gives the correct (CR)2. 

(A.16) 

The coefficients (CL)~, (C',,)~, (C,,,,)~ and (C~m,~)l have analogous definitions to the coefficients in equations 
(46); on the other hand, we note that 

E 

1 I (-Cn)l =-E~ (X-E)-ll (X)dX 
0 

(A.17) 

is the hinge moment on a leading-edge control, in contrast to ( -Ch)r  in equation (53), and that (CR)~ 
for s = 1 or 2 is defined as the hinge-reaction coefficient 

E 

(CR), = f 7+(x) dX, 
0 

(A.18) 

where 7.,(.~) is the two-dimensional loading corresponding to ~,(,,Y) of equation (A.14). 
It can be shown that the slopes cTe(X) = e(X, E) are determined by equation (A.15) with the matrix 

equation 

12° ° °lI, / . .  
0 2 O 0 /7e / (Cm)l 

1 - 4  1 0 ~e / 8(C,,m)~ 

D,, o.  DK 

where D r, D, . . . .  are defined in equations (52) and 

2(CL) ~ = (TrE 2) A r of equation (55) 

32(C,,h = -(TrE 2) Au 

32(C~)t  = (~E2)(Ar+ t Au+A~) 

(Cn)I = (--Ch)2 of equation (57) 

(A.20) 
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If equivalent slopes e are required for N < 4, then ,~(X) is represented by the first N terms of equation 
(A. 15) and only the conditions for the first (N - 1 ) wing forces and for (C,h  are retained in equation (A.191. 
Bearing in mind that the equivalent slopes e, represent ~ (X) from equation (A.14), we can manipulate 
the equations when N/>  3 to express e in terms of ~2 ; at the collocation positions 

ep(E) = [E-Xp+z2p(1-E)] ,  p = I(1)N, 

2~zp "~ ( l - E )  are the chordwise equivalent slopes in Table 4 with where ,Yp = ½ 1 - c o s 2 N + l  j and z2p 

argument (1 - E )  instead of E. 
The slopes ~ ( ~ ' ) =  6(-g, E) are obtained, when N = 4, by equations (A.15) and (A.16), so that the 

last row in the matrix equation (A.19) is replaced by 

- g e +  12/7~-2 g:~+~e = 32(C,,,,,,)~ = -¼ (roE 2) (A~.+ a Au+2 A~+A~). (A.21) 

The slopes ~5(~, E) can be determined for N < 4 by reducing ~(,g) and the matrix equation to the first 
N terms and force conditions respectively. By manipulation of the formulae it can be shown that when 
N > ~ 3  

6p(E) = [ E -  Xp + aep(1 - E)],  

_ ( where Xp = ½ 1 - cos 2N + 1} and (rzp with argument (1 - E) instead of E may be obtained from Table 2. 

The hinge-reaction coefficient ((TR)~ of equation (A.18) and the first ( N -  1) wing forces are given cor- 
rectly by the incidence ~,.(X) of equation (A.15), if the N = 4 unknown coefficients 1~,/7 . . . . .  satis~' 
the matrix equation 

2 0 0 

0 2 0 

1 - 4  1 

C~. Cu C~ 

0 ~e 

Ca J'e 

(CL)s 
(Cm)s 

8(C,.,.)~ 

(A.22) 

where C~., Cu . . . .  are defined in equations (50) and the aerodynamic coefficients on the right-hand side 
correspond to the incidence ~s(X) of equation (A.14). When s = 1, the equivalent slopes ( are determined 
by equations (A.15) and (A.22) with (CL)~, (Cm)l and (Cm,,)l from equations (A.20) and with 

(CR)I =- E2(- Ch)l of equation (57). (A.23) 

Likewise, when s = 2, to obtain the remaining chordwise equivalent slopes ff defined in equations 
(A.16), the right-hand side of equation (A.22) requires the coefficients 

2(CL)2 = -- (zcE z) B~, 
/ 

32(C,,)z = (gEE) Bu i , 

32(Cm,.)2 = - OrE 2) (B~, + ¼ B. + B,,) | 

J 4~(CR)2 = [(~-- Ch) z (-- 1 + 2  COS ¢h--2 COS z (~h)+(~--¢h) sin Ch (1 -- 3 COS ~bh)-- sin 2 Ch COS Ch] 

(A.24) 
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where B~., B, and B~ are defined as functions of q5 h = cos -  l ( 2 E -  1) in equat ions (95). To  determine 
the slopes ¢ and ~ for N < 4, the matrix equat ion (A.22) is reduced to the condit ions for the first ( N -  1) 
wing forces and the hinge reaction (Cr)~, together  with J-e = 0 when N = 3 and #,, = J.,. = 0 when N = 2. 

The slopes s: and ~ or ~b are determined by equat ions (A.19) and (A.22) respectively, providcd that 
the malrices are non-singular.  Conversely,  when N = 4, the slopes ~: are indeterminate  if Dx = 0, whilst 
the slopes ~ and ~9 are indeterminate  if Cx = 0. Likewise, there are singularities in the corresponding 
matrices for N = 3 if D~ = 0 or C~ = 0, but only the latter is possible for 0 < E < I ; no singularities 
occur when N = 2. Hence, by means of equat ions (50) and (52), indeterminate  slopes are found to occur  
in the following cases : 

for s, when N = 4 and E = 0.416 

f o r ~ a n d 0 ,  w h e n N = 4 a n d E  = 1 - 2 - -  

or when N = 3  and E =  0.375 

(A.25) 

From equations (A.19) and (A.21) for N = 4 it follows that  fi can always be determined because the 
matrix is non-singular,  and this remains true for all N. 

In conclusion, it follows from the above equivalent-incidence procedure  that the h inge-moment  
derivatives of equat ions (A.12) are evaluated from 

cs | 
and 1 , (A.26) 

- M  2 f f - 2 h  - 1 - M z . 2  h _  _ _ 

,sj 

where the load distr ibutions ire(if, ,V) are obta ined from collocation solutions for the equivalent incidences 
(~r,,)~, on the reversed wing in steady flow. For  incompressible  flow the calculation of - h ~  involves 
just the two loadings ize and lse, with indeterminate  chordwise slopes e, only when N = 4 and E = 0.416; 
singularities in the slopes ~ would still affect - h ~  through i6e, if the part icular  condit ions in equat ion 
(A.25) were approached.  
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T A B L E  1 

Chordwise Equivalent Slopes ~tvfor N = 2, 3, 4 and E = 0"05(0-05)0.75. 

@lp for N = 4 
E 

p = 1 p = 2 P = 3 P = 4 

0.05 
0"10 
0"15 
0.20 
0.25 
O" 30 
O. 3 5  

-o'o67546 
-0"015801 
0"038897 
0"075837 
0"088379 
O'O76697 
0"045041 

0"o82910 
O" 016212 

-0"056951 
-0"1O8616 
-0" 127029 
-0-108205 
-0. 052866 

-0" 127177 
0"oo1624 
O" 179077 
0"565110 
o" 540o82 
o" 693420 
0"819821 

0.40 
0"45 
O'5O 
0"55 
0"60 
0"65 
0"70 
0-75 

0"000266 
-0"049136 
-0"093782 
-0"124O31 
-0"130570 
-0"105030 
-0"040644 
+0"066936 

0'035117 
0"149698 
0"283349 
0-427618 
0"573602 
0"712397 
0"835551 
0"935555 

0"917446 
0"986894 
1"030516 
1"051929 
1"055615 
I"O46589 
1"030084 
I"011247 

0"726131 
0"912025 
0"995830 
1"030325 
1"038650 
1"033513 
1"022530 
1"OLO355 
0"999739 
0"992124 
0"988020 
0"987273 
0"989258 
0"993038 
0"997510 

E 

O" 05 
0"10 
0"15 
O" 20 
O. 25 
O. 30 
O. 35 
0.40 
0"45 
0-50 
0"55 
0"60 
0"65 
0"70 
0"75 

~Ip for N = 2 ~Ip for N = 3 

p=l p=2 p=l p=2 P=3 

--0" 144234 
-0" 160420 
-0" 144774 

0"445241 
0"608283 
0"719336 

0"101655 
0"077635 
0"029982 

-0-148884 
-0"109327 
-0-023088 

-o. 109431 
-0" 060054 
-0- 000108 
O. O67954 
O- 142228 
O" 221130 
O" 3O3274 
O" 387390 
O'472269 
O. 556716 
O. 639503 
0"719314 

O- 801625 
0"864553 
0"913170 
O" 950626 
O- 979086 
1" 000144 
1" 015036 
1" O24765 
1" 030174 
I • 0 3 2 0 0 0  

1 • O3O9O7 
1 • 027516 

-0" 023072 
-0.071756 
-0" 109795 
-0" 132897 
-0-138116 
-0" 12354o 
-o. o88118 
-0" 031581 
0. O45592 
O" 142158 
0- 256052 
0" 384260 

O. 086608 
O. 207650 
O. 332224 
O- 454780 
0. 571201 
O. 678376 
0" 7 7 3 9 7 0  
0"856285 
O. 924184 
O. 977O47 
I • 014755 
I" O37714 

