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Summary.

Equations have been derived for the velocities induced in an incompressible flow by distributions
of infinite source and vortex lines representing wings of infinite span and constant chord having both
sweep and dihedral. Particular attention is paid to the centre section where the dihedral effects are large.

The equations showed that such a source distribution does not represent a wing with symmetrical
sections, and that such a vortex distribution does not represent a thin wing. It is, therefore, not possible
to separate the effects of wing thickness and wing load distribution, even when linear-theory assumptions
are retained. .

This work was done before the widespread use of electronic computers to calculate wing characteristics.
It is published now to illustrate the complex nature of the equations for the velocities induced by non-
planar singularity distributions.

*Replaces RAE Tech Report 70077—A.R.C. 32 389.
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1. Introduction..

Some twenty years ago, simple approximate methods were developed for calculating the pressure
distribution and loading on plane swept wings in incompressible flow. In these methods the velocity
distribution on such a wing was based on the velocities induced by distributions of parallel source and
vortex lines, of infinite span and constant strength spanwise, kinked at the centre section to represent the
sweep. Approximate expressions for these induced velocities are contained in Refs. 1 and 2, and the
methods are summarised in Ref. 3.

About the same time, corresponding equations were derived* for the velocities induced by distributions
of infinite singularities of constant spanwise strength which were kinked to represent not only sweep but
dihedral. The distributions are therefore not planar, though each semi-infinite distribution on either side
of the centreline is itself planar. These equations provide the solution to the design problem, in which the
source and vorticity distributions are specified and the wing shape corresponding to these distributions
is obtained by equating the induced velocities to the boundary conditions. As will be seen, the effect of the
dihedral angle makes the application to the inverse problem—the velocity distribution on a given wing
shape—extremely complicated.

Since this work was done, the advent of electronic computers has allowed some relaxation of the
simplifying approximations in the above methods, which have thus to some extent been superseded by
other methods. Nevertheless the results for swept, dihedralled sources and vortices are published now to
illustrate the complex nature of the equations for the velocities induced by non-planar singularity
distributions.

In Section 2, the geometry of the system is defined. In Section 3 the induced velocities at the kink section
due to sources are derived, and in Section 4 those due to vortices. Section 5 contains some brief comments
on certain features of the results.

2. Geometric Definitions.

Fig. 1 shows the axis system and geometric relations used in the derivation of the velocities induced by
single, infinite kinked vortex and source lines having both sweep and dihedral with respect to a reference
plane which contains the free-stream velocity vector V. The origin 0 is at the vertex of the kinked source
or vortex line AOB, and the x-axis is in the free-stream direction, positive downstream. The y-axis is
positive to starboard and the z-axis positive upwards, as shown. The x, z co-ordinates of points on the
source or vortex lines are thus always positive. Two sweep angles, ¢ and ® are defined: ¢ is the angle

between the y-axis and the perpendicular projection of AOB on the xy plane; g—(D is defined as the

angle between AOB and the x-axis. ¢ and @ are positive for sweepback. The dihedral angle, i, is defined
as the angle between the xy plane and the perpendicular projection of the source or vortex line on a
plane x = constant.  is positive for a dihedral angle, negative for anhedral. The angles ®, ¢ and W are
tan ®

tan @

The distance along the source or vortex line is denoted by s, measured from the origin. The analysis
deals primarily with the velocities induced in the xz plane.

In considering induced velocities far away from the plane of symmetry y = 0, it is convenient to work
in terms of z, perpendicular to the plane which contains the source or vortex line and the x-axis, rather
than z; z/ = 0 on the plane. Clearly 2’ is in general, in a different direction on either side of the x-axis,
because of the angle .

connected by the relation cos ¥ =

*Initially by D. E. Hartley, later by the present authors.



3. Velocities Induced by a Distribution of Parallel Infinite Kinked Source Lines.
3.1. Single source line.

Consider the velocity induced at a general point R (x,0, z) in the xy plane by a small element ds at

a point P (|y| tan ¢, , | y| tan ) on one half of a source line kinked at the origin as in Fig. 1.
In vector notation,

s = 0P = (|y|tan @)i+ () j+(|y|tan ) k

R =xi+0)j+@@)k.

Hence,
ds = (tan @ i+j+tan y k) dy (1)
and
r = 0R~0P = PR
therefore

r=(x—|y[tan @)i+(~y)j+(z—|y[tan §) k. 2
If the source line has strength E per unit length, the velocity at R due to the element ds at P is

__Edsr

AV =3 A

which has components along the axes

Ap. = Eds{x—ytan ¢)
bx = 4np3
Ap. = _Edsy L @
O = T
Ap. = Eds(z—ytany)
P = 4ny? )
(OP)? = s> = y? (1 +tan? @ +tan® §) = y* 6°, say, (5)
and
A 2 2
(PRP =1 = (y2+2y—0—+§7t5—>62 ©)
where 4 = —Ea-n—(pg—tm. )



