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Summary.
To first order in frequency, subsonic lifting-surface theory is applied to arbitrary configurations of a

thin wing and a trailing-edge control. The discontinuities in flow direction at the hinge line and part-span

boundaries are surmounted by independent consideration of smooth equivalent stopes in the chordwise
and spanwise directions; the combined equivalent incidences depend on the acrodynamic quantities to
be evaluated. The present method yields satisfactory values for lift, pitching and rolling moments, hinge
moment and the associated spanwise distributions, but does not determine the complete load distribution
due to an oscillating control.

Hlustrative examples cover four planforms, namely, rectangular and cropped delta wings for which
there are experimental data on hinge moment, an untapered swept wing that has been studied by electrical
analogue, and a tapered swept wing to be the subject of future experiments. The solutions for each
planform are tabulated and plotted as functions of control chord, control span or Mach number and are
examined from the standpoint of numerical convergence with respect to the number of chordwise
collocation points. Consideration is given to the transformed aerodynamic problem on the reversed
wing by application of the reverse-flow theorem, and these alternative numerical results strengthen
confidence in-the present method and give some indication of the likely accuracy. The optimum central
rounding of swept edges is discussed together with many other refinements of numerical technique.

A broad conclusion is that significant wing forces can be calculated to at least two-figure accuracy.
The approximations in the method are such that the true theoretical values of hinge moment are likely
to be within 2 per cent of the calculated stiffness derivative and within 10 per cent of the calculated
damping, provided that there is due attention to the choice of equivalent incidences. Comparisons with
wind-tunnel data tend to show larger discrepancies, which can be reconciled with rough predictions
from charts based on two-dimensional static tests. A simple empirical correction to the theoretical
hinge-moment damping is suggested, which reproduces the avallable experimental data within + 10 per
cent.
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1. Introduction.

The aerodynamic problem to be considered is that of a hinged control surface extending streamwise
from the hinge to the trailing edge and of arbitrary spanwise extent. The main wing surface is at rest in
a uniform subsonic airstream and the control surface is oscillating with small amplitude. There is a
requirement for a theoretical method of calculating the aerodynamic loading that would occur in
linearized potential flow, but it is recognized that in practice the influence of boundary layers is para-
mount; in consequence, such a theoretical method should be a prelude to semi-empirical develop-
ment. The paucity of relevant theoretical and experimental data must therefore be overcome as a matter
of some urgency.

The theoretical treatment for a general frequency of oscillation is discussed in Refs. 1 and 2. The crux
of the problem is the discontinuity in flow direction where the control surface adjoins the main wing,
By means of the reverse-flow theorem, Davies' formulates a smooth mode of oscillation that gives
smooth generalized forces identical to those resulting from the oscillating control ; in other words, he
formulates smooth ‘equivalent slopes’ that can replace the true discontinuous downwash condition in
the original problem. The second author? has successfully developed and applied the principles of Ref, 1
to determine lift and pitching moment; she has also examined the consequence of using the same
‘equivalent slopes’ to evaluate hinge moments, for which the force mode is no longer smooth, and finds
evidence of large inconsistencies without the possibility of assessing accuracy. It is therefore essential to
consider an alternative approach to the calculation of load distribution or hinge moment, the latter
being of special importance in flutter prevention. :

A feature of Refs. 1 and 2 is that, apart from the linear dependence on frequency of the downwash out



of phase with the control deflection, the equivalent fslopes are little affected by changes in frequency
within its practical range. It is therefore considered that an attack on the low-frequency problem will
have wider applications. The relevant background to the treatment of slowly oscillating lifting surfaces
is provided in Refs. 3 to 6. Multhopp’s® steady subsonic theory is extended to slow pitching oscillations
in Ref. 4, which has been further developed in Ref. 5 by the first author and Fox ; the numerical technique
has been improved so that up to four terms in the chordwise loading and the same number of solving
points in the chordwise direction can be used without loss of accuracy (Section 2). Applications of the
reverse-flow theorem are discussed in Ref. 6, in Section 5.2 of which the present authors formulate the
lift and pitching moment due to control oscillations in terms of theoretical solutions for the reversed
wing. These results for lift and pitching moment provide an important check on the approach to equivalent
slopes adopted in the present report, where chordwise and spanwise discontinuities are considered
separately (Sections 3 and 4). The combined procedure in-Section 5.1 can be shown to be successful for
lift and pitching moment; being applicable to spanwise loading and hinge moments as well, it can be
used to determine these with some confidence.

The rectangular, untapered swept, tapered swept,and cropped delta wings, for which illustrative
calculations have been made, are chosen specifically to allow comparisons with results from other
sources. By electrical analogy Enselme’ has obtained the steady spanwise loading on the untapered
swept wing with part-span controls. The tapered swept wing with outboard half-span controls is chosen
partly because oscillatory experiments on this configuration are planned at the N.P.L., but also because
it has been the subject of theoretical investigation, both in Ref. 2 and by Woodcock®. The rectangular
wing with full-span control has been tested at low speeds, and Molyneux and Ruddlesden® give experi-
mental values of the oscillatory hinge moment. For the cropped delta V\?ing with full-span control the
hinge moment has been measured by Bratt'®, and these tests include the upper range of subsonic Mach
number. The discussion of results for each of the four wings (Section 6) includes the effects of part-span,
and in the cases of the tapered swept and cropped delta wings the spanwise distribution of hinge-moment
damping is considered. ’

The question of accuracy is difficult; apart from two-dimensional theory and slender-wing or classical
lifting-line theory from which the equivalent slopes are derived, no exact solutions are available for
comparison with the present method. Convergence with respect to the number of chordwise variables
can be considered, and inconsistencies can be revealed by procedures involving the reverse-flow theorem
(Appendix). The problem of control hinge-moment is further complicated by the different criteria of
accuracy demanded by the theoretician and the practical aerolastician. The present objective is to achieve
sufficient theoretical accuracy that, after suitable experimental data have been acquired, semi-empirical
adaptation of the method will seem worth while. In the meantime the simplest form of empirical correction
to damping derivatives is suggested in Section 7 with supporting evidence from measurements of hinge
moment. :

2. Low-Frequency Lifting-Surface Theory.

The present investigation is essentially the application of Ref 5 to the evaluation of aerodynamic
derivatives associated with a control surface. The symbols relating to planform geometry are given in
Fig. 1a, which also defines the mode of control rotation. The boundary condition to be satisfied by the
upward component of velocity takes the usual form

w 0z iwz\ .
- IR iwt 1
T R [(6x+ T )e J (1

wherermfcular frequency of oscillation and the mode is

z = —04(x—x,) for pitching aboﬁt X = Xq 2)



or for control rotation* about the hinge x = x,(y)
z = —&y(x—x,) on the starboard control surface
z = —g &y(x—x,) on the port control surface 3
z = 0 elsewhere on the planform

with ¢ = +1 corresponding to symmetry or antisymmetry. In order to apply Ref. 5, the leading and
trailing edges of the planform are, if necessary, rounded to have continuous curvature. As discussed in
Section 6 of Ref. 11, the central rounding of swept planforms needs care; for uniform sweepback and
straight taper the leading edge and chord over the range |y | < y; are modified to become respectively

x{y) = x(y)f(4)
, )
('(.V) =¢, + {C(V,) - cr}f(;{)

where A = |y |/y;. In Ref. 5

T
= A+i1—=A°and y; = s sin —— ; 5
S = A+4(1 -2 and y, = s sin——— ©)
however, as discussed in Section 6.2, there are advantages in following Ref. 12 and taking
) =5+22-32%. (6)

Both shapes of rounding will be used, but for general formulation it is immaterial whether equation (5)
or (6) is chosen.
Given a smooth planform, the load distribution can be taken as

. MZ
Ap = LU 2 [l(x, ¥) exp (iwt+l~c%—2—b—x)] )
with the usual expression

8s
ne(y)

Ix, y) = [y(y) cot 1 +4u(y) (cot 3¢ — 2 sin @)+

+K(y) (cot 3¢ — 2 sin ¢ — 2 sin 2¢) +

+ A(y) (cot 3¢ — 2 sin ¢ — 2 sin 2¢p — 2 sin 3(,/))" , (8)

where p(3), u(y), . . . are complex and the angular co-ordinate ¢ is given by

x = x(y)+3 c(y) (1 —cos ¢). )

*£,, the amplitude of control rotation relative to the stream direction, corresponds to a true rotation
through the larger angle &, = &, sec A, about a swept hinge.



The spanwise distribution of each function y(y), u(y), ... is represented by Multhopp’s interpolation
polynomial from Appendix I'V of Ref, 3

u

_ 3 m+ (—1)*" ! sin 0§, sin (m-+1)0
o) = (=1x® z 96 (m+1)(cos8—cos §,) ’ (10

n= -y

where y = scos 8, y, = scos 8, = ssin ;?ET, m is an odd integer and u = 4(m— 1). Thus, if N represents
the number of functions (y), u(y),. .., the quantity (x, y) involves mN unknowns
'Y(yn)= 'Vmﬂ(yn) =,Lln,...(l’l = O, il, "__'U) (11)

With the aid of equation (1) the integral relation between w/U and [ to first order in frequency from
equation (5) of Ref. 5 becomes

0z iwz ioM?x I, yydx' dy’ io(xo—x)
(Fﬁ?)(l U) ”J[ =X+ By T {”' FU }d"’ (12

where for a subsonic Mach number M, 2 = 1 —M? and S denotes the area of the planform. It remains
to satisfy equation (12) at the mN collocation points (x, y) = (x,,, y,) given by

xpv = xl(yv)'*_%c(yv) (1 —Cos ¢p)

= X, +3¢,(1—cos @)

v (13)
¢, = 2rp/(2N +1) =12...N)
Yy = ssin (v=0%1,... +u)
m-+1

P

which are illustrated in Fig. 1b. The resulting linear simultaneous equations will determine the unknowns
indicated in equation (11).

To evaluule equation (12), the integrations with respect to x, and x" are carried out analytically in
terms of the influence functions in equations (12) and (13) of Ref. 5. The final spanwise integral takes

the form
0z iwz ioM?x 1 I sdy’
bl iutell ¥ I Pisaniallad BN
(ax—'_ U)( ,BZU > 27Z J'{ l(x ,V:,V) ,B UHz(x,st’)}(y_.y,)z, (14)

where the geometric mean chord ¢ is used as reference length and the functions H, and H, are linear in
$(3) ("), . . . and are defined in equations (11) of Ref. 5. The polynomial (10) is then fitted to H, and H,,
but to achieve adequate representation the odd integer m is usually increased to

m=qm+1)—1, (15)
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where g is an even integer. By mathematical integration for each collocation point equation (14) becomes

- iwe
{Hl(xpm yv)__ﬁ”fﬁHZ(xpw yu) } -
' iwé ,
_Z avﬁ{Hl(xpv,yvvyﬁl)_—B—z—U_HZ(xpvayv’yﬁ)}
_ L (e den) (| _ieMixy) (16)
b,,\ox U/, pu

where the functions H, and H, are defined in equations (18) to (21) of Ref. 5, & = 4(m—1), T’ denotes
that ( i—gv) takes odd values only and

VI
b,, = Him+1
w = g+ )secm_l_1
4 cos COS o (7
1 m+1

avﬁ: - 2

oo vE . Rm

(m+1) (sm——m+1 Sm_——ﬁ+1)

Unless g = 1, the summation ¥’ in equation (16) involves only odd values of i corresponding to sections

nn

m+1

yi = ssin (18)

that are intermediate to the collocation sections in the last of equations (13). Each of the quantities

Y(vi), t(¥i'), ... is therefore expressed in terms of unknowns in equation (11) by use of the polynomial

(10). Each collocation point yields a linear boundary condition to be satisfied by the complex unknowns.
It is convenient to write the mN equations in matrix form

(A—%B>L= . (19)

where A and B are real square matrices of order mN, L is the complex column matrix of unknowns and
h is a column matrix of the right-hand sides from equation (16). The inverse of equation (19) is

icwe

L= (A'1+WA'1BA'1)h+O(w2). (20)

By equation (2) the elements of h to first order in frequency for pitching motion about x = x, are

written as
6 iwe { p2— M? X
h = —glioc +—{————oc -2 (21)
bvv ! U ﬁz 2 c ' pv



with

oy =1 and o, = x/C.

Equations (20) and (21) combine to give

iwe | 2 —M? 1 X
L= 6, |:L1+—5-{——B—2———L2+PL3——E°L1}:|, (22)

where

L o=A"1h,

h, has elements «,,,/b,,

h3 = BLI
Similarly, by equation (3) for the mode of symmetrical control rotation to first order in frequency
parameter
& [ iwe { B*—M? M?
h=22 “1f+~— ‘szf"—i‘agu‘ (23)
| b TULTB Pl
with
oy =1
OUpp = al ;c,-,(y) on the control surface,

dap = x(y)/C J

Gy = Oyp = o4y = O elsewhere on the planform.

Then by equations (20) and (23)

iwé | p2—M? 1 M?
L= éol:Llf‘f'lTa}E{ﬁ—‘BT—sz'i‘pLQf_FL%f}:la (24)

where

er = -1 hrf
h,; has elements (a,),./b,, T .

4

Let I, and I,, denote the distributions I(x, y) from equation (8) after the elements (11) of L, and L,
respectively have been substituted in equation (10) to give polynomials (), (), 7./(¥) and so on.
Then by equations (7) and (22) for pitching motion

iwe (M?x 2 M? 1 X .
Ap = %pUZ goa%l:{ ll+'—(‘]“<ﬁzé ll+ﬁ ﬁz 12+_l3"""59‘ ll>}elwrj’ (25)

BZ



The aerodynamic coefficients and derivatives for wing forces associated with equation (25) are defined
in equations (33) and (39) of Ref. 5. Hinge moments} involve the integrals

ﬁ b
—I, ==-—|ll(x—x,)dxd
Ihr Sf Ef JVJ‘ r (x xh) X y
51 L. (26)
B X
—I* _ —_—— —_ —_— ;
Ihr Sf Ef z lr(x xh) dx d}’
S; )

where S, and ¢, are the plan area and geometric mean chord of the starboard control surface. With the

definition
: 2 - iwe ot
Hinge moment = pU* §,¢, # h0+—U— hy p 0y (27)

it follows from equation (25) that

—hy = EIB(—Im)

1 [Mm? B> - M> 1 Xo [ (28)
—hy = 2,8[/32 (— Ifl)"‘v*ﬁg—‘( _Ih2> "‘Ef(“h@) —E( “1h1> 1
Similarly by equations (7) and (24) for an oscillating control
) iwc (M*x p*—M? 1 M? i
Ap z%pUzéO%[{[lf+_J_<ﬂ25 11f+ /)’2 lzf—i-_ﬁil:&f_bBTl‘l‘/ t’l ' . (29)
Then we write for lift, rolling moment and pitching moment
i 7
nfA nm
s =01 2 rn €08 L
npA - . 2nm
_I —_ ~) [
" Am+ 1) 'rsnS! m—+1
A 1 i ' ... 2nm
- ;i:f = 21(—”‘1'_:6 Z—{ )"rfn(xln_*_«_l(n)‘ﬂrfn(n} sin m+ 1 .- (30)
rnfA - 1 nm
- [mrf = P}ir_l' = m (7{ern (xln+% Cn) _/Jrfn ('n}COS m+ 1
nfiA - 1 nm
- I:‘::r./' = ”’14_71 2 (—3 {'}'r_['n (XI%; +%xln Cn+% (‘%‘1) ~Hefn (2xln Cn +% (%l)—i— Kv'fn (-l% Cﬁ) }COSI’};IT J

n=-u

TAs for the mode in equation (3), the convention is to use streamwise distances and ignore the factor
cos A, in the true definition of hinge moment Hr.

10



and for hinge moments

B
—lyy = —Sﬁ; lrf (x—xy) dx dy
Sy L. (3])
B x
—x = _ b —
wrf S,z s Elrf(x Xh)dXdyJ

With the definitions
Lift = pU*S % [ {—zé— Z—C((]Ezé} éo e“‘"]
o 2 e iwe .
Pitching moment = pU?S¢ # m§+7 mg ¢ &g et

Rolling moment = 2pU? S s 9?[ { l¢+% I }fo eiwt—l (32)

Hinge moment = p U2S,¢, # [{ hé+%hé} &o e"‘""’

it follows from equation (29) that these conirol derivatives are obtained as

1
o= (1)

f , (33)
1 [M2 2 M 1 M
J
X 1
—m; = ~%9<—Z§>+ﬁ<_1mlf)
» (34

. M2 2 __ a2 2
—m = —%(—Z§>+§l—ﬁ[”ﬁ7(—Ii1f>+ﬁ—ﬁzy‘”("Imzf)"‘ﬁ—lz(‘Maf)‘%(_lmw)—l

1
I = _<—I,1,>
28
, (35)
1 [M? 2 M ! M?
o= (o ) ) ()]
—h¢ = ‘2% _Ih1f>
(36)



In the case of a model with reflection-plane symmetry, coefficients are required for the half-wing rolling
or ‘bending’ moment and we define

1 u

A
—I,,=pA] 7y, dn = bn rfn
wr =P '[/fn 1 2(m+l)z Ter
[4] n=0
1 x, L
xl, 37
—I,;",f=ﬂAJ‘j—E—z‘;f17dxdn ’ (37)
0 x;
_ b4 by Xjptac ¢
- 2(m+1) F yrfn InT 4% ,urfn n

J

n=0

where for m = 15 the factors b, are given by

bo = 003994, b, = 037332, b, = 0:71033, bs = 0:92235,
b, = 100084, bs = 092339, bs = 0-70738, b, = 0-38256.

The bending-moment derivatives —b, and —b; are then given by equations (35) with the quantities
—1I,,; and —I%, from equations (37) in place of — I, and — I} . The table at the end of the List of Sym-
bols gives the conversion factors required when the true control angle {7 and true hinge moment Hy
are used in place of those based on streamwise distance.

The preceding remarks on the application of low-frequency lifting-surface theory to control derivatives
have side-stepped certain matters that call for clarification and will be considered in more detail later
on. The question of central rounding in equations (4) to (6) is discussed for the swept wings in Sections
6.2 and 6.3, where the hinge line has also to be considered. It is basic to the problem of control rotation
that the incidences «, ;, a,, and «, in equation (23) are discontinuous; although the loading from equa-
tions (7) to (10) becomes inapplicable, the objective is to modify the incidences so that these equations
yield integrated forces to the desired accuracy. Chordwise and spanwise discontinuities are considered
separately in Sections 3 and 4, and by synthesis in Section 5.1 smooth equivalent incidences o.., %,
and a,, are used in place of the discontinuous ones. It is not entirely satisfactory that such a procedure
changes the quantity a5, implicit in equation (24) to a3, = b,, h3,, because hy, = BL,, no longer involves
the true L, . It will appear, moreover, that, while ., a,, and a,, will vary according as lift or hinge
moment is to be calculated, the quantity a5, remains unchanged (Section 6.1). Some justification can
be made by numerical example with the aid of checks on lift by the reverse-flow theorem (Section 5.3).
Clarification is also necessary in respect of the double integrals for hinge moment in equations (26) and
(31); the numerical procedure for their evaluation is formulated and discussed in Section 5.2.

3. Chordwise Equivalent Slopes.

In the incidences o, of equation (23), two types of chordwise singularity occur at the hinge, namely a
discontinuity in a,, or a,; and a discontinuous gradient of a5,. The chordwise incidences are treated
independently on the basis of two-dimensional steady theory'® for incompressible flow, so that they
may be replaced by smooth equivalent slopes that give the same forces as the exact solutions. This treat-
ment was proposed in Ref. 14 for the calculation of steady forces on wings with flaps and was subsequently
used by Multhopp in Appendix II of Ref. 3. An extension to control surfaces oscillating at low frequency
was considered in Ref. 15. In these references the application is to incompressible flow, but by the Prandtl-
Glauert rule the principles also apply to linearized subsonic flow.

12



At any section, the incidences can be written as

ayy = oy(X)
c

szfz(‘c_‘)fxz(X) L (38)
X

OC4f = <?h)oc1(X) )

where
%(X) = 0 when0 < X < (1—E) |
=[X+E-1]"! when(1-E)< X <1 . (39)

with X = <x_xl) and E = (x'_xh)
[ C

The two-dimensional load distributions /,(X) corresponding to o,(X) are known exactly. When r = 1,
the analysis in Ref. 13 leads to the formula

[oe)

h0) =2 gcoriger ) (FEI) |

j=1
where
=cos~ ' (1-2X)
¢ : (40)
¢y, = cos™ ' (RE—1)
this series for I, (X) can be expressed as
4 sin X¢ + ¢) ]
LX)=—|(rn—¢p)cotip+in |—F——T~
1 ( ) T I:(n ¢h) 2¢ n sin %(¢_¢h) i (41)

where In denotes the natural logarithm, and in this form the load distribution is obviously singular at
¢ = ¢,. Similarly for r = 2, the formula for the loading in Appendix I of Ref. 15 gives in the present
notation

,IZ(X) =%[{(n—¢h)cos¢h+sin¢h} cot 3¢ +(rn— ) sin  —(cos ¢ —cos ;) In SLI%M ] (42)

sin (¢ — ¢y)

Thus, for r = 1 and r = 2, specified forces can be determined by exact integration of the respective
distributions in equations (41) and (42).

The control-surface problem is to be solved by thé lifting-surface method of Section 2 with N chord-
wise terms. When N = 4, for example, we consider the two-dimensional loading with the first N’ terms
from equation (8); apart from a few spccial examples in Sections 6.1 and 6.4, the standard procedure
is to take N' = N.

13



Then
4 . . . . . .
/ (X)=7T[y¢, cot 3¢ +4 p (cot 3¢ —2 sin )+« (cot 3¢ — 2 sin ¢p — 2 sin 2¢b) +

+ . (cot 1 — 2 sin ¢ — 2 sin 2¢ — 2 sin 3¢)], (43)
and the corresponding two-dimensional incidence is

1
o, (X) = E[y”+4 t(1+2cos @)+ (142 cos p+2cos 2¢)+ A1 +2 cos ¢ +2 cos 2¢+2 cos 3p)].  (44)

The coefficients y,, u,, k,, 4, are chosen so that the smooth load distribution /(X) in equation (43) gives
specified forces, of number N = 4, that are identical to those due to the exact loading in equation (41)
for r = 1 orin equation (42) for r = 2. In Sections 3.1 and 3.2 respectively, two distinct types of equivalent
slopes are formulated, namely

e (X) = O-r(X’ E)
r=12; 45)
. (X) = 1,(X, E)

for o, only wing forces are specified, whilst for 7, one of these is replaced by hinge moment.

3.1. Wing Forces.

For the purpose of calculating wing forces due to the control motion, it seems appropriate to take
equivalent slopes o,. Thus, for the four-term formula in equation (44), the coefficients y,, g, k., 4, are
chosen so that equation (43) produces the exact lift (C,), and first three moments (C,,),, (Cppn)r a0 (Cpppm)r-
Referred to the quarter-chord axis,

‘ I(X)dX = (Cy),
1
j(%—X) I(X)dXx = (C,),
0 . (46)

0

0.

Substituting (X) from equation (43) and integrating, we obtain the set of equations in matrix notation
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2 0 0 0 Ye = (CL)r . (47)
0 2 0 0 He (Cw)s
1 —4 1 0 K, 8(C )y
-1 12 -2 1 Ae 32(C s
Inversion of the matrix gives
_1 ]
Ve = 2(Cp)y
1
He = _(Cm)r
i 1 - 8)
K, = [8(Cmm)r+2(cm)r—'7(cl,)r]

/‘I'e = [32(Cmmm)r + 16(Cmm); - 2(Cm)r - %(CL)r]

J

To complete the formulation of the slopes o4, the distribution I, (X) of equation (41) is substituted in
equation (46) to give

(CL)I = 2 C).
S(Cm)l = - Cﬂ
- (49)
8(Cmm)l = [C)' +% Cﬂ + Crc]
32(Cmmm)1 = ["" C)' _% Cu -2 Cx - Cl]
where
C, = [(n—y)+sin ¢,] ]
1C, = [sin ¢, — 1 sin 2¢,]

e (50)

C, = [—%sin2¢,+4sin 3¢,]
C, = [5sin 3¢, —1sin 4¢,]

J

The four-term formula for ¢, is then completely determined by (X) from equations (44), (48), (49) and
(50). Similarly, when r = 2, equations (42) and (46) give

]
(CL)Z = D)'
16(C,), = —D
( m)2 )] , (51)
16((jmm)2 = [D)'+%Dﬂ+DK] T
64(Cmmm)2 = [-_D)_"%Du—-an_Dl]
J

where
D, = [(n—¢y) (3+cos ¢,)+sin ¢, +% sin 2¢, ]
1D, = [3n—¢)+1sin ¢, +4 sin 2¢, — 15 sin 3¢9, ] (52)
D, = [4sin ¢, — 15 sin 2¢p, — 1 sin 3¢h, -+ sin 4]
D; = [~ 5in 20+ sin 3¢, + 2 sin 4, — 2 sin 5¢0, ]
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and equations (44), (48), (51) and (52) determine o,. It remains to evaluate ¢; and o, at the N = 4 collo-
cation positions ¢ = ¢, defined in equation (13).

