R. & M. No. 2574
- (10,643)
AR.C. Technical Report

MINISTRY OF SUPPLY

AERONAUTICAL RESEARCH COUNCIL
REPORTS AND MEMORANDA

Landing of an Aircraft on a
Suspended Sheet

By
J. Tavior, M.A.

Crown Copyright Reserved

LONDON : HER MAJESTY'S STATIONERY OFFICE
1963

TEN SHILLINGS NET




Landing of an Aircraft on a Suspended Sheet
| | 5
J. Tavior, M.A.

COMMUNICATED BY THE PRINCIPAL DIRECTOR OF SCIENTIFIC RESEARCH (AIR),
MINISTRY OF SUPPLY

Reports and Memoranda No. 2574*

June, 1947 B

Summary.—An investigation is made into the characteristics of a freely suspended flexible sheet as a shock
absorber replacing the conventional under-carriage, particular attention being given to the inertia of the sheet.

It is found that when an aircraft is dropped vertically on to the sheet the retarding force is first produced by the
inertia of the sheet itself, and not until later in the descent by the reactions from the side supports of the sheet.
By careful adjustments of the mass and tension of the sheet ‘retardation efficiencies’ exceeding 80 per cent can be
achieved.

The effect of the aircraft having a forward component of velocity increases the contribution of sheet momentum.
For reasonably practical lariding speeds and sheet dimensions, virtually the whole of the momentum of descent is
absorbed by sheet inertia. Under such conditions still higher retardation efficiencies are obtainable and, with a
suitable design of aircraft keel, rebound may be entirely eliminated.

1. Introduction.—The successful landing of an aircraft depends on the vertical component of
its velocity being reduced to zero within a limited vertical distance and without exceeding
specified accelerations. For a given maximum acceleration the travel cannot be less than that
which would occur if the acceleration were kept constant throughout the motion. The
‘retardation efficiency’ of a particular system' is taken as the ratio of the minimum to the actual
travel.

By arranging that the vertical retarding gear is permanently on the ground it is possible to
use methods which are not so restricted by weight and travel as those adopted in an ordinary
undercarriage. The main limitation on ground equipment is that the travel must not be so
large that parts of the aircraft at a distance from the fuselage get damaged.

This report considers the vertical retarding gear in the form of a pre-tensioned flexible sheet.
Walker' has shown that if the sheet had negligible inertia its retardation efficiency would be
low ; and although it would be increased by high initial tensioning it can never exceed 50 per cent.
If the sheet has also to support the weight of the aircraft during the retarding period the
retardation efficiencies are still lower, and the sheet with negligible inertia may be dismissed as
impractical as an aircraft landing device.

If the suspended landing sheet is to be used it is imperative that the inertia forces must make
a major contribution to the retardation. In the present investigation it is found that sheets of
adequate strength have appreciable inertia and forces of the correct order are developed. It is
assumed that the sheet is very flexible and has a high initial tension so that the forces in the
sheet are all tensile and the tension remains constant for all deflections.

* R.A.E. Report Structures 3, received 23rd July, 1947.
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The rate at which momentum is transferred to the sheet varies with the product of the tension
and the mass. By the selection of a tension to give a certain force for a given static deflection
it is possible to adjust the mass to give a required inertia force for a given vertical velocity:.

Immediately the aircraft strikes the sheet it will start to transfer momentum to it. This
will continue until the whole of the strip of sheet in contact with the aircraft is moving. The
subsequent retarding force is produced by the reactions from the side supports. By a judicious
combination of the tension and mass of the sheet the maximum forces in both parts of the motion
can be made the same, and retardation efficiencies exceeding 80 per cent are realised.

With a vertical descent about three-quarters of the energy will have been absorbed in the first
part, in which the inertia forces only are operating. 'When the aircraft has a forward velocity
the inertia forces play an even bigger part and, at practical landing speeds and landing sheet
dimensions, may absorb the whole of the vertical momentum.

2. Use of Inertia for Retardation.—For convenience in the mathematical treatment the landing
surface is assumed to consist of a long flexible sheet suspended along two parallel edges and

heavily pre-tensioned by them. Resistance to a falling body is thus due to deformation of the
sheet and its own inertia.* '

The sheet is assumed to be infinitely flexible so that it can exert forces only by means of
tension. It is assumed further that it is infinitely elastic in stretch so that changes in tension
‘due to any lateral deflections are negligible compared with the initial tension. The initial
tension is in the transverse direction only.

~ Thus the sheet is represented as a series of narrow closely spacevd transverse strips which act
independently.

The sheet is assumed to be so heavily pre-tensioned that its own weight has a negligible effect
on its distortion and that it is virtually flat when at rest.

On being struck by a moving body the sheet will behave initially as though it were infinite in
width, and it is only after any waves set up in it have reached the supporting edges that the
width will affect the motion. These initial forces are entirely due to the rate at which momentum
is transferred to the sheet and depend on the mass of the sheet m 1b/sq ft and the cross tension
T 1b/ft Tun.

Concentrating attention on the forces in a particular strip of sheet, it is assumed firstly that
one point is constrained to move laterally with a constant velocity V ft/sec. Initially the whole
of the strip is flat and stationary, apart from the point of contact which has a velocity V ft/sec.
After a short time part of the strip each side of the moving point will have taken up the same
velocity V, the remainder being still at rest. The rate at which the strip takes up its velocity
will be found from the conditions of equilibrium of the strip. Assume that after a time ¢ sec
a length of strip Ut each side of the point, constrained to move with a velocity ¥, is moving
laterally with velocity V, and the remainder at rest as shown in Fig. 1. :

THICKNESS | TENSION T TENSION T
OF STRIP

STRIP
. STATIONARY

STRIP
STATIONARY

|
STRIP MOVING DOWN |
WITH VELOCITY V

Frc. 1. Lateral displacement of the strip after time ¢ sec. View looking along length of landing sheet.

* This marks the distinction between the suspended sheet under consideration and the alternative scheme for a
carpet laid over elastic supports.
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Taking the rate at which the strip is brought into motion (U ft/sec) to be constant, the moving
strip will form a straight line at an angle ¢ to the stationary part, where tan { = V/U.

The constrained point and adjacent strip have the same constant velocity, so that the forces
at the constrained point will be in static equilibrium. Thus the force which must be applied
to the sheet at the point of contact is 27 sin ¢ per ft run.

The rate of change of momentum produced in the sheet by this force is (2mU/g) . V per ft
run due to the additional mass of 2mU /g per ft run per sec being given a transverse velocity V.

Equating the force to the rate of change of momentum,

0T sin ¢ — om UV
g
V 1
h t = __
where tan ¢ 7

For small values of V' compared with U, ¢ will be small, and

U:\/%. R 1)

- The transverse force at the point of contact (27 sin ¢ )' will be
2\//<Igﬂ> V per ft run . .. . .. .. (2)

It is shown in equation (1) that the velocity of propagation of the wave (U) is independent of
the velocity of the transverse motion. Thus in the more general case of the point of contact
changing its velocity with time the wave will travel at the same speed. At any instant the
forces at the point of contact will be in instantaneous equilibrium, so that the transverse force
will be 27 sin £,

where tan { = V/U,
V' = instantaneous transverse velocity,

and for small V' compared with U the transverse velocity will still be given by equation (2).