Hence,

Ao, = E(x—ytan (p) dy (®)

x2 422\ 32
4n62<y +2y9+ 2 )

and

, sz=- E(z—ytanlp)dy . 9)
> A x?+z
47 6 <y +2y0+ D )

Infegrating (8) and (9) yields the induced velocities due to the infinite kinked source line

~ 8

(x—ytan ) dy

E
vx(x,O,z) = 7 62

£ 1
—271792 ( A x2+22)3/2
A 2.2 T2

+J A 2 2 3/2 r
2 Xtz
o | V+2y =+

E 1

- tene A x*+z*
(y+29+ D )

A
+(x+§tan<p)f — N7 AT >
{3) 5

Aje

2 A |
E 6 tan ¢ ) x+-0—tan(p 4
+ é —____)

= 262 ://;2_,_22 x2+z2—-A2



A
_E x+—9—tan(p . A _ tang (10)
C2n | x?422-A42 N AR N T
vy (x,0,2) =0
By comparing (8) and (9), and using equation (10)
g |zt tany
0, (%,0,2) = — | - Q~——<1— 4 )- tan ¥ (11)
2n | x*+ 22— 42 x?+ 22 0. /x*+2z2
3.2. Streamwise Distribution of Source Lines.
Consider a distribution of parallel source lines in z’ = 0.
Let g(x) be the source strength per unit area. Then
Eds = gdsdxcos®,
therefore
E=gqdxcos®. (12)
Equation (10) can be rewritten in the form
E [ x0?>—tan ¢ (x tan @ +z tan ) Xtan @ +ztany tan i
1,(x,0,2) = — R R 1+ -
2n 6% (x*+2*— 4% 0. /x*+22 0. /x*+ 72
_E x sec? ty —z tan f tan @ B
~ 2m| x?sec? Y —2x z tan Y tan @ + z% sec? ¢
0 (22 tan @ — x z tan ) (13)
(x?sec’ y—2xztany tan o +z>sec’ @) /52 4,2 |

Replacing E by g(x") dx’' cos @, and x by x — x', integration with respect to x’ gives the velocities induced
by the streamwise distribution of source lines between the leading edge, x’ = 0, and the trailing edge,
x" = 1. Hence
1
g(x’) cos ® (x—x") sec? y —z tan i tan ,
Uy (x’ 0’ Z) = n2 2 v 2 2 dx
2n (x—x"y* sec® Y —2 (x—x')z tan Y tan ¢ + z* sec”

1
B J g(x") cos ® 0[z*tan o —(x—x') z tan ]
2r [(x—x)?sec? y—2(x—x') z tan  tan ¢ + 2% sec? @] /(x — x')* + 2%

=11—12.



The velocities are evaluated at z' = 0. In particular, at the centreline, (the x-axis), z/ = z = 0 and, as
shown in Appendix A, '

1

I, (x,0,0)= jggz—) xd_xx, cos @ (14)

0

= vy cos @
where v, is the streamwise velocity increment induced by a distribution of unswept two-dimensional

source lines. I, (x,0,0) is therefore the same as the streamwise velocity increment induced by a planar
distribution of infinite source lines swept at an angle ®, i.e. the ‘infinite sheared wing’3.

As shown in Appendix B,

_qx) 1+sin @
I,(x,0,0) = o cos@log(l__sinq) . (15)

Hence the total chordwise velocity induced by the distribution of source lines is

1
L q(x) dx'  gq(x) 1+sin®d

U,(x,0,0) = cos @ JZn —— 271:1 s (16)

0

Thus it can be seen that since iy does not appear in equation (16), v, is not affected by dihedral.
Equation (11) can be rewritten in the form

b, (%,0,2) _E zoz_tanzp(xtan(p+ztan¢)(1+xtan(p+ztan.\//) _ tany
0

27 0% (x2 4+ 22— 4% 0. /Xty 22 /212
_E tan ¢ tan y xsec’y—ztangptany .,
T on sec®y x?sec’y—2xztan@tany+z2sec’p
0 tan 6* z

+
sec?y /x?+22 sec’y (x*sec’ Yy—2x ztan @ tan y+z*sec’ §) +

6 [z* sec? @ tan Y +x z tan ¢ (1 —tan? )]
+
sec® Y /x?+ 22 (x? sec? iy — 2x z tan ¢ tan ¥ + 22 sec? o)

(17

the terms being arranged to facilitate integration.