If we consider N (or N') < 4, the formulation of g, again starts from equations (43) and (44): only
the first N terms are retained, and the unknown coefficients satisfy the first N conditions in equation
(48). According as r = 1 or r = 2, the first N formulae in equations (49) and (50) or in equations (51)
and (52) are used. Then. the equivalent slopes o, are determined by equation (44) with i, = 0 when
N=3andk,=4,=0when N = 2.

The formulae for o, are obtained as functions of the chordwise positions ¢ and ¢, defined by equation
(40) in termis of X and E. In Fig. 2a, values of the slopes ¢, when E = 0-25 are plotted for N = 2,3 and
4 respectively as linear, quadratic and cubic functions of X. These three curves differ most in the range
0 < X < 0-2: the N = 4 curve gives the steepest gradient at X = 0-75, the position of the discontinuity
in the exact incidence shown by the dotted lines.

The boundary condition of equation (23) is to be satisfied at the collocation positions ¢ = ¢,
(p = 1,2...N) defined in equation (13). Values of the slopes o, at the positions ¢, are denoted as a,,,.
In Tables 1 and 2, the values of 6,, and o,, respectively are tabulated for p = 1(1)N corresponding to
each value N = 2.3 and 4 with E = 0:05(0-05)0-75. In Fig. 3a, for a rectangular wing at M = 0 with full-
span control (E = constant), values of the lift damping derivative —z; are plotted against E (< 0-5).
It is noted that, when M = 0, the contributions to —z; from equation (33) reduce to the terms L,
and I 3, corresponding respectively to solutions for &, and o, the latter being derived from the solution
for o, .. The effect of using equivalent slopes oy, and o,,, for N = 4, is shown by the curve in Fig. 3a,
whilst the exact boundary conditions at the collocation points give the dashed lines with breaks in
—zg at E =003 and at E = 0-25. The fictitious discontinuities occur whenever a collocation point
coincides with the hinge position, thatis if E = 3(1 4 cos ¢,); the equivalent slopes overcome this difficulty.

3.2. Control Hinge Moment.

Equation (45) indicates that in the calculation of the hinge-moment derivatives for control motion,
the equivalent slopes 1, replace o, from Section 3.1. In the four-term formula for 7,, the unknown coeffi-
cients y,, Uy, K., 4, of equation (44) are chosen to satisfy the first three conditions in equation {46) together
with the following condition for the exact two-dimensional hinge moment

1

1
= I(X—X,.) IX)dX = (~Cy), (53)

Xh
where X, = 1 —E. With [(X) from equation (43), this condition becomes

—12‘ [yeA)' + :ueAu + KeAK + j’eA/'l] = (— Ch)r ’ (54)

where after integration

(nEY) A, = [(n— ) (2 cos ¢, — 1)+ 2 sin ¢, — 3 sin 2¢b,]
(RE)) A, = 4[—(n— ) +3 sin ¢, — L sin 2¢,, — 1 sin 3¢, ]
(nE?) A, = [4sin ¢, +§ sin 2¢,— % sin 3¢, — 77 sin 4¢,,]
(nE*) A, = [4sin 2¢,+ 15 sin 3¢, — 17 sin 4, — 75 sin 5¢,,]

(55)
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Therefore, in place of the matrix equation (47), y,, i,, k.. A, are now determined by

2.0 0 o0 Ve = (Co), (56)
0 2 0 O e (Cor
1 -4 1 0 k2 8(Corm)y
4, 4, A A4, o 2A-Cy),

with the formulae for (C,),, (C,), and (C,,,), given by equations (49) to (52) for r = 1 and r = 2. The
respective formulae for (—C,), are determined from equation (53) with I,(X) from equation (41) or 42);
then after integration,

[2n E? (—C1] = [(m—P1)* 2 cos ¢n— 1)+ 2(m— ¢y) sin P, + sin? &l
(57

27 E? (—=Cyz] = [(”— ¢h)2 cos? Gt (m— @y) sin 2¢p, + sin 2 ¢h]

Unless 4, = 0, the matrix on the left-hand side of equation (56) is non-singular and the coefficients
Ve» e» Ko, 4, Can be determined for a specified value of E and r = 1 or 2. The equivalent slopes o(X) = t,
are then given by equation (44). It is important to know the values of E for which 4, = 0 and the matrix
is singular. The formula for A, in equation (55) can be rearranged as

(157) A, = 8sin ¢, (1 —cos ¢,) (6 cos ¢, — 1), (58)
which only vanishes in the range 0 < E < 1 if
cospy, = 2E—1) = §. (59)

Hence, for E = 0-583 it is not possible to obtain 7, when N = 4. It should be emphasized that this sin-
gularity has no basis in a physical sense and arises solely from the loading functions used and their
failure to represent the exact boundary conditions of equation (3).

If equivalent slopes 7, are required for N (or N') < 4, then a,(X) is represented by the first N terms
of equation (44). The unknown coefficients are chosen to give correctly the forces (Cp), and (—C,), when
N = 2 or the forces (Cy),, (C,), and (—C,), when N = 3. In neither case can the matrix of order N re-
placing the left-hand side of equation (56) become singular in the range 0 < E < 1, because both 4,
and A, remain non-zero; hence the equivalent slopes 1, are never singular when N = 2 or N = 3. The
difference between the slopes T, when N = 2,3 and 4 is illustrated in Fig. 2b by the distributions for
E = 025 plotted as continuous functions of X. Comparison with the exact incidence for r = 2 from
equation (39) shows a progressive approximation towards it as N increases. Values of 7y, and T,, at
the collocation positions p = 1(1)N are tabulated for N = 2,3 and 4 with E = 0-05(0-05)0-75 in Tables
3 and 4 respectively.

The importance of the equivalent slopes 7,, chosen to satisfy the two-dimensional hinge moment, is
illustrated in Fig. 3b. For a rectangular wing with full-span constant-chord control, the equivalent
slopes o, that satisfy wing forces only and the special equivalent slopes 7, pare applied to give alternative
solutions (N = 4) for the hinge-moment derivative —h,. The results for a range of control-chord ratio
E from 0:05 to 0-50 are plotted in Fig. 3b and show large differences when E < 0-25. Whilst the solutions
with 7, , indicate a small change in — h; as E varies, those with ¢, , indicate a rapid variation, particularly
for small E, which will be seen to be erroneous in Section 6.1.

4. Spanwise Equivalent Slopes.
For a part-span control surface, it is readily seen from equation (23) that the incidences ®,, have span-
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wise discontinuities at the sections where the control surface adjoins the wing. After the chordwise
discontinuities within the control span have been removed by means of the equivalent slopes o, or 7,
from Section 3, there remain spanwise discontinuities in the value and, in general, in the spanwise gradient
of g, and 7,. Both types of discontinuity are treated by the use of spanwise equivalent slopes. As for the
different chordwise slopes o, in Section 3.1 and , in Section 3.2, we determine in Sections 4.1 and 4.2
spanwise slopes that are appropriate respectively to the calculation of wing forces and of sectional loads
or hinge moments; the numerical procedure for the combined equivalent slopes is outlined in Section
5.1.

For an outboard control, the two types of spanwise discontinuity are represented by distributions
of incidence

afm=cel[|n|—nJ* -1<n< -1,
=0 —N,<p< Na ’ (60)
= +[n—nJ"" Ha<n <1

where t = 1 or 2 and, as in Fig. la. v, = sn, locates the spanwise discontinuities; the symbol ¢ = +1
according as the control motion is symmetrical or antisymmetrical with respect to y. Controls of arbitrary
span can be handled by superposition.

4.1. Wing Forces.

The smooth spanwise slopes, which give correctly the wing forces such as lift and rolling moment
corresponding to the incidence (1), can be formulated directly However, there is a simpler treatment
on the reverse-flow basis, as suggested by Davies', and this approach and somc applications are con-
sidered in detail in Section 4.3 of Ref. 6.

In the present context, the spanwise equivalent slopes are represented as

m

sin kB
ae(”)ZZI:Etk<m>]a0<9<na (61)
k=1

where # = cos 0 and the odd integer m defines the collocation sections in equation (13); the unknown
coefficients E,, are chosen to satisfy the m conditions corresponding to the exact wing forces in the span-
wise modes #*~ 1, k = 1(1)m. By equations (5). (42) and (44) of Ref. 6, the reverse-flow relation between
the mncidences a,(n) and x,(#) becomes

j j a(n) (x, y)dx dy = jja,(n) Ix, y)dx dy, (62)
S

M

where 1(x. ) is a smooth lift distribution over the wing in reverse flow. This loading can be represented
by the scrics of equation (8) with ¢ replaced by (m —¢) to give the correct leading-edge and trailing-edge
singularities for the reversed flow. It follows, by transforming to the non-dimensional parameters ¢ and
1 and integrating with respect to ¢, that equation (62) reduces to

L 1

j a (n) ¥(n) dn = Jat(n) ) dn . (63)

-1 -1

Substitution of a,(#) and (1) from equations (60) and (61) gives
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m

z [E,k Jsin k8 () dn:I = ]C (|cos 8| —cos 8,) ™ 7(n)sin 6 db, (64)
4]

k=1
where #, = cos 8,

8, F:4

and the integral jE denotes j+s

n—0,

The spanwise distribution of circulation J(5) can be defined by equation (10) but is more conveniently
expressed as

m

) = z [K,. sin j9:| ) (65)

=1

When this series is inserted into both sides of equation (64), a set of m equations is obtained by identifying
the terms of each coefficient K ;. Thus,

2 [E,k J sin k6 sin j@ dﬂ] = jC (Jcos 8] —cos 8, ~* sin jO sin 046, (66)
k=1, 0

whence
2 e |
Ep== f(lcos 0| —cosB,) " 'sink@sin0d0. 67)
VA

Then, fort = 1,

0q T

E _1[sin(k—1)8 sin(k+1)0 &|sin(k—1)0 sin(k+1)8
T al T k=1 (k+1) | (k-1 (k+1)

t—04
1 sin(k—1)8, sin{k+1)8
=—|1—g(=1) £ a1, 68
n[ o )][ (k—1) (k1) (68)
Similarly, for t = 2,
_ 1 || sin(k—2)8, sin(k+2)8,
In equations (68) and (69), & = 1 for the symmetrical case gives E,, = 0 for even k, whilst ¢ = —1 for the

antisymmetrical case gives E, = 0 for odd k. The spanwise equivalent slopes a,(#) to represent o,(5) of
equation (60) follow immediately from equation (61) with equation (68) or (69), and respectively, we
write

a(n) = Qn,ng)fort = 1,2. (70)
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The boundary condition of equation (23) is to be satisfied at the m collocation sections
n=mn,=sin % where Q, is denoted as Q,,; both Q,, and Q,, are illustrated in Fig. 4 for the outboard
m

control y, = 05 in symmetrical deflection. The values of Q,,, plotted against », in Fig. 4a, show that
m = 7 gives a very smooth but inadequate representation of the exact discontinuous incidence «,(#),
whilst with m = 15 the values lie very close to «,(s) and show a steep gradient in the neighbourhood
of n,. For Q,, in Fig. 4b, on the other hand, the values for both m = 7 and m = 15 closely represent the
discontinuity in gradient defined by a,(). In all the numerical cxamples we take m = 15, and the cor-
responding values of Q,, (t = 1, 2) are listed in Tables 5 and 6, for the symmetrical and antisymmetrical
cases respectively, with #, ranging from 0 to 0-85.

The importance of using smooth spanwise slopes in place of a,(1) of equation (60) is illustrated in
Fig. 5a, by the values of the lift derivative — z, for outboard controls on a rectangular wing in incompres-
sible flow. Collocation solutions (m = 15, N = 3) with local chordwise equivalent slopes o, a,(#,),
having spanwise discontinuities, give the dashed lines that are discontinuous whenever #, coincides with
a collocation section. This difficulty is overcome if we use a,,Q,,, whence the continuous curve of —z,
is obtained.

4.2. Spanwise Loading and Hinge Moment.

The construction of special spanwise equivalent slopes, for use in the calculation of local loads and
hinge moments, is quite distinct from that of Q,, in Section 4.1. Here we work from analytical treatments
of spanwise discontinuities, following Multhopp’s'® lifting-line theory for wings of large aspect ratio
and De Young’s!? theory for low aspect ratios. Bv applying either of these theories it is possible to re-
present the discontinuous incidence o (n) of equation (60) by a smooth equivalent distribution ¥ (#, 1,)
that gives the circulation correctly at all the collocation sections #,. The local values ¥,,(3,) from the
two theories are identical and therefore likely to apply to wings of arbitrary aspect ratio.

In the low-aspect-ratio theory of Ref 17, the boundary conditions along an unswept trailing edge
relate the local incidence to the spanwise distribution of circulation 2Usy() by the integral equation

1

L[ )
o) =~ f oo Q)

Thus y(7) depends only upon the incidence at the trailing edge and is independent of such chordwise
details as the position of the control hinge. De Young takes the incidence distribution «,(#) of equation
(60) and satisfies equation (71) by an infinite series for y(x). A more direct mathematical analysis, as used
to treat equation (1) of Ref. 18, is to invert the integral equation ; by this means equation (71) yields

1

() = ~% J o) In

sin (60— 6)
sin 30+ 6)

| ay’ (72)

where # = cosf and 4’ = cos &'. By equation (72) we can determine the circulation y,(#) corresponding
to a,(n) of equation (60) with t = 1 or ¢t = 2. Hence

sin 0 —0,)
sin $(6+6,)

cos 00,

cos H@+0,)

1
yily) = - [(COS 6,—cos ) In

—¢g(cos 8,+cos 0) In

+(1+¢)8,sin B] (73)

and
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sin $(0—0,)
sin {0 +8,)

cos(6-9,)

_ 2
g(cos 0,+cos 6)* | cos K67 0,)

va(n) = L [(cos 0,—cos0)? In
21

+(1+€)(20,cos8,—sin6,)sln 0—(1—¢) (% 0,)sin 29} . (74)

With ¢ = +1 or —1, respectively for symmetrical or antisymmetrical deflection, equation (73) agrees
with the closed expression derived for the deflected outboard control from the infinite series in Ref. 17.

In the lifting-surface method of Section 2, the smooth distribution y(y) is expressed in terms of the
values y, in equation (11) by the polynomial of equation (10). An alternative form for this distribution

in Ref. 3 is
) = —2—2 [( )i(si 26, sin ,w)] (75)
'}777 “"(m_i_l) 'yﬂnl n n s
n= —u =1

where m is an odd integer and u = 4(m— 1). The unique smooth incidence distribution consistent with
equations (71) and (75) is

T

Acos AG’ ,
( [?(ﬂn) z (sm A8, j (cos 6 —cos 0) dg ):I
Asin AH sin A0
o S e |

n=—u

a(n) =

At the collocation sections # = #,, it can be shown that

u

ae(nv) =2 bvv [?(’h) - Z { Ayy y(”n) } } s (77)

n= u

where X’ denotes that (v— n) takes odd values only and the coefficients b,, and a,, are defined by equations
(17) with m = m and 7 = n. Substitution of the values of y,(x,) from equation (73) or (74) into equation
(77) defines the equivalent slopes

e (n,) = VY1) fort =1or2. (78)

It is important to recognize that there is no restriction in aspect ratio although ¥,, has been derived
on the basis of low-aspect-ratio theory. It can be shown that precisely the same spanwise equivalent
slopes follow from the rigorous application of Multhopp’s'® lifting-line theory for part-span controls,
whatever the aspect ratio. The circulation is proportional to a,()— o,(#) where the induced incidence

a;(n7) is given by equation (71) with a factor 4 inserted on the right-hand side. The invariance of P,, follows
from the condition that «() must contain the same singularities as a,(5) of equation (60) to ensure a
smooth distribution of circulation.

Values of the spanwise slopes W,,(t = 1,2) appropriate to m = 15 are tabulated in Tables 5 and 6
respectively for symmetrical (¢ = 1) and antisymmetrical (¢ = — 1) spanwise loading, with the control-
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span parameter varying from 0 to 0-85. A diagram similar to Fig. 4 would show that ¥;, and ¥,, are
close to the corresponding exact incidences. The effect of using the spanwise equivalent slopes ¥,
rather than the slopes Q,, of Section 4.1, in the calculation of the steady spanwise loading y(») is illus-
trated in Fig. 5b for the rectangular wing with symmetrical constant-chord outboard controls #, = 025
and n, = 0-85. The solution with equivalent incidences ¢, , 8, , is plotted as circles, whilst the incidences
a1, V1, give the more precise curve of y against #. The former is a poorer representation of the loading
in the neighbourhood of # = 5,. When n, = 0-85, () is plotted for twice the control deflection (£ = 2
radians) and the difference between the solutions with Q;, and ¥, is more obvious. From these com-
parisons the spanwise equivalent slopes W¥,, give a more satisfactory representation of the spanwise
loading due to the control deflection.

5. Numerical Procedures.

The major part of the numerical work has been carried out on a KDF 9 computer by the Algol program
of Ref. 5, and this has restricted the calculations to at most four chordwise terms. With m = 15 throughout,
there is the further restriction ¢ < 6 when N = 4 thus, by equation (15), a maximum of m = 95 spanwise
integration points is used. The program includes an automatic routine for incorporating the planform
rounding of equation (5); however, most of the present calculations use equation (6) instead, in which
case all the necessary values of the leading-edge ordinate x; and chord ¢ have to be inserted numerically.
The other input data that require preliminary calculation are the smooth equivalent incidences o,
o,, and o,, which will vary according as lift or hinge moment is required. In general, these will involve
the chordwise and spanwise equivalent slopes of Sections 3 and 4 respectively, and the technique of
combining them is discussed in Section 5.1.

The output data from the Algol program include column matrices L, (r = 1,2,3)and L, (r = 1,2,3,4)
for pitching and control rotation respectively, from which the load distributions in equations (25) and
(29) can be obtained; the output also gives values of the lift, pitching-moment and rolling-moment
coefficients from equations (33) of Ref. 5 and from the present equations (30). The ‘bending’ moment
coefficients in equation (37) are casily computed, but the hinge-moment coefficients in equations (26)
and (31) are calculated by a procedure of interpolation and integration described in Section 5.2. Then
all the aerodynamic derivatives from equations (39) of Ref. 5 and from the present equations (28) and
(33) to (36) are simple to evaluate.

Other numerical procedures explicitly related to applications of the reverse-flow theorem are explained
in Section 5.3. Again, the hinge moments present the greatest difficulties, while the wing forces are evalu-
ated more simply without resort to equivalent incidences.

5.1. Combined Equivalent Slopes.

The most general application of the chordwise and spanwise equivalent slopes, from Sections 3 and
4 respectively, occurs for a tapered swept wing and part-span control. The spanwise variation in the
wing chord c(y) or in the control hinge-line x,(y) obviously affects the incidences o, forr = 2 orr = 4
in equation (38). Furthermore, at each section, equation (39) is replaced by the local chordwise equivalent
slopes a,, or 1,, corresponding to the control-chord ratio E = ¢ {(y)/c(y); the spanwise variation of these
slopes with E over the control span is denoted as o, ,(E) or 7, (E). In the calculation of wing forces, when
the slopes o,,(E) are used, the incidences «,, for r = 1,2 and 4 are therefore replaced along each line
p = constant by the spanwise distributions

OCrp(n) = S[f;‘(n) Grp(E)] -1< n< —1,
=0 —1, <1 <1, , (79)
= +[filn) 0,,(E)] n<n<1l

where £ = +1 according as the control deflection is symmetrical or antisymmetrical, 6,,(E) = ¢, ,(E)
and, by equations (38),
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film=1
f2 ) = clyye (80)
Ja(n) = x,(y)ye

In order to treat the spanwise singularities in a,,(n) at # = =*#,, equation (79) is divided into three
distributions. We consider

N

oy = [f;(na) o-rp(Ea)] oy (77)

g = (3‘% [f,(n) a,,,(Eﬂ ) 22 (1)

n="na J

where the spanwise singularities in ¢; and a;; are respectively defined by the incidence () of equation
(60) with ¢ = 1 and ¢ = 2. In equation (81), we require the value of «,,(%) and its gradient a; () at = #,;
the latter is determined numerically as indicated in the next paragraph. Thus, given the distributions
a; and oy; from equation (81), the residual of the incidence «, () is determined as the distribution

O = [“rp(’?)“al—“n] , —l<sn<1, (82)

which is zero for || < #,. Since c(y) and x,(y) are smooth functions, so is ;7). The procedure then is
to replace (%) in equation (81) by the spanwise equivalent slopes Q,, for t = 1 and t = 2 from Section
4.1. The resulting sets of equivalent values at the collocation sections #, arce then added to the actual
values of the residual incidence (o), from equation (82). Thus, the combined equivalent incidences
are

d
(Ocre)pv = (aIII)v -+ [f;‘(rla) Grp(Ea)] le + (% I:f;‘(ﬂ) O-rp(E):| ) QZV (83)
n=Na
= O(,.p(i’]v) + (xrp(na) [le - 0(1(1’]‘,)] + ar,'p(ﬂa) [QZV — OCZ(?’V)] (84)

in terms of a,,(#) from equation (79).

The above procedure is illustrated in Fig. 6 for equation (79) with r = 1, p = 1 and spanwise symmetry
(¢ = 1). Here the curve of o = o, () = o, ,(E)againsty = #,correspondsto p = | in the solution (m = 15,
N = 3) for the cropped delta wing with outboard control 5, = 0-5. This example shows the large varia-
tion in ¢ (E) as E increases from 0-25 to 1. When this distribution is divided into three parts, according
to equations (81) and (82), we obtain the three spanwise distributions labelled (7 (2)and (3) in Fig. 6.
The third distribution is smooth. but the first two distributions are proportional to the exact incidences
a,() shown as broken lines in Figs. 4a and 4b and replaced by the values Q,,. The spanwise gradient
in the second of equations (81) is estimated by means of a polynomial in # through ¢, JEJ) and the values
o1,(E,) at the four collocation sections #,, v = 1(1)4, two on either side of the position # = 5, = 0-5.
At the sections 7, = 0195 and #, = 0-383 we must use the values of ¢, appropriate to an extended
control as indicated by the smooth dotted curve in Fig. 6. Once the gradient is determined by differentiat-
ing the polynomial for ¢,,(E) and putting # = #,, the combined equivalent incidences («,,),, for p = 1
and v = 0(1)7 are calculated from equation (84) and plotted as circles in Fig. 6. The procedure for other
values of r allows for the spanwise variation of both ¢,,(E) and f,(») in equation (79).

The formulation of the equivalent incidences (a,,),,, by equations (79) to (84), also applies if we replace



the chordwise slopes a,,(E) by 7, (E) or the spanwise slopes Q,, by ¥,,. The combination of chordwise
and spanwise slopes is selected according to the aerodynamic requirements in the following table.

Equivalent Slopes

Chordwise | Spanwise

Wing forces Orp Q,,
Spanwise loading Orp ¥,
Hinge moment Trp ¥,,

For hinge moment, therefore, equation (84) is replaced by

((xre)pv = arp(nv)'i- d,.p(?’[u) [‘Plv - al(rlv)] + a;p(ﬂa) [\PZ\: - 052(’%)] (85)
with “rp(’f) =& [fr(n) Trp(E)] -1< n < —Ha
=0 e <N <y ,
= +[fin) 1, {E)] He <9 <1

wherer = 1,2 0or4,e = +1, 14 ,(E) = 1 ,(E) and f,(») is defined by equation (80).

The procedure simplifies in a number of cases. For a symmetrical full-span control, Q,, = ¥,, = 1
at any collocation section #,. When the control chord ratio E is constant across the control span we
always have zero gradient and «;; = O for ¥ = 1, but this only remains true for r = 2 if the wing chord
is also constant or for r = 4 if the control hinge line is unswept. Thus for a rectangular wing with constant-
chord control, the last term in equation (84) or (85) vanishes and for each r the combined equivalent
slopes simplify to give

() = [fr 0. {E)Q;,]  for wing forces (86)

or

(%) = [fr T, (E)¥,,]  for hinge moment (87)
wheref, = f, =landf, = 1—E.

5.2. Integration of Hinge Moment.

The hinge moment on the control surface due to low-frequency pitching motion or control rotation
is determined by equations (26) to (28) or by equations (31), (32) and (36). In ecach case, the double inte-
grals are to be evaluated over the starboard area S, bounded by the hinge line x,(y) and the trailing
edge x,(y) with the range of y for outboard and inboard controls defined respectively as y, < y < s and
0 < y < yy; this definition holds for both symmetrical and antisymmetrical modes of oscillation. When
an inboard or full-span control is swept, there arises the question of the kinked hinge line at y = 0;
formerly in the calculation of Ref. 2 the actual hinge line was retained throughout the calculation while
the planform was rounded. It now seems more appropriate to use a rounded hinge line consistent with
the planform rounding either from equation (5) or from equation (6), as will be discussed in Section 6.3.