Equation (2) can now be applied to find the equations of motion of an aircraft with any shape
of keel under any initial velocity conditions. In general successive approximations will be
~ necessary and the algebra will appear rather involved so that it may be difficult to see the
underlying principles. To illustrate the method the vertical descent of a weightless® aircraft
on to a sheet of infinite width will be considered.

With a vertical descent the normal velocity at any point of contact will be sensibly independent
of the incidence of the aircraft, and the initial retarding force on the aircraft will be given by
equation (2), where V is the velocity of the c.g. As the landing sheet is of infinite width there
can be no vertical forces from the sides and the retarding force will continue to be given by
equation (2) throughout the descent. The velocity of the aircraft will thus continue to be
reduced until the resultant force applied by the sheet balances any other forces on the aircraft
and as there are no other forces the aircraft will, in fact, be brought to rest.

* For the purpose of analysis the weight and inertia are regarded as dlsassomated properties of a falling body.
In practice gravity forces may be balanced by aerodynamic forces.
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Suppose that after the aircraft has penetrated the landing sheet a distance  ft it has a velocity
V it/sec and the length of the aircraft keel in contact is ¢ ft, then the total force on the aircraft,

by equation (2) is
/{ Tm
2c \/ <g—> .V,

and the equation of equilibrium is

o S(Emyy = — Wy 3
c /() SN -
where f = acceleration.
T av . .
Substituting f = V b in equation (3) we get
@ J(Imy_ _ 4V
2Wv(g> B @

If ¢ = constant, V, and hence f, will reduce linearly with the penetration and the retardation
efficiency will be 50 per cent. In no case can the contact length reduce with penetration, and
to gain some idea of the effect of a varying contact length, ¢ will be taken to vary linearly with 4.

. 1 /1 Tm . '
Taking ¢ = a + bp and . <—> = A, equation (4) reduces to

av
5 = — P+ bp).
Hence V =V, — 2ig(ap + 1697, .. .. .. .. (5)
[ = 2igla + bp){V, — 2iglap + $bp?)} . .. .. .. (6)

The maximum penetration occurs when ¥V = 0,

. _a / bV }
ie., b =% {V (1 +a2/1g> /| N )
The corresponding maximum contact length
— / bV,
o =a (1 + mg>' O )
The maximum acceleration Jw occurs when L% = 0,
., at zﬁf/[l bVo]_} R (¢
t.e.,a ‘p bl\/3<1+azlg)_ 1 (9)
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f» is found by substituting the value of $, given in equation (9), in equation (6). The retardation
efficiency can be found for different values of 4 and is given by

_
E = gt R 6 1)

The retardation efficiency is plotted in Fig. 4 for different ratios of maximum to initial contact
lengths ; for a given maximum penetration this ratio will vary for different rates of increase of
contact length with penetration ; for a given keel shape it can be changed by altering the maxi-
mum penetration. The complete acceleration-penetration curves are calculated from equation (6)
and given in Fig. 5 for selected ratios of maximum to initial contact lengths. The values plotted
in Figs. 4 and 5 are given in Table 1.

It can be seen that the maximum retardation efficiency is about 77 per cent and occurs for
maximum contact lengths of about three times the initial contact length, but for values over
24 times the initial contact length the efficiency does not alter appreciably.

3. Vertical Descent on a Landing Sheet.—The general principles involved in the use of inertia
as a means of retardation were given in section 2. With the limitation imposed on sheet width
it is not possible in practice to ignore the vertical force transmitted by the sheet from the sides.

The action of a landing sheet of finite width on initial contact of the aircraft will be identical
with that of an infinite sheet, and the aircraft will be retarded because of the inertia forces set
up in it by the transverse wave. After the wave has reached the side supports of the sheet the
effect of constraint on the sheet becomes significant, and forces corresponding to a static system
are imposed. The subsequent inertia forces will then correspond to a complicated wave motion
and be superimposed on the ‘static force’ system. For most purposes the subsequent wave
motion can be ignored and the calculations will be based on this assumption.

Now the static force will depend on the width of the sheet and the initial tension. As the
sheet is deflected the restoring force will depend on the tension in the sheet in its deflected
position and on the angle the sheet makes with the horizontal. If the sheet were initially just
taut the load per foot run would be proportional to the cube of the deflection. This would
be very inefficient and an attempt must be made to have a large initial strain so that the increase
in length due to the deflection is negligible and the tension is sensibly constant ; the load per
foot run is then proportional to the deflection. It is shown in Appendix II for a proposed
rubberised fabric sheet that the increase in tension due to deflection is only a few per cent for
deflections of 2 to 3 ft on a total width of 60 ft. It is assumed that the tension in the idealised
sheet, considered throughout the main body of the report, is unaffected by deflections.

3.1 Vertical Descent of a Weightless Aivcraft.—The vertical descent of a weightless aircraft
on an infinite sheet has been considered in section 2. In this section the aircraft will still be
taken as weightless and making a vertical descent but the effect of finite width will be considered.
In section 3.2 the weight will be taken into account and in section 4 the additional effect of
forward velocity will be discussed. ’

In the first part of the motion the finite sheet behaves in an identical manner with the infinite
sheet and the acceleration penetration relationship is the same as that given in Fig. 5, Table 1,
and equation (6).

= 21gla + bp{V, — 24g(ap + 30p°)} .
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The acceleration in the second part is the same as that due to static deflection and is given by
f:T(a+%bjb).%, L ay

where 24 equals the width of the sheet.

_ Acceleration-penetration curves are shown in Fig. 6 for sheets with the same conditions as

- those considered in Fig. 5, except that they have a finite width. The tension was selected by
trial and error so that the acceleration at the end of the travel was the same as the maximum in
the first part of the motion, the total travel being fixed by the area under the curve having to be
Ve =Lty X V&fy. Even for the contact length of the keel constant the retardation
efficiency is 81 per cent, and for a linear variation of the contact length the efficiency may
become as high as 92 per cent.

3.2 Vertical Descent of an Aircraft under Gravity.—The acceleration-penetration relationship
of a particular system is altered appreciably when an additional constant force such as gravity
is imposed. The efficiency is reduced and is dependent on the ratio of the additional forces
to the maximum allowable retardation.

The additional forces are gravity and aerodynamic and are grouped together as —#% times
the initial sheet forces ; thus the initial total force is (1—£#) times the initial sheet forces. The
case £ = 0 corresponds to the condition that the air and gravity forces balance or that the
initial sheet forces are infinite. If none of the gravity forces were balanced by the air forces
k = 0-25 (say) would represent a total force of —3g (—4g from the sheet and +1g due to gravity) ;
similar results hold for other values of .

The effect of variation of 2 on the acceleration-penetration relationship is considered in
Appendix I for an aircraft landing with a constant 1ength of keel. Curves are plotted in Fig. 5
and values tabulated in Table 2 for £ = 0,0-1,0-15,0-2, 0-25. It will be seen that as % increases
from 0 to 0-25 the retardation efficiency reduces from 81 to 72-9 per cent.

In practice the contact length would increase with penetration and the equation of motion
of the aircraft could be solved only by successive approximation even in the simple case of
linear variation. As the retardation efficiency of the system with negligible gravity forces can
be increased from 81 to over 90 per cent by having a moderate linear variation of contact length
with penetration (Maximum contact length/initial contact length = 24 to 5), it may be inferred,
without doing the arithmetic, that the retardation efficiency for a —8g landing with full gravity
forces (B = 0-25) will be increased from 72-9 to about 80 per cent.