0" 595)+O2 
0" 783700 
O" 893594 
0"961173 
1 " 001938 
I" 024635 
I "034932 
I" 036809 
I" 033204 
I "026354 
I" 017986 
1" 009435 
1 • 001720 
O. 995584 
0"991523 
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TABLE 2 

Chordwise Equivalent Slopes t72pfor N = 2, 3, 4 and E = 0.05(0-05)0"75 

E 

O" 05 
0"I0 
0"15 
O" 20 
O. 25 
0"30 
O" 35 
o°40 
0"45 
O- 50 
0"55 
O" 60 
0"65 
0,70 
0"75 

~2p for N = 2 ~2p for N = 3 

I 

p=l p=2 

-o.  005228 
-0-  O13023 
-0 .  020752 
-0. o27175 
• -0. o31).,62 
-0" 033004 
-0. 031338 
-0.026106 
-0.017038 
-0"003939 
O, 013322 
c~ o34813 
O. 060542 
O. 090457 
0"124443 

p = l  

O- O15046 O. 004112 
O. o41694 O. 008754 
O. O75O35 O° Ol 14-95 
0"113154 0.011667 
O, 154877 O" 009263 
o- t 99372 O- 004670 
o- 2460o8 -o- 001467 
o. 294285 -0" 008322 
O- 343794 -0. O14948 
O- 394197 -0.020328 
O. 445212 -0. 023408 
O. 4966O1 -0" 023t 41 
0"548169 -0"018525 
O. 599753 -0.008636 
O" 651222 + O" 007320 

p = 2  

-0. 005999 
-0- O12730 
-0. 016173 
-0. Ol 4653 
-o. 007325 
O" 006t 70 
O, 025863 
O, 05t545 
0 • 082828 
O. 119189 
O. 160004 
O. 2O4577 
0.252171 
0. 302029 
O" 353401 

p = 3  

O" 0204.29 
O" 055374 
O" 097532 
O" 14/+037 
O- t93205 
O" 2)+3931 
0.295463 
O" 347285 
O. 399053 
o. 450552 
O" 5Ol 663 
0" 552347 
O" 602621 
O" 652546 
0.702214 

E ~2p for N = 4 

p=l p=2 P=3 p=4 

Oo 05 
0,10 
0"t5 
O" 20 
O" 25 
O" 3O 
0"35 
0"40 
0"45 
O. 50 
0"55 
O" 60 
0"65 
0.70 
0"75 

-0. 003285 
-0° OO546O 
-o o 004836 
-0 • 001873 
o* 002338 
o. 006559 
O" O09673 
O. 010844 
0.OO9622 
O- OO6009 
O° 00048¢ 

-0- OO5998 
-0. 0t 2037 
-0. 015852 
-0. 015380 

O- 0o4040 
o- 006644 
O" OO5576 
0°001315 

-o-oo4727 
-0- ot O764 
-0.014937 
--0"015506 
-o- OlO98t 
-0. 000218 
O- 0t7531 
0"042573 
O. 074771 
o. i 13551 
Oo 157939 

-0" 0O6252 
-0 .  009732 
-o. 005310 
0 • oo8309 
0.o31o12 
o. 061954 
O" 099903 
O. 143455 
0-191178 
O. 241714 
O. 293858 
O" 346611 
0 • 3992O8 
O'451145 
0. 502178 

O- 025416 
O. 066997 
o. 114971 
O- t 65771 
o o 217573 
O. 2694t 4 
O° 32O828 
o" 371648 
0-421891 
0"471673 
O. 521162 
O. 570531 
O. 619935 
O. 669487 
O'71925O 
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TABLE 3 

Chordwise Equivalent Slopes rtpfor N = 2, 3, 4 and E = 0.05(0.05)0.75. 

E 

0"05 
0" t0 
0"15 
O. 20 
0"25 
0.30 
O. 35 
0.40 
0"45 
O. 50 
0"55 
0" 60 
0"65 
0.70 
o'75 

.rip for 

p = t 

-1"555513 
-0"844983 
-0"483765 
-0"242158 
-0-060054 
0"086596 
0"209696 
0"315965 
0"409544 

N = 2  

p = 2  

O. 984302 
0"869763 
O. 848819 
o. 852322 
0"864553 
O. 880052 
o. 896485 
O. 912725 
0. 928177 

• r ip  for N = 3 

p=1 

O. 69002.4 
o, 139581 

-0. I 14748 
-0" 250972 
-0. 320121 
-0.3446O3 
-O. 336647 
-0. 3O39O2 
-0.251630 

p = 2  

-0.556048 
-0"152195 
0"077068 
o. 244320 
o. 379524 
0"4947i6 
0"595779 
O'685929 
0.767018 

0"493157 
0-568678 
O. 637J:J:J: 
O. 70o415 
O. 758286 
O. 81 t531 

0"942507 
0"955519 
0"967083 
0"977112 
0"985536 
0"992292 

-0. 183714 
-0.103178 
-0. Ol 2Z~82 
O. 086319 
O. 191467 
O. 301473 

0"840124 
O. 905832 
O" 964372 
1 • O15688 
I" 059449 
I" 095OO4 

p = 3  

0"740717 
O- 798999 
O. 857849 
O" 904886 
O- 94O597 
O. 966642 
O" 984610 
0"995864 
I'001569 
I" 0027z#+ 
I • 000303 
O. 995092 
O. 987929 
0"979633 
O. 971O76 

.rip for N = 4 

E 
p=l p=2 p=3 p=4 

0.05 
0-10 
0"15 
O. 20 
O. 25 
O. 3O 
0"35 
0-40 
0*45 
O.50 
0"55 
O. 60 
0"65 
O- 70 
0"75 

-0. 206760 
O. 195550 
O- 314771 
O. 323992 
O. 282659 
O. 221916 
O- 162390 
O" 121278 
O. 119545 
O. 205331 
O- 677253 

- I -  701061 
-0"450383 
-0.197880 
-o, O19408 

+ O. 196398 
-0.156O83 
-o, 281845 
-o" 310914 
-0- 285407 
-0. 226589 
-0.148530 
-0. 063533 
O. 012188 
0"039510 

-0- 25595 
1 • 853878 
0"993931 
O" 963731 
I • 005943 

-0.2Ol 25t 
O- 114O82 
O. 325867 
0"497151 
O. 643456 
O. 770689 
O. 882261 
O. 981835 
I • 076647 
t • 189671 
1"478283 
o, 219974 
O" 862831 
O. 946420 
O- 9653O4 

o. 751857 
O- 872969 
O. %4850 
O. 984468 
I. O02748 
1 • 006678 
I • 000845 
O. 987993 
0-968568 
0-936850 
0.839949 
1- 277488 
1"053077 
1 • 022094 
1 -O13466 
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TABLE 4 

Chordwise Equivalent Slopes T, 2p.[br N = 2, 3, 4 and E = 0"05(0"05)0'75. 

E 

0"05 
0"10 
0-15 
O" 20 
O. 25 
O- 30 
o. 35 
0.40 
0"45 
O. 50 
o'55 
O. 60 
0"65 
Oo 70 
0"75 

T2p for N = 2 r2p for N = 3 

=I p=2 p=1 p=2 P=3 P 

-0"116954  
-0"149936 
-0"164823 
-0"168750 
-0 .164718  
-0"154390 
-0"138826 
-0"118765 
-0-094759 
-o-o67233 
-0"o36532 
-0"002941 
0"033299 
0-O7198O 
0,112916 

(>057722 0"068241 
0°093990 0"074830 
0"130065 0"068363 
(>167231 0°O55717 
O'205776 0-040309 
0"245737 0"024295 
0"287065 0"O09203 
0"325678 -0"003826 
0"373481 -0"013902 
0"418373 -0.020328 
0"464254 -0.022552 
0"511022 -0"020144 
0"558575 -0°012782 
0.606811 -(>000225 
0-655625 +0,017668 

-0. 050378 
-0" 058456 
-0" 055527 
-0" 045137 
-0. 028809 
-0. 007412 

o. o18479 
O- 048434 
O. 0821 O4 
0"119189 
O" 159411 
(> 202503 
O" 24.8196 
O. 296209 
O. 346239 

O" 036268 
O- 071693 
O, 1 t 1577 
O" t 54916 
O" 20O873 
O" 248779 
O" 298098 
O" 348395 
O. 399311 
o- 450552 
O- 501875 
O- 553O87 
O~ 60404O 
O" 654623 
O" 704770 

T~n for N = 4 

E 

p = I p = 2 P = 3 p = 4 

0"05 
0,10 
0"15 
O" 20 
o.  25 
O- 30 
0"35 
0-40 
o'45 
o, 50 
0"55 
o.6o 
0"65 
o'70 
0"75 

-0 .  041733 
-0  o 035409 
-0" 022358 
-0" OO9339 

O. 0OO719 
O" 006547 
O" OO78O4 
O. 0O4688 
-0. 002431 
-0.013932 
-0.038962 
+0°039143 
-0- 008515 
-0. 015840 
-0" o14301 

0 o 035383 
0 ° 031059 
O" 019860 
O" 007401 

-0 .  003407 

-0" 0267 t0 
-0" 025668 
-0" 014633 
0"004336 
O- 030151 

-0- 0t 0754 
-0- 013413 
-0" 010488 
-0" 001155 
O" 016038 
O. 049688 
O" 005774 
O" 071900 
O. 113541 
o" 157o59 

. 