The procedure for integration of the hinge moment will be formulated in detail for the derivatives
—h, and —h; due to control rotation. These can be expressed in terms of the local hinge-moment dis-
tributions across the control span, —h,; and —h;,;, as defined by the integrals
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‘hg = (:—f)j (_hél) dn
e = ()| -hoan

where the control span and range of integration are defined for outboard and inboard controls respect-

ively as
1
Sy = S(]_”a)aJ‘ = J
Ha

and
'If

By identifying equation (88) with the formulae for —hs and —h; from equations (31) and (36) where
Sy = sp ¢y, it follows that

(=)

1 t
—hyy, = Ff(x—-xh) lisdx (90)
¢y
Xn
and
1 k x M? B%—M? 1 M?
*héL _ng(x—)ch)l:_é_ﬁ-z_llf—*_lef—l—ﬁz l3f~Fl4f dx . (91)

In accord with the table after the List of Symbols —hy, and —h;y require the factor cos? A, when the
control angle and hinge moment are defined truly in planes normal to the hinge line. In the present method,
the load distributions [, , I and I, are determined for the equivalent incidences o,, from equation (85),
but /3, is obtained from an incidence as, involving the matrix BA~! in the notation of equation (24).
When N = 4, I, (x, y) is represented by the real spanwise distributions Vrs)s (V) K. ((¥) and 4, (y)
together with the four associated chordwise functions of ¢ in equation (8). Then equation (90) reduces to

A[eY
—ha = Z(gf-) Fi(), (92)

where in general
c
F.(n) = (EZ 5) [?r 1) Ayt i 9) A+ 16, 19) Ay + 2, ) Aa] ; (93)

the chordwise integrals A,, 4,, 4,, A, are expressed analytically in terms of ¢, = cos™! (1 —2E) by
equations (55). For —hy, in equation (91), the first term in the square bracket requires additional func-
tions B,, B,, B,, B, defined by the integrals



P(¢n) = f [cos (g — 1) +cos g¢] (cos ¢, —cos §)*d¢, q = 1(1)4 ; (94)

after integration, we obtain the set of functions

I

(rE*)B, = P, = [(n—¢,)(1—cos ¢, +%cos 2¢;)—3 sin ¢, +3 sin 29, — 15 sin 3¢,
(nE*)B, = 4P, = [(n—¢,) (1 —4 cos ¢,)— 3 sin ¢, +3 sin 2¢,, — § sin 3¢, — 15 sin 4¢,,]
(RE*)B, = P3 = [{{n—¢,)—175in @+ sin 2, + 5 sin 3¢, — g sin ¢, — 135 5in 5]

(RE®)B, = P, = [—+{5sin ¢, — 5 sin 2, +2 sin 3¢, + &5 sin 4¢), — 135 8in 5¢p, — 75 Sin 66,

(95)

i

Values of the eight functions 4., A,, 4,. A, and B,, B,. B,, B, are tabulated for E = 0-05(0-05)0-75 in
Table 7. Thus, equation (91) can be evaluated from the expression

2 2 2 M
—hy, = f( )[Ag i+ E‘B‘M L+ BzFa(n) a2 (m] (9)

where F,(») is defined by equation (93) and

2
Fi(n) = (?) Fim+ (Ez %) [m(y) B+ () B+, 4(y) B+ 4, 4(y) B; } : 97)

The values of —h,; and —h;, at the collocation sections y, = sy, within the control span are determined
by equations (92) and (96) respectively with the values of 7,5, = 7, (Vo) typn = Hes(Vy), . . . from the collo-
cation solution inserted into equations (93) and (97); in general, the planform data x,, E and ¢ and the
functions 4., ... B, will all vary with »,,

To duu,rmmu —hg and —hg at the extremity of the control span, we require the values of F (i) for
r = 1(1)4 and F%(n) at n = n, (or n,). In general, , does not coincide with a collocation section and the
values of y, {v,), #,{(v,), . . . must therefore be obtained by interpolation. Except for » = 3, it is necessary
to simulate the singularity in spanwise loading associated with deflection of the starboard outboard
control; cach distribution y, (¥), ,(y), . . . is represented by a four-term equation

Gln) = [Z(a et V/Tfﬁi>+am (71)], (98)

where the distribution

1
() = - [G sin 8 +(cos 8,—cos 0) In st(—eﬁa)

(99)

n 30— 9a)|

is defined by equation (73) with & = 0. For an inboard control, it follows by superposition that equations
(98) and (99) apply with 0, replaced by ), = cos™ 117/. When r = 3, equation (99) is no longer appropriate

to the interpolation and the last term in equation (98) is replaced by a, #°3 \’/1“_“;5. The arbitrary co-
cfficients ay, k = 1(1)4, are chosen for cach r and each distribution y,,, i s - - ., 50 that G(n,) is satisfied
at the four collocation sections #,, two on cither side of the position #, (or #,). The interpolation is illus-
trated for —h;, on an outboard control in Fig. 7 by the simple case of a rectangular wing with constant-



chord control. For m = 15, the interpolated value at 7, = 0-45 involves the values at = g, for n = 1(1)4,
as indicated by the ‘range for interpolation’ in Fig. 7.

To complete the evaluation of —h; and — h,, we require a numerical procedure for the spanwise inte-
gration of equation (88). Basically, we apply Simpson’s rule to the integrations with respect to the angular
parameter 6 = cos ™ '5 over each double interval

T ni
< - |, 100
en<9<9n+2[:0n 2 m+l1 (100)

where the integer n is even. Thus the integration over the greater part of the control span is effected in
terms of the local hinge-moment coefficients —h,; and —h;, at the collocation sections #,, but there
remains a divided interval requiring special integration factors appropriate to the value 1, (or ;). On an
outboard control, this interval is denoted as 5, < n < #, where #, is the outer end of the double interval
that overlaps the position #,; 7, may or may not be the collocation section nearest to #, and we have to
consider both cases. By assuming a quadratic function of § through the values of —hy and —hy at g,
and the two nearest collocation sections within the control span, equations (88) are integrated over the
range 4, < 1 < #;,. In the example of Fig. 7 for m = 15 and n, = 045, the shaded areas denote the three
ranges for integration; —h, is calculated by using Simpson’s rule over the two double intervals
Na < 1 < fs and g < 1 < 75, Whilst over the divided interval 5, < 5 < 1,4, the integrand is represented
in terms of the values of —h,, at n = n,, n; and 5,. Thus, for the outboard control , = 045,

7

h=— " )_ NS — n
h{ - (I’I’l+ 1) (1 _na) { h{L (”a) Ia(l rla) + Z[ hﬁL(”n) In Cos (m+ l)jl} (101)
n=3
where I, = 0-10665 I =1-14365 , I, =070582 ,
Is = 133333 Is = 0-66667 I, = 1-33333

The other case arises when the numerical integration procedure for m = 15 is applied to an outboard
control 1, = 025; there are three double intervals and the divided interval 5, < # < #, is represented
by the values of —h,, at n = #,. #, and 55. The derivative —hy is then given by equation (101) with the
summation from n = 2ton = 7 and

I, = 030708 |, I, = 077464 I; =129805 , I, = 066667

and I5 to I, as given above. These numerical procedures have been found satisfactory in the present
applications. Improved accuracy could be obtained over the divided interval from 5 = #, to 5 = 7, =
cos 6, if an additional interpolation were made for the position 0 = 4(8,+8,) to permit the application
of Simpson’s rule.

A similar numerical procedure is used to evaluate the hinge-moment derivatives —h, and — h, from
equations (26) and (28) corresponding to pitching motion. Instead of equations (98) and (99), it is ap-
propriate to use the smooth interpolation polynomial

Gln) =_Z(ak it \/1—*112) (102)

k=1

to evaluate each spanwise distribution at # = #,. To the local hinge moments we again apply the span-
wise integration procedure illustrated in equation (101).
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5.3. Applications of Reverse Flow.

The reverse-flow theorem is applied in Section 5 of Ref. 6 to low-frequency oscillations in the pitching
and symmetrical control-rotation modes. Expressions are derived on the basis of Multhopp’s low-
frequency theory for the lift and pitching-moment derivatives, which are given for the two modes res-
pectively by equations (71) and (77) of Ref. 6. Both scts of formulae are in terms of the same load distribu-
tions, 1(%, ), ¥ = 1(1)5, appropriate to solutions for the ‘reversed wing’ in simple modes. With the co-
ordinate system (X, y) defined by

> (103)

these solutions are referred to the origin at ¥ = 0 on the leading edge of the reversed wing. Thus, each
distribution (X, y) is represented by equation (8) with a bar inserted over each symbol in the square
brackets; the corresponding collocation solutions for the reversed wing follow the principles of Section
2 with respective incidences

G =1 1

i, = X/C

&3 = b,,BA™!(&,/b,,) ¢ (104)
a, = (X/c)*

ds = by, BA™! (&Z/bvv) J

where A and B are the matrices from the collocation solution for the reversed wing, analogous to those
in cquation (19).

For pitching motion, equations (38) of Ref. 5 give the lift and pitching-moment derivatives in terms
of the force coefficients I, with r = 1(1)5, —I,,, and —1I,,, for the reversed wing. A straightforward appli-
cation of the Algol program?® to the reversed wing gives the seven coefficients as output, and the pitching
derivatives follow immediately.

The program also outputs the values of the spanwise loading coefficients 7(y,), fi(¥,), . . . which define
the distributions I,(X, 7). In the present notation, the formulae from equation (77) of Ref. 6 for the lift
derivatives due to control rotation become

1((. . |
—zg=gjjlldxdy
d u
an
- (105)
1 M*%, - 2_M?\ [x-X M. 1.
-5 [ (58) vt isas
Sy J

where X,(y) = ¢,—x,(y), the wing area S = 2s¢ and the starboard control-surface area S, = s,¢, is
bounded by the control span, the leading edge X,(¥) and the hinge line X,(¥) on the reversed-wing planform.
Likewise, the formulae for the pitching-moment derivatives can be written as
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[mg_zé(______é °)]=§Jfl2dxdy
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—X, 1 M?%, . M\ (g-%\. M . 1.7 ._
e (]S ) o

To evaluate equations (105) and (106), the intcgrals are transformed to the non-dimensional parameters
¢ and 7 defined by

and . (106)

J

X = X(J)+%c(F) [1—cos §]
, (107)
and

2

I

st

where by equations (103) and planform symmetry

X3 = ¢, ~[x () +c)].

Since X,(y) = ¢, —x,(y) gives ¢, = n—¢,, we need to consider chordwise integrals of the two types

=Py
Q. = ZCE f l,sin ¢ de , r=11)5, (108)
)
and o
R.(7) = 4% f (cos p—cos @)l singdp,r=1,2. (109)

0

When the loading 1(%, j) is expressed as the series with N = 4 chordwise terms in equation (8) with
bars inserted, equation (108) becomes

A -
Q@) = — [%(J‘/) G+ () Cu+ 53) Ce+ 445) C;, ] ; (110)

where the chordwise integrals C,, C,, C, and C; correspond to the four chordwise functions associated
with , g, & and 1 respectively; these integrals are defined analytically as functions. of the hinge-line
parameter ¢, by equations (50). Similarly, equation (109) reduces to

A -

where the functions D,, D, D, and D, are defined in terms of ¢, by equations (52). It follows that the
derivatives of equations (105) and (106) can be expressed in terms of the spanwise functions Q,(7), r = 1(1)5,
from equation (110), R, () and R,(#) from equation (111). Hence, for an outboard control, equations
(105) reduce to the integrals
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1
—Zz= J Q. di
a L (112)
1

M?x 2_ M2 M? 1 _
—zp= j[“ﬁy%Ql+<E~F-><§CE>R1*FQ2‘FPQ3]4’1 )

fla

and

Similarly, equations (106) become

1 N

[mé_zé(“;“ﬂ = | 0:a1
r 2 = 2__aq2 2
[ O T

Na

(113)
and

To complete the evaluation of the lift and pitching-moment derivatives, the values $.(,). f4{¥,), ...
from the collocation solutions are inserted into equations (110) and (111). In general, 5§ = #, does not
coincide with a collocation section 7, and the interpolation polynomial of equation (102) is used to
obtain the necessary values of %,(v,), i,(v,). ... Then the numerical procedure of Section 5.2 is applied
to the spanwise integration of equations (112) and (113), whereby each derivative is expressed in terms of
the values of its respective integrand at # = n, and at the collocation sections # = #,, within the control
span. This will incorporate any spanwise variation with 7 of the planform data x,(7), ¢(¥) and also ¢, =
cos™ ' (1—2E) through the eight functions C..... D, which are defined by equations (50) and (52) and
tabulated for E = 0-05(0-05)0-75 in Table §.

Application of the reverse-flow approach to the calculation of hinge moment due to symmetrical
control rotation is considered in detail in the Appendix. From equations (A.2) to (A.4). we see that the
problem of singularities in both the force and upwash modes persists into the reversed-wing formulation.
The singularities in upwash are treated numerically by using appropriate chordwise and spanwise
equivalent slopes, combined according to the procedure of Section 3.1. Altogether, the calculation of
hinge moment to first order in frequency requires five additional reversed-wing solutions for the steady
load distributions I, (%, ¥) due to equivalent incidences &,, for r = 2.5,6,7.8. The following table indicates

the actual incidences that each #,, replaces and the chordwise and spanwise equivalent slopes from the
Appendix.

Chordwise slopes; Spanwise
¥ &,, to replace special condition slopes
2 (x—X,)/con S, ¢ ; hinge moment ¥,

5 Equation (104) with &@,, | & : N wing force Q,
6 (x—Xy)/con§, { ; hinge reaction ¥,
7 [(x—x,)/c]* on S, Y ; hinge reaction ¥,
8 (X,/c)(x—X,)/con S, ¢ ; hinge reaction Y,
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Each of the chordwise slopes is chosen on a two-dimensional basis to satisfy conditions for the first
(N —1) wing forces and the special aerodynamic quantity listed above; the ‘hinge reaction’ of equation
(A.18), arising from the lift force on the control, gives a distinct condition relevant only to the reverse-
flow formulation of hinge moment. The four types of chordwise slope are indicated by equations (A.16)
when N = 4. Equation (A.15) in conjunction with equations (A.19) to (A.21) leads to the slopes ¢ and 4,
whercas the slopes O and  are determined by cquation (A.15) with cquations (A.22) to (A.24). In the
case of a part-span control, the spanwise equivalent slopes €,, and ¥, of Sections 4.1 and 4.2 are sclected
according to the above table.

In equation (A.26), the hinge-moment derivatives are expressed in terms of the five load distributions
1,.(X, §) over the reversed wing by

- rop

c 5
—h, =— zdv 1
14 25,5, | loe dX dy
and ¥
Lo (114)
¢ [ BE—M*\ (%—%,)- 1.  M*/%, . _
_hé —2Sf5fusu l:"(‘ ﬂz _>(7_>12e+'/;§lSe+’B_2_<€Tﬁe—-l7e"189>]CJXdyJ
> -

For an outboard control, it can be shown that equations (114) reduce to

and L, (115)
1 /&\? B2—M*\/ ¢ 1 M? (%, A
e fe) [T ) oo B (Rononmon) i

where the spanwise functions Q,, and R,, are determinad by equations (110) and (111) with modified
subscript. The evaluation of the spanwise integrals in equations (115) is effected by the numerical pro-
cedure for hinge moment in Section 5.2. Thus, formulac for —hk, and —h; arc obtained in terms of the
spanwise loading coefficients 7,(7,) , fvo(Js), . . . . together with the corresponding values of C,,.... D,
at the collocation sections y, = s#,. To determine the values of the integrands at the lower limit of inte-
gration in equations (115), the interpolation procedure of Section 5.2 is applied to the spanwise loading
coefficients; the polynomial of equations (98) and (99) is used, except for @5, when the smooth poly-
nomial of equation (102) is more appropriate.

The evaluation of control derivatives by the reverse-flow approach must be regarded with some
reservations. For the indirect derivatives as well as for the hinge-moment derivatives, the calculations
involve the integration of loading over the control area and this includes the leading-edge of the reversed
wing, the region where collocation solutions are least reliable. In the case of the lift and pitching-moment
derivatives in equations (105) and (106), there is no further difficulty since the reversed-wing solutions
correspond to the simple modes of equations (104): the derivatives, so obtained, provide an important
check that is independent of equivalent incidences. On the other hand, the derivatives —h; and —~h;
involve the special equivalent-incidence procedures and rather more lengthy computation from equations
(114) than from equations (88) to (91) in direct flow. A further disadvantage is the greater extent to which
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indeterminate chordwise equivalent slopes can arise, especially for compressible flow; as shown by
cquations (A.25), singularities occur when N = 3 if E = 0:375, and for three values E = 0:196, 0-417 and
0-637 when N = 4. These limitations restrict the reverse-flow procedure to the role of providing altern-
ative values of hinge moment in particular examples only. The simplest applications for a rectangular
wing at M = 0 (Section 6.1) illustrate the difficultics associated with singular solutions. In compressible
flow the tapered swept wing with outboard control (Section 6.3) provides an example in which the range
of E excludes any singularities in the equivalent slopes.

6. Hilustrative Calculations.

Numerical applications have been made to the four planforms defined in Fig. 8. The examples have
been chosen to demonstrate all aspects of the present method, and in each case to allow comparison
with experimental or theorctical results from other sources. The principal objective is to evaluate the
hinge-moment derivatives to reasonable accuracy, and their convergence with respect to the number
of chordwise terms (N = 2,3 and 4) is examined for each wing.

The two untapered wings of aspect ratio 4 are considered with a wide range of control chord and
span, but the calculations are restricted to incompressible flow and to constant values of the chord
ratio E = ¢,/c over the control span. The results for the rectangular wing in Section 6.1 are mainly
concerned with full-span controls and concentrate on the effect of E and the implications of the reverse-
flow theorem in relation to chordwise equivalent slopes. The untapered swept wing is chosen partly
because its spanwise loading due to part-span controls has been obtained by an electrical analogue’
of the steady flow, and partly to illustrate the effect of sweepback. The calculations for Section 6.2, res-
tricted to steady flow, show the influence on spanwise loading of the artificial central rounding in equations
(4) to (6) by comparison with the analogue results for inboard controls. Stiffness derivatives for zero
and 45-deg sweepback are compared for inboard and outboard controls over the whole range of span.

The two tapered wings in Fig. 8 are considered in compressible flow, and the complete sets of pitching
derivatives arc calculated including the hinge moment from equations (27) and (28). Both wings have
control surfaces with fixed hinge lines, a spanwise variation of E and a range of span; they therefore
involve the most general procedure for combining chordwise and spanwise equivalent slopes (Section
5.1). On the cropped delta wing, in particular, E has an extreme variation from & at the root to 1 at the
tip, and the influence of Mach number is studied. The tapered swept wing has been treated theoretically
for small frequency in Ref. 8, and derivatives from that source for an oscillating outboard control arc com-
pared with the present calculations; a further important check on the wing forces from the present equiva-
lent slopes is obtained by application of the reverse-flow theorem to slowly oscillating control surfaces, as
formulated in Section 5.3. Two other special investigations for this wing are included in Section 6.3. Anti-
symmetrical, as well as symmetrical, control deflections are considered, and both rolling and hinge
moments in the case of antisymmetrical ailerons are compared with the corresponding theoretical quanti-
tics when reflection-plane symmetry is assumed, as in a half-model experiment. The need to round the
central region of a swept wing introduces the further question of rounding the swept hinge line in the full-
span case, and the importance of this is examined. For the tapered swept wing in Section 6.3 and the
cropped delta wing in Section 6.4 the spanwise distributions of hinge-moment stiffness and damping are
illustrated, together with the effect of Mach number on the latter wing.

The ultimate objective is to adapt the present method to include some allowance for aerofoil section
and boundary layers. There are insufficient experimental data to establish a practicable semi-empirical
scheme, but measured hinge-moment derivatives are available in Refs. 9 and 10 for the rectangular and
cropped delta wings. Sections 6.1 and 6.4 include relevant comments on the discrepancies between these
measurements and the present theoretical results. Section 7 suggests a simple means whereby a known
discrepancy in the stiffness derivative can be utilized to estimate a rather smaller discrepancy in the
damping derivative.



6.1. Rectangular Wing.

The rectangular wing of moderately large aspect ratio 4 = 4 with control surfaces of constant chord
does not introduce much interaction between chordwise and spanwise characteristics. The smooth
equivalent incidences for part-span controls are easily determined from the appropriate equation (86)
or (87), and as a further simplification the flow is taken to be incompressible. Only control oscillation is
considered, and the six derivatives of lift, mid-chord pitching moment and hinge moments have been
calculated from equations (32) to (36) by the present method with m = 15,9 = 6 and N < 4. The various
results from direct and reverse flow in Tables 9 to 12 serve to clarify many basic features of the theory.
The discussion of the derivatives for part-span controls in Tables 10 and 11 is partly delayed until Section
6.2; we now concentrate on full-span controls, and especially on the effect of chord ratio E. The particular
aspect ratio with E = 0-2 enables us to make comparison between the theoretical hinge moments and
the wind-tunnel measurements of Molyneux and Ruddlesden®.

The dependence of the lift-damping —z; on E with its changing sign near E = 0-4 is illustrated by
the curve in Fig. 3a. From the results in Table 9, —z¢ and the stiffness derivatives —z, and —m, are
less sensitive than —m; to the number of chordwise terms N. Even so, the curves of pitching-moment
damping against E for N = 2,3 and 4 in Fig. 9 show good convergence, with ncarly-indistinguishable
curves for N = 3 and N = 4. Similarly good convergence for part-span controls is found in Table 10,
and again N > 3 gives sufficient accuracy. Table 10 also includes a set of results for E = 0-35, in which
the spanwise factors Q,, for wing forces are replaced by ¥, , that would normally occur in the cquivalent
incidence for the spanwise distribution of lift or hinge moment. Although the effect on lift and pitching-
moment derivatives is quite trivial, the distinction between Q,, and W, is seen to be significant in the
application to spanwise loading in Fig. 5b.

While the lift and pitching moment require equivalent incidences based on o, in the present direct-
flow method, z,, is used in the calculation of hinge moment. This applies without question to the stiffness
derivative —h,, as is suggested in Fig. 3b and demonstrated conclusively in Fig. 10. The upper diagram
of — h, against E shows to large scale the very satisfactory convergence with respect to N, slightly marred
when E increases above 0+4 as will be discussed later. By contrast, the small-scale lower diagram of Fig.
10 shows the chaotic picture that emerges when ¢, p Is used in place of 7,,; only for the larger values
of E > 04 is there any semblance of convergence with respect to N, and even for N = 4 there is a resulting
error in —h; of more than 25 per cent when E = 0-2. The high order of convergence with the special
chordwise equivalent slopes 7,, is maintained in Table 11a in the examples by direct flow where the
control has part-span from 5, = 045 to the tip.

The corresponding situation for the damping derivative — h; differs in two respects. In the first place,
the imaginary part of the boundary condition (1) and the quasi-steady incidence 0,5 In equation (23)
are continuous at x = x,; therefore the distinction between 0,3, and 7,, is less crucial than between
01 and 7y, Although the solutions with ¢, in the lower diagram of Fig. 11 show poorer convergence
than the recommended ones with 7, in the upper diagram, the discrepancies between the two for N = 4
only becomes appreciable when E < 0-2. In the second place, the damping — h; in the second of equations
(36) involves the coefficient —1I,;, corresponding to the incidence a3, indicated in equation (24) by
means of the matrix operation BL, ;. The most precarious assumption in the present method is that
equivalent incidences «;, can be used to replace L, , by L,, in this particular operation and so derive
a3, instead of o5, It is recommended that, whereas — Iy (likewise —If, . and —1I,,, when M # 0)
is based on 7,, and ¥,,, the coefficient — I3 should involve a different a;, based on ¢,, and Q,,. In
Table 11b there are a few examples where, instead, the same %, = Ty, ¥, has been used for both —1I,,,
and — I3, The convergence of —h; with respect to N remains fairly satisfactory, but incomplete. which-
ever — I3, is used. Except for the smallest control E = 0-15, the two procedures show smaller differences
when N = 4 than when N = 3 but these discrepancies are quite as significant as the incomplete con-
vergence.

Some support for the recommended procedure for —1,; > based on ¢,, and Q,, can be drawn from
the evidence of solutions for the rectangular wing by reverse flow in Table 9. For the damping derivatives
—zz and —my, in Table 9b, the reverse-flow calculations depend only upon solutions in modes that
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involve neither equivalent slopes nor any question of principle concerning o3 ,. The upper diagrams of
Fig. 12 show equally good convergence when —m, and —m; by direct and reverse flow are plotted
against N: in this example of full span and E = 0-25 the derivatives almost agree to four decimals when
N = 4. Throughout Table 9 the lift and pitching-moment derivatives agree within 0-005 and 0-001
respectively for all E. This justifies the use of the chordwise equivalent slopes o,, for wing forces, and in
particular the procedure for a3, involving the loading /,, from the equivalent incidence a,.. There is no
fundamental reason why the same incidence a5, should not apply as well to hinge moment in direct flow.