3.3 Comparison of Retardation by Means of Inertia and Static Forces.—The vertical descent
of an aircraft on a landing sheet develops inertia forces in the sheet immediately on contact,
and at a later stage the forces are the same as those due to static deflections. The relative
merits of both types of force as a means of retardation will now be discussed.

The retardation efficiency of a simple elastic system, under no gravity forces, is 50 per cent,
and that of a pre-tensioned massless landing sheet cannot be greater. For a constant contact
length and with the sheet initially just taut the retardation efficiency is 25 per cent ; pre-tension-
ing improves the efficiency until it reaches 50 per cent for the case of a sheet with a very high
initial strain. If the contact length increases with penetration, as would happen with an ordinary
aircraft, the efficiency is reduced.

The retardation efficiency of an inertia system, under no gravity forces, is 50 per cent for a
constant contact length but is in excess of 75 per cent for a contact length 1ncreasmg linearly
to between 23 and 5 times its initial contact length (Fig. 4).
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A particular condition of combined inertia and static forces is taken from Fig. 6, and the effects
of inertia and static forces taken separately are shown in Fig. 8. The inertia forces have an
efficiency of 77 per cent and the static forces an efficiency of 41 per cent.

The above efficiencies are independent of the magnitude of the accelerations. When gravity
forces are superimposed the ratio of these to the maximum acceleration is important, and for
normal maximum permissible landing accelerations the efficiencies are appreciably reduced,
particularly when the efficiency with gravity absent is less than 50 per cent. With a maximum
permissible retardation of 3g the just taut massless sheet would have a zero efficiency* even
with a constant contact length, 7.e., it would just take an infinite distance to retard the aircraft
if 3g is not to be exceeded.

These difficulties arise because, in the -early part of the retardation, the static forces are less
than the gravity forces and the aircraft is actually increasing its velocity.

The forces developed by virtue of the inertia of the sheet do not suffer this disadvantage,
for they are proportional to the velocity of the aircraft, and may exceed the gravity forces
immediately contact is made.

As the aircraft penetrates further into the sheet the velocity decreases and the inertia forces
become less and less, until eventually they just balance the gravity forces whilst the aircraft is
still moving. The elastic forces, depending on deflections, would increase as the aircraft pene-
trated further. Thus the combination of elastic and inertia forces shown in Fig. 6 makes use
of the best of both systems ; the inertia forces are the more important and absorb at least three
quarters of the energy for all ordinary increases in contact length with penetration.

An important difference between ‘inertia’ and ‘static’ retardation arises when a sheet is
designed for landings with full gravity forces and is then used with gravity forces absent. The
maximum retardation due to static forces for a given impact velocity is reduced as the unbalanced
gravity forces are reduced. In the inertia system the maximum retardation occurs immediately
on contact and is increased as the unbalanced gravity forces are reduced.

A further difference arises in connection with rebound after landing. The energy absorbed
by an elastic system is mainly recoverable, whereas that due to the inertia of the sheet is not
recoverable by the aircraft.

4. Landing with Forward Velocity on to a Sheet.—If the aircraft has a forward velocity on
landing the conditions of the landing sheet are rather different. With sufficiently high forward
velocities the sheet of finite width would behave in the same way as the infinite one ; the con-
dition for this is satisfied if the wave in a particular strip of sheet, which commences as the bow
of the aircraft goes over it, has not reached the side support by the time the stern of the aircraft
has passed it.

A good indication of the behaviour of the aircraft on landing with a reasonable forward velocity
can be obtained from an examination of its behaviour on the infinite sheet.

Consider an aircraft with a keel of general shape striking the sheet. The force due to an
. individual strip is proportional to the transverse velocity given to it. The velocity will be the
component of the total velocity in the direction normal to the keel surface at that point, the
tangential component having no effect except in so far as there is friction between the two
surfaces. There will be some point near the tail at which the velocity is along the tangent to
the keel ; forward of this point the normal component of the velocity will be into the sheet,
and aft of this point it will be away from the sheet. Thus at any point aft of the tran51t10n
point there will be no force between the sheet and the aircraft.

7



As the aircraft penetrates further into the sheet the force on the nose portion increases and
its centre of pressure acts further forward. At the same time the downward component of
the aircraft velocity reduces and the transition point moves forward. These effects both tend
to increase the nose-up pitching moment on the aircraft. The pitching moment tends to give
the aircraft an angular velocity, which in turn develops a restoring moment from the sheet
so that eventually the aircraft would tend to have a limiting angular velocity.

It is hardly possible in conventional aircraft to prevent this high nose-up pitching moment
developing, but it is possible to keep the angular displacement small by having a forward position
of the aircraft c.g. relative to the centre of the keel so that on initial contact there is a nose-down
pitching moment. )

The main trouble with a high angular nose-up velocity is that the incidence of the aircraft
increases with penetration and the total acceleration is roughly proportional to the incidence,
so that the aircraft may receive more vertical energy than it gave up and rebound with a higher
vertical velocity.

If the angular velocity were zero the incidence would reduce steadily, due to the loss of the
vertical component of the velocity, and the vertical velocity of rebound would be smaller than
the impact value. In the particular case of a flat keel, horizontal and with a constant contact
length, the retardation would reduce to zero at maximum penetration and there would be no
rebound.

5. Numerical Examples—The salient features of the use of inertia to retard an aircraft have
been illustrated in the preceding paragraphs by means of the simple case of a vertical drop of
an aircraft on a sheet with a contact length increasing linearly with penetration. The problem
of landing with a high forward velocity has only been discussed in general terms, as a solution
can only be found by successive approximation.

The general case of an aircraft landing with a linear and an angular velocity is considered in
Appendices II and III for a keel with a longitudinal shape consisting of a central portion of
length 2¢ and nose and tail portion with radii R, and Rr. The equations of motion are formed
in Appendix II and the numerical method of solution illustrated in Appendix ITI with values
of R;, Ry and b representative of a Hotspur.

The equations of motion are quite general but they will usually be applied to cases where one .
of the horizontal and vertical components is small compared with the other ; for landings on
aerodromes the horizontal velocity would be very much the larger, and on carriers the aircraft
may be caught by an arrester wire so that the horizontal velocity was small by the time the
aircraft struck the sheet. In the case of a vertical drop the acceleration-penetration curve can
be calculated directly for the linearly tapered keel, but in the case of the landing with high

horizontal velocity successive approximation is necessary in both cases and the numerical work
involved is high.

5.1 Numerical Example of a Vertical Descent.—Calculations have been made on the lines
given in Appendices IT and III to show the effect of the mass of the sheet on the landing of a
Hotspur at 7000 1b on to a sheet with a cross tension of 3600 1b/ft.

For convenience in the calculations exact values have been chosen for the parameter

i <:T/lV \// %)) rather than for the mass m Ib/sq ft of the sheet. Typical acceleration-
penetration curves are shown in Fig. 9. It will be seen that the retardation efficiency can be

made high by having a very heavy sheet, but that the tension is rather low and the maximum
penetration is correspondingly high.
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The variation of maximum accelerations and penetrations with impact velocity is given in
"Fig. 10. It can be seen that the maximum penetration is about 2-5 ft even with zero impact
. velocity, but that it does not increase appreciably for velocities up to 10 ft/sec in the case of
the heaviest sheet. At velocities as high as 20 ft/sec the maximum penetrations and accelerations
depend greatly on the mass of the sheet. With the massless sheet they are 4-52 ft and 5-33g
respectively, but for the heaviest sheet they are 8-27 ft and 2-54g.