O" 
O" 
O" 
O" 
O" 
O" 
O" 
0 o 
O" 

O61948 
098909 
140180 
184765 
231104 
272869 
370630 
4oi 082 
451152 
502752 

O" 032521 
O. 072531 
O" 118209 
O- 167151 
O. 217872 
O" 269416 
O° 321173 
O. 372785 
O. 424118 

475358 
O. 528451 
O1562189 
O" 619284 
O. 669485 
O- 719051 
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TABLE 5 

Symmetrical Spanwise Factors in Equivalent Slopes for Outboard Controls (m = 15). 

~ l u  

£2 t.,, 

¥1 u 

W2u 

0 I 
I I 
2 I 
3 1 
4 1 
5 I 
6 I 
7 1 

0 
1 
2 
3 
4 
5 
6 
7 

0 
1 
2 
3 
4 

5 
6 
7 

0 o'15 0"25 0"35 O.40 O'45 

O. 039% 
O. i 9032 
O. 38443 
O. 55465 
O. 70770 
O. 83103 
0-924.24 
o. 98046 

0"02772 
0"19769 
0"38i71 
0-55649 
0-70667 
0"83196 
0"92359 
0"98105 

-0.11524 
0"75876 
1"04506 
0"97957 
1-012J+3 
0"99107 
1-00721 
0"99361 

-0"01183 
0"05007 
0"23235 
0"40561 
0"55711 
0"68145 
0"77390 
O'83O77 

-0.15004 
O. 83587 
o. 97943 
1. OO394 
o. 99155 
1 • OO28O 
O. 99475 
i • 00202 

-o. OO425 
o.o~70 
O. 23~3 
0"40482 
O. 55760 
0"681i5 
O. 77415 
O. 83048 

.-0.11265 
o. 25531 
1 • 02223 
o- 98698 
I .  0O834 
O. 99389 
1. OO498 
O. 99557 

O. OO367 
-0. O015O 
O. 12731 
O. 30791 
O. 45571 
O. 58246 
O. 67308 
0"73149 

0"02514 
O. 12804 
I • 07563 
O. 98266 
i • O1376 
O. 99436 
I • OO698 
O- 99616 

o. 0O274 
-0- 00218 
o- t3009 
o. 3O55O 
o. 45720 
o- 5813o 
o. 67400 
o. 73058 

O. 07610 
-0- o9492 
O- 69217 
I • 06346 
O. 96778 
1 • 02150 
O. 98325 
I .  O1460 

O. 00456 
-o. 00635 
O. 0386O 
O. 20555 
O. 35686 
0"48171 
O. 57366 
O. 63099 

O" 02114 
-0. O8475 
O'77143 
O. 99O45 
1.00011 
O" 99367 
1"00139 
O. 99529 

-0. o0015 
-0.00117 
o. 03410 
o. 2O748 
o. 35634 
O. 482O5 
O- 57351 
o. 631 lO 

O- O8775 
-O- 11176 
0"42338 
I .  07O80 
O. 96409 
1.02396 
0-98i~2 
I- O1627 

o. o0oi 6 
-0.0o076 
o. Ol o59 
o. 15i95 
o. 30868 
o. 43o50 
o. 5246o 
o. 58oi 7 

o. oo649 
-o. oo627 
o. 31890 
I • o86oo 
o. 98889 
1"o1178 
o- 99662 
I'o0615 

-0. oo085 
0-o0166 
o- oo582 
o. 15590 
o. 30662 
0-43198 
o. 52356 
0"58111 

o, 03923 
-0. O5O49 
O. 15953 
O. 99821 
O. 99242 
i • 00634 
O. 99467 
I .  O0479 

--0- 00319 
O. 00351 

-0- 0038i 
O" 09981 
O. 25990 
O- 37966 
0"47527 
O. 52959 

-0. 00677 
O. 01789 
O. o6608 
1 • 05196 
o. 97933 
I • 01358 
O. 99242 
I" 00776 

-o. 00083 
0.00116 

-o. o0303 
O. 10191 
O. 25743 
o. 38129 
0"47384 
O. 53072 
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T ABL E 5 (contd.) 

% vmmetrical Spanwise Factors in Equiralent Slopes for Outboard Controls (m = 15). 

f)2v 

~2u 

O- 50 

0 -0.02545 
1 0.02741 
2 -0-02913 
3 0.817o8 
4 1"o457o 
5 0"97502 
6 t'01789 
7 0"98499 

o -0"00349 
I 0"00402 
2 -0o00664 
3 0"05397 
4 0.209OO 
5 0"33011 
6 @42496 
7 0"47983 

0 -0.01461 
I O. 01597 
2 -0.05427 
3 o. 902O4 
4 O. 97950 
5 I - 00564 
6 0-99114 
7 1.00405 

0 -0- 00o26 
1 o. OOO27 
2 -@ OO290 
3 O- 05257 
4 O. 2O853 
5 O. 33078 
6 O. 42427 
7 o. 48042 

o-55 

-0"05786 
0-06517 
-0- I OO67 
@ 54214 
I. 08372 
O. 95431 
1"03284 
0"97239 

-0"OO120 
0.00146 

-0.00288 
0.01970 
0"15557 
0-28198 
0"37361 
0"43097 

-0"00933 
0.00746 

-@05943 
0"57173 
1.02688 
0"99322 
1"00079 
0-99811 

@00043 
-0"OO033 
0"00059 
0 - 0 1 ~  
0-15881 
0.28O80 
0"37456 
0-43036 

0"60 

-0-03855 
0"04345 

-0.06690 
0-23972 
1o0M37 
0"97332 
1.01987 
0-98308 

O. 00t41 
-o- 00148 
0"00165 
O. 00023 
0 • 10197 
O. 23400 
O. 32216 
O. 38220 

0"OO565 
-0.OO165 
0.01124 
0-13425 
1.08112 
0"98054 
1.01664 
0.99200 

0"00038 
-0" OO047 
o. OOLO7 

-o. 00O88 
O. 10480 
0.23146 
0.32392 
0.38061 

0"65 

0"OO925 
-0"OO952 
0.00962 
0.00482 
0"86281 
1.03611 
0"97925 
1"01596 

0-00216 
-0"00235 
0.00309 
-O.OO5M 
0"05374 
0.18389 
0"27211 
0"33227 

O.0O543 
-0.oo785 
0"01390 
-0.03315 
0"94336 
0"97630 
I.OO866 
0-98895 

@00008 
-0.00021 
0.00036 
-0.o0283 
0"05357 
0.18261 
0"27324 
0"33111 

0"75 

0.02227 
-0.024O3 
0"03089 
-0"05254 
0"19865 
1.03067 
0"97522 
1"02048 

-0.00091 
O. 0OO95 
-0. 00110 
O- 0o138 
-o. 00064 
O- 07672 
O. 17640 
O. 22891 

-@ O0130 
o. 00330 
-0. ooi 68 
O. 01058 
O. I03O9 
1 • 07582 
O. 97609 
1 • 02071 

-0" 00014 
O. 00016 

-0" 00028 
0 • 0OO72 

-0. 00116 
o- 07903 
o. 17399 
o. 23069 

0"85 

-0- 02260 
O" 02386 

-0.02836 
O. 03942 

-0.07t81 
O. 32165 
I • 08266 
o. 94499 

O" 00014 
-0- 00014 
0.00014 

-0" 00012 
-0- 00011 
O" 00364 
O" 07089 
O. 13240 

O" OOO83 
O. OOOO8 
O. oo 125 
o. oo145 
@00101 
O" 21732 
1" 11062 
O. 97639 

O- 00006 
-0.00006 
O" 00011 
-0- 00016 
O" O0O53 
O. 00164 
O- 07336 
O" 13048 
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T A B L E  6 

Antisymmetrical Spanwise Factors in Equivalent Slopes for Outboard Controls (m = 15). 