As discussed in Section 5.3, the calculation of hinge moments by reverse flow involves additional
types of chordwisc equivalent slopes and is no simpler than the present method in direct flow. Although
the two calculations of —h, and — h; show fair correlation against N in the lower diagrams of Fig. 12,
there are two undesirable features, the disparity in —h, for N = 4 to be considered later and the rather
slow convergence in —h;. The following table for #, = 0 and E = 0-25 shows that —1I,; is solely res-
ponsible for the slow convergence.

N — Iy ~Iyay ~ILysy
2 0-7295 0-2549 0-0760
3 0-7363 0-2593 01270
4 0-7363 0-2617 0-1559

It is likely that — I3, would converge more rapidly with respect to N, if only a5, could be obtained
from a loading [, that incorporated the correct mathematical singularitics at the hinge. Then by use
of an cquivalent incidence — I3, might be calculated as successfully as —1,;, and —1,;, in the table
above. Without such precise treatment more chordwise terms are needed and the restriction is one of
computation. With N = 4, the damping derivative cannot be trusted to much better accuracy than
10 per cent, which in practical terms is marginally adequate.

Although the disparity in —h, for E = 025 and N = 4 in Fig. 12 is a mere | per cent, the phenomenon
can be seen in a more acute form for E = 0-20 in Table 11a, where by reverse flow for N = 4 this derivative
is clearly about 8 per cent too high. This raises the numerical difficulty that the chordwise equivalent
slopes 7, arc indeterminate whenever the matrix, such as in equation (56), becomes singular. This situation
cannot arise for wing forces since in direct flow the matrix, such as in equation (47), is always triangular
with non-zero diagonal clements, and in reverse flow there is no problem of singularities in incidence.
For hinge moments, however, the chordwise equivalent slopes become increasingly hazardous as N
increases, and the critical values of E are listed in the following table.

Singularities in hinge moment N=2 N = N=4 |
Direct flow —h:and —h; None None E=5
Reverse —h, None E=1% E = é;i__Y /
12 —hs (M #0)
flow |
—h:(M =0) ° None None E=+
|

The problem is more severe in reverse flow, where with N = 4 there is danger near £ = 0-196, 0-417
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and 0637 in compressible flow. In direct flow the chordwise equivalent slopes 7, p OF T,, escape trouble
when N = 3 and only succumb near E = 0-583 when N = 4. This provides the explanation of the be-
haviour of —h, for N = 4 and E > 04 in the upper diagram of Fig. 10. The small discrepancy of about
13 per cent at E = 0-5 will clearly grow as E approaches 0-583. The complete story for —h, and —h;
in the case of incompressible flow and N = 4 is depicted in Fig. 13 over the range 0-05 < E < 0-75.
Because of the weaker singularity in «,, than in «, ,, the singularities in —h; at E = 0-583 in direct flow
and E = 0417 in reverse flow are very localized, and it is only necessary to avoid the critical values
of E by +2 per cent for the discrepancies to become negligible. For the stiffness derivative the region
04 < E < 07 is fraught with uncertainty, but an estimate over the whole range could be made from
a faired curve of the direct-flow results for 005 < E < 0-40 and 0-65 < E < 075 and the reverse-flow
results for 040 < E < 0-60. There would be worse confusion for N > 4, since the critical conditions
would occur at more values of E.

These singularities have no physical aerodynamic significance and are implicit in the present use of
equivalent slopes. It is important to consider how to get rid of the difficulty by further approximation.
A satisfactory expedient is indicated in Fig. 14, where the first N’ terms in the polynomial (44) are used
to represent the chordwise equivalent slopes 7, (N < N). The individual plots of —h, against N for
five full-span values of E are analysed for convergence in three ways:

(i) the standard N’ = N (full lines),
(ii) fixed N’ = 2 (long dashed lines),

(iii) fixed N = 4 and variable N'.

In all these respects the convergence is good, except when E = 0-05 and 0-50. The small value of E slows
down convergence with respect to N, but not to any serious extent : the large value of E is approaching
the critical value for the singularity in 7,,, but the result for N’ = 3, N = 4 is quite reliable and is the
best substitute for the standard N = 4 solution in these circumstances. This smaller value of N’ has
negligible effect on the corresponding values of —h; in Fig. 14. The results —h, = 0-3456 and —h; =
0-3902 from Table 12 when E = 0-50, N’ = 3 and N = 4 compare satisfactorily with the respective
quantities 0-3451 and 0-3891 for N = 4 by reverse flow from Tables 11a and 11b. The expedient of reducing
N’ becomes necessary in Section 6.4, when E varies continuously from 1 to 1 along the span.

Experimental data from Ref. 9 for a full-span control of chord ratio E = 0-2 are included in Figs. 10
and 11. The factor E~? = 25 converts H, and H, in Table 3 of Ref. 9 to &, and h; in the present notation.
Both measured derivatives have smaller magnitude than the best available theoretical values with
N = 4, the ratios being 0-56 and 0-69 for —h, and — h; respectively. These discrepancies are of higher
order than any errors from theoretical or experimental technique and are attributable to the combined
effects of thickness and viscosity, analysed in steady two-dimensional flow by the first author!®, Given
the aerofoil section, the Reynolds number and the position of boundary-layer transition, the stiffness
derivative for low frequency may be determined as one half of the hinge-moment derivative b, from
charts in Figs. 2a, 4, 5, 10 and 11 of Ref. 19. The 10 per cent thick RAE 101 acrofoil has trailing-edge

Ref. 9 or Ref. 19 Experiment

X, = Ole¢ X, = 0-6¢ Theory (thin)

~h, Theory

Thin aerofoil 0461 — —

0-63 or 0-68
Thick aerofoil 0-406 0-291 0-312
Thin wing 0-376 — —
0-56
Thick wing — 0-212
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angle 2 tan~! 0:089, the Reynolds number in Ref. 9 is between 0-4 x 10° and 23 x 10°, but the state of
boundary layer is not recorded. Thus the two-dimensional —h; = —1p, has been determined for «
representative Reynolds number 10° and boundary-layer transition (x,,) alternatively at 0-1 chord and
0-6 chord ; the preceding table shows some correlation between the data for the RAE 101 acrofoil and the
rectangular wing. The results indicate that, of the 44 per cent discrepancy between thin-wing theory and
experiment, 12 per cent due to aerofoil thickness and about 25 per cent due to viscosity can be predicted
from two-dimensional considerations. A rough empirical method of bridging the rather smaller dis-
crepancy in — h; is suggested in Section 7.

6.2. Untapered Swept Wing.

Although the calculations for this wing arc restricted to steady incompressible flow, there are several
new features to be considered. Lift, pitching moment and hinge moment due to symmetrical part-span
controls. outboard and inboard, are discussed ; comparison with results for the rectangular wing of the
same aspect ratio 4 shows the influence of 45° sweepback over a range of control span. The introduction
of sweepback raises the question about artificial central rounding posed by the alternative shapes in
cquations (5) and (6). Arguments in favour of the latter are supported by independent evidence from
clectrical analogue” on stiffness derivatives and spanwise loading. The present method has been applied
with m = 15, N = 2,3 and 4 and ¢ = 2N, as was found satisfactory for this planform in Ref. 11. The
results, illustrated in Tables 13 to 15, include spanwise distributions of local centre of pressure and
hinge moment.

The evaluation of hinge moment is discussed in Section 5.2; the procedure involves the calculation
of local hinge moments, defined by h; in equation (92), and subsequent integration over the span of
the control. Typical distributions of —h,, for the swept wing with outboard and inboard controls
(E = 0-25) are shown in Fig. 15. Results with the outboard control of extent 0-45 < |n| < 1(n, = 0:45)
arc obtained from solutions with N = 2,3 and 4, and from Fig. 15a it is apparent that insufficiency of
chordwise terms leads to an underestimate near the inboard end and an overestimate near the tip, where
the convergence of —h,;, with respect to N is slowest. The corresponding picture for the inboard control
of extent 0 < || < 045 (, = 0-45) in Fig. 15b again shows the most variation at the centre and out-
board and with respective tendencies to underestimate and overestimate —h,; when N is too small,
but the whole distribution seems to converge with respect to N. The relatively large local hinge moment
necar = 0 follows from the expected build-up of loading in the region of the trailing edge which is better
represented by the collocation points as N increases. This characteristic of the swept wing is emphasized
by comparison with the full curve in Fig. 15b for the rectangular wing with inboard control of the same
span and chord. Although, from calculations with N = 4, the swept wing gives nearly 20 per cent more
hinge moment at 5 = 0, the integrated value of the derivative —h, = 0292 is 14 per cent below the
corresponding vatue —h = 0-340 for the rectangular wing.

For outboard controls the hinge-moment stiffness is some 20 per cent lower for the wing of 45° sweep-
back. This is shown in the upper diagram of Fig. 16, where the solutions with N = 3 for the two wings
give similar variations in —h, against #,; the percentage reduction due to sweepback increases slightly
as the span extends further inboard. The remainder of Fig. 16 illustrates by graphs against N the adequate
convergence of —h, for both wings with various values of n, and E. In all cases there is a substantial
reduction in —h, due to sweepback. An increase in control chord also reduces —h,, since the hinge
moment is divided by the product of control areca and control chord; this effect is very small for the
swept wing with full-span control, but becomes more marked when there is zero sweep or a part-span
outboard control.

In the preceding examples for the untapered swept wing the central rounding has been defined ac-
cording to equation (5), as originally recommended in Ref. 5. Later analysis in Ref. 11 has established
certain advantages from increasing the central rounding, for example, by taking equation (6) instead of
equation (5) with the same spanwise extent |y| < y;; the central displacement proportional to f0) is
then doubled, and as a result the collocation error is much reduced. However, unless the wing has small
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sweep, the doubled rounding introduces a spurious effect of its own. It is shown in Ref. 11, that this
rounding error is of the same order of magnitude as the collocation error and that, by chance, in steady
flow more accurate results for wings at incidence are achieved with the central rounding of equation
(5). Now it may be argued that aerodynamic forces due to the oscillation of trailing-edge controls are
unlikely to be influenced much by the doubled rounding of equation (6), since the leading apex is at zero
incidence: on the other hand, collocation error from the less gentle shape of equation (5) is likely to
persist. There is reason to suppose that accuracy will be gained by changing the shape of rounding from
equation (5) to that of equation (6). Tables 13 to 15 contain several illustrations of the changes in aero-
dynamic loading so produced. In the first place, the results at the foot of Table 14a show that the hinge
moments for E = 025, already discussed, are virtually unchanged; Table 14b shows that a 6 per cent
decrease in local hinge moment — he atn = Ois offset by smaller increases elsewhere. The lift and pitchin g
moment in Table 13a are increased by about 3 per cent when 7, = 0 and the control extends to the
centreline, but the effect diminishes below 1 per cent for 5, = 0-25. Table 15 shows that the preferred
rounding from equation (6) increases the central lift by as much as 16 per cent, but over the outer part
of the span the increment falls to 2 per cent and below. Likewise in Table 13b, the local centre of pressure
as a fraction of local chord,

ch(”’) = %'ﬁ s (116)

= |I=

is seriously affected in the central region only.

In the absence of exact theoretical results, we look to the analogue experiments in an electric tank
for the particular planform. Enselme” uses two models of the flow past a lifting surface, in which the
electric potential is identified with the perturbation velocity potential and the perturbation acceleration
potential respectively. In the velocity-potential analogue, from which we are to take results, there is a
tank of liquid with its free surface representing the half planc of the wing and with one wall as the plane
of symmetry y = 0. The velocity potential is represented by a large number of small electrodes over the
planform and by narrow conducting strips in the wake of potential such that the Joukowski condition
is satisfied along the trailing edge. The boundary condition at the wing or control surface requires an
electric current proportional to local incidence; when this is satisfied, the potentials of the electrodes
determine the acrodynamic loading. There are data from the velocity-potential analogue in Figs. 7 to
11 of Ref 7 that can be compared with the results of the present method. Moreover, in Figs. 7 and 9
of Ref. 7 there are independent results from the acceleration-potential analogue that confirm the lift,
pitching moment and spanwise loading from the velocity-potential analogue for full-span and part-span
controls.

The data in Fig. 7 of Ref. 7 are converted to the present notation in the plots of —z; and —m, against
nrin Fig. 17. These show distinctly better comparisons with the present method when the central rounding
from equation (6) is used in place of that from equation (5). Fig. 17 also illustrates the effect of sweepback
which is quite small on lift until the inboard flap extends beyond # = 0-4; but the moment about the
mid-root-chord pitching axis is negligible for the rectangular wing when E = 0-25, while its variation
with increasing 7, for the swept wing shows the expected aft movement of centre of pressure. The con-
vergence of —z, and —m, with respect to N in Table 13a is nearly as convincing as for the rectangular
wing in Tables 9a and 10a and, from the practical standpoint, leaves little to be desired.

To obtain the spanwise loadings in Table 15 and the values of X, »in Table 13b, the equivalent incidences
o1,(E) ¥1,(n,) are required. The one comparison between N = 2 and N = 4 in Table 15a indicates the
small effect of N on loading over most of the span. Likewise, for the two cases in Table 13b, solutions
for N = 2,3 and 4 show good convergence properties of X.p» €xcept at the centreline and outermost
collocation section 1 = 09808, where there are discrepancies of order 0-01. To this order of accuracy
there is excellent agreement between the calculated X., and the analogue data in Fig. 11 of Ref. 7. To
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compare spanwise loadings, the quantities y from Figs. 8 to 10 of Ref. 7 are converted by the factor 3 and
.used to obtain the plotted analogue results for outboard controls (E = 0-25) in Fig. 18a and for inboard
controls (E = 0-15, 0-35) in Fig. 18b. Note first the good agreement between the present method and the
clectrical analogue in Fig. 18a when 5, = 0-45. The agreement is less satisfactory for the remaining
broken curves in Fig. 18; however, with the central rounding of equation (5) collocation error is antici-
pated whenever the control extends close to or includes the centreline. It is gratifying that the full curves,
corresponding to the preferred rounding of equation (6) with y,/s = sin[n/(m+1)], are in so much
better agreement with the analogue results.

6.3. Tapered Swept Wing.

The planform of aspect ratio 2 and its swept hinge line are defined in Fig. 8 the control chord ratio
E varics from (-232 at the root to 0-326 at the tip. The wing is considered in compressible flow of Mach
number M = 0-7806 such that the reduced aspect ratio f4 = 1-25. The same configuration has been
used in the related theoretical investigation for general frequency in Ref. 2 with outboard controls
1, = 0, 0-25, 0-50 and 0-75. The present results for low frequency therefore include some that were pub-
lished in Ref. 2 and were calculated prior to the advance in lifting-surface theory in Ref. 5. Certain other
improvements in the treatment of control surfaces have subsequently been introduced, especially with
regard to equivalent incidences and the artificial rounding of planform and hinge line. Since this parti-
cular example is the most general one to be considered and all aspects of Sections 4 and 5 are taken
into account, we shall study the numerical significance of the various refinements. Another factor, govern-
ing the choice of configuration, is that a half-model of the wing with oscillating control of part-span
0-5 < n < 1is to be tested at the N.P.L. in subsonic and transonic flow. Since this is intended to represent
an aileron, it is necessary to examine the effect of the reflection plane on rolling moment and hinge moment
by comparing calculations for symmetrical and antisymmetrical spanwise loading.

The pitching derivatives for the tapered swept wing have been discussed in Ref. 11, notably with
reference to Fig. 22 of that paper. Checks by reverse flow have revealed quite large discrepancies in
—z; and —m,; when the artificial rounding in equation (5) is used, and these are attributed to collocation
error. The doubled rounding from equation (6) virtually eliminates the trouble, but it is necessary to
compensalte for the effect of rounding or to ensure that this is reasonably small, as is thought to be the
case for these particular derivatives in Table 16a. Good convergence with respect to N(= 2,3 or 4) 1s
found for both lift and pitching moment and also for —h,and —h4in Table 16b. These cross derivatives
of hinge moment, defined in equations (27) and (28), show a small dependence on the choice of planform
rounding, but are more sensitive to the parameter ¢ from equation (15) and to the question of rounding
the hinge line. The analysis in Ref. 11 cstablishes that ¢ = 6 often suffices where the original method
{(with ¢ = 1) does not, and that the errors with g = 1 tend to increase as N increases; in the present in-
stance 8 per cent of — h, is at stake for the full-span control when N = 3. For the untapered swept wing
in Section 6.2, the hinge line is rounded to remain parallet to the leading and trailing edges and to pre-
serve the control area. Now, however, the sweepback of the hinge line is unrelated to that of the leading
or trailing edge: consistent with equations (4) and (6), we take

Xly) = X+ {0 — X0 (D) over |y| <y, (117)

where x,, is the true hinge ordinate at the root, 2 = |y|/v;,

fQA)=3+12-32%and y; = ssin

m+1" (118)

This is thought to be preferable to leaving the hinge line straight, and Table 16b shows in the full-span
case a reduction of 5 or 6 per cent in the calculated values of —hg and —hy.

The wing forces duc to control rotation are included in Tables 17a and 18a. The following table lists
the available results for the full-span control and N = 3.
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Hinge Planform q -2z — Mg ~12; —m
rounding

Straight Eqn. (5) 1 0946 | 0595 | —0083 | 0110
Straight Eqn. (5) 0-918 | 0587 | —0052 | 0111
Straight Eqn. (6) 0942 | 0592 | —-0-079 | 0-109
Eqn. (117) | Eqn. (6) 0937 | 0594 | 0092 | 0102

AN N

The lift derivatives are more sensitive than those of pitching moment about mid-root-chord. The first
set with g = 1 is from the original low-frequency data used in Ref. 2. Although the effects of increasing
q to 6 and of increasing the central rounding to that of equation (6) largely cancel each other, both are
more significant than the influence of the rounded hinge line. A striking result is that, while —z, and
—z4 are of similar magnitude, the derivative z; is only 7 per cent of —z, for the pitching axis through
mid-root-chord, but it is pertinent that —z, passes through zero as the axis traverses the hinge line.
Fig. 19 shows the effect of part-span 7, < # < 1 on the lift derivatives. Of the three solutions indicated
in the legend, the full curves are preferred to the results with the planform rounding of equation (5).
It is fortuitous that the g = 1 solution lies so close, for its accuracy is impaired not only by the choice
of rounding but by the lack of two other refinements; in place of Q,, in equation (84) the spanwise equiva-
lent slopes ¥, for spanwise loading are used and, furthermore, the gradient term involving Q,, is omit-
ted altogether. The greatest differences in Fig. 19 at , = 0 have already been discussed: some confi-
dence can be placed in the relatively flat curve of —zg near 1, = 0, so as to cast doubt on the original
behaviour for g = 1, which is now thought to arise from collocation error due to insufficient planform
rounding. The revised values of all four wing derivatives with ¢ = 6 in Tables 17a and 18a show excellent
convergence with respect to N and agreement within 0-003 of the values obtained by Woodcock® for
1. = 0-5. Moreover, the checks by means of reverse flow in Tables 17b and 18b are convincing, as illus-
trated in the graphs of the damping derivatives —z; and —m; against N in the upper diagrams of Fig, 20.

Corresponding results for hinge moment are less satisfactory as regards reverse-flow checks and
convergence with respect to N. The lower diagrams of Fig. 20 are prepared from values of —h; and —h,
for n, = 05 in Tables 17 and 18. Whilst —h, converges well enough with respect to N in direct flow,
the same is not true of the calculations by reverse flow; by contrast, — h; satisfies the reverse-flow check
to reasonable accuracy, whilst the convergence is rather slow. Although difficulties in ~h, with four
chordwise terms have been encountered for the rectangular wing in Fig. 13, these do not arise in the
relevant range of control chord ratio 0-25 < E < 0-33. Without offering an explanation of the discrepancy
in — h, obtained by reverse flow, we regard the result as further evidence to discourage the application
of reverse-flow principles to hinge moment (Section 5.3), especially when there is the complication of
control taper. Unlike that for the rectangular wing in Section 6.1, the rather slow convergence in —h;
is not primarily due to the hinge-moment coefficient —1I,5 1> as the following table shows.

N _Ihlf —Ihzf _Ih3f _Ih4f _IITI,/'

2 03164 | 0-0912 | 00598 | 0-5617 | 0-5938
3 03706 | 0:1117 | 00917 | 0-6619 | 0-6934
4 0:3792 | 0:1217 | 0:1075 | 0:6786 | 0-7051

From equation (36) it is seen that the compressibility factors with § = 0625 (872 = 41 aggravate the
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problem, so that the coefficients arc needed to better accuracy than for incompressible flow. Nevertheless,
the present results with N = 4 are probably adequate for semi-empirical use at sub-critical Mach numbers.
The comparisons with the values —h, = 0-363 and —h; = 0-197 from Ref. 8 show that the former is
unsatisfactory, because in effect the equivalent incidences in Ref. 8 correspond to chordwise slopes
1, and, as we have seen in Fig. 10, it is essential 10 use 1,,; as in Fig. 11 with N = 4, the usc of 7,, in
place of a;, is less critical, and therefore the value of — h; from Ref. 8 is well within the present uncertainty
arising from incomplete convergence.

The dependence of hinge moment on control span is presented in Fig. 21, where the full curves from
direct flow are regarded as the best available for N = 3 and show how both stiffness and damping decrease
in magnitude as #, increases. Apart from the less accurate results by the reverse-flow method, the only
significant differences in —h, arise from the choice of rounding in the full-span case. Another value
—h, = 0481 for 5, = 0 in Table 17a shows that the hinge rounding has more effect than planform
rounding in this case. The same is probably true of —h.: the large discrepancies between the full curve
and the circles in the lower diagram of Fig. 21 arise primarily because, in common with the original
calculations with g = 1, the solutions corresponding to the planform rounding of equation (5) use the
equivalent slopes 7,, or 7,, and ¥, throughout. It has been demonstrated in Section 6.1, however,
that the combination ¢, and ©,, should be used in the matrix operation to obtain «;,, even for the
purpose of evaluating — 15, and this procedure has been followed in the calculations with ¢ = 6 and
the doubled rounding of equation (6) in Table 18a. It may be helpful to set out the refinements leading
from the original method to the present standard method in five stages:

(a) toreplaccg=1byg =6,

(b) to replace planform rounding of equation (5) by equation (6),

() to include spanwise gradient correction ¥, in addition to ¥,,,

(d) toreplace 7, by 6,, in the evaluation of — 1,5/,

(¢) to replace ¥,, and ¥,, by Q,, and Q,, respectively in the evaluation of —1,3.

The following table illustrates the effect of each stage on the hinge-moment damping for N = 3 in the
case 7, = 0-5, chosen to avoid the complication of rounding the hinge line.

T
Rounding q Slopes for a;, — g Stage

Egn. (5) 1 1,y 02113

(a)
Eqn. (5) 6| t,%, 0-2058

(b)
Eqn. (6) 6 Tip V1o 0-2055

(©)
Eqn. (6) 6 Tip Piv Voo 02057

@
Eqn. (6) 6 O1p Vv Vs 0-1809

()
Eqn. (6) 6| 01pQuQy 0-1769
Eqn. (5) 1 o1 V1, 0-1887

Stage (a) produces a change of about 3 per cent: neither stage (b) nor (c) is really significant, and it seems
true in general that the aerodynamic derivatives are not very sensitive to whether the discontinuous

40



gradient at # = 7, is included, but the change of spanwise equivalent slope in stage (e) contributes 2 per
cent: the large decrease of 12 per cent in —h; is due to stage (d), and the first and last values of — he
show that a similar decrease is achieved when 01, replaces 7,, in the original calculation of —1I,; . As
in Section 6.1, the derivative by reverse flow, —h; = 01695, tends to support the method that is now
recommended.

The spanwise distributions of hinge moment are formulated in equations (90) and (91) and are illus-
trated for the part-span case 1, = 0-5 in Figs. 22 and 23. The steady distribution —h,;, with average
value equal to the stiffness derivative —h,, is plotted against # for N = 2,3 and 4; Fig. 22 shows the
largest differences over the inner half of the control span. Referring back to Fig. 15a for the untapered
swept wing, we see the same tendency to underestimate —h,; over the inner half and to overestimate
—hg;, near the tip, if too few chordwise terms are taken. Nevertheless, the distributions with N = 4
have probably converged well enough. The full curve of —h;, in Fig. 23 gives the corresponding dis-
tribution of the damping with N = 4, and the other three curves represent particular contributions
from equation (91). In the first place we consider the quasi-steady problem in which the imaginary part
of the boundary condition in equation (1) is treated in isolation; thus by equation (3) and the definition
of «,, in equation (23)

@ = —w/U = (i0Z £/U) oy,
and equation (96) becomes simply

~hyy 4\ ) Fa(n). (119)

This quasi-steady contribution accounts for about half of the damping. Another distinctive term in
equation (96), on which the discussion has centred, is the third term in the square brackets associated
with the loading /5, and proportional to $~2; in Fig. 23 this second contribution is slightly larger than
the quasi-steady part and of opposite sign, so that the remainder of the damping turns out to be rather
larger than — hy,. By inspection of equation (96), it can be seen that this third and largest contribution
is proportional to M? B~2, which stresses the growing importance of numerical accuracy as Mach
number increases.