5.2 Numerical Example of a Landing with Forward Velocity.—The aircraft landing with a
high forward velocity obtains its retardation more by the inertia forces set up in the sheet than
by the forces due to the static deflection, and the effect of width of sheet is not great (section 4).

The retardation-penetration relationship has been found for the. Hofspur landing at a weight
of 7000 1b with various impact velocities onto an infinite sheet with a cross-tension of 3600 1b/ft
and various masses of sheet. The effect of the finite width of sheet will only influence the
motion near the end of the travel and will be fairly small.

Fig. 11 gives the retardation-penetration curve for a particular landing velocity and two
positions of the aircraft c.g. When the c.g. is near the centre of the keel there is a great
tendency for the nose of the aircraft to be forced up so that the vertical force continues to increase
even after the sheet has had its maximum deflection and is returning to the initial position.
The rebound velocity thus received by the aircraft is of about the same magnitude as the impact
velocity. When the c.g. is well forward of the centre of the keel, the energy taken up by the
aircraft is considerably less and the rebound velocity correspondingly smaller.

6. Design Characteristics.—The design of the sheet will depend on the size and weight of the
aircraft and conditions of landing. The properties of the sheet are fixed if a particular aircraft
is to experience an optimum retardation efficiency with a certain maximum acceleration and
penetration for a given vertical component of landing velocity. No attempt'is made in the
present report to assess the loss of retardation efficiency of a particular landing sheet by using
it for aircraft with ratios of weight to length different from the ratio which gives optimum
efficiency.

The forward velocity of the aircraft has a considerable influence, as it varies the mass of
sheet brought into motion in a given time. Landing with high or negligible forward velocities
are the two cases normally met in practice. The retardation with high forward speeds is depend-
ent only on the inertia forces set up in the sheet, and a given inertia force can be achieved by
altering the tension in a sheet of any mass. With negligible forward velocities the first part of
the motion is controlled by inertia forces and the second by static forces. For the most efficient
system the maximum inertia and static forces will be the same.

6.1 Properties of the Landing Sheet.—General properties of the sheet can be found by considering
the aircraft with a contact length which remains constant throughout the motion. This average
contact length will probably be about half the overall length of the aircraft. The lengths of a
large number of aircraft are compared with their weight in Fig. 12 and Table 3. There is con-
siderable scatter, but the weight in 1b is seldom much greater than 10 times the square of the
length in ft. The characteristics of the sheet to cope with aircraft with such a Welght to length
ratio will be determined.

Assuming the contact length ¢ equals half the length of the aircraft,

? — 40c = 20 x (length of aircraft). .. .. .. (12
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It can be shown from equation (6) that for a given mass and tension of sheet the accelerations
given to the aircraft by the sheet are proportional to V,/(W/c), which by equation (12) is prop-
ortional to V,/c. Thus for airborne landings the retardation would be proportional to V,/c
and the maximum penetration consequently proportional to V. For a given impact velocity
the maximum penetration would be proportional to ¢. For similarly shaped aircraft the maxi-
mum allowable penetration is evidently proportional to the length, and it seems worth while
to take advantage of this in allowing lower retardations.

With landings such as those experienced on a carrier, at low forward velocity on impact the
aircraft would not be airborne and the total acceleration is reduced by the constant gravity plus
air force, and the penetration would not be proportional to V. It may be possible to use the
same sheet for aircraft of different weight without much change in efficiency if the tension can
be adjusted to maintain the required maximum penetrations.

It is probable on carriers that the design of deck may prohibit larger penetrations for larger
aircraft. When this is so the sheet would have to be adjusted to give the same maximum
acceleration for all sizes of aircraft. It should be possible to cope with a moderate range of
weight to length ratios by adjusting the tension in the sheet.

Appendix I compares the retardation with penetration for different ratios (%) of the gravity
and air forces to the initial sheet forces. Table 2 gives the relationship together with retardation
efficiency and the mass and tension of the sheet. For any value of % the efficiency is decided
by the mass of the sheet, and the maximum acceleration is then given by the tension.

It can be seen in Table 2 that the mass of the sheet to give best efficiency is 0-309 W/cd,
when the gravity plus air forces are negligible, rising to 0:454 W/cd, when the gravity plus air
forces are a quarter of the sheet forces (this would occur when the maximum acceleration was
—3g, made up of —4g sheet forces and +1g gravity plus air forces). The corresponding tensions

72 2
are 0-808 /% g ™" for — 0; rising to 0-979 W% g %" torp _ 1
R ¢ Ve

Take as a specific example the problem of retarding an aircraft at vertical velocities up to
20 it/sec within about 2 ft. With 100 per cent efficiency an acceleration of —3-1g would be
developed. Now the actual efficiency will be about 75 per cent, so that the acceleration will
be about —4g. Assuming the air forces to be negligible the gravity plus air forces will be +1g,
and with £ = 0-2 the sheet forces are —5g and the total force —4g. TFor k = 0-2 the efficiency
is 75-5 per cent, so that the maximum penetration is 2-05 ft. To keep within 2 ft and 4g the
velocity would have to be restricted to 19-75 ft/sec.

The following sheet properties can be found from Table 2.

Weight of sheet — 0-414 chIZ/) bjsqft. .. .. .. .. .. .. (3
2

Cross tension = 0-943 cho MVOZ g Ib/ft run.” .. .. .. .- .o (14)
0

Stress = 0-987 1;/07 gd2p Ib/sq in. e (13)

Substituting #," = 4, V = 20, in equations (14) and (15),

Cross tension — 1-215 W;% Ib/ft run. .. .. . .. .. .. (18)
Stress = 1-270 pdy® Ib/sq in. .. ce .. .. .. (17
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With a sheet width (24,) of 60 ft the stress would be
1140p Ib/sq in

If it is thought that the tensile stress is too high, it is possible to get similar results at only
slightly reduced efficiencies by increasing the weight of the sheet and keeping the tension per
foot the same, but if an attempt is made to reduce the weight of the sheet without at the same
time reducing the tension, and consequently the maximum retardation, the efficiency will fall
off rapidly.

The actual sheet forces are higher than those given by assuming the sheet to be a series of
closely spaced transverse strips. The effect will be greater for the part of the motion in which
the predominant forces are static forces so that the maximum static forces will be greater. As
the static forces increase rapidly with penetration this may mean a considerable reduction in
efficiency. : ‘

It is advisable, therefore, in designing a sheet for a particular type of aircraft, to avoid high
static forces even at the expense of a slight loss of efficiency by making the mass of the sheet
slightly higher, and the tension correspondingly lower, than that given by calculation.

6.2 Properties of the Aircraft.—The aircraft undergoes two types of loading during an ordinary
landing, one due to the inertia forces and the other due to the static forces. With a well-designed
sheet the initial tensile strain will be high, so that the tension will be sensibly constant throughout
the motion and the pressure imposed on the fuselage will be equal to the tension times the
curvature.

By knowing the total load per foot run of the keel at any position the extent to which the.
sheet must wrap itself round the fuselage can be calculated. When the retardation is achieved
by inertia loads the load per foot run will be proportional to the component of the velocity of the
aircraft normal to the direction of the keel at the position considered. When static forces are
operative the load per foot run will be proportional to the depth of penetration.