1 1.18028 
2 0.90018 

f l y  3 1"07024. 
4 0"94435 
5 1"04751 
6 0"95715 
7 1.o4o40 

n2p 

"~2u 

I 0"19509 
2 0"38268 
3 0"55557 
4. 0"70711 
5 0"83147 
6 0-92388 
7 0"98078 

1 1"o9oo7 
2 0"98684 
3 i '0073i 
4. 0"99724 
5 1"00242 
6 0"99866 
7 i.00i4.5 

1 0"19509 
2 0"38268 
3 0"55558 
4 0"70712 
5 0"83148 
6 0"92387 
7 0"98074 

0"15 

0"69084 
I'O9287 
0"94215 
I'O4.382 
0'96336 
i'0327o 
0"96932 

O. ~: J:~:O 
O-2360O 
0"40289 
0"55932 
0"67954. 
O'77563 
o-82912 

0"81037 
0"99829 
0"99754 
0"99889 
0"99955 
0'99939 
0"99970 

O. 04468 
O- 23436 
O. 40498 
O. 55748 
O. 68i 26 
O. 77405 
O. 83061 

O" 25 

0"19392 
1.06448 
0"95427 
I '0356i 
0"96990 
i.02700 
O'97462 

0"00133 
0"12507 
0"30977 
0"45410 
0"58392 
0"67173 
0.73279 

0"13158 
1"06765 
0"98501 
1"00972 
0"99590 
1"00416 
0"99750 

-o.OOllO 
0"12951 
0"30587 
0"45695 
0"58149 
0"67383 
0"73075 

o. 35 

-0'04292 
0"6524i 
i'09609 
0'93959 
1"04686 
0.95965 
1"03722 

-0"00350 
0"03654 
0"20719 
0"3554.7 
0"48294 
0"57252 
0"63207 

-0"06830 
0"76663 
0"99629 
0"99790 
0"99703 
0"99990 
0.99798 

-0. 00137 
o. 03427 
O. 20734 
o- 35645 
0"48195 
o- 57359 
0"63104 

0.40 

-0.05228 
O. 37807 
1 • 10793 
O. 93204. 
I" 05277 
O. 954.53 
1 • 04i96 

-0. 00089 
O. Ol O79 
0"15173 
0. 30890 
O. 43029 
o. 52481 
0"57996 

-0. 00842 
0"31818 
I" 08457 
O- 98873 
i • O1076 
O. 99657 
I • 00534 

O. 00102 
o" oo6i3 
O- 15562 
O- 30678 
O. 43180 
O- 52368 
O. 58098 

0"45 

-0. O2435 
O. 13985 
1"01422 
O- 97868 
1 • 01865 
O" 98325 
1 • O1572 

0"00111 
-0. 00188 
O" 09818 
O" 26134 
O. 37835 
O. 47649 
O. 52841 

0. 010.54 
O- O69O3 
I • 04859 
0"98104 
1-01142 
O. 99368 
I • 00606 

o. 00080 
-0. OO278 
0"10177 
O- 25756 
O- 3812O 
O. 47392 
O. 53067 
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T A B L E  6 (contd.) 

Antisymmetrical Spanwise Factors in Equivalent Slopes for Outboard Controls (m = 15). 

Qiu 

fl2v 

~Flv 

O- 50 O. 55 O- 60 0 • 65 O" 75 O. 85 

1 0"0o773 
2 -0. O1303 
3 O. 8033O 
4 I" 05793 
5 O- 96384 
6 1 • 02840 
7 O. 97485 

1 o" O0t48 
2 -0" 00~3  
3 O" 05229 
4 0" 21046 
5 0. 32878 
6 o. 42620 
7 O" 47864 

1 0.01010 
2 -0. 04923 
3 O- 89945 
4 o. 98223 
5 I • 00400 
6 0"99311 
7 1 - 00277 

I o. OOO25 
2 -0. 00285 
3 O. 05258 
4 O. 2o854 
5 O. 33o79 
6 o. 42427 
7 O. 4804~ 

0"02i95 
-0.06593 

0-51272 
I . i0966 
0.93068 
1.05500 
0-95103 

0.00064 
-0-00227 
0-01920 
0.15600 
0-28161 
0"37396 
0"43064 

o .oo5 i i  
-0.o5658 

0-57079 
I-O2834 
0°99266 
I .o0 i82  
o-99771 

-0. o0oi 3 
o. OOO40 
o. O1456 
o- 15870 
0. 28086 
o. 37448 
0.43o42 

O. 01470 
-0. 04382 
O. 22020 
1 " 05856 
o. 95767 
1.03455 
o. 96894 

-0" OOO34 
o- OOO69 
0. OO106 
O" I0123 
0. 23469 
o. 32151 
o. 38282 

-0. 00028 
0. oo878 
o, 135o5 
I .  07964 
0-98110 
1"01553 
O. 99251 

-0" ooo25 
0. OO092 

-0. OOO78 
o~ 10/+72 
O" 23153 
O" 32386 
o. 38067 

-0. O0183 
O, 00304 
0.01061 
o,85756 
I .  04097 
o. 97463 
1.o2043 

-0. 00067 
O. 00170 

-0.0O422 
0 o 05268 
O° 18486  
0" 27120 
0. 33316 

-0° 00398 
0-01166 

-o,03119 
o. 94205 
0 • 97761 
1 • 00768 
O" 99007 

-0. O0013 
O. 0oo34 

-0- 0o280 
O- 05357 
O. 18263 
O" 27324 
0"33113 

-0. 00653 
O. 01639 

-0- 04001 
O. 18747 
I • 04095 
0 • 96552 
1 • 02985 

O" 00021 
-0* OO04.7 
o- 00082 

-0. OOOI 3 
O" 07626 
O" 17685 
O. 22848 

O" 00143 
• 43 • 00100 
O- 00954 
0 • 10352 
1"07510 
O" 97643 
1 • 02012 

O" 00008 
-0. 00022 
O" OOO67 

-0. 0Ol 13 
O. 079OO 
O" 174O2 
O" 23067 

o. o055o 
-o. Ol 281 
o- 02579 

-0.05951 
o o 31026 
1o O9346 
O" 93453 

-0. 00002 
o- OOOO3 

-o o 00002 
-0. 00020 
0 • 00372 
o- 07o81 
O" 13248 

o- ooo09 
O. 00081 
0-001~7 
0" 00072 
0 ° 21734 
1- 11039 
O. 97642 

-0- 00002 
O" OOOO8 
-0" OO014 
0 o OOO51 
0 ~ 00165 
O- 07334 
O" 13050 



T A B L E  7 

Chordwise Integration Functions for Local Hinge Moments with E = 0.05(0.05)0-75. 

A A 

0"05 
0"10 
o-15 
O. 20 
O. 25 
0"30 
O. 35 
0-40 
0"45 
O. 5O 
0"55 
O" 60 
0"65 
0"70 
0"75 

O" 153509 
O" 219543 
O" 272027 
O" 317916 
O. 359911 
O" 399419 
O. 437304 
O. 474.157 
O" 510426 
O" 546479 
O" 582644 
0.619237 
O" 656586 
O- 695060 
O. 735105 

-1" 78924.9 
-2.48,82957 
-2" 981658 
-3" 372871 
-3" 690810 
-3" 953055 
-4" 169977 
-4" 348191 
-4" 492105 
-4" 604695 
-4" 687924 
-4' 742973 
-4" 77O347 
-~" 769895 
-4" 74O741 

O. 702990 
O" 916732 
1 • 030511 
1 • 086498 
1 • 102658 
1"089147 
1 • 05264.7 
O. 998012 
O" 929O29 
O" 848826 
o. 76oi 14 
O. 665341 
o. 5668 IO 
o. 466777 
O. 367553 

-0.899827 
- I • 0634i 0 
- I  • 071732 
-0.999578 
-0- 882126 
-0.74062O 
-0. 589482 
-0.439125 
-0. 297289 
-0. 169765 
-0.06O809 
0" 026614 
O. 090690 
O" 130698 
O. 147021 

E 

O" 05 
0"I0 
0"15 
O" 20 
O. 25 
0"30 
O'35 
0"40 
0"45 
0"SO 
0"55 
O'6O 
0"65 
O. 70 
0"75 

B 
Y 

0"004369 
O. O12483 
O" 023137 
O. o3595o 
o. 050720 
O. 067327 
O. 085702 
0-105807 
O. 127629 
O. 15117~ 
O- 176466 
O" 203550 
O. 232.488 
O. 263365 
O" 296296 

B ,a 

-0. o51354 
-0. 143090 
-0. 258956 
-0. 392554 
-0.539866 
-0" 697955 
-0. 864455 
-i • 037350 
- i  • 214849 
-1 • 395305 
-1"577155 
-1.758875 
- t .  %$9948 
- 2 . 1 1 5 8 1 6  
-2. 287843 

O. 020439 
O" 054344 
O" 0936o8 
O. 134750 
O" 175543 
O. 214392 
O" 250097 
O. 281742 
0. 308627 
O" 330235 
o. 3462o3 
O. 356316 
O. 360496 
O- 358799 
0"351429 

-0" 026713 
-0" 066005 
-0.1O5112 
-0.139072 
-0" 165399 
-0- 182977 
-0. 191582 
0"191618 
- 0 .  183948 
--0- 169765 
-0-150503 
-~ 127746 
-0.1 o3159 
--0.078419 
-o. 055133 
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TABLE 8 

Chordwise Integration Functions in Evaluatin9 Control Derivatives by Reverse Flow. 