The calculations include cases in which the port and starboard controls oscillate antisymmetrically;
the lift and pitching moment vanish identically, but the derivatives of rolling and hinge moment from
equations (35) and (36) are required. It is planned to estimate the rolling moments from half-model
experiments with the tunnel side-wall, as reflection plane. Since the measured quantity will correspond
to a ‘bending moment’ with force mode proportional to |7| and symmetrical spanwise loading, the
special derivatives —b, and —b; have been computed from the formulae

1
—b, = 2( Iblf)
p
1 M2 2_Mm? 1 M?
e gp i (10 o ) o (o) ()

with the aid of equations (37). The formulae for hinge moment and the method of calculation in Section
5.2 apply to symmetrical and antisymmetrical cases alike. The available derivatives are given in Table
19, and the results for N = 3 are plotted in Fig. 24. The ratio le/b; decreases rapidly as n, decreases,
and the value 0-874 for 5, = 05 is the correction factor that must be applied to the measured half-wing
rolhng moment as part of the tunnel-wall constraint. The correspondmg ratio of the two values of &,

is 0966 and shows, as expected, that the starboard hinge moment is less influenced by the sense in Wthh
the port control oscillates. The damping derivatives —I; and — b, are small, but of opposite sign ; unless

(120)
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measurements of the latter derivative confirm theoretical prediction, no wall correction can be attempted.
Provided that 5, = 0-25, —h; is virtually uninfluenced by the reflection plane; in this respect the half-
model experiments will be fully representative.

6.4. Cropped Delta Wing.

The fourth and last planform, defined in Fig. 8, has the lowest aspect ratio 1-8 and high taper with
¢, = 7¢, The full-span control with unswept hinge and constant chord ¢, = ¢, has been the subject of
an oscillatory experimental investigation by Bratt et al,'® who determined the direct hinge-moment
derivatives —/i. and —h; over a range of Mach number. The present calculations also cover outboard
part-span controls. To enable comparisons to be made with the measured derivatives, the theoretical
results are obtained for the four Mach numbers 0, 0-553, 0-745 and 0-866 corresponding to equally spaced
values of 8. An important feature of the planform geometry is the rapid spanwise variation of the chord
ratio E from 4 at the root to 1 at the tip. This contains the special value E = 0-583 for which the chord-
wise equivalent slopes 7,, are unobtainable when N = 4. The expedient of reducing N’ from 4 to 3,
already discussed in Section 6.1, is successfully applied to the evaluation of the spanwise distribution
of hinge moment.

The derivatives for pitching motion about an axis through the mid-root-chord are given in Table 20.
The wing derivatives for M = 0-745 in Table 20a show that the factor g is much less critical than for the
tapered swept wing with similar reduced aspect ratio 4 ; the small effect of increasing g from 1 to 6,
with N = 3, is thought to be associated with the unswept trailing edge. The results in Table 20a also show
remarkable convergence with respect to N for all the derivatives —z,, —mg, —z4 and —my. The effect
of Mach number is shown in Table 20b, and from M = 0 to M = 0-866 compressibility has caused the
lift derivatives to increase by about 14 per cent and those of pitching moment by roughly 60 per cent.
The hinge-moment derivatives in Table 20c introduce the control-span parameter #,, and it is found
that the trend of —h, against 5, reverses as M increases from 0 to 0-866. For 5, < 0-5 this derivative
varies by less than 14 per cent, while —h, shows a large dependence on Mach number similar to that
of —my The calculations from equations (28) present no special difficulty. The chief uncertainty arises
from lack of experimental data on — hy, especially in view of the expected large effects of boundary layers
on the stiffness derivative.

The wing forces due to control oscillation are presented in Figs. 25 and 26 as functions of M and #,;
these results for m = 15, N = 3, g = 6 and the planform rounding of equation (6) are taken from Tables
21b and 22b respectively. The stiffness derivatives —z; and —m, are plotted against Mach number in
Fig. 25 for the particular values , = 0, 025, 0-50 and 0:75. Both derivatives show a steady decrease as
the control span s(1 —#,) decreases, and the greatest effect of M occurs in the full-span case. The damping
derivatives in Fig. 26 are plotted against #, for the four Mach numbers M = 0, 0-553, 0-745 and 0-866.
There is again a progressively larger effect of compressibility as control span increases, until for #, = 0
the value of —z; decreases from 0-12 to —0-21 as M increases from 0 to 0-866; the smaller effect on —m;
is limited to an increase of at most 22 per cent. The further results for the four derivatives in Tables 21a
and 22a show quite small dependence on the spanwise integration parameter ¢ and satisfactory con-
vergence with respect to the number of chordwise terms.

Before discussing the integrated hinge-moment stiffness and damping, we consider their spanwise
distributions in Figs. 27 and 28. The case of greatest theoretical interest is the steady distribution of
— h,, in Fig. 27a over the half-span outboard control, for which E varies from 0-25 to 1 and passes through
the special value E = 0583 at y = 0-881. Although this position is nearly midway between the collcation
sections 7 = sin (vn/16) with v = 5 and 6, the implied singularity in 7, discussed in Sections 3.2 and
6.1, clearly disrupts the standard solution with N = 4. The effective remedy is to reduce by one the order of
the polynomial representing the chordwise equivalent slopes; the designation N’ = 3 implies a quadratic
variation in a,(X) at all scctions, and the combination N = 4, N’ = 3 means that the four chordwise
terms and collocation positions are retained. The dot-dash curve in Fig. 27a is preferable to the standard
solution N = N’ = 4 in the peculiar circumstances and should also be more accurate than the result with
N = N’ = 3. In the case of the inboard control #, = 0-5 in Fig. 27b, E < 025 and the same difficulty
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does not arise ; the standard N = 4 solution is then the best available and gives some idea of the deficiencies
of the solution with N = 4, N’ = 3. The general impression from Fig. 27 is the inadequacy of the standard
N = 2 solutions for hinge moment and accuracy of the order + 10 per cent in the solutions with N’ = 3.
The distributions of hinge-moment damping for the four Mach numbers in Fig. 28 are given for 7, = 05
by standard N = 3 solutions that present no difficulty. The quantity —hg;, from equation (91) or (96)
is more sensitive to Mach number away from the wing tip, and this results in a more peaky maximum
near n = 0-75 as M increases. Since — h; is the average value of —hyg;, the large compressibility effect on
this damping derivative in Table 22b can be associated with the inner part of the control span. The
values of —h; and —h; in the last two columns of Tables 21a and 22a show rather less dependence on N’
than might be expected. Changes of sign in the discrepancies between the full and dot-dash curves in
Fig. 27a lead to considerable cancellation of errors in the integrated derivative —hg, and the resulting
difference is no more than 5 per cent, and in the case of — h; it is only 3 per cent. This smaller discrepancy
could be anticipated from the direct-flow results (N = 4) for the rectangular wing at M = 0 in Fig. 13,
where the divergence of —h; near E = 0-583 reflects the localized effect of the weak singularity in o,
in contrast to the wider influence of the discontinuity in a,, on the divergence of —h,. Of course, for
compressible flow the step discontinuities in a,, and «,, influence —h; through the coefficients —I,% 7
and — I, of equation (36), and there is reason to prefer the results from the last column of Table 22a.

In Fig. 29, the two hinge-moment derivatives in the full-span case are plotted against M and compared
with the experimental results of Ref. 10 for an amplitude of oscillation {, = 1° and frequencies of 27
and 104 cycles per second. The present theoretical results in the limiting case ¥—0 are used for the lower
frequency but, since ¥ is shown to range from 0-6 to 0-25 for the higher frequency, — h; has been corrected
for frequency effect by equation (17) of Ref. 20, whence for sufficiently small 7

=hg = (—hg) 50+ (A9/16) (z; hg) 500 - (121)

With the aid of the derivatives in Tables 20c and 21b and the graph of ¥ in Fig. 29, the small correction
to —h, is indicated by the curve of long dashes, which is somewhat closer in shape to the experimental
points (x) for the higher frequency. The greatest differences occur in —h,, whose ratio of experimental
to theoretical value varies from 0-72 at M = 0:553 to 0-58 at M = 0-866. At the lower Mach number the
Reynolds number based on ¢ is about 1-5 x 10°, and the chord ratio at mid-semi-span is E = 0:25; when
the charts of Ref. 19 are applied to this particular 10 per cent RAE 102 aerofoil section at M = 0 with
boundary-layer transition x,, = 0-35c¢, the two-dimensional quantity —h; = —%b, = 0-330 is estimated
to be 0-70 times its theoretical value 0474 for a thin hinged plate. It is not known how much Mach number
affects this ratio 0-70, but it is of the correct order to explain the low experimental values of —h; in Fig.
29. The measured damping derivative shows relatively small discrepancies due to the combined effects
of thickness and viscosity until the Mach number exceeds 0-8. However, a curve through the preferred
theoretical value (4) at M = 0-745 would give somewhat larger differences, which are rather similar
to that for the rectangular wing in Fig. 11.

7. Empirical Correction to Damping Derivatives.

The predictions of the present linear theory and the available measurements of oscillatory hinge
moment on the rectangular and cropped delta wings have shown a consistent tendency towards better
agreement for damping than for stiffness. Whilst experience from steady flow gives some indication
of non-linear effects on stiffness derivatives at low frequencies, there is no such direct approach to the
damping. The available two-dimensional experiments are of little help, because the theoretical damping
derivatives at low frequency usually contain a dominant term in log ¥ that does not arise for wings of
finite aspect ratio. A greater barrier to the understanding of the three-dimensional problem is the un-
predictable behaviour of unsteady boundary layers and their possible influence on the damping deriva-
tives, especially those that involve control surfaces. The greatest uncertainty and the greatest need are
felt in the upper subsonic speed range; the saving grace is that predictions within -+ 10 per cent will
suffice in practice and, therefore, a much simpler empirical approach to the problem can be adopted.
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Damping forces duc to control oscillation are split into the quasi-steady contribution from o = o,
and the residual part with the application of respective correction factors k; and k,. Thus we write the
corrected hinge-noment damping in the form

k
(=hy). = 2% Ih2f)+k2|: h:— ﬂ( Ihzf)‘l (122)

with some prospect of determining k, and the possibility that k, will not be very different from unity.
In the absence of further information we approximate to k; by putting

(—hge = ki(—hg) (123)
and identifying (—h,), with the measured stiffness derivative. From the following table it emerges that

(—hg), is a fair approximation to the measured damping derivative when k, = 1, that is, when the residual
part of the damping is taken to be insensitive to aerofoil thickness and boundary layers.

. 1
Wing N,N' M ki “hg 2‘B(“1h2/) (—hg)c (—hg)exp
Rectangular 4,4 0 0-56 0-167 0-106 0-121 0114
Cropped delta 3,3 0-553 072 0-236 0133 0199 0226
0-745 0-66 0-302 0-156 0250 0-264
0-8606 0-58 0433 0187 0354 0-333
Cropped delta 4,3 0-745 0-68 0340 0164 0288 0-264

Although this is probably an oversimplification, it succeeds to an accuracy of at worst + 10 per cent
in all the present examples. The resulting formula from equations (122) and (123) with k, = 1,

h 1
(=i = =] 102 ] =1 (124

where (h;), is taken from experiment, gives a significant improvement in all cases except the cropped
delta wing at M = 0-553. Even so, for this Mach number the preferred solution N = 4, N' = 3 would
probably give a larger value of —/, in Fig. 29, and correction by equation (124) should then give a satis-
factory improvement. Thus the preferred result with empirical correction for M = 0-745 is illustrated
by the point (* ) in Fig. 30. At lower Mach numbers excellent comparison with experiment would be
obtained, while at higher Mach numbers under transonic conditions the empirical correction would
fail through being too small.

The principle of equation (124) may be applied just as easily to estimate the order of magnitude of
corrections to theoretical values of other damping derivatives. It is necessary to evaluate the stiffness
derivative cither from steady-flow measurements or from some semi-empirical procedure. It remains
to be seen how successfully the procedure will fit the measurements of —z;, —m; —b; and —h; to be
made on the half-model of the tapered swept planform (Section 6.3).

As a further illustration, the cross derivative —h, in equation (28) would be corrected by the formula
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(=hg). = —hy [1 hgj‘2ﬂ|:( I;,) E( Ihl)_—l- (125)

A rough estimate of the importance of the correction term can be deduced from a two-dimensional value
of (hy)./hg: in the following table (hy), is obtained as b, = $0C,/x from the charts of Ref. 19 and A,
is the corresponding quantity from thin aerofoil theory, while the Reynolds numbers (R.N.) and positions
of boundary-layer transition x, are those already used in Sections 6.1 and 6.4.

h

Aerofoil E R.N. Xor (=hy), —hy (o)
¢ hy

10% RAE 101 020 10 % 10° 010 0102 0-250 041

0-60 0120 0-250 0-48

10% RAE 102 025 15 % 10° 0-35 0144 0-283 0-51

Thus, for the respective rectangular and cropped delta wings with mid-root-chord pitching axis, we
apply equation (125) and calculate the following results.

. X ~1 -1 (he)
M Xo h1 h2 Ug)e —hs —hy).
Wing Z 2 2 e o (—hy)
Rectangular 0 0-500 0124 0-249 041 0-329 0-219
0-48 0-329 0232
Cropped delta| 0-553 0-875 0106 0-340 0-51 0-537 0416

The indications are that the cross derivative — h, from linear theory may require larger corrections than
—hg, with the corollary that measured values of —h; may be more dependent on Reynolds number.

8. Concluding Remarks.

(1) A linear theoretical method is presented for the treatment of arbitrary configurations of wing
planform and trailing-edge control surface in low-frequency oscillatory motion in a uniform subsonic
stream. Calculations of wing forces and control hinge moments and the associated spanwise distributions
are illustrated and discussed for rectangular, untapered swept, tapered swept and cropped delta wings.

(2) The present method uses combinations of chordwise and spanwise equivalent slopes to determine
smooth equivalent incidences without discontinuities at the hinge-line and part-span boundaries. The
equivalent incidences vary according to the aerodynamic quantity being evaluated and include allowance
for wing and control taper. The example of the tapered swept wing introduces the full complication
of a swept hinge line, spanwise variation of control-chord ratio E and additional terms due to com-
pressibility.

(3) Particular attention is given to &, and h,, the direct control derivatives, and to the corresponding
distributions over the control span. Several refinements in technique have been investigated numerically,

45



especially those associated with the choice of chordwise equivalent slopes T,,, the incidence as,, the
spanwise integration parameter g, and the central rounding of swept edges. An important consideration
is the degree of convergence as the number of chordwise terms N is increased up to 4, a process greatly
accelerated by the use of equivalent slopes.

(4) The reverse-flow theorem yields wing forces due to control rotation without recourse to equivalent
slopes. Results so calculated confirm that the present method is highly satisfactory for wing forces, and
the special equivalent slopes for hinge moment are therefore applied with some confidence. The reverse-
flow approach to hinge moment requires different equivalent slopes, as discussed in the Appendix;
in application this alternative has proved less successful.

(5) Derivatives of lift and pitching moment are calculated to a theoretical accuracy of 2 or 3 significant
figures or decimal places. Theoretical errors in the hinge-moment derivative h, are usually reduced by
an order of magnitude to within 2 per cent as a result of the special equivalent slopes. The damping
derivative —h; converges less well with respect to N, but with N = 4 it is thought to lic within + 10 per
cent of the true linear solution. Smooth variations with flap chord, control span and Mach number
are predicted for all derivatives.

(6) The present method has limitations in addition to those of inviscid flow, thin wing, sub-critical
Mach number and others associated with linear lifting-surface theory. The analysis is restricted to first
order in frequency and to N < 4, and it covers spanwise loading but not the complete load distribution;
attempts to remove these limitations are envisaged in the final remarks below. Rigorous treatment of
discontinuities at corners of a control surface is becoming possible on the principles of Ref. 21, but this
cannot be incorporated in the present method.

(7) The practical problem of a wing with fuselage remains unsolved. With a central body, it is probably
best to extend the leading and trailing edges through the body side to define a gross wing. The present
method can then be applied to the gross wing, suitably rounded, in combination with an oscillating control
surface of given geometry. It should be noted that the expedient of rounding the central kink of a swept
wing is a purely numerical artifice, the spanwise extent of the rounding being unrelated to body diameter.

(8) The untapered swept wing is of special interest in relation to available comparisons with an clec-
trical analogue of the steady flow. It is shown that the calculated spanwise lift distribution due to control
deflection is in close agreement with the analogue results, especially when the artificial central rounding
is increased so as to reduce collocation error.

(9) The tapered swept wing is later to be tested as a half-model with aileron. Consideration of sym-
metrical and antisymmetrical spanwise loading shows that reflection-plane symmetry has an important
effect on rolling-moment stiffness and damping, while that on hinge moment is practically negligible.

(10) Experimental hinge moments are available for the rectangular and cropped delta wings. In cach
case the large discrepancies between the measured and calculated 4, are closely related to predictions
from charts based on two-dimensional static tests. The damping derivative from the present method
fits the experimental data much better, but the calculated values are larger in magnitude and the dif-
ferences often exceed the 10 per cent accuracy that is claimed from a theoretical standpoint.

(11) A simple empirical correction to — h; is suggested in Section 7. The theoretical result is split into
the quasi-steady damping and a residual contribution, the former being corrected by the factor required
to reconcile the calculated and measured values of .. At low speed and over a range of Mach number
the available measurements of —h; are thus reproduced within + 10 per cent. The procedure suggests
a method of estimating the likely order of magnitude of scale effect on other damping derivatives in the
absence of experimental data.

(12) While available measurements of oscillatory hinge moment are all too scarce, there is even less
information on wing forces due to control rotation. The urgent need for relevant experiments is widely
recognized ; in view of the greater difficulties of measuring cross derivatives, the use of pressure plotting

46



may well play an important part in future developments.

(13) An extension of the present method to include chordwise load distributions is in course of in-
vestigation. Whether the approach is through new chordwise equivalent slopes or through results already
known at the collocation sections, there are basic difficulties to be overcome. For the rectangular wing
with full-span control consistent results have already been obtained by the two approaches.

(14) Just as there is a singularity in each of the chordwise equivalent slopes 7,, when N = 4 and
E = 0-583 and more numerous singularities in reverse flow, so similar difficulties would occur for more
values of E as N increases. The extension of the present method to N > 4 would certainly improve the
solution associated with a5, without the above difficulties, because the equivalent slopes t,, are not
involved. The other incidences a,, for hinge moment could probably be treated, if necessary, with N’ < N,
as became expedient in the present calculations for the cropped delta wing when N = 4 the contributions
from a,, (r 3) seem less sensitive to the number of terms in the chordwise equivalent slopes.

(15) Previous investigations in Refs. 1 and 2 have shown on the basis of reverse flow, that equivalent
incidences are virtually linear in frequency. It may be possible to use the equivalent incidences from the
present low-frequency method to formulate the equations and obtain satisfactory solutions for an arbi-
trary frequency, when a suitable computer program is available,
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LIST OF KEY SYMBOLS

Aspect ratio of wing; 2s/¢

Chordwise integration functions for hinge moment in equations (55)
Real square matrices of order mN represented in equation (19)
Corresponding matrices for reversed-wing planform

Quantity defined in equation (17)

Bending-moment derivatives due to control rotation in equations (120)
Chordwise integration functions for hinge moment in equations (95)
Local chord of wing

Local chord of control surface

c(y,), ¢(v,), including any planform rounding where |y| <

Root chord, tip chord of wing

Geometric mean chord of wing

Geometric mean chord of control surface

Two-dimensional hinge-moment coefficient in equation (53)
Two-dimensional lift coefficient in equation (46)

Two-dimensional pitching-moment coefficient about quarter-chord axis
in equation (46)

Second pitching-moment coefficient in equation (46)

Third pitching-moment coefficient in equation (46)

Functions of ¢, in equations (50)

Functions of ¢, in equations (52)

Local control-chord ratio; ¢ /e

Value of E at section y = y,

Coecfficient in equation (61) for «,(n)

Function in equation (5) or (6) defining central rounding

Planform geometry in equations (80)

Functions in equation (93) defining local hinge moment (r = 1, 2, 3, 4)
Spanwise function in equation (97)

Column matrices for equation (22) and pitching motion

Column matrices for equation (24) and control rotation
Hinge-moment derivatives in equations (27) and (28) due to pitching
Hinge-moment derivatives in equations (32) and (36) due to control rotation

Local hinge moments in equations (90) and (92), (91) and (96)
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True hinge moment (see table of conversion factors)

Coefficients for bending moment in equations (37) due to control rotation
Coclficients for hinge moment in equations (26) due to pitching
Coefficients for hinge moment in equations (31) due to control rotation

Coefficients for lift, rolling moment and pitching moment in equations (30) due to
control rotation

Empirical correction factors in equation (122)

Two-dimensional smooth load distribution; equation (43) when N' = N = 4
Two-dimensional loading due to «(X); [,(X), I,(X) in equations (41), (42)
Non-dimensional load distribution in equations (7) and (8)

Loading i(x, y) due to incidence a,, o, &1

Loading on reversed wing; equation (8) with a bar over each symbol in square
brackets

Loading I(X, y) on reversed wing due to &,, &,,

Rolling-moment derivatives in equations (32) and (35) due to control rotation
Natural logarithm

Column matrix of unknowns from equation (11) in equations (19), (22), 24)
Number of collocation sections; m = 15 in examples

Spanwise integration parameter in equation (15)

Direct pitching derivatives from equation (32) with & replaced by @; derivatives in
equations (39) of Ref. 5

Pitching-moment derivatives in equations (32) and (34) due to control rotation
Mach number of free stream

Number of chordwise terms to be used in equation (8)

Number of terms (< N) in polynomial for «,(X)

Integer denoting chordwise position of collocation point in equation (13)
Unity or even integer; (m+ 1)/(m+1)

Functions used in reverse-flow calculation of wing forces, hinge moment ;
equation (110) corresponding to &, ,,

Function in equation (111) corresponding to &;, &,, &5,
Real part of

Semi-span of wing

s(1 —n,) for outboard control; s for inboard control

Area of wing planform; 2s¢

Plan area of starboard (or port) control; s, ¢,
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o~

time

integers 4(m—1), {m—1)

Uniform velocity of free stream

Upwash velocity over planform

Rectangular co-ordinates with origin at root leading edge (Fig. 1a)
Pitching axis (Fig. 1a); x, = 4c, in examples

Hinge line of control surface

Leading edge of wing

x(yn), X,(y,) including any planform rounding where |y| < y;
Streamwise position of collocation point in equation (13)
Trailing edge of wing

Chordwise position of boundary-layer transition

Rectangular co-ordinates for reversed wing in equations (103) and (107)
Hinge line on reversed wing; ¢, — x,(y)

Leading edge of reversed wing; ¢, — x,(y)

Non-dimensional chordwise parameter in equation (39), (53)
Local centre of pressure in equation (116)

Spanwise ordinate defining span of outboard control in Fig. 1a
Spanwise limit of inboard control

Spanwise extent of central rounding in equations (4) and (117)
s sin [nn/(m+1)], s sin [va/m+ 1)} (norv=0, +1,... +u)
Upward displacement ; mode of oscillation

Lift derivatives due to pitching in equation (32) with & replaced by @: derivatives in
equations (39) of Ref. 5

Lift derivatives in cquations (32) and (33) due to control rotation

Local incidence

Chordwise equivalent slopes to represent o,(X); equation (44) when N' = N =4
Spanwise equivalent slopes in equation (61) or (76) to represent o, ()

Steady incidences in equations (21) and (22) for pitching mode (r = 1, 2, 3)

Singular distributions of incidence in equations (39) (r = 1, 2)

Smooth equivalent incidences to represent a,,

a,, at collocation point in equation (84) or (85)

Steady incidences in equations (23) and (24) for control-rotation mode (r = 1,2, 3, 4)
Singular distributions of incidence in equation (79)

Singular distributions of incidence in equations (60) (t = 1,2)
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Three contributions to «, (1) in equations (81) and (82)
Spanwise gradient of a(y) at y = 1,

Steady incidences for reversed wing in equation (104) (r = 1,2,... 5)

Smooth equivalent incidences for hinge moment by reverse flow (r = 2,5,6,7, 8)

as in Appendix

Compressibility factor; (1 —M?)*

First term in I(x, ), its value at y = y,
Non-dimensional spanwise loading; circulation/(2sU)
Arbitrary coefficients in [(X) and «(X)

Particular distributions of y(y), u(y), . . . for loading .,

Values of '}’rf(yn), ﬂrf(yn)’ s

Non-dimensional circulation for incidences o,(#);
Y1 (1), y2 () in equations (73), (74)

Distributions for reversed wing at incidence &,
Distributions for reversed wing at incidence &,,

Chordwise equivalent slopes used in reverse flow (Appendix)
+1 according as control rotation is symmetrical or antisymmetrical
Non-dimensional spanWise ordinates; y/s, y,/s, ¥./s
Parameter for outboard control; y,/s

Parameter for inboard control; y /s

Non-dimensional spanwise ordinate for reversed wing; y/s
Angular spanwise positions; cos™ !5, cos ™ 'y,, cos ™!z,
Amplitude of oscillation in pitching mode (radians)

Third term in I(x, y), its value at y = y,

HIACSY)

Fourth term in Kx, ), its value at y = y,

Angle of sweepback

Sweepback of leading edge, trailing edge, hinge line

Second term in I(x, y), its value at y = y,

Integer denoting collocation section y = y,

Frequency parameter; wé/U

Angle of control deflection relative to stream direction (radians)

Amplitude of oscillation in control-rotation mode (radians or specified in degrees)

True angle of control deflection in plane normal to hinge line; ésecA,,

True amplitude in control-rotation mode (see table of conversion factors)
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Density of free stream

o,(X) to satisfy wing forces in Section 3.1 (r = 1,2)
Chordwise equivalent slopes at positions ¢ = ¢, (r = 1,2)
o(X) to satisfy hinge moment in Section 3.2 (r = 1, 2)
Chordwise equivalent slopes at positions ¢ = ¢, (r = 1,2)
Angular chordwise position in equation (9)

¢ on hinge line; cos 1 (2E—1)

2np/CN+ ) (p=1,2,...N)

Angular chordwise position on reversed wing in equation (107)

Hinge-line parameter on reversed wing; (n — ¢,)
Representation of a,(#) to satisfy sectional loads in Section 4.2
Spanwise equivalent slopes at positionsy = 71, (t = 1,2)
Circular frequency of oscillation

Representation of a,(x) to satisfy wing forces in Section 4.1
Spanwise equivalent slopes at positions # = #, (t = 1,2)
Subscript denoting empirical correction in Section 7
Subscript indicating use of equivalent incidences

Subscript denoting control-rotation mode, inboard flap or control-surface geometry
Subscript numerating loading station y = y,

Subscript numerating chordwise position of collocation point
Subscript relating to steady incidence ,, &, , a(X), &,, &,

Subscript numerating collocation section y = y,

Conversion factors when hinge line is swept

Quantities Conversion factor
¢, ¢o sec A
Hinge moment cos A,
be, bg s, 1 cos A,
Mg, Mg, Z¢, Zg cos A\,
ho, hy cos A,
he he, heps by cos? A,
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APPENDIX
Hinge Moments by Reverse Flow.