With a vertical drop the maximum load per foot run of keel will be greater near the centre of
the keel for either type of loading ; with inertia loading this is because the velocity will have
reduced by the time the sheet has made contact with the forward and aft portions, with static
forces it is because the deflections are smaller.

Landing with high forward velocities offers a different problem. The retardation is almost
entirely due to inertia forces, and near the bow the forward velocity will contribute considerably
to the normal velocity and high loads will be experienced. Physically this can be seen to be due
to the aircraft trying to ‘plough’ its way into the sheet.

7. Conclusions—Replacing the undercarriage of an ordinary aircraft by a landing deck on
the ground opens out new possibilities regarding methods of retarding an aircraft on landing.

In particular the inertia of the landing deck can be utilised. The retarding forces over a given
contact length will be dependent on the normal velocity. The advantage over most elastic
systems is that large forces can be developed before appreciable deflections are attained.

For landings with high forward velocities the retardation is almost entirely inertial and the
forces are proportional to the product of the mass and the tension of the sheet ; any mass can
be used provided the corresponding tension is not too great for the material of the sheet.

11



Landings with negligible forward velocities make use of inertia forces in the first part and
static forces in the second part of the landing. By increasing the mass of the sheet the inertia
forces are increased and the maximum static forces reduced, and at some mass, for a given type
of landing, the maximum inertia and static forces are the same. The mass of the sheet would
have to be 0-309 W/cd, 1b/sq ft if the gravity plus air forces were negligible compared with the
sheet forces rising to 0-414 W/cd, Ib/sq ft when the gravity air forces plus were a quarter of the
sheet forces,

where W1b = weight of aircraft,
¢ ft = average contact length
2d, ft = sheet width.

The tension in the sheet can then be adjusted to give the required maximum acceleration.

Retardation efficiencies of more than 90 per cent can be achieved when the gravity plus air
forces are negligible compared with the sheet forces ; even with gravity and air forces one-quarter
of the sheet forces, efficiencies of more than 80 per cent should be achieved.

In order to achieve these high efficiencies it is advisable to give the deck a high initial strain.
With rubberised fabric and reasonable deck widths this is automatically achieved with the high
tensions required, but with metals (e.g., steel net) a spring would be required to attach the sheet
to the side supports. .
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NOTATION

Cross tension of sheet, 1b/ft

Weight of sheet, Ib/sq ft

Specific gravity of the sheet material

Width of sheet, ft

Thickness of sheet, ft

Weight of aircraft, b

Pitching moment of inertia of aircraft, b in.”?

1 /(T

WV \ ¢

Velocity of a transverse wave set up in a strip of the sheet, ft/sec
Angle taken up by the moving strip relative to undeflected position
Velocity of aircraft, ft/sec ‘

Angle the velocity makes with horizontal

Vertical acceleration of aircraft, ft/sec

Penetration into sheet, ft

Length of aircraft keel in contact with the sheet, ft

Contact length when varying linearly, ft

When keel is made up of a straight central portion with radii at nose and tail,

2e

R

Rr

1

Vo, fo
fo

— g

k

j;” pm Cm

E

- For keel shape made up of a straight portion length 2¢ and nose and tail of radii R, and Ry.

Length of central portion of keel
Radius of curvature at nose
Radius of curvature at tail
Time, sec
Initial values of V and f
—ny'g = —no(1 — k)g
Initial acceleration due to sheet
Ratio of air plus gravity forces to sheet forces
Maximum values of f, $, ¢

V2
2 - Do

Retardation efficiency, =

Moving axis in direction of velocity V

Moving axis perpendicular to V' and upwards

Moving axis forming right-handed system of axes with %, and x,
Rotation of moving axes

Sheet force in direction x;, = —Drag

Sheet force in direction x, = Lift

Air forces corresponding to D, L, M

Moment due to linear velocity V'

Moment due to angular velocity w

13
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NOTATION—continued

DAV

LiAavVw

My jAsVW

M ,J20W

DWW

LJw

MW

Angle keel makes with x,

Angle tangent at point of entry of nose makes with x,
Angle tangent at point of exit of tail makes with x,
Angle the tangent at current point makes with x,

o + 9 = angle stronger portion of keel makes with horizontal
0, + v

Or + v

Radius of curvature at 6

Co-ordinates of c.g. relative to centre of keel, along and at right-angles to
keel direction

Component of V in-directions x and vy
¢ is point at which normal velocity is zero.
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APPENDIX I
Asreraft Dropping Vertically under Gravity

Suppose the aircraft has a constant length of keel @ and drops with an initial acceleration
—ny'g = —n(1 — R)g,

where —#,g = the initial acceleration due to the sheet forces,

knog = the acceleration due to the algebraic sum of gravity and aerodynamic forces.

Usually the aerodynamic forces will be negligible and #n,2 = 1, but the algebra is not made
more complicated by keeping the general form of the acceleration.

Let p, V, f be the displacement, velocity and acceleration respectively aftel time ¢, and
0, Vo, fo, the initial values.

After time ¢,

acceleration due to sheet inertia forces = — 24al,
= — 2/1011701710: —%ogVKO .
_ Vo o ' V — Vo
Hence f = nog(,V_O k>_+]g.m. N O 1<)
e AV . _
Substituting f = VW in equation (18), we get
av _ Vo
V B Mg <T7; k) .
mg . _ (V. Vav
Hence 7, P jvo V —EkV,

After intégrating, this equation can be reduced to

Wog o ) V — RV, k vV —kV,
L e s ]
Hence —;{gp:(l—k)g[ —%—liklog?fo—J. .. e e (19)

If the sheet were infinite a steady state would be reached when V = Vk. In the particular
case of the aircraft airborne (¢ = 0) the aircraft would be just brought to rest (see equation (7)).

The sheet of finite width behaves the same as the infinite one in the first part of the motion,
but after a certain time the restoring force is very nearly that given by the static deflection,

2T  p

i.e., f:_W' ;Z-g+nokg,
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_j; — k
therefore T el — ) i 7
_ —fp (V¢ 2T a) k. . . (20)
Vot n*(1 — k) Wg d 1 —*k ' B

The acceleration-penetration curve consists of two parts, the first part being given by equation
(19) and the second part by equation (20). For a given value of % the shape of the curve with
non-dimensional co-ordinates (—f,/VAp, flf, is fixed. To give optimum retardation efficiency
the slope of the straight line, given by equation (20), must be adjusted so that f/f, = 1 at the

maximum penetration as well as on initial contact, the area under the curve f/f,, (—f/V )P
being 1. :

The straight line passes through the point (—f/V#p = 0, fif, = — k/(1 — k) ; the point

(=/l/Ve)p = (—fl Ve )pm, (flfo = 1) can be found by trial and error of values of pm until the
area under the curve is

Substituting —/o p = —f Do 5 - 1 in equation (20) we get
45 Ve fo
1 fﬂp [ V()2 2T Gl] . _k_
Ve I (T —RP Wg ' d) — 1—k
—fopm _ 1 f V02 £ ﬁ} .
Hence Ve T T—k \ndl—RR We dj
Now the initial sheet force = —21agV, = —n.g .
Vo 1 W/
Therefore e % 22 A/ > .. .. T . .. (21)
o, 1 w: & 2T @
Hence vElr = Tk 41 —k2 Twm Wz 4|’

1 W 1
- l—k/Zad(l-—k)z"%: m =83

Thus for a given value of £ a maximum retardation efficiency can be achleved by selecting the
mass of the sheet to be g1ven by

mo— oy LW

: i 22
m 1-—-k Zﬂd’ ( )

and is independent of the tension.