E cy c K % 

0"05 
0"10 
0o15 
O" 20 
0"25 
O- 30 
O" 35 
0" 2+0 
0"45 
O" ~0 
O'55 
o , 6 0  
O" 65 
o. 70 
0"75 

0 .886917  
1-21~501 
1"509542 
1"727295 
1"913223 
2"075795 
2"220043 
2"349234 
2"~5616 
2"570796 
2"665951 
2"751950 
2"829428 
2"898828 
2"960420 

3"312763 
4"320o0o 
4"356171 
5.120000 
5"196152 
5"132485 
4"360484 
4"7O3O2O 
4"377945 
4"0o0000 
3"501955 
3"135347 
2"671030 
2"199636 
Io732051 

O. 717765 
O. 792000 
O" 728426 
O" 597333 
O" 433013 
O" 256624 
0 • 082675 

-0 ° 078304 
-0 ° 218897 
-0  • 333333 
-0" ¢17895 
-0" 470302 
-o.  4896 9 
-0" 476588 
-0" 433013 

0" 568691 
O" 446#~0 
O" 218528 

-0, 017067 
-0 o 216506 
-0 o 359274 
-0" &38176 
-0.454-625 
-0.415905 
-0" 333333 
-0" 220887 
-0" 094060 

O" o31162 
o. 139310 
O" 216506 

E D 
Y 

0"05 0"059329 
0-I0 0"166950 
0"15 0"305113 
0-20 0"467270 
0"25 0"649519 2" 
0.30 0°849140 2" 
0"35 1.064o69 3" 
0"40 1"292648 3" 
0"45 1"533490 4" 
0.50 1"785398 4" 
0"55 2"047315 4" 
0.60 2"318283 5" 
0"65 2°597421 5" 
0"70 2.88390o 5" 
0"75 3"176927 5" 

D D x 

0 o 0"227~77 
0"615002 
1-076615 
t"577257 

094395 
611844 

O B 

O" 
O" 
O" 

052452 
129600 
206387 
273067 
324760 

O" 046158 
O" 098496 
O" 132088 
O" 141~95 
O. 129904 

117290 
601097 
0556~ 
474926 
8543O8 
190366 
480788 
724335 
920841 

O" 359274 
0 • 376170 
O" 376242 
O. 361100 
0" 333333 
O" 295511 
0" 250828 
O" 2025.53 
0 • 153974 
O" 108253 

O. 1005~7 
O" 060187 
O" 015050 

-0.028894 
-0" 06666 7 
-0" 092,56/, 
-0- 110364 
-o. 113430 
-0" IO47O3 
-0" 086602 
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TABLE 9 

Lift and Pitching-Moment Derivatives for Rectangular V~ng (A = 4, M = O) with Oscillating Full-Span 
Controls. 

(a) Stiffness derivatives 

-k 

% 

E 

0"05 
0"10 
0"15 
O" 20 
O" 25 
o. 35 
o" 5o 

O. 05 
0.10 
0'15 
O" 20 
o. 25 
O" 3.5 
0-50 

By direct flow (m = 15) By reverse flow (m = 15) 
i, ,,, 

N=2 N=3 N=4 N=2 N=3 N=4 

0"5442 
0"7596 
0"9180 
I- 0459 
I • 1536 
I • 3275 
I" 5192 

0"0476 
o, 0488 
O" 0376 
O" 0188 

-0"0056 
-0"0659 
-O"1732 

0"5528 
0"7694 
0"9274 
1"0540 
1.1600 
1"3302 
1"5173 

o- 0488 
o, 0503 
O" 0392 
O" 0204 

-0" 004O 
-0- o6~ 
-0" 1724 

0"5573 
0"7734 
0"93oo 
1"0552 
1"1598 
1"3284 
1"5156 

0"0502 
0"0514 
0"0398 
o-o2o5 

-0.0044 
-0"0655 
-0"1732 

o. 5435 
o. 7587 
o. 917o 
I • 0449 
I. 1525 
I. 3265 
I" 5183 

0"0476 
0"0487 
0-0376 
0-0187 

-0"0o57 
-0-0661 
-0-1736 

0"5505 
0"7667 
0"9246 
1"o515 
1"1578 
1"3287 
1"5169 

o. 0487 
o. o5oi 
O. 039O 
O" 0202 

-o. oo42 
-o. 0648 
-0" 1728 

0.5526 
0"7687 
0"9264 
1"0527 
1"1586 
1"3288 
1"5168 

O'0498 
o.o51o 
0"0396 
0"0203 

-o'oo45 
-0"0655 
-0"1734 

(b) Dam#ing derivatives 

By direct flow (m = 15) By reverse flow (m = 15) 

N=2 N=3 N=4 N=2 N=3 N=4 
,,,,, 

O-O5 
0"10 
0"15 
O" 20 
O- 25 
o. 35 
o. 50 

O" 05 
O" 10 
0"15 
O" 20 
O. 25 
o. 35 
0"50 

-0"2214 
-0"2658 
-0"2687 
-0"2#60 
-0"2048 
-0"0820 
+0"1711 

O" O933 
O" 1299 
o. 1557 
o. 1749 
O, 1892 
o. 2058 
O" 2O5O 

-0"2238 
-0-2680 
-0"27Q2 
-0"2466 
-0"2045 
-0"0800 
+0"1749 

0"0735 
0.1082 
0"1359 
0"1591 
0"1782 
0.2048 
0"2158 

-0"2264 
-0"2698 
-0"27O8 
-0,2460 
-0"2030 
-o'o775 
+0.1766 

0.0743 
O. 1o89 
O. 1366 
O- 1595 
O" 1784 
o. 2047 
O. 2157 

-0"2220 
-0"2665 
-0"2696 
-0"2470 
-0"2059 
-0"0831 
+0"1700 

0"0933 
0"1299 
0"1556 
0"1749 
0"1891 
0.2056 
0"2047 

-0"2231 
-0"2673 
-0"2697 
-0. 2464 
-0- 2046 
-0.0806 
+0"1736 

O" 0731 
o. 1078 
O" 1356 
O" 1588 
O- 1779 
O- 2047 
o. 2159 

-0" 2244 
-0" 2683 
-0" 2702 
-0.2463 
-0" 2039 
-0" 0794 
+o. 1748 

O" 0736 
o. Io83 
O" 1361 
O. 1592 
o. 1783 
O" 2049 
O. 216O 
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TABLE 10 

Lift and Pitching-Moment Derivatives for Rectangular M4n 9 (A = 4, M = 0) with Oscillating Part-Span 
Controls. 

-% 

(a) Constant control span ~ = 0"45 
~u. 

E I,~ = 2 N = 3 N = 4 

0"1.5 
o .  25 
O" 35+ 
O, 35 

0"15 
o 25 
O" 35.  
O" 35 ~" 

0"15 
0"25 
0"35 
0.35 + 

0"15 
0"25 
o- 35 
O" 35 + 

+ 
With 

0"4384 
0"5488 
0"6291 
0-6278 

0"0260 
0"0059 

-0"0234 
-0"0233 

-0"1118 
-0'0756 
-0"0120 
-0o0118 

0.0729 
0'0887 
0-0964 
0-0962 

0"4453 
O- 5534 
O" 6309 
O" 6296 

0"0276 
0"0074 

-0"0221 
-0"0220 

-0.1126 
-o'0751 
-0,0104 
-0o0102 

0"0630 
0"0834 
0-0965 
0"0963 

0.4468 
0"5533 
0.6299 
0.6286 

O" 0232 
O" oo71 

-o. 0229 
-o. 0228 

-0"1129 
-0-07¢2 
-o-0o9o 
-0"0088 

0.0634 
0.0836 
0"0965 
0.0963 

spanwise factors ~1~ iu  place of ~lu 

(b) Constant control chord E = 0"25 

-% 

-% 

= = = = = 0"85 ~a 0 h a 0"25 ~a 0"45 ~a 0"65 ~I a 

1"1600 

-0"0040 

-0"2045 

0"1782 

O" 8181 

o. 0o32 

-0" t 289 

O" 12J-~ 

0"5534 

0"0074 

-0"0751 

0°0834 

O" 3066 

O" 0086 

-0. O328 

o. o~o 

O°O963 

O'OO49 

-O.OO67 

0.01/+6 
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TABLE 11 

Hinge-Moment Derivatives for Rectangular W/ng (A ='4,  M = 0) with Various Oscillating Controls. 