The reverse-flow theorem is applied in Section 5.2 of Ref. 6 to an oscillating control surface when
the frequency parameter ¥—0, expressions for the lift and pitching-moment derivatives being obtained
in terms of integrated steady loads on the reversed wing. Now, a similar formulation of the direct control
derivatives is considered for the symmetrical control-rotation mode. Relative to the stream direction

Hinge moment = J J ¢ filx, y) Ap(x, y) dx dy , (A.1)
S
where
Jilx, y) = —(x—x,)/¢ on the control surface
(A.2)
=0 elsewhere on the planform

and Ap(x, y) is the loading on the wing due to the control-deflection mode z(x, y) of equation (3) with
& = +1. If equation (A.1) is identified with equation (5) of Ref. 6, it follows from the reverse-flow relation
in equations (11) and (12) of Ref. 6 that

Hinge moment = J J ¢ [g)z—c+ iv g} Ap;dxdy, {A.3)
s N

where Ap; is the load distribution over the wing in reverse flow due to an upwash

W, =R [U [y e"‘”] ; (A.4)

the direction of the free stream is reversed, but its magnitude and the frequency of oscillation remain
unchanged. Inspection of the above equations shows that the gradients dz/dx and dw,/dx are both dis-
continuous at x = x;. Therefore, the reverse-flow formulation of hinge moment in equation (A.3) retains
singularities in force and upwash modes with the associated difficulties encountered in the direct-flow
problem. The singularities in w; have to be removed by the use of smooth equivalent incidences in the
collocation solution.

To express equation (A.3) in terms of solutions for the reversed wing, we take a new origin at its root
leading-edge and co-ordinates

X=(—x)and y = —y. (A.5)

Then, equations (A.2) and (A.4) transform to give the upwash distribution on the reversed wing as

Wi (;’ » =9 [(ﬂ@) e""”—l on the control surface

(A.6)
=0 elsewhere on the planform

where x,(J) = [c,~x,(y)] by planform symmetry. With z(x, y) from equation (3) and Ap(X, ) denoting
the load distribution in the new co-ordinates, equation (A.3) becomes
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Hinge moment (X=X, |APdX, §)dX dy |
e - A7
pUSe é”JJ[l w( ¢ ﬂ pU? S (A7

Sy
where S, = s, &, is the starboard half of the control area, which for an outboard control is bounded by
<< x(andy, <y<1.
The solution for the loading Ap(X, y) to first order in frequency is formulated by applying the theory of
Section 2 to the reversed-wing planform; a bar inserted over any variable parameter will refer it to the

co-ordinate system (X, j). In particular, the boundary condition in the notation of equation (23) is deter-
mined from equation (A.6) as the column matrix

- 1}_ _M? o]
h = b—v;l:dzf—lv—ﬁj(Ohf‘FOCSf)—pv, (AS)
where
: "F_ih@] 1
= :
By p = _[gm?@—lz > on the control surface (A9)
¢
),
8r = & Yas ]

and &,, = &,, = dg, = 0 elsewhere on the planform. If I, /(%, ) denotes the steady load distribution
corresponding to the column matrix h,, = (%,,/b,,), then to first order in ¥

T, ML 1. MEL ME\) .
Ap(X.7) =3p U’ Z H Ly t+iv (ﬁizf'l'ﬁzle'—FlU'—"ﬁ"z“lfif)}e ’], (A-10)

where the loading 15, corresponds to the incidence s, determined by
(O_‘Sf/bw) = Esf =BA™! (&Zf/bvv)pv (A'll)

with matrices A and B for the reversed-wing analogous to those in equations (19) to (22). Formulae for

the hinge-moment derivatives defined in equation (32) follow from equations (A.7) and (A.10), whence
to first order in v

¢ T e e
5
.(A.12)

c B—-M*\[x—X 1, M (%, . ]
—hézzsféfjj[—< 72 >< Eh>22f+ﬁle"'F(Fhlzf—lU"lsf):ldXdy
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In order to apply the collocation method of Section 2, each I, (X, ¥) must be replaced by a smooth
load distribution 1,,(x, y). The remaining problem is, therefore, the choice of smooth equivalent incidences
. at the collocation positions (X1 ¥u)» to represent the incidences &, of equations (A.9) and (A.11).
By inspection of equations (A.12), we sce that the first term in the integral for —h; is a hinge moment
on S, due to the loading /, ,, but that the other four terms in —h; and the one term in —h, can each be
interpreted as a ‘hinge reaction’ proportional to the integral of [, over S,. The following table sum-
marizes the five sets of equivalent incidences (o) ' = 2,5,6,7,8, used in the calculation of —h; and
—hf'

Incidence Chordwise Spanwise Equivalent
p o) ar L
Ean. (A12) Term eqn. (A9) slopes slopes mcidences
‘hé o dZ/ gp Y, (iﬁv)nv
‘hé ]S[ &2/‘ {:p lIJ[\‘ (iZe)pv
2nd. Asp O, Q, {2s50)py
31‘(1. &Zf CI’ lP,‘, (&()(‘)p\'
4th &y v, Y., (CER
Slh &8 ! Cp lPI\' (&3(’)17"

Thus, the terms in — /1 involve four different chordwise equivalent slopes that require special formulation ;
as regards a5 ;. the chordwise slopes 8, relate to the smooth incidence to replace &, in equation (A.11).
In the case of a part-span control, the symmetrical spanwise slopes ¥, and ¥,, of Section 4.2 apply,
exeept as regards &5, when Q,, and Q,, are more appropriate. The equivalent slopes are combined by
the numerical procedure of Section 5.1.

It remains to formulate the four sets of chordwise equivalent slopes, ¢, 6, { and ¥, by analogy with the
two-dimensional principles of Section 3. At any section within the control span, we write the incidences

of equation (A.9) as
_ c\ .
Ozp = ((g)al (X)

c\? _
&7,=<E> i, (X) - (A.13)

~

where .
a(X)= —(X—E) when0< X <E
=0 whenE < X < 1
> (A.14)
with Y- [f-x_,(y) ]and E- [fh()_’)—_f@]
o @ |
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By analogy with equation (44) with N = 4 terms, we write

G(X) = 711[,2—1—4#9(14-2005(1))—%;\ (1 +2cos d+2cos2d)+ A 1+2cos¢+2cos2¢+2cos3¢] (A15)

where ¢ = cos™ ! (1—2X). The unknown coefficients 7., [, . . . are chosen to satisfy the conditions for
the first (N — 1) wing forces together with one special condition; when N = 4,

each @, (X) gives Cp)s, (Co)sr (Copm)s (s = 10r2),

5(X) = ¢ gives the correct (Cp); »

ZX) = o gives the correct (Cppmm)1 » L (A.16)
7(X) = { gives the correct (Cg);

%, (X) = ¢ gives the correct (Cg), .

The coefficients (C )y, (Cdss (Com)s a0 (C )1 have analogous definitions to the coefficients in equations
(46); on the other hand, we note that

E
(=Cy)1 =3 ! J(X E)1,(X)dX (A.17)
0

is the hinge moment on a leading-edge control, in contrast to (—C,), in equation (53), and that (CRr)s
for s = 1 or 2 is defined as the hinge-reaction coefficient

E
(Cols = jim N (A19)
Q

where 1(X) is the two-dimensional loading corresponding to & (X) of equation (A.14).

It can be shown that the slopes &.(X) = &X, E) are determined by equation (A.15) with the matrix
equation

0 0o 0 e | = € | > (A.19)
0 2 0 0 e (C)s
1 —4 1 0 Re 8(C )t
p, D, D, D Ao nEXCyh

where D., D,,, . . . are defined in equations (52) and

2C,), = (nE*) A, of equation (55) 1

32(C,h = —(nE*) A (A.20)
32(€mm)1 = (TEEZ)(A}—FA%A”—*_AK)

(Cﬂ)l = (—Ch)Z Of Cquation (57)
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If equivalent slopes ¢ are required for N < 4, then &,(X) is represented by the first N terms of equation
(A.15) and only the conditions for the first (N — 1) wing forces and for (), are retained in equation (A.19).
Bearing in mind that the equivalent slopes ¢ represent &, (X) from equation (A.14), we can manipulate
the equations when N > 3 to express ¢ in terms of 7, ; at the collocation positions

eE) = [E— X ,+7,,(1—E)],p = (1N,

where X‘p =1 (1 —cos 2?\]7[—51) and t,,(1—E) are the chordwise equivalent slopes in Table 4 with

argument (1 — E) instead of E.
The slopes &,(X) = 6(X, E) are obtained, when N = 4, by equations (A.15) and (A.16), so that the
last row in the matrix equation (A.19) is replaced by

Gt 12— 2R+ Ty = 3AC ot = =3 MEY (A, +3 A, +2 A+ 4)). (A21)

The slopes 8(X, E) can be determined for N < 4 by reducing &,(X) and the matrix equation to the first
N terms and force conditions respectively. By manipulation of the formulae it can be shown that when
Nz=3

S(E)=[E-X,+0,,(1-E)],

- 2n
where X, = 7{ 1—cos i—m—% and o, with argument (1 — E) instead of E may be obtained from Table 2.

The hinge-reaction coefficient (Cr), of equation (A.18) and the first (N — 1) wing forces are given cor-
rectly by the incidence &{X) of equation (A.15), if the N = 4 unknown coefficients (7., i, ... satisfy
the matrix equation

2 o 0 ] (5.1 = [ @] (A22)
0 2 0 He (Ch)s
1 -4 1 7, 8(C s

¢ o o o | [

where C,, C,, ... are defined in equations (50) and the acrodynamic coefficients on the right-hand side
correspond to the incidence #(X) of equation (A.14). When s = 1, the equivalent slopes { are determined
by equations (A.15) and (A.22) with (Cp)y, (C,,); and (C,,,); from equations (A.20) and with

(Cr); = E¥—Cy), of equation (57). (A.23)

Likewise, when s = 2, to obtain the remaining chordwise equivalent slopes t defined in equations
(A.16), the right-hand side of equation (A.22) requires the coefficients

2ACy), = —(nEY) B, ‘.

32(C,), = (E?) B, t
3ACn)s = — (E2) (B, +4 B, +B,) ’

4n(Cr), = [(m—¢)* (—1+2cos ¢, —2 cos® @) +(n— ) sin ¢, (1 — 3 cos ¢,) —sin? ¢, cos ¢,] J
(A24)
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where B, B, and B, are defined as functions of ¢, = cos™' (2E—1) in equations (95). To determine
the slopes { and ¢ for N < 4, the matrix equation (A.22) is reduced to the conditions for the first (N — 1)
wing forces and the hinge reaction (Cp),, together with 4, = Owhen N = 3and &, = I, = Owhen N = 2.

The slopes ¢ and { or Y arc determined by equations (A.19) and (A.22) respectively, provided that
the matrices are non-singular. Conversely, when N = 4, the slopes ¢ are indeterminate if D, = 0, whilst
the slopes { and ¥ are indeterminate if C, = 0. Likewise, there are singularities in the corresponding
matrices for N = 31f D, = 0 or C,, = 0, but only the latter is possible for 0 < E < 1; no singularities
occur when N = 2. Hence, by means of equations (50) and (52), indeterminate slopes are found to occur
in the following cases:

fore,when N = 4 and E = 0416

5
for {and y, when N =4and E = —ile? (A.25)

or when N =3 and E = 0:375

From cquations (A.19) and (A.21) for N = 4 it follows that 6 can always be determined because the
matrix is non-singular, and this remains true for all N.

In conclusion, it follows from the above equivalent-incidence procedure that the hinge-moment
derivatives of equations (A.12) are evaluated from

_/15—2Sf5fjjlée(1Xdy 1
Sy
and L. (A.26)
¢ pr—M*\(x-%,\, 1 M? /% S .
hé‘ = 2S](_f J‘ j[ <——?f‘_> <‘ ¢ h) 12e+ ﬁz lSe+ ﬁz ( ~h 162 172_182) dedy)

where the load distributions ,,(X, J) are obtained from collocation solutions for the equivalent incidences
(%,.) on the reversed wing in steady flow. For incompressible flow the calculation of —#; involves
just the two loadings I,, and Is,, with indeterminate chordwise slopes ¢ only when N = 4 and E = 0-416;
singularities in the slopes { would still affect —h, through I,, if the particular conditions in equation
(A.25) were approached.
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TABLE 1

Chordwise Equivalent Slopes o, for N = 2,3,4 and E = 0-05(0-05)0-75.

p=1

P =&

0+05
0+10
015
0°20
025
0° 30
0+ 35
0+ 40
0°45
0°50
055
0-60
0+65
0°70
075

-0° 067546
-0+ 015801
0+ 038897
0+ 075837
0+ 088379
0076697
0° 045041
0+ 000266
-0+ 049136
-0+ 093782
-0+ 124031
-0°130570
-0* 105030
-0 040644,

+0° 066936

0082910
0016212
~0° 056951
-0+ 108616
-0+ 127029
-0+ 108205
-0+ 052866
0+035117
0° 149698
0283349
04427618
0573602
0+ 712397
0+835551
0+935555

0127177
0+ 001624
0* 179077
0° 365110
0° 540082
0+ 693420
0-819821
0° 917446
0+ 986894,
1+030516
1051929
12055615
1+ 046589
1+ 030081
1-011247

0726131
0+ 912025
0995830
1030325
1+038650

- 12033513

1°022530
1+010355
0999739
0+99212)
0+ 988020
0-987273
0989258
0+993038
0997510

2

p=2

p=1

p=23

0-05
0-10
0°15
0+20
0+25
0+30
035
0°40
045
0°50
0-55
0°60
0°65
0+70
0°75

=0 144234,
-0° 160420
=0 154774
-0 109431
~0* 060054
-0 000108
0+ 067954
0+ 142228
0+ 221130
0- 30327
0387390
0+ 472269
0°556716
0639503
0719314

0° 445241
0+ 608283
0719336
0°801625
0+864553
0° 913170
0° 950626
0°979086
1+ 000144
14015036
1+ 024,765
14030174
1+032000
1+030907
1027516

Sﬁ

14

0+ 101655
0077635
0+ 029982
-0+ 023072
-0+ 071756
-0+ 109795
-0° 132897
-0+ 138116
-0+ 123540
~0+ (088118
-0° 031581
0+ 045592
0+142158
0 256052
0+ 384260

-0+ 14,8884
-0+ 109327
-0+ 023088
0- 086608
0° 207650
0+ 332224
0° 454780
0° 571204
0-678376
0773970
0856285
0+924184
0 977047
1+ 014755
12037714

0¢ 595402
0+ 783700
0+ 893594
0°961173
1001938
1% 024635
1+034932
12036809
12033204
12026354
12017986
1+ 009435
12001720
0°995584
02991523
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Chordwise Equivalent Slopes 6,, for N = 2,3, 4 and E = 0-05(0-05)0:75

TABLE 2

qQ
)
o
H
=
1

2

%2p

for

N=3

p=2

p=1

p=2

p=3J

0°05
010
0°15
0-20
0°25
0° 30
0-35
0°40
O° 45
0°50
0<55
0-60
0-65
0°70
0-75

~Q0° 005228
-0° 013023
-0° 020752
-0 027175
-0° 031462
-0 033004
-0°031338
-0°026106
-0°017038
-0°003939
0°013322
0» 034813
0° 060542
0° 090457
0° 124443

0° 015046
O° 041694
0-075035
0° 113154
0154877
0- 199372
0° 246008
0° 294285
0° 343794
0° 394197
Oe 445212
0° 496601
0° 548169
0-599755
0°651222

0:004112
0° 008754
0° 011495
0° 011667
0° 009263
0° 004670

~0° 001467

-0° 008322

-0 014948

~0° 020328

-0° 023408

-0+ 023141

-0° 018525

-0° 008636

+0°007320

-0 005999
-0° 012730
-0° 016173
=00 014653
~-0° 007325
0° 006170
0° 025863
0° 051545
0082828
0° 119189
0° 160004
0° 204577
Or 252171
0° 302029
0° 353401

0° 020429
0° 055374
0°097532
0° 144037
0°193205
0° 2443931
0° 295463
0 347285
0° 399053
0° 450552
0° 501663
0° 552347
0° 602621
0° 652546
0.702214

p=1

p=4

0°05
0-10
0-15
0°20
0-25
0-30
0°35
0°40
045
0+ 50
0-55
0°60
0265
0-70
075

-0° 003285
-0° 005460
~0° 004836
-0-001873
0°002338
0° 006559
0°009673
0+ 010844
0°009622
0° 006009
0+ 000484,
-0-005998
=02 012037
-0° 015852
~0° 015380

O° 004040
O 006644
0° 005576
0° 001315

~-0° 00,727

-0° 010764

~0° 014937

~0° 015506

-0° 010981

-0° 000218
0° 017531
0° 042573
0° 074771
0° 113551
0° 157939

-0° 006252
~0° 009732
~0° 005340
0° 008309
0031012
0° 061954
0° 099903
0= 143455
0191178
Oe 241714
0293858
0° 34,6611
0° 399208
0451145
0° 502478

0° 025416
0° 066997
0° 114971
0° 165771
0°217573
0° 269444
0° 320828
0° 371648
0- 421891
0° 471673
00521162
0° 570534
00619935
0° 669487
0°719250
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Chordwise Equivalent Slopes t, , for N = 2, 3,4 and E = 0-05(0-05)0-75.

TABLE 3

T for N=2 T for N=3
E e
p =1 p=2 p=1 p=2 p=3
0+05 =1+555513 0+ 984.302 0°69002) | -0° 556048 O 740717
0+10 || -0°844983 0869763 0139581 | -0+152195 0+798999
0+15 -0+ 483765 0848819 =0+ 114748 0077068 0857849
0+20 || -0+242158 0+ 852322 -0+ 250972 | O¢244320 0+ 904886
025 -0° 060054 0-864553 -0° 320121 O 379524 0+ 940597
0+ 30 0° 086596 0+ 880052 =0 344603 0+ 494716 0° 966642
O+ 35 0+ 209696 0896485 -0 336647 O* 595779 0+ 984610
0+ 40 0+ 315965 0912725 -0°303902 | 0°685929 0°99586.
0*45 0° 409544 | 0°928177 ~0°254630 | 0+767018 12001569
0+ 50 0°493157 0 942507 =0+ 183714 O 840124 1002744 |
055 0+568678 | 00955519 -0+103178 0+ 905832 12000303
0+ 60 0637444 | 0967083 -0°012482 0° 964372 0+ 995092
0+65 0+ 700415 0:977112 0+ 086319 1015688 0.987929
0+70 0+ 758286 0+ 985536 0° 191467 12059449 0°979633
075 0° 811534 0+ 992292 0+ 301473 1+ 09500k 0°971076
H
for N=4
E
p=1 p=2 p=3 P=24

005 ~Q0° 206760 | +0+196398 -0+ 201251 0+ 754857

0+10 02195550 | -0+156083 0-114082 | 0-872969

0+15 O 314771 -0 281845 O+ 325867 Q* 94,4850

0+ 20 07323992 | -0° 310914 0497151 O* 984468

0+ 25 0+ 282659 | -0-285407 O 6443456 12002748

0+ 30 0+ 224916 | -0 226589 0+ 770689 12006678

0+35 00162390 | -0+148530 0+ 882261 12000845

0+ 40 0+421278 | -0-063533 0+ 984835 04987993

045 0° 119545 0+ 012188 12076647 0+968568

0°50 0+ 205331 0039510 1+ 189671 0936850

0°55 0+ 677253 | -0 225595 1+478283 0+-839949

0+ 60 -1+701061 1+853878 0* 219974 1+ 277488

0°65 -0 450383 0993934 0+ 862831 12053077

070 -0+197880 | 0963731 0* 946420 12022094,

075 -0+ 019408 1+ 005943 0+ 965304 12013466
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TABLE 4

Chordwise Equivalent Slopes t,, for N = 2, 3,4 and E = 0-05(0-05)0-75.

] ‘r2p for N=2 T2p for N=3
p=1 p=2 p=1 p=2 P=3
0°05 -0° 116954 0° 057722 0068241 | -0°050378 0° 036268
0°10 -0° 14,9936 0° 093990 0° 074830 | -0° 058456 0° 071693
0°15 ~0° 164823 0° 130065 0° 068363 | -0°055527 0° 111577
0° 20 ~-0°* 168750 0° 167231 0°055717 | =0°045137 0° 154916
0°25 -0 164718 0° 205776 0° 040309 | -0- 028809 0- 200873
0° 30 -0° 154390 00 245737 0°024295 | =0°007412 0° 248779
0 35 -0° 138826 0° 287065 0+ 009203 0° 018479 O* 298098
0° 40 -0° 118765 0° 329678 -0° 003826 O° 048134 0° 348395
0o 45 =0 094759 0° 373481 -0°043902 0° 082104 0° 399311
0° 50 -0°067233 0°418373 -0° 020328 0°4119189 0° 450552
0° 55 ~0° 036532 O L6L25L -00 022552 0° 159411 0° 501875
0+ 60 ~0° 002941 0° 511022 -0° 0201 4¢ 0° 202503 0° 553087
065 0° 033299 0°558575 -0° 012782 0° 24,8196 0» 604040
070 0° 071980 0° 606811 ~0° 000225 0° 296209 0° 654623
0°75 0°112916 0° 655625 +0°017668 0° 34,6239 0° 704770
T for N = 4
. 2p
p=1 p=2 p=23 P=4&

0°05 02041733 0:035383 =0° 026710 0° 032521

0°10 -0° 035409 0° 031059 ~-0° 025668 0:072531

0°15 -0°022353 0° 019860 -0° 014633 0° 118209

0°20 -0°009339 0° 007401 0° 004336 0° 167451

0°25 0°000719 | -0° 003407 0° 030151 0217872

0°30 0° 006547 | ~0°010754 0° 064948 0° 269416

0° 35 0°007804 | -0°013413 0° 098909 0° 321473

0°40 0° 004688 | -0° 010488 0° 140180 0° 372785

0°45 -0 002431 | -0° 001155 0° 184765 0° 425,118

0° 50 -0°013932 0° 016038 0° 231104 0° 475358

0+ 55 -0° 038962 0+ 04,9688 0- 272869 0° 528451

0°60 || +0°039143 0° 005774 0+ 370630 O 562189

0°65 ~-0° 008515 0° 0741900 0101082 0° 619284

0°70 -0° 015840 0° 1135441 0° 451152 0° 669485

0°75 ~0° 014301 0° 157059 0+ 502752 0° 719051

64



TABLE 5

Symmetrical Spanwise Factors in Equivalent Slopes for Outboard Controls (m = 15),

~ 0 0415 0+25 035 040 0*45

0 1 ~0*1152, | -0v11265 | 0°07610 | 0-08775 0+03923

1 1 075876 | 0725531 |-0-09492 |[-0°11176 | -0+05049

2 4 1= 04506 1-02223 | 0-69217 | 0°42338 | 0415953

2, 3 1 0°97957 098698 1206346 | 1:07080 | 0-99821
v & 1 1001243 | 1400834 | 096778 | 096409 | 0-99242

5 1 099107 | 0-99389 1202150 1.02396 1200634

6 9 1200721 100498 | 0498325 | 0°98132 | 0-99467

7 1 0° 99361 0099557 1+ 01460 1201627 1+ Q0479

0 0+03994. | -0-01183 0+ 00367 0+ 00456 0°00016 | -0+ 00319

1 0419032 | 0°05007 |-0°00150 |-0+00635 [~-0+00076 | ©-00354

2 0+38443 | 0423235 | 0°12731 0+03860 | 0°01059 | -0-00384

a,, 3 055465 | 0°40561 0 30791 0° 20555 0+ 15195 0+ 09981
L4 0+70770 | 0455741 0+ 45571 0*35686 | 0°30868 | 0025990

5 083103 | 068145 | 0°58246 | 0+48174 043050 | 0°37966

6 009242 | 077390 | 0267308 | 0°57366 | 052460 | 0°47527

7 0+ 98046 0-83077 0°73149 0463099 0+ 58017 0+ 52959

0 1 -0+15004 | 0°02514 | 0+02114 | 0-00649 | -0-00677

1 1 0-83587 | 0°12804 {-0°08475 |-0+00627 0+ 01789

2 1 097943 1207563 | 077443 | 0-31890 | 0-06608

v, 3 1 1200394 | 0-98266 | 0+99045 1+ 08600 1205196
4 1 0099155 101376 1+ 00011 0°98889 0097933

5 1 1400280 | 0-99436 | 0-99367 1401178 1201358

6 1 0+ 99475 1200698 1200139 | 0299662 | 0-99242

7 1 1200202 | 0099616 | 099529 1200615 1+ 00776

0 002772 | -0*00425 | 0-0027% |-0-00015 |-0+00085 | -O-00083

9 0°19769 | oromy70 |-0+00218 |-0-001147 | 0-00166 000116

2 0+ 38171 023443 | 0°13009 | 0+03410 | 0°00582 | -0-00303

¥y, 3 0+ 55649 040482 | 030550 | 020748 | 0415590 | 010191
L O 70667 0+ 55760 0°45720 | 035634 0° 30662 0 25743

5 083196 | 068115 | 058130 | 0-48205 | 0-43198 | 0-38129

6 0092359 | 077415 | 0°67400 | 0-57351 | 0-52356 | o0-4738)

7 098105 | 0-83048 | 073058 | 063110 | 0+58111 0+ 53072




TABLE 5 (contd.)