Again replacing E by g(x') dx’ cos @ and x by x — x’, and integrating with respect to x’



v, (x,0,2z) =

. ‘.
cos @ tan ¢ tan ¥ g(x") (x — x' sec? i — z tan ¢ tan ¥r) dx’
21 sec? | (x—x')?sec? Yy —2(x—x') ztan @ tan i +z* sec? @
]

0 tan j[ q(x)dx'
(

- SCCZ ‘/1 ___x/)Z +22

0

q(x') [ 2% sec? @ tan Y +(x — x') z tan @ (1 —tan® )] dx’

q(x)zdx dx' +
sed? w (x—x)? sec® Y —2 (x—x') z tan ¢ tan Y+ z% sec? @

— 18
SCC 'ﬁ \/(x——x’)z +22 (x—x'? sec? Yy —2x X’ z tan @ tan ¥ +z* sec? @) (18)
= I3+I4+15+I6 «
Once again the integrals have to be evaluated in the limit z — 0.
1 S—————
I,(,0,0) = _cos ® tan ¢ tan y lim g(x") (x— x' sec? yy —z tan ¢ tan y) dx’
A 2nsecty 7 z—0 ] (x—x)?sec? ¥y —2(x—x') z tan @ tan Y +z% sec? @
0
d
= —sin ®sin Y L) dx’ ) a as in Appendix A
2 (x
= —sin ® sin Y v, (19)

I, has to be evaluated at a non-zero value of z, because it has a logarithmically infinite value for z = 0

1
_cos® f tan i q(x") dx’

I 0,z) =
4(x; ,Z) 27: Seczw (x_x,)2+22
]
1 .
— —siny j 9x) dx (20)
2n J(x—x)?+2?
1
cos® 0? lim q(x’) z dx’
I5(x,0,0) = —— —=— N ; SR
2 sec’ Yy z—0 | (x—x')* sec® iy —2(x—x') z tan ¢ tan Y + z* sec” @

4]



x—x'=—g

_ _cosd g(x) lim

zd(x—x")
2n cos’®z—0 (x—x)* sec’ Yy —2 (x —x') z tan @ tan Y + z% sec? ¢

x—x'=+g

where ¢ is small compared to 1 but large compared to z. We take the limit z— 0 and £ - 0.

g(x) lim 1

2mcos @ 2 :8 J/sec?  sec? g — tan y tan? @

X

z

—sec? y—=tan ¢ tan i
&

-1

tan
z
p \/ sec? iy sec? ¢ —tan? @ tan? i
s, Z
sec 1//——5 tan ¢ tan y

—tan~!
z
= [sec? i sec® o —tan? ¢ tan? i
&

as given in Ref. 4
q(x) n

S 2mcos® | fsec? yf sec? ¢ —tan? y tan? @

the positive sign being used if z— 0 from the positive side, and vice versa.
From the relation cos ¥ tan ¢ = tan @,

q(x)
I5 (x,0,0) = £5-cosy (1)
1
I, (x,0,0) cos® 6 lim q(x") [2% sec? @ tan Y +(x —x') z tan @ (1 —tan? y)] dx’
6\ Vs = — p— .
2n sec’Yyz-0 | [(x—x)?+2* (x—x? sec? ) —2 X — x' z tan ¢ tan ¥ + z2 sec? @)
0
This is the type considered in Appendix B, with « = sec? ¢ tan and § = tan @ (1—tan? ).
Therefore
cos tan ¢ tan 14sin @
Is(x,0,0) = —— .
6 (60,0) = — q(x)[2w+ 5 log(l_smq)ﬂ
_ ¥ g(x) . . 1+sin @
= g(x)cos iy - + o sin @ sin i log T—sno | (22)



Hence,

1

q(x)dx" . g(x’) dx’

2n (x—x') smlﬁj 2m ,/(x—x')2+zz+
0

1+sin® q(x)
sin ® siny lo (l-sinfl)>+ >

v, (x,0,0) = —-sm(psml//J

L19 v 4x)

5 os Y —— /2 o cos i (23)

For zero dihedral, = 0, and
[, (x,0,0)],_o = +q(2x)

For zero sweep, ® = ¢ = 0, and

, 1 ! dx’
[0,(x,0,0)]]p=p=0 = —smlqu:(;) \/a,__;)_q+%cos¢—%+q(x) cosy .

4, Velocities Induced by a Distribution of Parallel Infinite Kinked Vortex Lines.
4.1. Single Vortex Line.

Using the same notation as for source lines, the velocity at point R (x, 0, z) due to an element of the
vortex line at P (|y|tan @, y,|y|tan ¢) is

I'' ds xr
Av:ZET (24)

where I is the strength per unit length of the vortex line. The components of Av are

~

Tzdy
A=
I' (x tan y —z tan @) dy
Ay, = - L (25)
Ao, = — I'xdy
4z’
Substituting for » from equation (6) and integrating over the complete vortex line,
r zdy
vx(x,O,;)=2n63J , . A XE4Z2N\
o | ¥y +2y et
r | A \
LI S . (26)
2n0 x*+z°—A x2 472

as in the derivation of equation (10).