(a) Stiffness derivative 

E a 

o 

0.45 

0 
0"25 
0"]+5 
0"65 
O'85 

, ,, 

o.o5 
o'1o 
o'15 
o. 20 
o. 25 
0"35 
0"50 

0"15 
0"25 
o'35 

O. 2.5 
O. 25 
0'25 
O" 25 
O. 25 

-h~ by direct flow -h~ by reverse flow 

N= 2 N=3 N=4 N=2 N= 3 N=4 

0-3926 
0"3848 
0"3776 
0"3709 
O" 3647 
O" 3544 
O" 3~+5 

0"3031 
0"2762 
0"2519 

0"4014 
0"3918 
0"3830 
0"3752 
0"3681 
0"3566 
0"3455 

O" 317]+ 
0"2812 
0"2515 

0"3681 
0"3133 
0-2812 
0.2268 
0"1343 

0-4067 
o" 3954 
O. 3853 
o. 3763 
o. 3681 
o. 3547 
o- 3405 

0"3223 
0"2813 
0"2481 

0"3745 
0"3717 
0"3691 
0"3666 
0"3643 
0"3604 
0"3572 

0"2895 
0"2755 
0"2616 

O" 3992 
O" 3908 
O" 3826 
O" 3748 
O" 3673 
O" 3~68 
O" 3479 

O. 3186 
O. 2836 
O" 244.2 

0"4044 
o. 3941 
O" 383} 
O. 4080 
O. 3713 
O. 3570 
O. 3451 

0"3176 
0"2904 
0"2522 

(b) Damping derivative 

-~ by direct flow -~ by reverse flow 

! 
N=2 N= 3 N=4 N=2 N= 3 N=4 

& 

0 

0 

O'45 

O'4.5 

E 

0"05 
0"10 
0"15 
O" 20 
O. 25 
0"35 
0"50 

0"15 
0"25 
0"35 

0"15 
O" 25 
o. 35 

0"15 
0"25 
0.35 

O" 0314 
O" 0638 
O" 097O 
O" 1309 
O" 1655 
O" 2357 
O" 3422 

O. 0742 
O" 1655 
o. 25oo 

O" 0929 
0"1540 
0"2140 

O. 077 3 
o.15]+6 
0 "224.7 

0"0348 
0"0724 
o'1119 
0"1524 
0"1932 
0"2731 
0"3840 

0"1200 
0"2097 
0"2878 

0"1124 
0"1864 
0"2550 

0"0379 
0-0801 
0"1237 
0"1670 
0.2088 
0"2868 
0"3902 

. , ,  , , ,  

O. 1359 
O. 2176 
0"2916 

0"1252 
O'2O3O 
0"2696 

0-0299 
0.0612 
O- 0935 
O. 1268 
0"1610 
O. 23t 1 
O. 3383 

0"0342 
o-0715 
0.1108 
O" 1511 
O" 1918 
O. 2718 
0"3828 

0"0378 
0"0799 
0"1235 
0"1667 
0.2O85 
0.2862 
0"3891 

I ~3e solution with slopes 

rlp an place of ~p 

0"1104 
O" 18Z~ 
O" 2535 

0"12L~+ 
0"2023 
0"2690 

0"1 201 
0.201 8 
0.2691 

O. 1376 
0'2125 
0°2757 

O" 0870 
0"1~65 
O- 2060 

) ~3e solution with slopes 

rlp ~I~ in place of ~IpO 
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TABLE 12 

Convergence of -h~ and -h~ with Respect to Chordwise Parameters for Rectangular M/~ng 
(A = 4, M = O) with Full-Span Control. 

E N 't 
N = 2  

o- O5 2 O. 3926 
3 
4 

m 

O" 10 2 0 o 3848 
3 
4 

O" i 5 2 0" 3776 
3 
4 

O. 20 2 O- 3709 
3 
4 

o- 25 2 O" 3647 
3 
4 

O- 35 2 o. 3544 
3 
4 

O. 50 2 O- 3~45 
3 

N = 3  

0"3914 
0"4014 

0"3851 
0"3918 

0"3791 
0"3830 

0"3735 
0-3752 

0"3681 
0"3681 

0-3588 
0"3566 

0"3490 
0"3455 

0"3990 
0"4041 
0"4067 

0"3911 
0"3951 
0"3954 

O" 3838 
O" 3864 
O'3853 

0"3770 
0"3783 
0"3763 

J 

0"3708 
0"3708 
0"3681 

0"3602 
0"3581 
0"3547 

0- 3496 
O- 3456 
O. 34O5 

N = 2  

0"031~ 

0"0638 

0"0970 

0"1309 

0"1655 

0"2357 

0-3422 

N:3 

o. 0340 
O- 0348 

o.o711 
O-O724 

0° I i03  
O, l i i 9  

0.15o6 
0"1524 

0"1913 
0"1932 

0"2714 
O. 2731 

0"3828 
0"3840 

~ T : 4  

0"0372 
0"0376 
0"0379 

0"0789 
0"0797 
0,0801 

0"1222 
0"1233 
0"1237 

0"1652 
0.1666 
0"1670 

0°2069 
0.2085 
0°2088 

0-2849 
0-2866 
0.2868 

0-3888 
0"3902 
0.3902 

t N' ~< N is the number of cherdwise terms in the equivalent slopes. 
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T A B L E  13 

Steady Forces and Local Centres of Pressure on Untapered Swept lz~ng (.4 = 4, M = 0) 
with Deflected Controls (m = 15, q = 2N). 

(a) L i f t  and pitohinK moment 

-% 

N = 2  N:5 

0.15 0 0.7063 0.7066 
0.25 0 0.8961 0"8974 
0"55 0 1.0~09 1.0430 

0.15 0"45 0.2914 @2929 
0"25 0"45 0"572o 0"5750 
0"55 0"45 0.4~ 0"4352 

0.25 

o.25* 

0 
0.25 
C.~5 
0"65 
0'85 

0 
0"25 
0"45 
0.65 
0.85 

N = 4  

O. 7085 
0" 8986 
1.0456 

O" 2937 
0"5756 
O' 4555 

0.8986 
0"5792 
0"3736 
0.1966 
0.O578 

0"9550 
0.5845 
0"3758 
0"1975 
0.0578 

-% 

N = 2  N=5 N=4 

0"7192 
0.8649 
0"95t8 

0"4280 
0.5t86 
0"5751 

O" 7214 
0.8675 
0"99+5 

0"~295 
Oo 52oo 
Oo 5765 

O. 724t 
0.869t 
0. 9550 

0.4506 
o. 5207 
O" 5766 

O. 869t 
0. 69~ 
O. 5207 
0. 5157 
O. 1065 

0"8862 
O. 6965 
0 • 5217 
o. 516o 
o. 1064 

Roundin s from equation (6) i s  used in  p lace  of equation (5). 

(b) Values af Xop 

Roun~.t.ng 

11 

o* 
o. 1951 
0" 5827 
0"5556 
0"7071 
o.85t5 
o. 9259 
o. 9808 

E = 0"15, n a = 0 

~ 1 ' = 2  

0"7156 
0"5789 
0" 5278 
0"5138 
0"5035 
0" 4968 
0"~B74 
0" ~802 

E~u=tion (5) 

N=5 N=4 

0.6640 0"67~ 
(~ 5796 o. 5792 
0" 5268 o. 5277 
0"5160 0.5158 
o. 5054 0" 5055 
o. 5069 o. 5060 
0"5099 o.511o 
0"52t7 0"5235 

~n.(6) 

} 1 = 4  

o. 6551 
0" 56% 
o. 5206 
0" 5098 
o. 5ot3 
o. 5020 
o. 5074 
o'5196 

N = 2  N=3 

0"4701 0"~-593 
0.43OO 0.~127 
o. 5226 O. 5O86 
O. 5436 0" 5482 
0"4913 0"4941 
O. 4679 O. 47O8 
o. 4558 o. ~95 
0"4345 0"4581 

: 0"35, ~a = 0";+5 

~uation (5) 

N = 4  

X at ~ = 0  ÷ Refer red  tO rounded lead ing  edge.  Refer red  to apex, 
cp 

wol~d be r e s p e c t i v e l y  0'0650 and 0" t301 l a r g e r  with rounding from 
equationa (5) and (6). 

0.4620 
0" 4076 
0.5t0~ 
0" 5~B5 
0"49;+7 
0"47t5 
0"~+69 
0.~9+ 

75 



TABLE 14 

Hinge Moment on Untapered Swept Win9 (A = 4, M = O) with Deflected Controls. 

(a) : f f ec t  of :( o~ -% (m = 15, q = 2~,~) 

O,~tboard Zontrols 

0"2851 
0"2517 
0'2393 
0"2061 
0"1377 

0-2817 
0"2397 
o'2219 
o.18z~ 
o'1177 

0"2799 
0-2296 
0.2064 
0"1654 
0"0993 

0"2884 
0"2550 
0"2456 
O'2126 
0"1538 

o. 2841 
O' 2401 
O. 2245 
O" 1851 
O. 1201 

0"2816 
0"2283 
0"2069 
0'1623 
0'0940 

RouudJn,~ from equation (6) is used 

0.2911 
0.2558 
0.2~+90 
0-2133 
0.1583 

0"2857 
0"2399 
0"2262 
0"184t 
0"1187 

0"2823 
0"2275 
0"2072 
0"1604 
0"0892 

0"2855 
0"2263 

Inboard Controls 

N=2 N=3 N=4 

0.2813 
O" 2850 
O" 2951 
O" 2942 
O" 2851 

0"2700 
0"2820 
0"2934 
0"2930 
0"2817 

0"2597 
0"2799 
0"2929 
0"2931 
0"2799 

0"2932 
0"2895 
0"2988 
0'2974 
0"2884 

0"2807 
0"2880 
0"2962 
0"2954 
0"2841 

0"2692 
0'2863 
0"2950 
0"2949 
0.28t6 

0"3032 
0"2950 
0-3024 
O-3010 
0-2911 

0"2884 
0"2920 
0"2986 
0"2978 
0"2857 

0-2741 
0"2890 
0"2964 
0"2962 
0"2823 

0"2914 
0"2855 

in place of equation (5). 

(b) Effoct of rounding on spanwise distribution (m = 15a N = 4, q = 8 ) 

Va1~es of -%~ (~ = 0"25) 

Rounding Equation (5) Equation (6) 

~a = 0 ~a = 0"45 ~f= 0"45 

0 
o'1951 
0"3827 
0"45oo 
0"5556 
o'7o71 
o'6315 
0"9239 
0"9808 

~a =0 

0"4663 
0"3204 
0"2999 

0"2984 
0.2750 
0"2399 
o-1603 
0"0639 

~a = 0"4.5 ~f = 0"45 

o.4483 
0.3036 
o. 21o3 

0-1778 0-1228 
0"2743 
0"25o7 
0"2360 
0"1538 
0.0644 

o. 4392 
o. 3241 
O- 3o48 

0.2983 
0.2772 
0"2393 
0.1613 
0.0634 

0.1779 
0.2744 
0.2508 
0,2360 
0.1538 
0.0644 

0"4224 
0"3069 
O'2150 
0"t251 
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T A B L E  15 

Spanwise Loading on Untapered Swept Wing (A = 4, M = O) with Deflected Controls 
(m = 15, N = 4, q = 8). 