The value of the tension can be chosen to give the required maximum retardation.
16



Combining equations (21) and (22) we get
1 "2 wd
T = foﬁm( — )Vozg'Z_cz' .. .. .. .. (28)
Vy '

The stress in the sheet can be found from equations (22) and (23) if the density is known.
With a specific gravity of ¢ the density will be 62-5¢ Ib/cu ft.

From equation (22) the thickness 4 = it
62-5¢

The stress — % Ib/sq ft
625 T »
= 7 g ° Ib/sq in.,
— 0-434 B (@
fOpm d 3

The acceleration-penetration curves for different values of £ are shown in Fig. 7, the numerical
values and corresponding masses, tensions and stresses in the sheet are given in Table 2.

17



APPENDIX II

Deteymination of Equations of M otion of an Aivcraft Landing on an
Infinite Sheet under Transverse Tension

It is shown in section 2 that if a portion of the sheet is constrained to move laterally with
a velocity V the force exerted by the sheet is given in equation (2) by

S Tm
2 (T> .V Ib/it run ,
= 2WiV 1b/ft run . . .. .. . .. (25)

By taking a definite shape of the keel the total force on the aircraft at any instant can be
calculated.

RADIUS Rp

e

Fi1c. 2.

Suppose the aircraft makes contact with the sheet along a keel which consists of a central
portion of length 2¢ with radii Ry at the tail and R, at the nose. Fig. 2 shows the attitude of
the keel after it has penetrated the sheet.

Let V' = Linear velocity of c.g. of aircraft,
| dy Angular velocity about c.g.,
P Angle V makes with the horizontal,
Angle straight portion of keel makes with V, -
6, Angle tangent at point of entry of nose makes with V,
0 Angle tangent at point of exit of tail makes with V,
oy, Ory, O0ry Angles with horizontal corresponding to «, 6, 6, fespectively,

18



therefore o, = &« +w

by = 6L +v }, . .. .. .. .. .. .. .. (26)
0y = Or+vw
0 direction of the tangent at any point on the keel relative to the direction
of V. .

If 6 is positive that point on the keel is entering the sheet and if ¢ is negative it is leaving
the sheet.

The force of the sheet is given by equation (25) for points entering the sheet and is zero for
points leaving the sheet. Consequently if 6, > 0 a force will be applied on the whole of the tail,
but if 6, < 0, there will be no force exerted on the tail aft of the point § = 0. Now on initial
contact 6,7 = 0 and v < 0, so that 6; will be greater than zero and the whole of the tail from
0 = 6, to 0 = o will be effective. Generally after a short time, if the aircraft has a horizontal
as well as a vertical velocity, |6;r] will be greater than |y|, so that 6 = 6;; — 9 < 0, and
in this case only the sheet touching the portion of the tail from 6 = 0 to 8 = « will be
effective. ‘

For the purpose of determining the forces on the aircraft the motion will be referred to moving
axes (%, %, %3) ; #; is in direction V, x, is perpendicular to ¥V and upwards, #; is horizontal.
The origin is taken at the centre of the straight portion of the keel.

The forces due to the sheet will consist of drag D, in negative direction #,, lift L in direction
%, and moment M in direction x;. The air forces in the same directions will be D,, L,, M,.
The angular displacement will be in direction ;.

The moving axes have rotation 2 = (0, 0, #).

The motion of the aircraft is as follows:—

Translation of c.g. of aircrafi.

Velocity = (V,0,0)
Acceleration — V4+0 V= (V, V4, 0)
Total force = (—D—Dy,— Wsiny,L + L, — W cosyp, 0)

Rotation about c.g.
Angular Velocity = (0,0, ;) = (0,0, @ + )
Angularacceleration = 4 + 2,4, = (0,0, & + )
Total moment = (0,0, M + M) |

Now force = mass X acceleration and couple = inertia X angular acceleration,
| 19



so that *—D——DA—Wsinzp:Kf/
g

L —L, —W cosy — %V Vi

M+MA=§(¢‘+6L)

(27)

DLM will now be determined in terms of the motion of the aircraft, which is a linear velocity

V in direction y to the horizontal and an angular velocity d -+ i .

Taking first the translation V' without rotation, the normal velocity at point 6 is V sin 6.

Hence by equation (25)
Normal force = 2AW. V sin 6 per ft run provided 6 > 0 .

.Consider first the case of 6, > 0 .°

[7}
Lift L = | " (223 . V sin 6) cos6 . R . 40,

bp

where R = radius of curvature at point 6 .

On integrating separately over tail, straight portion and nose,

-

L = j: 2AW .V sin6 cos 0 Rrdé + Se 2AW . Vsina cosa . dz
) T

2

o
+ SL%W.VsinB.cosG.RL.dG

where R 40 is replaced by dz over the straight f)ortion.

Therefore

L = AW . VRy(sin® x — sin® 6;) + 2 sin 2« + R (sin® 6, — sin? @) .

Similarly
D = aWV[R{(x — 82) — %(sin 2¢ — sin 264)}
+ 4e sin® o + Ry{(0, — o) — &(sin 20, — sin 2a)}],

My = AWVI[Ry(sin® & — sin® 07){— (¢ + %) cos & — (Ry — #) sin o>

+ Ry{(a — 01) — #(sin 2o — sin 267)}{(R; — ) cos & — (¢ -+ %) sin &}

— 4% sin o

+ Ri(sin® 0, —'sin® a){(e — %) cos « — (R, — ) sin o}

+ RL{'(GL — o) — § sin 20, (sin 2¢) }{(Ry — J) cos o + (¢ — %) sin a}] .

For the case 8, < 0 equations (28) are modified by substituting 0 for 6.
‘ 20
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The rotation @ = ¢ + ¢ will produce an appreciable change of moment but it may be assumed
that the change of lift and drag will be small and can be neglected.

The transition point, at which the normal velocity is zero, will not be where 6 = 0, so let
it be at 8§ = ¢, which will now be determined.

The velocity at the point, (x, y, 0) referred to axes along and at right-angles to the keel with
origin at the centre of the keel will be

[Vcosag—o(y —7%), — Vsina+ ox—1x)), 0],
where (%, ¥, 0) are the co-ordinates of the c.g.
At the point 8§ = ¢ on the tail the co-ordinates are
[— e — Rrsin (x —¢), Re{l —cos(x—¢)}, 0].

The normal velocity is zero if tan (¢ — ¢) = — % ,
V sin o + w{e + Ry sin (o — ¢) + £}
V cos o — w{R[1 — cos (@ — ¢)] — 7}’

therefore tan (¢ — ¢) =

which reduces to

Vsina + o(e + %)

fan (e —4) = 5 e R — )

The two cases to be considered are 6 > ¢ for theAinitial motion and 6; < ¢ for the motion
after a short time. : ’

The normal velocity over the length of tail 6 = 0 to 6 = ¢ is due to a combination of the
velocity ¥ and angular velocity o and will be fairly small, and the contribution to the moment
will be small. To facilitate the computation it will be assumed that it can be neglected.