0,(x,0,2) =0

10



and, by analogy with (26)

5 (6,0,2) = —> L (1— 4 ) @7

_27t0 x2+Zz—A2 x2+zz

4.2. Streamwise Distribution of Vortex Lines.

Consider a distribution of parallel vortex lines in z’ = 0.
Let y(x) be the vortex strength per unit area. Then

I'ds = ydsdxcos®

therefore
I'=ydxcos®. (28)
Equation (26) can be rewritten in the form
1 t t
vx(x’o’z):l"zﬂ __ — 1_l_x an @ +ztany
2n  x* sec® y—2x z tan @ tan ¥ + z* sec® ¢ 0 J/x*+22
T z0 +
"~ 2n| x?sec? Y —2xztan ¢ tan Y + 2% sec? @
x z tan @ +z* tan
; ? d ] 29)
X%+ 2% (x? sec® Y — 2x z tan ¢ tan Y + 22 sec? @)

Replacing I" by y(x") dx’ cos ®@, and x by x— x’, integration with respect to x’ gives the velocities induced
by the streamwise distribution of vortex lines between the leading edge, x" = 0 and the trailing edge,
x =1

1
6 cos ® J‘ y(x) z dx’

2n ) (x—x")sec? Y —2(x—x') z tan ¢ tan ¥ +z* sec? ¢
1]

Dy (X, Oa Z) =

1
cos @ Y(x) [(x—x') z tan ¢ + z* tan ] dx’

2n J Jx—x)+22 x [(x~x)?sec y —2(x—x') z tan ¢ tan ¥ + z> sec? ¢
o]

= I7+Is.

The integrals are to be evaluated at z' = 0 so that at the centreline limiting values as z — 0 are required.
1, is evaluated as for Is, and I as for I,.
Hence, the total chordwise velocity induced by the distribution of vortex lines is

v, (x,0,0) = iz%—) cos O+ y(x) ;tlp— cos @ (30)



where the positive sign is used when z — 0 from the positive side, and vice versa.
Unlike the chordwise velocity increment in the chordal plane induced by the distribution of sources,
the chordwise velocity increment due to the vortex distribution is a function of the dihedral angle .
Equation (27) can be rewritten in the form

'xo 1 ¢
v, (x,0,2) = — i [ ¢]X<1+M)

2n |x?* sec? Yy —2x z tan ¢ tan  + 22 sec? 0. /x> +22
T x8 tan ¢
~ 2n| x*sec’y—2xztangtan y+z7sec’ ¢ goc W /X2 422
x z tan i (2 tan? @ +sec? ) —z% sec? @ tan ¢ 31
2 7, .2 2 cap2ofy 2 canl ' (31)
sec” i /x*+2* x (x* sec® y—2x z tan ¢ tan ¥ + z* sec? )
the terms being arranged to facilitate integration.
Again replacing I" by y(x') dx’ cos ® and x by x— x, integration with respect to x’ gives
1
9 (D ! — 7 d ’
vz(an,Z)= - cos n2 2 ’y(X)(xr X) al 2 2
2n {(x—x")* sec® Yy —2(x—x") z tan @ tan ¥ +z> sec’ ¢
V]
1
tan @ cos @ Yxydx'
nsec’y | Sx—x)+22
o
1
_ cos® P(x') [(x—x') z tan ¥ (2 tan? @ + sec? ) — 2> sec? ¢ tan ] dx’ 1

2 sec? Vx=x) 422 x [(x—x)? sec® Y — 2x—x') z tan ¢ tan Y +z% sec? ¢ (32)

0

= 19+110+111 .

As before, the integrals are evaluated in the chordal plane as z— 0.

1

I (x,0,0) = —cs @ [ lim J : [(x—x") sec? y — z tan ¢ tan ] y(x') dx’

“2msec’ | z—0 ) (x—x')? sec? y—2(x—x') z tan @ tan ¢ + 22 sec” ¥
0

1

lim
+tan ¢ tan 70

zy(x)dx’ }

(x—x')? sec® Y —2 (x —x') z tan ¢ tan ¥ + z% sec? ¢

These limits can be evaluated in the same way as I, and I, and therefore

1

Ocos® [ p(x) dx' _y(x) . .

%ty o (x—x’)+ 2 sin @ sin i (33
)

Ig(x,0,0) = —

the negative sign being used as z -0 from the positive side.
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1,0, like I, can only be evaluated on the aerofoil surface,
I, is of the type considered in Appendix B with o = — sec? ¢ tan @

Hence

cos ©
I;(x,00) = — Tt U

Hence

Gcoscl)

v, (x,0,0) = - w

and =

” V(X){ 2y tan ¢ tan yy —0 log

1

¥(x)
2 (x— x)

tan ¢ cos @

sec® Y

cos @ y(x)

sec?

cos® y(x)

secZ

—s1nd>cos¢j

v()l//
2

(x)

72

2

2

+——cos¢l

2r

For zero dihedral, 4 = 0, and

1

[0, (4,0, 0], o = — j

0

yx)  dx'
2n (x—x")

sin @

1

7(x)

tan y (2 tan? @ +sec? ¥).

dx’ _y(x)

dx’

y(x’)

2n \/‘(x_ xl)Z + ZZ
P .