This 

(a) Values of y with rounding from equation (5) 

TI 

0 
0"1951 
O. 3827 
O- 5556 
O. 7071 
0"8315 
O. 9239 
O. 9808 

" T- 

E 0.25 I E : 0"25 E = 0"25 E : 0"25 E = 0"25 

n a = 0 ha= 0"25 ~a = 0"45 ~a = 0"65 ha= 0"85 

O. 1950 
o. 2296 
O. 2481 
O. 2535 
o. 24-59 
O. 2214 
O. 1723 
O. 0957 

0"0319 
O" 0608 
O. 1693 
O. 204O 
o. 2097 
o. 1963 
o. 1557 
o. 0877 

0"012/+ 
O" 0179 
O. 0422 
O" t ~ 4  
O" 1767 
O" 1727 
O" 1418 
O" 0805 

O. 0039 
O" 0052 
0.0o96 
O. 0227 
0.1121 
O. 1381 
o. 1204 
O- 0708 

0-0010 
O" 0013 
0.0019 
O. 0034 
O. 0084 
0"0353 
o. 0798 
O" 0531 

E = o.15" E : o'15 E = o'15 E : 0"35 E : 0"35 

~a = 0 ~a = 0 ~a= 0"45 ~a = 0 ~a = 0"45 

o. t506 
O. 1788 
o. 19~ 
o. 1993 
o. 1947 
O. 1762 
O. 1376 
O. O764 

o. 0090 
0"0131 
o- 0289 
0"11/+2 
O. 1404 
O" 1383 
O" 1178 
O. 0697 

0 
O- 1951 
o- 3827 
o- 5556 
o"7071 
0"8315 
O. 9239 
O. 98O8 

O" 2331 
O" 2695 
O" 2891 
O" 2945 
O" 2842 
0" 2533 
O" 1930 
O" 1042 

O" 1l,,.86 
O" 1788 
O. 1950 
O. 1998 
O" 1947 
O. 1770 
O" 1414 
O. 0819 

solution for N = 2 shows small effect of N over 

o. o156 
O- 0225 
o. 0550 
0"1714 
O. 2037 
O- 1971 
O. 1574 
O" O866 

most of the 

(b) Values of y with roun~ from equation (6) 

span. 

0"15 E=0"15 E=0"25 E= 0"25 E = 0"35 m ~- 

~a = 0 ~a= 0"45 ~a = 0 ~a= 0"45 ma = 0 ~a= 0"45 

O- 2265 
O" 24.25 
O. 2,550 
O" 2586 
o" 2495 
O" 2240 
o. 1740 
o. 0966 

C~ O. 1762 
O. 195t O" 1901 
O. 3827 O. 2008 
O. 5556 O. 2042 
O. 7071 O. 1977 
o'8315 o. 1793 
O. 9239 O. 1429 
O. 9808 O. 0826 

0"0143 
O" 0187 
O" 0427 
o. I~67 
o. 177o 
o" 1728 
O. 1419 
o. OAo6 

o.0105 
o.0137 
O. 0292 
0.1145 
O. 1406 
O" 1384 
o" 1176 
o. O698 

O. 2663 
O. 2832 
O. 2966 
O. 2998 
o. 2881 
o- 2561 
O. 19~,~B 
O" 1051 

E : 0"35 

O" 018o 
0. 0236 
o. 0555 
0.1718 
o. 2040 
o. 1973 
O. 1575 
o. o867 

i 
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T A B L E  16 

Pitching Derivatives (x o = 0.5c J for Tapered Swept W/n0 (A = 2, M = 0.7806). 

(a) Lift and ~itching moment (m = 15~ q = 6) 

-z 0 

-% 

By direct flow 

N=2 N= 3 N=4 N=2 N= 3 N=4 

1 • 2734 

O" 3488 

1" 2705 

0"748.5 

1"2750 

0"3487 

1"2831 

0"7676 

1"2760 

0"3486 

t"2854 

0"7695 

1"2726 

0"3504 

1.2618 

0"7507 

t ,  

By reverse flow 

1 • 27)+4 

O" 3498 

1" 2800 

O- 7670 

1"2746 

0"3502 

1.2821 

0"7686 

(b) Hin6e moment b 2 direct flow (m = 15) 

Rounding Equation (5) Equation (6) 

N=3 N=2 N=3 N=4 
T} a 

0 ~ 
0 
0.25 
oo5o 
o'75 

0 ~ 

0 
O, 25 
O" 50 
0"75 

~=3 
m, 

q=1 

0"1577 

0"1224 
0.O869 
0"0337 

0"6973 
m 

o. 5548 
o.4163 
0"2552 

q = 6  

o.1715 

O" 1295 
0"0883 
0,0286 

0"7256 
w 

0'5620 
o.4161 
O'2497 

q=6 

O. 1847 
O. 17~ 
0.15tl 
0"1161 
O" 0451 

O" 6401 
O" 6075 
0" 5268 
0"4119 
0" 2540 

f 
e l =  o 

0"1679 
0"1579 
0.1284 
0"0885 
0.0289 

O" 7103 
O' 6721 
O" 5526 
0"4120 
O' 2488 

o,.=6 

Oo1666 
o'1564 
o.12~ 
0°0869 
0"0363 

0 • 72O9 
O. 6814 
0 ° 5503 
0" 4104 
O" 2530 

Calculations with actual straight hinge line. 
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T A B L E  17 

Stiffness Derivatives for Tapered Swept I4~ng (A = 2, M = 0"7806) with Symmetrical Oscillating 
Controls of Different Span. 

(a) Direct-flow solutions (m : 15) 

-k 

Rounding 

~a 

O* 

0 
O. 25 
O. 50 
0"75 

0 ~ 

0 
O. 25 
0"50 
0"75 

0 ~ 

0 
O. 25 
0. 50 
0"75 

Equation (5) 

N:3 N=3 

q=l q=6 

O. 9455 O. 9184 

O. 5844 O. 5709 
O. 3031 O. 2971 
O. I001 O. 0983 

O. 5951 O- 5868 

0"4223 0"4140 
O- 2502 O. 2447 
0'0936 0"0916 

0-4764 0"4831 

O. 3593 O. 3549 
0" 3007 O. 2964 
0"2116 0"2089 

N=2 

q:6 

O" 3013 

o. 2410 

o. 2531 

Equation (6) Ref. 8 

N=3 N=4 m=20 

q:6 q=6 N:& 

0"9420 - - 
0"9373 - 
0"5818 - - 
0"2990 0"2984 o,3017 
0"0991 - - 

0'5919 - - 
0"5936 - - 
0"4178 - - 
0"24~7 0"2438 0"2459 
0"0923 - - 

0"4807 - - 
0"4648 - - 
0"3553 - 
0"2965 0.3034 0.3627 
0"2091 

(b) Reverse-flow solutions (m = 15) 

Rounding 

"rl a 

0 ~ 
0 
O. 25 
0"50 
o'75 

o* 
-N o 

O. 25 
O. 50 
0"75 

-~ o 
0"25 
0"50 
0"75 

Equation (5) Equation (6) 

N=3 N=2 N=3 N=4 

q=1 q=6 q=6 q=6 

(3" 9269 - - 
- O. 9140 O. 9346 O. 9372 

O- 5740 o. 5757 O. 5807 o. 5815 
O. 2950 O. 2981 O- 2985 O. 2984 
O" O977 o. o988 o. O99o o. o988 

O. 5805 - - 
- O. 5570 O. 5929 

0-4102 0"3988 0-4166 
O. 2/4.08 O. 2370 O. 2440 
0"0910 0"0903 0"0922 

0"2524 

O" 4257 
0" 3268 
O" 2742 
O. 1960 

*Calculations with actual straight hinge line. 

O. 5948 
o"4173 
O. 2441 
O. 0921 

O. 3318 
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T A B L E  18 

Damping Derivatives for Tapered Swept Wing (A = 2, M = 0"7806) with Symmetrical Oscillatin 9 
Controls of Dfferent Span. 