Svinmetrical Spanwise Factors in Equivalent Slopes for Ou_tboard Controls (m = 15).

u
AN 0-50 055 0°60 065 075 0-85
0 | -0v02545 | -0°05786 | -0-03855 | ©-00925 | 0-02227 | -0-02260
1 0-02741 | 006517 | 0-04345 | -0°00952 | -0-02403 | 0-02386
2 1-0:02913 | -0-10067 | -0-06690 | 0-00962 | ©-03089 | -0-02836
,, 3 081708 | Os5u21u | 0-23572 | o-o0u82 [ -0-05254 | 0-03942
L 1+04570 | 1.08372 | 1°04137 | 086281 | 019865 | -0+07181
5 0097502 | 095431 | 0-97332 | 1403611 | 1-03067 | C<32165
6 1201789 | 1+03284 | 1-01987 | 0:97925 | 0-97522 | 1-28266
7 0-98499 | 0.97239 | 0-98308 | 1-01596 | 1-02048 | 094499
0 | -0°00349 |-0°00120 | 0°00141 | 0°00216 {-0-00091 | O-0001k
1 0°00402 | ©-00146 | -0-00148 §-0-00235 | 0-00095 [ -0-00014
2 | -0°00664 |=-0°00288 | 000165 | 0-00309 |=-0-00110 | 0°0001%
a,, 3 0°05397 | 001970 | 0-00023 | -0+00541 | 0-00138 |-0°00012
I 0020900 | 015557 | 0°10197 | 0705374 |-0-00064 | -0-00011
5 0°33011 ( 0-28198 | 023400 | 0-18389 | 0-07672 | 0-0036L
6 0°42496 | 0-37361 | 0032216 | 0°27241 | Q17640 | C-07089
7 047983 | 0°43097 | 0-38220 | 033227 | 0-22891 | 0-13240
0 |-0r01461 |-0-00933 | 0°00565 | 0.00543 |-0-00130 | 0°00083
1 0+01597 | C-00746 | -0-00165 |-0-00785 | 0-00330 | O-00008
2 |-oe05427 |-0-05943 | 0-01t24 | 0°01390 [-0-00168 | 000125
¥, 3 0:90204 | 057473 | ©0-13425 |-0°03315 | 0-01058 | 0°00145
v 4 097950 | 1-02688 | 1-08112 | 0294336 | 0-10309 | 0-00101
5 100564 | 099322 | 0-9805k | 0°97630 | 1-07582 | 0-21732
6 0°9911%4 | 100079 | 101664 | 1-00866 | 0°97609 | 1-11062
7 4 00405 0-99811 099200 | 0-98895 1202071 0° 97639
0 |-0-00026 | 000043 | 0°00038 | ©-00008 [-0-00014 | 0-00006
1 0000027 |-0°00033 |-0-00047 |-0-0002% | 0-00016 [-0°00006
2 |-0°00290 | 0-00059 | 0°00107 | ©0-00036 |-0-00028 | O=00011
v, 3 0005257 | 0001446 |-0-00088 |-0-00283 | 0-00072 |-C-00016
4 0-20853 | 0-158841 | 010480 | 0-05357 |-0-00116 | 0-00053
5 0-33078 | 0-28080 | 023146 | 0°18261 | 0<07903 | 0-00164
6 042427 | 0°37456 | 032392 | 0-27324% | 0°17399 | 0-07336
7 0°480L2 | 0°43036 | 0°38061 | 0°33111 | 0-23069 | 0-13048
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TABLE 6

Antisymmetrical Spanwise Factors in Equivalent Slopes for Outboard Controls (m = 15).

v e 0 0-15 0-25 0 35 040 045

1 1218028 0 69084 0+19392 -0+ 04292 -0+05228 -0+ 024.35

2 0+ 90018 109287 1+ 06148 Or 652441 Q37807 0+ 13985

a, 3 1007024 | 0094215 | 0-95427 | 1-09609 | 1-10793 | 1-01422
v 4 0°94435 | 1-04382 | 1-03561 | 0+93959 | 0-93204 | 0-57368
5 1004751 | 0-96336 | 096990 | 1-04686 | 41+05277 | 41-01865

6 0°95715 | 103270 | 1+02700 | 0+95965 | 095453 | 098325

7 12 04040 096932 0+ 97462 1203722 1+ 04196 101572

1 0:19509 | O-Qun0 | 000133 | -0-00350 | -0-00089 | 0°00111

2 Q- 38268 QO» 23600 0+ 12507 Q* 0365, 0+ 01079 -0+ 00188

a, 3 0+ 55557 0+ 40289 0+ 30977 0+ 20749 0°15173 009818
v k 0°70711 | 055932 | 045410 | 0+35547 | 030890 | 0-26134

5 083147 | 0067954 | 0°58392 | 0+48294 | 0-43029 | 037835

6 0.92388 | 0-77563 | 067173 | 0°57252 | 052481 | 0-47649

7 098078 082912 0+ 73279 0263207 0+ 57996 QO 52841

1 1+ 09007 081037 0+13158 -0+ 06830 ~0¢ 00842 0+ 01054

2 0+ 98684 0+ 99829 1406765 0 76663 0+ 31818 006903

¥, 3 1200731 | 099754 | 0-98501 | 0-99629 | 1-08457 | 1-04859
I Q099724 0+ 99889 1200972 0- 99790 0+98873 0+ 98102

5 1200242 0+ 99955 099590 0+ 99703 1401076 101142

6 0= 99866 099939 1200416 0+99990 0+ 99657 0+99368

7 1+ 00145 0+ 99970 0+ 39750 099798 1+ 0053, 1+ 00606

1 0+ 19509 0s 011,68 -0 00110 -0+ 00137 0 00102 0+ 00080

2 0+ 38268 023436 0+ 12951 003427 000613 -0+ 00278

Yo, 3 0055558 | 040498 | 0430587 | 0°2073h | 0-15562 [ 0-10177
4 0-70712 | 055748 | 0+45695 | 035645 | 0-30678 | 0-25756

5 0+ 83148 068126 058149 0+ 48195 043180 0° 38120

6 0-92387 | 0477405 | 0267383 | 057359 | 0-52368 | 0+47392

7 0098074 0+ 83061 0+ 73075 063104 0+ 53098 053067
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TABLE 6 (contd.)

Antisymmetrical Spanwise Factors in Equivalent Slopes for Outboard Controls (m = 15).

~la | o050 0-55 060 0065 075 0+85

1 0°00773 0002195 0°01470 | -0-00183 | -0+ 00653 0° 00550

2 -0°01303 | ~0°06593 | ~0°04382 0:00304 | 0701639 | -0°01284

0 3 0-80330 0° 51272 0° 22020 0°01064 | ~0° 04001 0° 02579
v 4 1205793 | 1-10966 | 1-05856 | 0-85756 | 0-18747 | -0-05951
5 0-96384 | 093068 0°95767 10 04,097 1+ 0u095 0° 31026

6 1202840 1+ 05500 1203455 0:97463 0»96552 1209346

7 097485 0°95103 0+ 96894 1002043 1+ 02985 093453

1 0°00148 0-00064 | -0°00034 | =0-00067 000021 | ~Q° 00002

2 -0° 00463 | -0-00227 0+ 00069 000170 | -0° 00047 0° 00003

n 3 0° 05229 0- 01920 000106 | ~0°00422 0°00082 | -0 00002
2v " O 21046 0* 15600 010123 0-05268 | -0°00013 | ~0° 00020
5 0- 32878 0- 28161 0° 23469 018486 0+07626 0° 00372

6 042620 0° 37396 0+ 32151 0» 27120 017685 0+ 07084

7 0° 47864 0e 43064 0 38282 0- 33316 022848 013248

1 0°01010 0°00541 | -0-00028 { -0°00398 0+ 00143 0° 00009

2 004923 | -0°05658 0° 00878 0°01166 | -0°00100 0+ 00081

¥, 3 0+89945 0° 57079 0013505 | -0:03119 0° 00954 0000147
4 0° 98223 1202834 1:07964 | 0794205 0+10352 0° 00072

5 1+ 00400 0099266 0-98110 0297761 107510 0« 21734

6 0° 99311 100182 1401553 100768 097643 1411039

7 100277 099774 0099251 0+ 99007 1202012 0: 97642

1 0°00025 | -0°00013 | ~0-00025 | -0-00013 000008 | ~0»00002

2 -0+ 00285 0* 00040 0° 00092 0-00034 | ~0°00022 0° 00008

v 3 005258 0° 01456 | -0°00078 | -0-00280 0000067 | -0°00014
2v & 0 2085 0- 15870 010472 0205357 | -0-00143 0° 00051
5 0 33079 0° 28086 0023153 0°18263 0° 07900 0+ 00165

6 0o 42427 0+ 37448 0 32386 0s 27324 Q- 17402 007334

7 0° 4,804 0° 43042 0° 38067 0°33113 0223067 0+ 13050
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Chordwise Integration Functions for Local Hinge Moments with E = 0-05(0-05)0-75.

TABLE 7

E Ay Ap A A
005 | 02153509 | -1-789249 | 0+ 702990 | -0 899827
0°10 | 0219543 | -2+482957 | 0°916732 | -1+ 063410
0+15 | 0272027 | -2981658 | 1°030511 { =1+071732
0°20 | 0°317916 | =3372871 | 1086498 | ~0° 999578
025 | 0°359911 | -3+690840 | 1+102658 | -0-882126
0230 | 0°399449 | -3+953055 | 1°089147 | -0° 740620
035 | 0437304 | -4=169977 | 1052647 | -0° 589482
040 | 0474157 | ~4* 348191 | 0-998012 | -0°439125
045 | 00510426 | 4492105 | 0+929029 | ~0° 297289
0°50 | 0°546479 | -4*604695 | 0+848826 | -0° 169765
055 | 0582644 | -4+ 687924 | 0°760114 | -0° 060809
0460 | 0°619237 | -4+ 742973 | 0°665341 | 0°02661L
Q¢65 | 0°656586 | ~4*770347 | 0+566810 | 0+ 090690
070 | 0695060 | -4+769895 | 0466777 | 0+ 130698
075 | 02735105 | 4740741 | O+ 367553 | O°147021

E By %1 Bk Bx
0:05 | 0°004369 | 0051354 | 0020439 | -0+ 026713
0°10 | 0-012483 | -0+ 143090 | 0054344 | -0° 066005
015 | 0°023137 | -0+258956 | 0°093608 | -0* 105112
020 | 0°035950 | =0+392554 | 0°134750 | 0139072
0*25 | 0°050720 | -0+539866 | 0°175543 | —O* 165399
0*30 | 0°067327 | -0°697955 | 0+214.392 | -0° 182977
0°35 | 0°085702 | -0+864455 | 0°250097 | -0 191582
040 | 0°105807 | -1°037350 | 0°284742 | -0 191618
O 45 | 00127629 | -1+214849 | 0° 308627 | -0° 183948
0+50 | 0°151474 | -1+395305 | 0+330235 | -0+ 169765
055 | 0176466 | -1+577155 | 0O+ 346203 | -0* 150503
0:60 | 00203550 | =1-758875 | 0°356316 | -0 127746
0*65 | 00232488 | ~1°938948 | 0° 360496 | =0 103159
070 | 0263365 | -2 115816 | 0+ 358799 | =0+ 078419
0+75 | 00296296 | 20287843 | 0° 351429 | -0°055133
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Chordwise Integration Functions in Evaluating Control Derivatives by Reverse Flow.

TABLE 8

B cy C“ Gy Gy,
0°05 | 0°886317 | 3°312765 | 02717765 | 0° 568691
0°10 | 1°243501 | 4° 320000 | G°=792000 | O° 446400
0°15 | 1°509542 | L4e356171 1 0-728426 | 0°218528
0020 | 10727295 | 5°120000 | 0°597333 |-0°017067
0°25 | 1°913223 | 5°196152 | 0°433013 |-0° 216506
0°30 | 2°075795 | 5°132485 | Q- 256624 |-0°359274
0035 | 20220043 | L4°960L8L | 0°082675 |-0°438176
0°40 | 2°349234 | 40703020 | -0 078384 |-0°154525
Oo4h | 20465616 | Le 377445 | =0° 218897 |-0° 445505
0°50 | 2¢570796 | 4°000000 | -0° 353333 }-0+335333
0°55 | 2:665951 | 3°5¢1955 | -0° 447855 |-00 220807
060 | 20751950 | 3135347 | =0° 470302 |[-0°09L060
0065 | 20829428 | 20671030 | -0° 439639 | 02031162
0°70 | 20898828 | 2°199636 | -0°476588 | 0-139310
0°75 | 20960420 | 12732051 | =0 433013 | O° 216506

E Dy D“ DK Dy
0°05 { 0°059329 | 0°227677 1 0052452 | 0°046158
0°10 | 02166950 | 02615002 | 0-129600 | 0°098496
0°15 | 0°305113 | 1°076615 | 0°206387 | 0°132083
020 | 0°467270 | 12577257 | 0273067 | 0°141995
0°25 | 0°64951Y 2°094335 | 0° 324760 | 0°123590L
0030 | 00849140 | 20611844 | 0° 359274 { 0°100597
0°35 | 1°064069 | 32117290 | 0376170 | 0060187
040 | 10292648 | 3°601057 | 0°376242 | 0°015050
0°45 | 12533490 | 4055644 | 0° 361130 |-0°028894
0°50 | 12785398 | Le474926 | 0°333333 [-0°066667
0°55 | 20047315 | 42854308 | 0°295541 [-0°09L56L
060 | 20318283 | 5°190366 | 0°250828 |-~0°110364
0065 | 2:597421 | 5°480738 | 0°202553 [~-0°11343Q
Q70 | 228839500 | 5°724335 | 0°153974 |~0°10L4703
0°75 | 32176927 | 5°620341 | 0°108253 |-0°086602
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TABLE 9

Lift and Pitching-Moment Derivatives for Rectangular Wing (A = 4, M = 0) with Oscillating Full-Span
Controls.

(a) Stiffness derivatives

By direct flow (m = 15) By reverse flow (m = 15)
B
N=2 N=3 N =4 N=2 N=3 N =4
-2, 0+05 0°5442 | 05528 | 0-5573 0*5435 | 05505 | 05526
010 0+ 7596 0+ 7694 O 7734 07587 0° 7667 0+ 7687
015 09180 0+ 9274 0* 9300 09170 0° 9246 0° 9264,
0° 20 120459 120540 120552 120449 10515 100527
0+ 25 121536 121600 121598 1¢1525 11578 1+ 1586
0 35 123275 1+ 3302 1+ 328), 1 3265 1+ 3287 1+ 3288
0° 50 1+ 5492 1+5173 125156 125183 1+ 5169 15168
-, 0+ 05 0+ 0476 0+ 0488 0+ 0502 0+ 0476 0+ 0487 00498
010 0° 0488 0+ 0503 0+ 0514 0+ Q487 0+ 0501 0+0510
015 00376 0:0392 00398 00376 0+ 0390 0+ 0396
020 0+ 0188 O+ 0204 0+ 0205 00187 0+ 0202 0+ 0203
0+ 25 -0°0056 | ~0°0040 | -0+004 -0°0057 | -0°0042 | -0°0045
0+ 35 -0 0659 | -00646 | -0°0655 -0° 0661 | -0-0648 | -0° 0655
050 ~0+1732 |-01724 | -0+1732 ~0°1736 | -0-1728 | -0*1734L |
() Damping derivatives
By direct flow (m = 15) By reverse flow (m = 15)
E
N=2 N=23 N=2X N=2 N=23 N =4
-z | 005 -0+ 221 | -0°2238 | -0°226L -002220 | -0°2231 | -0-224
0+ 10 -0°2658 |-0+2680 | -0-2698 -0 2665 | -~0*2673 | -0°2683
015 -0 2687 |-0+27Q2 { -0°2708 -0 2696 | ~0°2697 { -0+ 2702
0+ 20 -0 2460 | -0°2466 | -0° 2460 0" 2470 | ~0° 2464 | 042463
0 25 -0 2048 | -0°2045 | =0° 2030 -0°2059 | -0*2046 | -0°2039
0 35 -0°0820 |-0°0800 | -0°0775 -0°0831 | ~0.0806 | -0°079.
0+ 50 +0° 1711 [+0* 1749 | 401766 +0°1700 | +0°1736 | +0°1748
-nt' 0+ 05 0° 0933 00735 00743 0+ 0933 0+ 0731 0-0736
010 0+ 1299 O+ 1082 0+ 1089 0+ 1299 0+ 1078 0°1083
015 01557 0+ 1359 0+ 1366 0+1556 01356 0+ 1361
0+ 20 0°1749 0+ 1591 0+ 1595 0* 1749 0+ 1588 01592
0+ 25 0+ 1892 0+1782 0° 1784 0°1891 01779 0+ 1783
035 0+ 2058 0+ 2048 O° 2047 0° 2056 O+ 2047 0+ 2049
0+ 50 0+ 2050 0+ 2158 0+ 2157 O+ 2047 0° 2159 02160

71



TABLE 10

Lift and Pitching-Moment Derivatives for Rectangular Wing (A = 4, M = 0) with Oscillating Part-Span
Controls.

(a) Constant control span m_ = 0°45

B I = 5_“ N = 37““ N = 4

"% 015 0° 4334 O 4453 Qe 4468

025 0° 5488 O 5534 0+ 5533
o 35+ 0+ 6291 0°6308 0°6299
O 35 06276 0°6296 || 06286

m. | 015 0:0260 || 0-0276 || 0c0232

o025 || 0-0059 || oe007 I 0-0074
0°35 ||-0°0234 || -0°0221 || -0°0229
035" || -0- 0233 || -0° 0220 || -0-0228

-7z | 0245 [|-0-1118 || -01126 |l -0-1129

0°25 ||-0-0756 || -0-0751 || -0°0742
0°35 | -0°0120 || -0°0104 || -0- 0090
0-35% |t -0°0118 || -0°0102 || -0°0088

-mz | 0-15 || 00729 0 0630 ﬁ 00631

0-25 || 0-0887 || 0-083. || 0-0836
035 || 0-0964 || 0-0965 || ©°0965
035 || o-0962 || 0-0963 | 0-0963

* yith spanwise factors ¥ in place of 0

1v 1v

(b) Constant control chord E = 0°25

n = 0 T]a = Q° 25 T)a = 045 'na = O°65 “l]a = 0'85

=5 121600 0° 8181 025534 0° 3066 0°0963
-mg -0° 0040 0+ 0032 00074 0= 0086 0° 0049
-z& -0-2045 | -0°1289 | -0°0751 -0°0328 |-0-0067

—mé 0-1782 Os 1244 0° 0834 0° 0460 0° 0146
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TABLE 11

Hinge-Moment Derivatives for Rectangular Wing (A =4, M = 0) with Various Oscillating Controls.

(a) Stiffness derivative

-hE by direct flow -qg by reverse flow

N=2 N=3 N=1+ N=2 N=3 N=l|..

0 |0-051] 003926 0 4014 0 4067 0* 3745 0° 3992 O« 404
010 || ©- 3848 0° 3918 0+ 3954 03717 0+ 3908 O+ 3941
015 || 0+3776 0+ 3830 0+ 3853 II 0° 3691 0- 3826 0 3833
0+ 20 || 03709 0 3752 0+ 3763 Or 3666 0 3748 0° 4080
025 || 03647 0° 3681 0° 3681 O- 3643 03673 0°3713
035 || 03544 0° 3566 0° 3547 C* 3604 0 34,68 0 3570
050 || O 3445 0+ 3455 0° 3405 0 3572 0° 3479 0° 3451

O+45 | 015 || 03031 O 3174 0+ 3223 0+2895 0+ 3186 0° 3176
025 || 0+2762 0-2812 0+2813 0+2755 0- 2836 0+ 2904
035 || 0+2519 0-2515 O 2481 0+ 2616 O 2442 0+ 2522

C |0-25 0- 3681
025|025 03133
Oe45 |10+ 25 0-2812
065 | 0° 25 0+ 2268
0-85 | 0°25 O+ 1343

(b) Damping derivative

_hé by direct flow -qé by reverse flow

N=2 N=23 N =4 N=2 N=3 N = 4

O {005 ]| 0-0314 00348 0+0379 0+0299 00342 0-0378
010 || 0-0638 Q0724 0+ 0801 0°0612 00715 0-0799
O+15 1} 00970 01119 01237 00935 0+1108 0-1235
020 || 0+1309 01524 01670 0- 1268 01511 01667
025 |l 0°1655 01932 Q2088 01610 01918 0 2085
C*35 |} O-2357 0+ 2731 0+ 2868 O+ 2311 0+2718 0- 2862
050 || O- 3422 0 3840 0+ 3902 0+ 3383 0- 3828 0- 3891

solution with slopes
025 || 0+1655 0+ 2097 02176

0° 35 || 0+2500 0+ 2878 0° 2916

O | 0«15 || 0°0742 0+ 1200 01359 a
in place of T3,

0451015 || 0-0929 O 1124 01252 0+ 0870 O 110L. O+ 124,
0e25 [] 01540 0 1864 0+ 2030 01465 0+ 1844 0+ 2023
035 1| 0°2140 0+2550 0+ 2696 0+ 2060 02535 0+ 2690

O 451015} 00773 0+1201 0-1376 LER solution with slopes
025 | 0-1546 | 0-2018 0-2125 .
0-351| 0-2247 0.2691 02757 T1p W1v in place of cﬁp()1v
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TABLE 12

Convergence of —h, and — h; with Respect to Chordwise Parameters for Rectangular Wing
(A = 4, M = 0) with Full-Span Control.

e |t be hg

N=2 N=3 =4 | N=2 N=23 N =4

0:05 | 2 03926 | 0°391% | 0°3990 || 0-0314 | 0-0340 | 0°0372
3 0= 4014 00 4044 00348 0°0376

L4 0° 4,067 00379

oo10l 2 I o388 | 03851 | 0-3914 | 0-0638 | 0-0711 | 0-0789
3 0°3913 | 0°3951 | 00724 | 0°0797

4 0° 3954 | 0° 0801

0:15 | 2 0-3776 | 0°3791 | 0-3838 || 0r0970 | 01103 | 0-1222
3 03830 | 03864 | 01119 | 0°1233

L 0° 3853 0° 1237

0:20 | 2 03709 | 023735 | 03770 | 0°1309 | 0-1506 | 04652
3 O 3752 0° 3783 | 01524 00 1666

4 00 3763 0° 1670

025 | 2 03647 | 003681 | o-3708 Il 0-1655 | 0-1913 | o-2069
3 0-3631 | 0-3708 | 0°1932 | 042085

L 0° 3681 Q- 2088

0035 ) 2 || o-35u | o-3588 | 0-3602 || 0-2357 | o-271n | 0-2849
3 03566 | 003581 | 0-2731 | 0-2866

L 0 3547 0° 2868

0050 ] 2 Il o345 | 0o3u90 | 03496 || o-3u22 | o0-3828 | 0-3888
3 0° 3455 0° 34,56 0O° 3840 0° 3902

4 0e 3405 0° 3902

¥ N' ¢« N is the number of chordwise terms in the equivalent slopes.