=2 tany tan @

16 (
wfv(x)

1+sin @
1—sin®

)

dx y(x)
T

dx’

(-

|

——sin ® sin

1+sin®
sin @

)

Px") dx’

2n |\ J(x—x'y+2*

13

4 —_

1+sin®

1

——sin ® sin ¥

sin @ sin ¥

ylx

—gin @

x)

27

}.

cos i log <

1+sin®
1—

sin @

):

(34)

(35)



For zero sweep, ® = ¢ = 0, and

y(x")  dx'
2 (x—x)

1
[v.(x,0,0)]p=p=0 = —cosWJ
)

Far away from the plane of symmetry, y = 0, we have the condition of a sheared wing with dihedral,
having a thin section and a lift distribution represented by a distribution of vorticity. If 2’ is the co-ordinate
perpendicular to this sheared wing

1

i N Y(x)z' dx’
a6, 00,2) = j 2n [(x —x')* + 2" sec’ @]

[

where the local leading edge is assumed to be x’ = 0. In the chordal plane z’ = 0,

1

lim P(x") 2" dx’

Z =0 | 2n [(x—x)*+z'? sec® @]
o

vy (x, 00, 0) =

x—x'=—z

P(x) lim z'sec®d (x—x')
= ———cos®
27 B0 f (x—x")2+z?%sec?> @
x—x'=+e
= iﬁg)c’osd),

the positive sign being used when z' — 0 from the positive side.
Similarly

1

, y= - yx) (e—x")dx’
v (x, o0, 2) = 2n [(x—x')*+2"2 sec’ @]
0

and as 2’ =0

1
p(x)  dx'
v, (x, 00,0) = — JEE ;.

X—X
[¢

For convenience the induced velocities derived in this section are listed in Appendix D.
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5. Discussion.

The use of distributions of infinite source and vortex lines of constant strength along their span to
represent thick, lifting, swept wings in incompressible flow has been studied in detail by, for example,
Kiichemann' and Weber?. This Report has carried the study one stage further to consider the case where
the source (and vortex) distribution on one side of the kink is not coplanar with that on the other side,
i.e. a distribution with dihedral as well as sweep. In the preceding sections the velocities induced by distrib-
utions of such vortices and sources in their own plane(s) have been derived, and are listed in Appendices
C and D. Particular attention has been paid to conditions in the plane of symmetry, that is, the centre
section, where strong dihedral effects can be expected. Far away from the centre section, of course, the
flow field is the same as that induced by a planar distribution.

The outstanding feature of the results in Appendices C and D is that, at the centre section, a distribution
of sources with constant spanwise strength gives rise to a component of downwash, v,, which has the same
direction on both sides of the chordal plane: and a distribution of vortex lines with constant spanwise
strength gives rise to a component of downwash which has opposite signs on either side of the chordal
plane. That is, part of the downwash due to the sources has a characteristic one associates with a vortex
distribution, and part of the downwash due to the vortices has a characteristic one associates with a
source distribution. In addition, the chordwise velocity increment, v,, due to the vortices has a term
proportional to the local vortex strength and with the same sign above and below the chordal plane;
i.e. it is of the form usually associated with a source distribution. Thus the great simplification that linear
theory brings to the study of planar wings, namely the ability to treat thickness and lifting effects separately,
no longer applies when the wing has a dihedral angle.

Consider an unswept wing of infinite span and constant chord, with the same symmetrical section
shape at all spanwise positions. If it is at zero incidence, the velocities induced by this wing can be calculated
in linearised theory by representing the wing by a distribution of infinite source lines in the chordal plane,
the source lines having constant strength spanwise. At any chordwise position, x, the induced velocity

perpendicular to the chordal plane, v,(x), is equal to i‘_]%f), where g(x) is the local source strength. If we
consider an infinite wing which is swept on each side of a particular section—the ‘centre section’—the
induced velocity v, everywhere is still equal to the local source strength (see equation (C.2) with ¥ = 0).
Therefore a wing with a uniform symmetrical section can still be represented by a distribution of source
lines having constant strength spanwise.

If now we consider a distribution of source lines of infinite span which has both sweep and dihedral, the

results in Appendix C show that the above result for plane wings—that the induced velocity perpendicular
to the chordal plane is equal to ig —is now true only at points far away from the centre section. At the

centre section, v, contains a number of terms which have the same sign above and below the chord line
and which are therefore characteristic of the velocity induced by a distribution of vortices. Therefore to
represent a swept, dihedralled wing of uniform symmetrical section at zero incidence, a distribution of
source lines of constant strength is not sufficient. A distribution of vorticity is also needed, to cancel out the
unwanted terms in v,. Since the ‘centre effect’ disappears as y — oo, this distribution of vorticity will not be
infinite spanwise, nor of constant strength. The equations of Appendix D cannot therefore be used to
determine this vortex distribution.

Subsonic wind tunnel tests (unpublished) on a constant chord wing of aspect ratio 5, 45° sweep and 32°
dihedral, with a constant symmetrical aerofoil section, have shown that, at and near the centre section,
there is indeed an appreciable lift force at zero incidence.