Rounding 

~a 

- ~  o* 
o 
O. 25 
O. 50 
0"75 

0 • 
-N o 

0"25 
0"50 
0"75 

-h~ 0 • 
o 
O, 25 
0-50 
0"75 

(a) Direct- f low solutions, (m = 15) 

I 

Equation (5) Equation (6) 

N:2 N:3 N:3 N=3 

q=l q=6 

-0" 0830 -0" 0519 

-0-0912 -0"0767 
-0. 0580 -0- 0520 
-0" 0205 -0. Ot 88 

0"1096 0-1114 

0"0491 0"0480 
0.0171 0-0166 
o. 0032 o. 0032 

o. 3890 o. 3945 

O. 2602 o. 2543 
o. 2113 o. 2058 
o. 1399 o. 1362 

q=6 q=6 

-0° o54z~ 

o. 0183 

o. 1216 

-0"0794 
-0"0921 
-0"0906 
-0"0568 
-0"0195 

O. 1087 
0 • I017 
o. o46~ 
O. 0162 
O- 0035 

O" 3 ;,J,J, 
o.32~6 
0.2222 
0"1769 
0"1214 

N=4 

q=6 

-O. 0565 

0-0162 

O- 1987 

Ref. 8 

m = 20 

N = 4 

-0" o551 

o.o192 

0 o 1973 

(b) Reverse-fZo. soZution~ (m : I~) 

Equation Rounding (5) 

N : 3  

q : l  

O* -0" 0878 
0 
O" 25 -0" O882 
O" 5O -0" 0551 
0"75 -0"0t91 

O* 0 ° 1071 
0 
O, 25 Oo O493 
0.50 0-o178 
o- 75 o. 0o38 

o 
0 ° 25 
O- 50 
o'75 

N=2 

q=6 

-0.0969 
-o-0875 
-o.o561 
-0.0202 

0-0564 
0.o~+9 
o-oo72 
0.0oo7 

o, io43 

Equation (6) 

N=3 N=4 

q=6 q=6 

-0.0952 -0" 0949 
-0"0894 -0.0911 
-0' 0560 -0- 0564 
-0" 0194 -0"0193 

O- O99O O- 0995 
o. 0461 o. O452 
0"0162 0.0160 
O- 003~ O. 003~ 

o ' 3 t ~  
O. 2156 
o, 1695 o. 2o45 
o-i154 

*Calculations with actual straight hinge line. 
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TABLE 19 

Rolling and Hinge Moments for Tapered Swept Wing (A = 2, M = 0.7806) with Antisymmetrical 
and Symmetrical Controls. 

(a) Rolling-moment derivatives (m = 15, q = 6) 

or 

% 

or 

~a 

0 
O- 25 
0"50 
0"75 

0 
0" 25 
O" 50 
0"75 

Antisymmetrical Symmetrical Ratio 

N=2 N=3 N=4 N=3 N=3 

m 

m 

o. 0786 

m 

0"1181 
0.0805 
0"0335 

o. 0243 
0. 0132 
0. OO42 

m 

m 

O- 0805 

N 

0- 0131 

w 

0" 0132 
m 

0.2070 
0"1505 
0"0921 
0"0362 

-0" 0262 
-0- 0145 
-0" 0061 
-o. o016 

m 

0"785 
0"874 
0"926 

See equations (37) and (120) ; the rolling "~oment on a half-model 
with refleotion-plene symmetry is termed 'bending' moment and the 
derivatives -~ amd -~ are replaced by-b~ and-b~ . 

(b) ~eTmoment derivatives ~--15, q = 6) 

a 

0 
O. 25 
0"50 
0"75 

o 
o. 25 
o. 50 
0-75 

s;y 
tti- ] 
it rioall  

0. 

N = 3  

;043 
864 
o79 

0.  2181 
0" 1786 
0"1219 

Symmetrical 

N=3 

0.~S 
0"3553 
0"2965 
o.2o91 

0.3246 
O" 2222 
O. 1769 
O. 1214 

Ratio 

I I = 3  

N 

O. 857 
O" 966 
O- 994 

m 

O" 982 
1"010 
1 • 004 
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T A B L E  20 

Pitching Derivatives (Xo = 0"5G) for Cropped Delta Wing (A = 1-8). 

(a) Lift an~~mome.r~t (M : 0"7452d 

m,N,q 15,3,1 15,2,6 15,3,6 15,4,6 

- z  0 

-m 0 

-z~ 

-m~ 

1"2192 

0.1180 

1"2252 

0"5722 

I" 2172 

o'117o 

I" 2136 

O" 5534 

1"2168 

0"1137 

1"2246 

0"5696 

1 " 2173 

o'114o 

1 • 2247 

O- 5698 

(b) Lift and pitchin6 moment (m = 15, ~.T = 3~ q = 6)_ 

- z  0 
-% 
-z~ 

-m~ 

M = 0 M :: 0"5528 

1"1055 

0"0859 

1"1313 

o.41o4 

1"1595 

0"0985 

1.1764 

0"4793 

= 0"7454 ~ : 0.8660 

1"2168 

o'1137 

1"2246 

0-5696 

1"2767 

0"1316 

1"2776 

0"6936 

(c) H's~ge momenzts (m = 15, N = 3 ,  q = 

, I , ,  

-h 0 0 
O" 25 
O. 50 
0"75 

-% o 
o. 25 
0"50 
0"75 

L 

M : 0 N[ = 0-5528 I M = 0"7454 ~i = 0-8660 

0"1032 
0"1100 
0"1174 
0.1186 

0"3822 
0°3605 
0"3272 
0"2690 

o'1o57 
0"11o7 
o-1152 
0 ° 22 

O" ~ 5  
o. 4189 
0"3785 
o. 70 

0.1078 
0"1101 
0 . 1 1 0 6  
0-1025 

O" 5309 
O" 5003 
O- 4500 
O" 3600 

0"1092 
0"1077 
0.1026 
0.0886 

0 ° 6557 
0"6182 
O" 5536 
O" 4367 
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T A B L E  21 

Stiffness Derivatives for Cropped Delta Wing (A = 1.8) with Oscillating Controls of Differem Span. 

-% 

~a 

(a) Constant Mach number M = 0"7454 

0 
O" 25 
O. 50 
O. 75 

I 

0 
o. 25 
O" 50 
0"75 

-~ 0 
0"25 
O" 50 
0"75 

In this solution 

N=3 N=2 N=3 N;4 

q=l q=6 q=6 q=6 

O" 9286 O" 9083 O" 9242 O" 9237 
- - 0-6~18 - 

O. 3763 O" 3758 O" 3732 O" 3719 
- m O" 1409 - 

O" 4677 O- 4319 o. 4643 O. 4633 
- - 0"3272 - 

o"1947 0"1947 0"1934 0"1914 
- - O. 074.3 - 

O. 4056 O. 3696 O- 4066 Oo 4052 
- - 0.3129 - 

O- 2259 O. 2346 O- 2291 0 • 2099 
- - 0 . I I I I  - 

N' = 3 in place of the standard 

N = 4 # 

q = 6 

O'9244 
m 

o. 5727 

i i i 

0"~639 

O. 1922 
m 

i i 

O. 5982 
m 

O" 2196 
m 

N' =N. 

(b) Solutions N : 3, ~ : 6 

-=¢ 

118. 

0 
0"25 
0"50 
O. 75 

0 
O. 25 
O. 50 
0-75 

0 
O. 25 
0-50 
0"75 

M : 0 M : 0°5528 K : 0"7454 ~ : 0-8660 

O. 7824 
O. 544.7 
O- 3186 
O. 1219 

O. 3560 
O" 2532 
0"1524 
O. 06O3 

O. 3 1 2 0  
0 " 2 4 9 9  
O. 1 9 6 2  
0. I I 0 0  

0"8462 
0"5884 
0"3433 
0"1305 

0"4o34 
O, 2856 
O. 17o3 
0,0664 

0"3528 
0"2775 
O. 2109 
0"1107 

O. 9242 
O, 6418 
O. 3732 
O, 1409 

o'~643 
o- 3272 
o. 1934 
o. o743 

O" 4066 
O. 3129 
O" 2291 
0"1111 

1 • 0221 
O. 7091 
O" 41 O7 
O. 1538 

i 

O" 5 ], J: J: 
o. 3825 
o. 2242 
o. o847 

,, | 

0"~803 
0"3615 
O. 2531 
0"1114 
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T A B L E  22 

Damping Derivatives for Cropped Delta Wing (A = 1-8) with Oscillatin(! Controls of D!fferent Span. 

(a) Constant ~ach number ~ = 0"7454 

N = 3 N = 2 11 = 3 N = 4 N = 4 ~ 

q= I q= 6 q=6 q= 6 q= 6 

0 -0.0470 
0,25 
O, 5O -o. 0085 
0"75 - 

0 O" 1356 
O" 25 - 

O" 50 O" 0594 
0"75 - 

In this 

, ,,,,, 

0 O" 3058 
0"25 • 
0 o 50 0 • 2267 
0"75 

,m , ,  

-0, 0312 

-o. 0o87 

0"1255 
m 

0.0616 

0"2145 

0"1653 

-0"0463 
-0"0266 
-0"OO93 
+0"0005 

0"1329 
o,09~ 
0.0574 
0.0234 

0"3024 
0"2579 
0.2236 
0"1599 

-0" 0459 
m 

-0" 0O81 

o'133o 

0"0575 

0"3383 

0"2353 

-0"0455 
1 

-o. OO78 
m 

0-1321 

0.058t 

O. 3405 

0 • 2426 
m 

solution N' = 3 in place of the standard 

(b) Solutions N = 3,,, q = 6 

N If" ~ N a  

0 
o, 25 
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Fit;. 29. Hinge-moment derivatives against M for cropped delta 

wing with full-span control from experiment and theory. 

FIG. 30. Empirical correction to hinge-moment damping for 

cropped delta wing with full-span control. 
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