By neglecting this portion the moment on the aircraft due to translation of the c.g. and
rotation about the c.g. is given in two terms, one depending on the translation velocity only
and the other depending on the rotation only. The translation effects are given in equations (28) ;
the effect of rotation will now be determined.

The normal velocities on the nose, straight portion and tail for a rotation about the c.g. will
be:—

Normal velocity on nose

= — (@ + §){(¢ — %) cos (6 — &) + (R, — ) sin (6 — )} .
Normal velocity on straight portion

— (e — ).
Normal velocity on tail

= (a + $){(e + %) cos (e« — 0) + (Rr — F) sin (&« — 6)} .
21 .



Using these velocities and applying equation (25), the moment due to rotation (M,) is given by
M, = — Wi(a + §)[Rif(e — 2 + (R, — 5)H0, — o)
| + Rif(e — 2 — (Re — )%} $sin 2 (6, — o)
+ Rufe — %) (R, — 7){1 — cos 2 (0, — )}
+ 3e(e® + 3%)° |
+ R{(e + %) + (Rr — 5)"Ha — 07)
+ Rr{(e + %) — (Ry — 3)°} §sin 2 (« — 04)
+ Rele + 2) (R — {1 —cos2 (e — 0} .. .. .. .. (29
for 67 > 0; when 6 < O substitute ; = 0 in equation (29).

Equation (27) can now be written in the form

V o sing —avd —d,
g
V?lﬁ:—COS'tp—i—ﬂ.V.l—{—lA R . . - .- (30)
WzAV.my+z(¢+d)¢w+mA
_ b ,_ L _ M, oM,
where =gy LS gqmwe T v T g

dA:%: ZA:%, mA:%é-

In equation (30) the first equation gives the drag acceleration of the whole aircraft and the
second gives the normal acceleration.

To assist in the computation the sheet forces have been determined in terms of the angles of
incidence of various parts of the aircraft with the sheet. The important parameters on penetra-
tion are the depth of penetration of the c.g. () and the rotation of the c.g. from the horizontal

(« + »). To determine the vertical velocity V siny in terms of the penetration,  must be
found in terms of «, 0;, 0, .

If  is measured vertically downwards
P = {Ru(cos @ — cos 6;) + (¢ — %) sin o} cos p
| +{RL(siﬁeL-sinoc)+(e——a?)cosoc}sinzp. - .. .. .. -(31)
Hence the vertical velocity = — %— :
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 Therefore % = —V siﬁw ,

3
therefore po— P = f (V siny)dt. .. . .. .. (82
0
Equations (30), (31) and (32) are solved by successive approximation.

For the usual small angles of incidence of the keel with the sheet on touching down the
retardation will be negligible during the short time it takes for the whole of the straight
portion to make contact with the sheet ; equations (28) and (29) hold after the condition has
arisen and can be applied.

If the aircraft is landing nose up (e > 0), # = 0 is chosen when 6,;, = o;, and if the aircraft
is landing nose down (e; < 0), # = 0 is chosen when 6,7 = «; ; these conditions are illustrated
in Fig. 3. :

NOSE —-UP LANDING TIME t=0O

NOSE—DOWN LANDING )\/ﬁﬂme t=0
—_—

SHEET  SURFACE
FORWARD DIRECTION OF AIRCRAFT

Fic. 3.

The successive approximation is as follows:—

~ From the geometry of the aircraft and its motion on touch down Vi, v, o + o, do + o,
Po,are known at £ = 0 .

Hence dy, 1y, %y, Wwo, da, La, m,4 can be calculated.
Using equation (30) Vo, o, (f + &), are determined at ¢ = 0.

By taking a sufficiently short increment of time the values Vy, #,, ( + &), may be assumed
to remain unaltered, so that

Vi—Vo=Vy. 8. .. . .. .. .. (33
Hence at time ¢ = 4, Vi, vy, (¢ + d)1, (» + «), are determined.

Also using equation (32) 4, is determined.

The process is repeated to determine Vi, 4, (¢ + &);, and hence Vs, vy, (¥ + a); (v + &g,
and so on.

In practice the increments of time may be only moderately small, and a correction is made
to equation (33) by taking the values of V, v,y + «, 4 + da, pat times#t,, &, &, & .. ....
where t, =0 =4, — by =ty — by =8, — s = ...... and is small.

The following more accurate equation is ﬁsed in place of equation (33):
Vn - Vn I 2 —
2, e
23



APPENDIX III
Method of Computation

An attempt to solve equations (30), (31) and (32) directly by the successive approximation
given in Appendix II is very laborious as it necessitates solving five trigonometrical equations
for each increment of time. A much simpler process is possible by using graphical methods.

Equations (28) and (29) give /, d, m,, m,, and pin terms of «, 6;, 65, ¢, R, R,.

As an illustration a typical shape of keel is taken by putting

R; = 301t , % = 0-51ft,
R, = 201t § = 2 ft,
2e = 10 ft.

With these values and 6, > 0,

d = 10[e— }sin 2+ 2sin* o — 3(6; — & sin 20,) + 2(0, — L sin 20,)], |
I = 10[sin® « + sin 2« — 3 sin® 0, + 2 sin® 6,] .
m, = 10[—49sin « + (48 cos « — 25-5 sin a) — 6,(84 cos & — 16-5 sin «)

+ 0.(36 cos o + 9 sin «) + sin 07 {84 cos (« — 6;) — 16-5 sin (x — 64)}
oy .. (35)
— sin 6,{36 cos (0, — «) — 9sin (0, — «)}]

m,= —10[17-2 + 688 (0, — o) — 304 sin 2(6, — «) + 324 sin? (6, — )
+ 2442 (@ — 07) — 1181sin 2 (a — 6) + 924 sin® (& — 605)] ,

p = 20[cos(a+y) — cos (0, + ) + 4-5sin (o +9)] .

For values of 6, < 0 substitute 6, = 0 in equation (35).

The values of 4, 7, m,, m, are plotted against 6, for different values of « with 6, = 0 in Figs.
13 to 16 ; p is plotted against (6, + v) for different values of (& + v) in Fig. 17. The compon-
~entsof 4, I, m,, m, due to the terms in 6, are plotted against 6; for different values of « in
Figs. 18 to 21 ; this component is only used for the very short time in which 67 > 0. The
value of p is plotted against (6, + ¢) for different values of (a + y) in Fig. 22.

The air forces d,, 14, m, will be dependent on «, V only.

Below the stalling speed




Above the stall

;- Ve
A VS2OCS,
dy == é-h.

m, will depend on the trim of the aircraft, and for the lack of more accurate information has
been assumed to be zero.

For landings just above the stall no serious error will be introduced in determining the maxi-
mum accelerations and penetrations by assuming the weight of the aircraft as reacted by the
air forces, although the subsequent motion may be seriously affected and the estimate of the
velocity of rebound would be conservative.

If the forward velocity on landing is small it would be sufficiently accurate to assume that
* the air forces were zero.