The distribution of sources represents a wing which is cambered and twisted at, and near, the centre
section, to conform, within linearised theory, to the geometry implied by equation (C.2). The camber line

of this section is determined by the v, terms other than i% cos . Since v, is the same above and below

the plane of the sources, AC,, the local normal force, is everywhere zero and, in particular there is no lift
on the cambered centre section. The source distribution considered here therefore represents a wing with
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zero lift but this is not a wing with uniform symmetrical section shape.

Consider now a thin, unswept wing without dihedral, of infinite span and constant chord. If it has the
same streamwise camber and the same incidence at all spanwise positions, the velocities induced by this
wing can be calculated in linearised theory by representing the wing by a distribution of infinite vortex
lines in the chordal plane, the vortex lines having constant strength spanwise. At any chordwise position,
x, the induced velocity parallel to the chordal plane or x-axis, (the incidence is assumed to be small), v,, is

y(x)

equal to iT and the induced velocity perpendicular to the chordal plane, v,(x), is given by

J Z;x_) dx —, so that vortex strength can be related to the geometry of the thin wing section. If we
chord i (x—X)

consider a distribution of vortex lines of infinite span which has sweep but no dihedral the velocity, v,,
at the centre section cannot be calculated on the chord line due to the presence of a singularity in an
integral, and v, calculated off the chordline (e.g. on the surface of a wing of finite thickness) is not the same
as at sections far outboard (see equation (D.2) with i = 0). This means that the distribution of constant
strength vortices represents a wing cambered and twisted near the centre section to give the same distribut-
ion of lift, AC (x), at all spanwise positions.

If we now have a distribution of infinite, constant strength vortices having both sweep and dihedral,
this distribution represents a different camber and twist at the centre section compared with the swept,
planar wing (see equation (D.2)). As both v, and v, at the centre section contain terms characteristic of
sources (v, has opposite signs above and below the plane) this distribution of vorticity cannot represent an
infinitely thin wing.

6. Conclusions.

Equations have been presented for the velocities induced in incompressible flow by distributions of
kinked source and vortex lines, having both sweep and dihedral. These have shown that the dihedral
makes it impossible to separate the effects of wing thickness and wing load distribution, even when linear

theory assumptions are retained. To calculate the velocity distribution on a wing of given shape is there-
fore much more complicated than for planar wings.
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LIST OF SYMBOLS

Right handed set of axes, the origin being at the kink of a source line or vortex line.
0X is positive in the downstream direction, 0Y positive to starboard and 0Z
positive upwards. For a chordwise distribution of singularities the unit of length
is the wing chord (assumed constant). (See Fig. 1).

Axes at right angles to 0X, along and perpendicular to the plane of the singularity
distribution, respectively. For integrations far away from the plane of symmetry
the origin is taken at the local leading edge, for convenience.

Co-ordinates with respect to the above axes
Variable of integration
Velocity increments in the x, y, z and z’ directions

Velocity increment in the x-direction induced by a distribution of two-dimensional
singularities

Free-stream velocity

Angle of sweep in the plane of a half-wing (sweepback is positive)
Projected angle of sweep in the plane z = 0 (sweepback is positive)
Projected angle of dihedral on the plane x = 0 (dihedral is positive)

tan @
tan @

1+tan? @ +tan?

x tan ¢ +z tan Y
0

General point in the plane of symmetry
General point on a source or vortex line
Distance between P and R

Distance along a source or vortex line

Source strength per unit length
Vortex strength per unit length
Source strength per unit area

Vortex strength per unit area
Variable of integration

Constants used in evaluating integrals

Variables used in evaluating integrals
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APPENDIX A

Evaluation of 1, (x,0, 0).
(see Section 3.2).

1
cos® lim j q(x") {(x—x") sec® Y —z tan } tan @} dx’

2n z—-0 ] (x—x)?sec? y—2(x—x)z tan Y tan ¢ +z° sec? ¢
1]

I, (x,0,0) =

The integrand has a singularity when z = 0, x = x'. We divide the range of integration into three parts,
0<x'€<x—gx—e<x <x+eg and x+¢ < x' < 1. where 60 but ¢ > > z In the first and third of
these ranges, x # x’, and so no singularity occurs when z is put equal to zero.

In the second range of integration we have

x—x'=—¢g

cos ® lim J q(x) {(x—x)sec? y—ztany tan ¢} d (x —x')
(x

2 z—-0

x—x'=¢g

—x)? sec ty — 2(x—x') z tan Y tan @ + z% sec? @

It is assumed that g(x’) is a continuous function and can be replaced in this range by a mean value, say
q(x). The integral then becomes

cos @ ® lim 1 x-x'=-e
2n 1 z—02

£—0

x—x'=¢

log [ (x—x)? sec® Y —2(x — x') z tan ¥ tan @ +z% sec? @ ]

2
. z z
lim  sec® y+2=tany tan ¢ +— sec’ ¢
€ e

= ___q(x) cos ® z—0log

4n

2
z z
g0 seczx//~2gtantﬁtan(p+;2—sec2(p
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APPENDIX A

=0, since z<<e.