74




TABLE 13

Steady Forces and Local Centres of Pressure on Untapered Swept Wing (A = 4, M = ()
with Deflected Controls (m = 15,9 = 2N).

(a) Lift end pitohing moment

5 |n % g3

N=2 N=3 N=4& N=2 N=3 N=4
0+15| 0 027063 | 07066 | 07085 || 0-7192 | 07214 | o724
0:25]| 0 0+8961 08974 08986 0+8649 0:8675 0+8691
03510 1+ 0409 1+0430 120436 0+9518 09543 0+ 9550

Oe15 | Oe 45 002914 02929 0-2937 0-1,280 004295 0°4306 |
025 | O*45 0 3720 0+ 3730 0+ 3736 05186 0° 5200 0° 5207
0+35] 045 044348 O+ 4352 0+ 4355 045751 0°5763 05766

2510 08986 0°8691
025 0+5792 0° 694
045 0+ 3736 0+ 5207
0+65 0+1966 03157
085 000578 01065
0-25% 0 0+9330 0-8862
0-25 0+ 5844 06965
045 005758 05217
065 0+1973 Q* 3160
0485 040578 0+ 1064

*
Rounding from equation (6) is used in place of equation (5).

(b) Values of X,

D
IL E= 015,10 =0 B = 035, n_ = 045
Rounding Equation (5) Eqn.(6) Bquation (5)
n Na2 N=3 N=y N =4 N=2 N=3 N=4
o* 0+7156 006640 | 06723 | 006351 | 04701 | 04593 | oek620

0+ 1951 0v5789 05796 | 05792 | 05654 |l 04300 | o-ni27 | o-4076
03827 |} 0+5278 005268 | 05277 | 045206 || 05226 | ©-5086 | O+540%
0+5556 || 005138 Q5160 | 005158 | 05098 || 05436 | 0-5482 | 05485
0+ 7074 0+5035 O+ 5054 05055 Q5013 04913 Ce 4941 04947
0:8315 || 024968 05069 | 05060 | 05020 || o+4679 | 04708 | 0+4745
09239 0+ 4874 0+ 5099 0+ 5110 05074 || O+4458 O 1495 Os 4469
0-9808 || o-4802 05217 | 0+5233 | 045196 f| 0-4343 | o0en381 | 0.4254

* Referred to rounded leading edge. Referred to apex, xo at n=0

would be reapectively 00650 and 01301 larger with rounding from
equations (5) and (6).
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TABLE 14

Hinge Moment on Untapered Swept Wing (A = 4, M = 0) with Deflected Controls.

(a) sffect of ¥ on —hg (m =15, q = 2)

Outboard JSontrols Inboard Controls
E
"y =2 K=3 No=4 np N=2 N=3 SN
0151 O 0r 2851 0 2384 002911 0°25 0°2813 Qe 2932 O» 3032
1 0025 0+ 2517 0+ 2550 Q- 2558 O* 45 0+ 2850 Q- 2895 02950
0 L5 00 2393 O 2456 0° 2490 0+ 65 00 2951 0+ 2988 0+ 3024
Cr 65 Q* 2061 0+2928 0-2133 0-85 Q2942 02974 Qe 3010
035 01377 021538 01583 4+00 0- 2851 0- 2884 0° 2911
1 02510 0+ 2817 0 2811 0- 2857 025 0+ 2700 0+ 2607 0 2884
325 Q2397 02401 0+ 2399 045 Q- 2820 Q- 2880 0* 2520
O 4b 02215 0- 2245 0+ 2262 0-65 02934 Q02962 0+ 2986
065 01843 01851 G- 1641 0+ 85 0r 2930 0° 2954 0° 2976
(S 01177 0+1201 01187 1+00 02817 Q- 2341 02357
035§ O Q0° 2799 02816 0 2823 025 0+ 2597 Or 2692 02741
0025 Q- 2296 Q- 2283 02275 045 0- 2799 0 2863 0+ 2390
U 45 Qe 206/, 0+ 2059 0+ 2072 Q* 65 Q2529 0+ 2550 0 2664
i e85 0+ 1654 01623 0- 1604 0285 00 2934 0° 2949 Q+2962
035 003993 00940 0° 0392 100 0+ 2799 0°2816 02823
ve25*%)| O 0+ 2355 0 45 022914
! O hb 002263 1-00 0+ 2855
|

*

Roundin:, from cquation (6) is used in place of equation (5).

(v) EiTect of rounding on spanwise distribution {m =15, N=1L,, g=8)

r o
Values of -h.p (E = 0v25)
Rounding Squetion (5) Equation {(6)
M Mg = O n, = Qe 45 Np= Q45 N, = 0 Im= 045 Mp= 045
0 O 4663 04483 | O~ 4392 O L4224
014951 0 3204 0°3036 | 0° 3241 0 3069
0+ 3827 0° 2999 02103 { 0° 3048 0° 2150
0° 4,500 017783 0-1228 0+ 1779 0-1251
0+ 5556 0°298L | 02743 0-2983 0 2744
0+ 7071 02750 | 0-2507 0- 2772 0~ 2508
0°8315 022399 | 0+2360 0+2393 0+ 2360
0°9239 0-1603 | 0-1538 0° 1613 071538
0+ 9308 00639 | 006k 00634 | 0-0644
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TABLE 15

Spanwise Loading on Untapered Swept Wing (A = 4, M = 0) with Deflected Controls
(m=15,N=4,q = 8).

(a) Values of y with rounding from equation (5)

118

BE=025|E=025|8=025]E =025 |E = 025
n
n, = 0 n,= 0+ 25 M= 0* 45 n,= 0°65 n,= 085
0 01950 00319 0:0124 | 00039 0+ 0010
01951 0+ 2296 0+ 0608 0°0179 0+ 0052 0+ 0013
O+ 3827 0* 24,81 01693 00 0422 0+ 0096 00019
0+ 5556 02535 0+ 2040 O° 1464 0+ 0227 0* 0034

0 7071 0- 2459 0+ 2097 01767 01121 0+ 0084
0°8315 O 2214 0+ 1963 01727 0+ 1381 00353
0+9239 0+1723 0+1557 0+ 1418 O+ 1204 0-0798
0°9808 00957 00877 0+ 0805 0+ 0708 0+ 0531

E = O*15%|E = 0*15 |E = 015 |E = 0°35 |E = 0* 35

n_ =0 na=0 na=0'l+5 n. =0 na=0'45

0 0+ 1506 0+ 1486 0° 0090 0+ 2331 0+ 0156
0* 1951 0+ 1788 01788 00131 0+ 2695 0° 0225
0~ 3827 0- 1945 0*1950 00289 0» 2891 0+ 0550
0* 5556 0°1993 0+ 1998 01142 0° 2945 O 1714
O+ 7071 0+ 1947 01947 01404 | or2842 0+ 2037
08315 01762 01770 01383 0+ 2533 0* 1971
0°9239 01376 O 1414 01176 0+ 1930 0* 1574
0+ 9808 h 0°0764 | 0-0819 0r 0697 01042 0+ 0866

*
This solution for N = 2 shows small effect of N over most of the span,

(b) Values of y with rounding from equation (6)

E=015|E =015 |E = 025 |E = 0*25 | E = 0*35 |E = 0*35

n L] — — » — — L ]
n, =0 na=045 n, =0 na—O#B 'na—-O ng= 045
Q 0-1762 0°0105 0* 2265 0° 0143 0+ 2663 0°0180

0° 1951 0+ 1901 0* 0137 0+ 2425 00187 0+ 2832 0» 0236
0+ 3827 O+ 2008 0r 0292 0+ 2550 0+ 0L27 0+ 2966 0+ 0555
05556 0+ 2042 0* 1145 O+ 2586 00 14,67 02998 0°1718
0+ 7071 Q1977 Qe 1406 0+ 2495 0+1770 0O- 2881 O° 2040
08315 01793 O* 1384 O° 2240 0+1728 O+ 2561 0°1973
09239 0+ 1429 01176 0+ 1740 0 1419 0+ 1948 01575
0+ 9808 0+ 0826 0+ 0698 0 0966 0° 0805 0° 1051 0+ 0867

77



TABLE 16

Pitching Derivatives (x, = 0-5¢,) for Tapered Swept Wing (A = 2, M = 0:7806).

(a) Lift and pitching moment (m = 15, g = 6)

By direct flow By reverse flow

N =2 N =3 N =4 N =2 N=3 N = 4

~zg || 1°273h | 1°2750 | 1°2760 | 102726 | 1e2Thk | 1°2746
-mg || ©°3488 | 0°3437 | 003436 || 003504 | 0°3498 | 0-3502
~zy || 1°2705 | 1°2831 | 1-2854 || 1.2618 | 1°2800 | 12321
-mg || 07485 | 0°7676 | 0°7695 || 07507 | 0-7670 | 07636

(b) Hinge moment by direct flow (m = 15)

Rounding Equation (5) Equation (6
I N =3 N =3 N=2 N =23 N =i
U in
g=1 q=6 q=56 qg=5 Q=6
~hg o* 0°1577 | 021719 || 01847 | 0°1679 | 01666
) - - Oe4746 | 0°1579 | 0° 156l
0025 01224 | 0°1295 || 01514 01284 | 0-1248
0° 50 000869 | 0°0883 || 021161 0°0885 | 0°0869
0°75 0°0337 | 0°0286 || 0°0451 0°0289 | 0°0363
-hy o 0°6973 | 07256 || O°6401 Q*7103 | 0°7209
o) - - 06075 | 0°6721 0° 68414
0= 25 O° 5548 005620 QO+ 5268 0° 5526 0° 5503
0 50 04163 | 0° 4161 004119 | 004120 | 0410k
0075 002552 | 002497 || 0°2540 | 0°24,88 | 0°2530

*
Calculations with actual straight hinge line.
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TABLE 17

Stiffness Derivatives for Tapered Swept Wing (A = 2, M = 0-7806) with Symmetrical Oscillating
Controls of Different Span.

(a) Direct-flow solutions (m = 15)

Rounding Equation (5) Equation (6) Ref. 8
N=3 N=3 N=2 N=3 N =4 m = 20
k|
& Q=1 q=6 q=6 a=6 | q=6 {In=4
% o* 09§55 0 9184 - g' gl;?g - -
0 - - - . - -
Q0 25 Q¢ 5844 0+ 5709 - 0+ 5818 - -
050 O+ 3031 02971 i 03013 0*2990 | O- 2984 003017
075 0 1001 Q+ 0983 - 00991 - -
—qg o% 0° 5951 O~ 5868 - 0*5919 - -
0 - - - 0+5936 - -
025 O=4223 0° 4140 - 0+ 4178 - -
0+ 50 0+ 2502 O 2147 0 2440 O 2447 |[0° 2438 0 2,59
075 0+ 0936 00916 - 0+ 0923 - -
—qg O* 0~ 4764 04831 - 0+ 4807 - -
0 - - - O 4648 - -
025 03593 0+ 3549 - 0+ 3553 - -
00 50 Qe 3007 0° 296), 00 2531 0°2965 [0- 3034 0+ 3627
075 0+ 2116 Q0+ 2089 - 0+ 2091 - -
(v) Reverse-flow solutions (m = 15)
Rounding eqe.;;:ion Equation (6)
N=3 N=2 N=3 N=4
Mg
q = 1 q = 6 q = 6 q = 6
-ZE o* 0* 9269 - - -
[¢] - 009140 09346 | 09372
025 0 5740 05757 0+ 5807 | 05815
Or 50 0= 2950 0 2981 0+ 2985 Q- 2981,
075 00977 0r 0988 00990 | 0-0988
-1 o* 0 5805 - - -
0 - 0+ 5570 05929 | 05948
Q25 04102 0- 3988 O° 4166 | 0°4173
Qe 50 0= 24,08 Q2370 Q0 24,0 | O 2441
075 0+ 0910 0= 0903 0*Q922 | 0-0921
- | o - o257 [ -
Q25 - 0- 3268 -
050 0252} 02742 | 0-3318
075 - 00 1960 -

*
Calculations with actual straight hinge line.
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TABLE 18

Damping Derivatives for Tapered Swept Wing (A = 2, M = 0-7806) with Symmetrical Oscillating
Controls of Different Span.

(a) Direct~flow solutions (m = 15)

Rounding Equation (5) Equation (6) Ref. 8
N=3 N=23 N=2 N=3 N=4& n= 20
Ma
qg=1 q==6 qg==6 qg=6 qg=6 N= 4
—ZE‘ o* ~0*0830 -0+ 0519 - ~0* 0794 - -
0 - - - -0-0921 - -
0= 25 ~0°0912 | -0+Q767 - ~0° 0306 - -
0+ 50 -0-0580 | -0°0520 || 00544 | -0°0568 | -0°0565 || -0°0551
075 -0¢0205 | -0-0188 - -0 0195 - -
—mé O* 01096 O 1114 - 0+ 1087 - -
0 - - - 0+ 1017 - -
0+ 25 0° 0,91 0+ 0480 - [ IYWININ - -
0°50 00171 0+ 0166 00183 00162 000162 00192
0°75 0° 0032 00032 - 0°0035 - -
—hé o* 0O- 3890 Q° 3945 - Oe 3441 - -
0 - - - 0* 3216 - -
025 Qe 2602 0 2543 - O 2222 - -
02 50 02113 0° 2058 0° 1216 001769 0-1987 01973
075 01399 0° 1362 - 01214 - -

(b) Reverse~flow solutions {m = 15)

Rounding eqé‘;.ion Equation (6)
N=23 N=2 N=23 N=54L
Mg
g =1 g=6 q=6 q=6
-z | o 00878 - - -
0] - ~0°0969 -0+ 0952 =0=0949

025 || -0r0882 J-0-0875 } -0-0894 | ~0°0911
050 || ~0°0551 ||-0°0561 | ~0+0560 | -0 0564
075 || ~0-0191 {[-0-0z02 | ~0°0194 |-0-0193

-mg | O° 0¢ 1071 - - -

- 0° 0564 0°0990 020995
0025 000493 || 0r0249 | o-0u61 | oo0y52
0°50 0-0178 || cc0072 | 00162 | 0-0160
075 00038 || 0-0007 | ©°003% | ©0°0034

B | O - 0 3146 -

0°25 - 0- 2156 -
0°50 01043 | 071695 | 0°2045

075 - 0- 1154 -

'Calculations with actual straight hinge line.
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Rolling and Hinge Moments for Tapered Swept Wing (A = 2, M = 0-7806) with Antisymmetrical

TABLE 19

and Symmetrical Controls.

(a) Rolling-moment derivatives (m = 15, q = 6)
Antisymmetrical Symmetrical]l Ratio
n
a N =2 N=23 N =4 N=23 N=3
“: |o - - - 0° 2070 -
or | 9725 - 0- 1181 - 0+ 1505 0765
0501} 00786 0+ 0805 0+ 0305 0+ 0921 0874
-bg 075 - 0+ 0335 - 0+ 0362 0926
._&é 0] [ o - "0'0262
on 025 - 0+ 0243 - =0 0145
050} 00132 00132 0+ 0131 -0+ 0061
-qé 075 - Q0042 - -0+ 0016

*
See equations (37) and (120) ; the rolling moment on a half-model
with reflection-plane symmetry is termed 'bending' moment and the

derivatives -&g and -4: are replaced by —qg and —qé .
(b) Hinge-moment derivatives (m = 15, q =
Anti- | Symmetricall]l Ratio
symmetrical
& N =3 N=3 N=3
’hg 0 - 0+ 4,648 -
0+ 25 Q+ 3043 03553 0-857
0-50 O+ 2864 0+ 2965 0+ 966
075 0= 2079 0+ 2091 0+ 994
—hé 0 - 0e 3246 -
025 Qe 2181 0+ 2222 0-582
0+ 50 0+ 1786 0+ 1769 1+ 010
075 Q0-1219 01214 1+ 004
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TABLE 20

Pitching Derivatives (xo, = 0-5c,) for Cropped Delta Wing (A = 1-3).

(a) Lift and pitching moment (M = 0°7454)

m,N,q| 15,3,1 15,2,6 15,3,6 15,446
=z 122192 122172 122168 122173
~mg 01180 021170 0°1137 01140
-z 122252 122136 10 2246 102247
l —mé | Q-5722 0° 5534 0+ 5696 0° 5698
(b) Lift and pitching moment (m = 15, N= 3, g = 6)
M=20 1 M = O°5528‘I M = 07454 | M = 0°8660
~2g 121055 1+1595 1-2168 102767
-y 0° 0859 0° 0985 001137 0°1316
‘Zé 1°1313 10 1764 1e 2216 1 2776
-mg O 4104 0° 4793 0° 5696 0° 6936
(¢) Hinge moments (m =15, N=3, g=6)
n, M=0 M = 05528 | M = 0°7450 | b = 0°8660
-hy 0 01032 0°1057 0°1078 0° 1092
0+ 25 0°1100 04107 01101 0+ 4077
O° 50 0° 117k 0°1152 01106 0° 1026
075 0° 1186 Q1122 Q- 1025 0° 0886
~hg | 0 0 3822 0% 4y 5 025309 076557
025 0+ 3605 0= 4189 0+ 5003 026182
0° 50 Q- 3272 O- 3785 0 4500 0° 5536
075 Qe 2650 O° 3070 0 3600 0° 4,367
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TABLE 21

Stiffness Derivatives for Cropped Delta Wing (A = 1-8) with Oscillating Controls of Different Span.

(a) Constant Mach number M = O¢7454
N=23 N=2 N=3% N=L4L N = 4*
Na
q=1 q = 6 q= 6 g=6 q=6
_ZE 0 0+ 9286 0+ 9083 09242 09237 O 9244
025 - - Q- 6418 - -
050 023763 Q- 3758 0+ 3732 0 3719 0- 3727
o75f - = | o109 - -
~I 0 0° 4677 04319 0+ L4643 0° 4633 0+ 4639
025 - - O 3272 - -
O 50 O-1947 O* 1947 0+1934 Q21914 0+ 1922
O+75 - - 00743 - -
"hE 0 0° 4056 0* 3696 0+ 4066 00 4052 O+ 3982
025 - - 03129 - -
O 50 0-2259 0+ 2346 0+ 2291 0° 2099 0+ 2196
075 - - 0° 1111 - -

*

(b) Solutions N =3, q =6

In this solution N!' = 3 in place of the standard N!' = N,

n M=0Q|[M= O 5528 M= 07454 1M = O 8660
--zE 0 0- 7824 0* 8462 09242 1+0221
0251 OebLL7 0+ 5884 06418 O+ 7094
050 || ©O-3186 O 3433 03732 04107
O‘75h 01219 01305 O 1409 0+ 1538
-qa 0 0 3560 0 4034 Q° 4643 Oe Sid,
025 || 0O-2532 0° 2856 Oe 3272 O 3825
050} O-1524 0+ 1703 O° 1934 0 2242
0751 00603 O 0664 O O743 0+ 0847
--hE 0 Or 3120 Or 3528 0° 1,066 0+ 4803
0+25| O-2499 02773 03129 0* 3615
0*50{] 0+1962 02109 0~ 2291 02531
O‘75l 0+1100 01107 01111 O 1114

83



TABLE 22

Damping Derivatives for Cropped Delta Wing (A = 1-8) with Oscillating Controls of Different Span.

(a) Constant Mach number M = Q=745L

N=3 N=2 N=3 N = 4 N = 4%
na
qg=1 _q_=6 q=6 q=6 q_=6
-Zé 0 -0+ 0470 -0°0312 ~0° 0463 -0° 0459 - QL 55
025 - - -0°0266 - -
0° 50 {] -0= 0085 ~-0» Q087 ~-0° 0093 -0+ 0081 -0+ 0078
075 - - +0° 0005 - -
-mé 0 0° 1356 01255 01329 0° 1330 0+ 1321
0-25 - - 0° Q946 - -
Q=501 0°0594 00 0616 00574 0°0575 0~ 0581
075 - - Q- 0234 - -
—hZ—:; 0 0 3058 O- 2445 00 3024 Q- 3383 Qe 3405
0» 25 . . 0° 2579 - -
050 || ©-2267 0° 1653 0° 2236 0- 2353 0° 24,26
075 - - 021599 - -

%
In this solution N' = 3 in place of the standard N' = N.

(b) Solutions N =3, g=6

T‘.a M=0 M= 0°5528 | M = O° 74541 M = Oe 8660
-z 0 0° 1191 0° 0549 -0° 0463 -0° 2115
0°25 i 00844 0° Ol4 4 -0° 0266 -0° 1380
0°50 [} 020516 0° 0282 -0° 0093 ~00 0714
0°75 | 0°0215 0° 0135 +0° 0005 ~0° 0214
-% C 01139 O° 1245 0r 1329 01346
0°25 | 0° 0806 0°0880 Qe 0946 O+ 0984
0050 || 0°0493 0° 0536 00 0574 O° 0600
0°75 || 0°C204 0° 0220 Qe 0234 0° 0243
"hé 0 01957 002362 O° 3024 00 1,328
ce25 |l 0-1733 0 2059 00 2579 00 3576
050 {| 0°1597 Qe 1854 Q0 2236 0° 2903
075 | 0°1275 Qe 4447 Q° 1599 0° 4840
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{a) Wing plantorm and control surtace

z
) Control rotation
YgsYss
H
O : 4 =X
[
=3 Xl -—i

m(N) = (5(3)

1
Xou= Xy, + 2 cv(l—-cos¢p)

Yy =80,

= sin (L), y= =
n, =sin (LX), v=—1(17

= =(2pT =
| AR % =(28Z) . p= 103
! Extent of ;
=-| rounding =]

F1G. 1. Definition of symbols relating to wing geometry.

(a) For steady wing forces

0 0-2 04 X 06 0-8 1-0

{b) For unsteady hinge moments

_0.2 //

-0-3
0 02 04 X 0-6 0-8 1-0

F1G. 2. Smooth chordwise equivalent slopes to represent
two-dimensional control deflection (£ = 0-25).
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Rectangular wing

A=4 ,M=0, 54=0,N=4

0-2 -
(a) Lift damping
,l
————— Exact incidence /d
Y
. ‘4
With alpandazp //
0~
1
! y
—z, |\ ! J
£\ ! p
r
| y
!
i ,,/
- 02 // !
] A7
:\ s 7
| 7""/
P
L
-0-4
0 0l 0-2 E 0-3 0-4 0-5
0-6
{b) Hinge moment stiffness
————— With Ulpas for lift
With Tip instead
0-5 //— \\
~
/ \\
/
-h
¢ J AN
N
/ N
/ ~
0-4 T\ \\\
; \\ \\\ —_——
\
0-3
0 0 0-2 E 03 0-4 05

FiG. 3. Importance of chordwise equivalent slopes

over a range of

control size.

1-2
{a) Discontinuity
in incidence r "“——9'—"6"‘9“0'
x=0, (7) :
0-8 T
|
]
v :
0-4 l
!
x i
l
)
S T e
-0-4
0 0-2 04 n, 06 0-8 1-0
0-6
{b) Discontinuity
in gradient A
x=0, (g) 4
0-4 2 /5
——— —— Exact incidence e
o Slopes with m=15 A
2v X Slopes with m=7 e
0-2 v o
4
Ve
rd
v
7
0% ———~- Qe -
—-0-2
0 0-2 0-6 0-8 10

0-4 1y

FiG. 4. Smooth spanwise equivalent slopes to represent

symmetrical part-span control deflection (y, = 0-5).
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{a) Steady lift
—_— ocaorlp(E) (n>1;q_) ﬁ
olp(Ea) treated by Fig.4a L A

(p—n4) o:'(no) by Fig.4b E=(7-67)
Smooth residual & ~(D-@ | 1a=0-5

!
With exact

NOXORS

l/spanwise slopes
TR Equivalent incidence (o}  (N=3,P=!
1PV | x=0-188
]
(S . -2
]
L->< 4
\L\E.
0
0 0-2 0-4 7 0-6 0-8 1-0 1-0

(b) Spanwise loading

0-25

ﬂfb\
0.20 E=Irad.

, . § =2rad
o With ¢p and Q |, /

/ 05 5
Q
4_—3-—"/

0
. . . ) 0-2
° 0-2 0:4 4, 06 0-8 -0 0 0-2 04 5 06 0-8 1-0

With o, and§,, | %" 0‘35/ Qy y i

0-05

F1G. 5. Importance of spanwise equivalent FiGc. 6. Procedure for obtaining the spanwise distribution

slopes for part-span controls. of smooth equivalent incidence.
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0-35

0-30

0-20

|
hy= —-'——J. h. dp
£ 1-m ng L
LRonges for, integration L

s = I

! Range for interpolation |

' i

/ AN
TPy
o Solution \
with m=15 / \!
©
Interpolated /
- i
value at g Tq I'
1
]
/
!
/
o
/
7
/
/
/
/
7/
’/
$=
| i 1
0 0-2 0.4 n 0-6 0-8

Rectangular wing A=4,

M=0, E=0'25, ”°=°45 » N=4

1-0

FiG. 7. Procedure for spanwise integration of hinge moment.
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