Hence,
x'=x—g x'=1
cos®) lim glxNdx' Hm q(x') dx’
[, (x,0,0) = 2 | e—0 j x—x' tes0 x—x'
0 x'=xte
1
= J ax) dx -cos @.
2n x—X
0
APPENDIX B
Evaluation of I, (x, 0, 0).
(see Section 3.2)
1
0,0) = fcos® lim _ g(x') [z% tan ¢ — (x —x') z tan Y] dx’
2 (0,00 = on z—0J [(x—x)?sec® ty —2(x—x') z tan i tan ¢ + 2> sec’ @] X fx—x)+22
0

Letu = x—x,0 =tan @, f = —tanyy,) X') = fix—u).
Then the integral is

u 1

lim _T— Flx—u) (o 22+ B 2) du -

Ju?+72 (u? sec? Y — 2u z tan  tan @ +z* sec’ ¢

z-0

W=O onlywhen u=2z=0.
u? sec?  — 2u z tan Y tan @ +z% sec® @
= u? (1 +tan? i) —2u z tan  tan @ + z* (1 + tan® @)
= u? 472+ (utany —z tan @)% .

Since all the terms are positive, this expression is zero only when u = z = 0. Therefore the denominator
of the integrand is zero only when u = z = 0. Substituting z = 0 in the integral, the integrand is therefore
zero except when u = 0 (i.e. when X’ = x). Since 0 € x < 1, # = 0 within the range of integration. The
integral may therefore be written

&

lim (xz?+Buz)du
f(x)J
JuZ+ 22 (u? sec® Yy —2u z tan  tan ¢ + 2 sec’ @

g

z—0
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APPENDIX B

where ¢ will -0, but & > > z, and assuming f (x —u) = constant = f(x) in the range of integration.

. t+v .
Substitute u = Ei_l_—l where y, v are roots of the equation

tan’y—tan’p

= 0
tan i tan ¢

E24Ez
1e.

tan ¢
tan ¥

tan
Ly
tan ¢

; tanqot tan
tanyy tang

t+1

V= —

tan ¥
u-+z
t_u—v _ tan ¢
H—u tan ¢

z —u
tan ¥

p—v . z(tan’y+tan’ @)

“= (t+1*  tangtany (1+1)? at.

Studying the behaviour of ¢ in the range of integration:
When

tan i
£—z

tan ¢

tan ¢

tan Y

U = —g,t: —
e+z

an @
an

assuming ¢ and yy > 0

. t
< 0, since z<<8t

when

tan? ¥
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APPENDIX B

when

tan

e+z v .
tan @
tan ¢

tan

u= +e,t=—

&E—Z

tan
tan ¢

< (0 since z<<g

from below, t— co.

from above, t- — co.

tan

tan @ tan ¢
atu= —gto +watu =z
tan ¢ tan ¥

tan ¢

E—2Z
Therefore t increases from ——
e+z

: jumps to —co and increases

. ta
agam to ——————atu = +s&.

The integral becomes

u=-+g

[oc(t+1)+ﬁ(tanq’t tanw):l(tan2¢+tan2(p)dt

tany tang

2
tan<ptan¢\/(t+1)2+(@ﬂt—tan'p) X
tanyy tane / -

Jim 709

(tan(pt tan i

2
2 2 2
any tan<p) sec* Y+ (1+1)° sec’ @

tang tany
—(1+92t t —t——
( )2tany an(p(t‘anl// tango)

u=—g

= e <a+ﬂ::23)t+<a~ﬁzzzz) tan2 v dt
= lim f(x)

tan® tan?
10 wm-e tan<p~/tan2q)+tan2¢\/t2+}—éﬁz—$(t2+92———¢)

tan? ¢
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APPENDIX B

u=+g

t t.
— lim £ tan ¥ (« an;ﬂ+ﬁ a112<p) J' 2 tdt —
20 tan ¢ \/tan? @ +tan? S \/t2+tan2|ﬁ(t2+02tan2¢)
v e tan” @ tan® ¢

u=+e

N tan?y (o tan ¢ — Btan ) J dt
tan® . /tan® ¢ +tan® 2 +tan2 v 2 tan? i
us-e tan? @ tan® ¢

(B.2)

Consider firstly
u=te tdt
f \/t2+—_tan§ v ( t*+6? tanz ‘ﬂ)
u=—¢ tan® ¢ tan® ¢
Y ar
1 s 2
_ —=———————— on substituting T = t*.
2 J VT+A(T+B)
This is of the form
J dx
(x—e)J/ax+b
of which the solution is given in Ref. 4.
Herex=T,a=1,b=Aandc= —B
t 2
aB+b=A-B= anz l//(1—62) < Osince §? > 1.
tan® @
The integral is therefore
-2 - b
tan~! —L‘-l-—ﬁ—_—'_—l+ constant

/—(aB+b) ax+b

—2tang 1
= tan + constant.
tan y . /tan? ¢ +tan? , tan?
tan®
The first part of (B.2) is therefore
t t t 1 -2t
lim f(x)- an iy (o tan y + f ang)_ an ¢ % |tan-
250 tan @ \/tan® @ +tan® y 2 tany . /tan® ¢ +tan? ¥
L
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2 lu=+¢
lim f() ~_octzu;tp+ﬁtazn(,p tan-1 (ztan (pz-uian W) .
20 tan”® @ +tan® ¢ u 4z

U= —¢€

Since z tan @ —u tan  and /u® +z* are physical distances, take the positive square root
ztan ¢ —u tan ¥

lim ctan i+ ftan @ 1 u=te
z-—+0f(x) {_ l:tan /u? 1 22 :|u=_£ }

tan® ¢ + tan® i
B 11m0f(x){~atarzltﬁ+ﬂtanzp} {tan_lztan(p-atanlﬁ_tan_l ztan¢+etan¢}_
——

tan® ¢ +tan’ ¢ NGRS e+

Remembering that ¢ > > z, as z— 0, the limit is

_ o tan Y+ f tan @
=2/ tan? ¢ +tan®

Consider secondly

u=+eg

j tan tan® tan2 W
u=—¢g \/ ( tanZ (P)

where X =1t, and C? > A2.
/X2+A2(X2+C2)

u=—g

u=-+e

From Ref. 4 the solution is therefore

CJX*+A2+X  JC*—A?
log {constant +

X2+ A2-X JC*—4?

1
2C . /C*—A4?

] + t |
Jtan? @ +tan® ¥ t2+tan2 ¥
5 tan® ¢
= tan” ¢ -log< constant 0 ; q
20 tan? i \/tan? @ +tan® Jtan? ¢ +tan? ¥ 2 +tan2 W
L tanZ o J
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The second part of (B.2) is therefore

’— tanlﬂ u=+g
+z -
0 + tang |
tang  /u?+ 272
lim %) o tan @ — f tan o
z—0 20 (tan® @ +tan® ) £ e tan ¥
0 tan @
tang JuFtzt | __,
| i
As before . /u?+z% > 0 and ¢ > > z. Taking the limit as z— 0
( t u=-+g
u+z£§i
I+ ———=—=—sin®
lim 00 atan ¢ —f tan ¥ o Ju?+z?
z—0" "7 20 (tan® ¢ + tan? ) g Ztangb
- taln('Dsin(D
[_ u? 422 e
atan @ —ftany 1+4sin @ 1—sin @

=f(X)[

-

26 (tan? @ +tan® )

o tan @ — f tan

{10

gl—sin(I)— Og1+sin(I>

1+sin®

f

7

=/ 0 (tan® o +tan?yy) ~ 1—sin®’
Therefore
0 cos @ v, otany+ftang  otane-—ftany 1+sin @
I, (x,0,0) = 2 -
20,0 2n 9x) { v tan? @-+tan®y 6 (tan® @ +tan® ) [ —sin ©
g(x) 14 sin @
= log——F—.
2n cos @ log 1—sin®
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APPENDIX C

Summary of Equations of Velocities Induced by Source Distributions
of Infinite Span and Constant Strength Spanwise.

(Seé Section 3.2)
1
q(x") dx'  g(x) 1+sin @
= = = log ———— .
v, (x,O,O)6 cos<I>f o % m cos @ log e ® (C.1)

0

vz (XOO)——51n®s1n¢fq(x) dx wf‘l( x) dx’' *
(x— x')2+z

qx) ¥ q(x) 1+4sin ®
+—2— n/2 s¢+——s1n<1)sma//1 g(m>
ig—(z—@cosw, (C2)

the positive sign being used if z — 0 from the positive side.

1

N dx' C3
vx(x,oo,0)=cosd)ng—x—, €3
2n x—Xx
[
v; (x,00,0) = J_rg_(;_) (C4)

the positive sign being used if z— 0 from the positive side.

*This integral cannot be evaluated in the limit as z — 0. A finite value of z must be chosen.
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APPENDIX D

Summary o, Equations of Velocities Induced by Vortex Distributions
of Infinite Span and Constant Strength Spanwise.

(See Section 4.2)
v, (x,0,0) = ?—(2—) osd)+¥ n% cos @ (D.1)

the positive sign being used if z — 0 from the positive side.

(x) dx 7(x") dx’ *

v,(x,0,0) = —cosx//Jy —————sm(I)cosn//f —
2 Y )

) T X T J(x—x)+z

_¥x) nismd) nlﬁ+y( )COSl/II (___1+sintl)>

2 w2 l1—sin®
iz%c_) sin @ sin (D.2)

the positive sign being used if z — 0 from the negative side.

v, (x, 00,0) = +y(;)cos(l), (D.3)

the positive sign being used if z— 0 from the positive side.

1

v, (%, 00,0) = — J‘V_(_’Q dx’ (D4)

2n x—x'"

0

*This integral cannot be evaluated in the limit as z— 0. A finite value of z must be chosen.
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