By .using the graphs plotted from equations (85) the subsequent solution of equations (30),
(31) and (32) for any particular condition of landing is very rapid. In considering the conditions
of landing the tension and mass of the sheet are included as well as the velocity and attitude of
the aircraft. :
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TABLE 1

Acceleration against Penetration in an I nfinite Landing Sheet for Various
Ratios of Maximum to Initial Contact Length—Gravity Fovces Absent

bV,

S S

f—o - 22.6ZVOg -

from equation (6)

[(1 +

b

Vo/2hag 2/1a2g> {

P
Vo/2iag (1 *

1P

bV,

* Vol2ag 21a%g

)]

. Values of f/22aV g
$ bVo/22a2%
Vo/Z/lng
0 1 2 3 4 12 24
0 1 1 1 1 1
0-1 09 0-9845 | 1-068 1-1505 | 1-232
0-2 0-8 0-936 1-064 1-184 1-296
0-3 0-7 0-8515 | 0-976 1-0735 | 1-144
0-4 0-6 0-728 0-792 0-792 0-728
0-5 05 | 0-5625 | 0-500 0-3125 | 0
0-6 0-4 0-352 0-088 — —
0-7 0-3 00935 — — —
0-8 0-2 — — — —
0-9 0-1 — — — —
1-0 0 — — — —
bVO/ZAClZg
0 1 2 3 4 6 12 24
Maximum contact length 1 1-732 | 2-236 | 2-646 | 3 3-605 | 5 7
Initial contact length
Fmlfo 1 1 1-076 | 1-188 [ 1-299 | 1-504 | 2.005 | 2.751
Efficiency, per cent 50 |683 |75-2 |76-7 77 | 76-54 |74-85 |72.7
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TABLE 2

Acceleration against Penetration in an Infinite Landing Sheet with Constant
Contact Length and Various Ratios of Gravity and Air Forces to Sheet Forces

Jo p— (1 — Ry [1 Sk } i
SO — — — 0 equation (19
b= =B [1 =L — 2 log fy | (equation (19))
Values of p/o/V 2
%
il
fo 0 0-1 0-15 0-2 0-25
0 1 1 1 1 1
0-1 0-9 0-936 0-946 0-94 0-937
0-2 0-8 0-793 0-785 0-771 0-751
0-3 0-7 0-675 0-661 0-640 0-620
0-4 0-6 0-569 0-551 0-529 0-509
0-5 0-5 0-467 0-451 0-430 0-411
0-6 0-4 0-370 0-355 0-337 0-320
0-7 0-3 0-275 0-263 0-249 0-235
0-8 . 0-2 0-182 0-173 0-163 0-154
0-9 0-1 0-091 0-086 0-081 0-076
1-0 0 0 0 0 0
k
0 i 0-1 0-15 0-2 0-25
JbulV 0-619 0-637 0-649 0-663 0-681
Efficiency, per cent 80-8 785 77-0 75-5 73-4
w
Wicd, 0-309 0-354 0-382 0-414 0-454
’ A
ny? | Wi, 0-808 0-872 0-907 0-943 0-979
V2 © ¢ '
Stress
’ ' 1. . . . .
Z%z‘ gdy?o 133 1-070 1-028 0-987 0-937
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Comparison of .Ainmft Weights and Fuselage Lengths

TABLE 3

. Gross Weight Length

Name of Aircraft Type (Ib) it & in.
Bristol Type 167 Mk. I Civil 279,000 177 0
Saro S.R./45 ‘ 290,000 146 0
Avro Lancastrian 65,000 76 10
Avro Tudor I 78,000 79 6
Avro Tudor II 80,000 105 7
Avro York 71,000 78 0
Handley Page Halton 65,000 73 7
Short Sandringham 56,000 86 3
Short Shetland 130,000 108 0
Short Solent 75,000 89 6%
Blackburn Firebrand Naval 15,671 38 11
De Havilland Sea Hornet 15,682 36 8
Fairey Firefly IV 15,615 37 11
Fairey Spearfish I 21,600 44 7
Hawker Sea Fury X 12,030 34 7
Short Sturgeon I 21,700 44 0
Supermarine Seafire 47 . 10,200 34 4
Supermarine Seafang 32 10,450 33 6%
De Havilland Vampire I Jet Propelled 8,578 30 9
Gloster Meteor 1V ' 14,460 41 0
Supermarine E.10/44 No data available 37 6
De Havilland D.H.108 No data available 26 9%
Hawker Tempest VI Military 12,250 33 104
De Havilland Mosquito 34 20,000 41 6
Westland Welkin ITA 21,892 44 1
Bristol Brigand 1 . 38,200 46 5
Percival Prentice I Trainer 3,790 31 3
Fairey Firefly Trainer 1 12,300 37 7%
Supermarine Spitfire Trainer VIII 7,400 31 4%
Reid & Sigrist Desford I 3,300 25 6
Airspeed Consul Feeder Transport 8,250 35 4
Bristol Wayfarer 37,000 " 68 4
De Havilland Dove 8,500 39 4
Miles Aerovan 5,400 34 8
Miles Marathon 16,500 52 1
Avro XIX 10,400 42 3
Vickers Armstrong Viking IB 34,000 65 2
Avro Lincoln 11 Heavy Military 75,000 78 8%
Handley Page Hastings 75,000 81 3
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F1e. 5. Vertical acceleration vs. penetration curves. Retardation by inertia forces only.
Contact length increasing linearly with penetration.
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Numerical example of Appendix II1.

2:0
Weight of aircraft 7000 Ib. Horizontal velocity zero.

0+003
0« 002

A
A

ieQ
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H
VERTICAL
ACCELERATION
-4g

+1 g,
F16. 9. Vertical acceleration, with penetration-.
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30. FT PENETRATION
Numerical example of Aﬁpéndix 111

7000 1b. Landing sheet 1-75 lb/sq ft. Initial horizontal

Weight of aircraft

Vertical acceleration vs. penetration with c.g. position.
velocity 160 ft/sec.

Cross tension 3600 1b/ft.

Fic. 11.

Initial vertical velocity 20 ft/sec.

32



o
® L)
3 \ %J
® [+1]
* ox \ 5
® ]
5}
x ¥
—i
° ]
P
- P2
=
x b=
2
\ A=
o
@ .80
£e
g 4+
7 &
4 g
A
®
o =
W @
A
' [S)
=
2 2
7 > * §
o) 8
> < é
2 ® =
>
. ®
b »®
x o
—
\X)‘ b3 o .
] &
e
o o o F o [ o "
8 o o O Iy 9 o b4 S
) S °. o 9, hrd o o o
o o 3 o ul 2 o o o
o« LN i wn ;3 3 « n I

20

IBT - | | /

\
NN

) ] // //

] - / 5 / //
ﬁidﬁoj——/ /// ] — e ///

8 oot — | _— // ////

L

o] IK:] =0 /
o} O o2 O3 O4
8

5 o6 o7 T 08

Q

L

F1c. 18. Variation of ratio of lift to velocity (L/AVW) with angles of incidence of nose (0;) and
central portion of keel (&) ; incidence of stern (f7) negative. Numerical example of Appendix III.
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Fic. 14, Variation of ratio of drag to velocity (D/AV W) with angles of incidence of nose (6.) and
central portion of keel (o) ; incidence of stern (07) negative. Numerical example of Appendix III.
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F1c. 15. Variation of ratio of nose-up pitching moment to velocity (M,/AVW) with angles of incidence of
nose (0) and central portion of keel () ; incidence of stern (f7) negative. Numerical example of Appendix IIL.
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F1G. 16. Variation of ratio of pitching moment to angular velocity (Mo /3.W) with angles of incidence of
nose (fz) and central portion of keel (&) ; incidence of stern (A7) negative. Numerical example of Appendix III.
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Fi1G. 17. Variation of penetration () with angles to horizontal of nose (A, + ) and central portion of
keel (ot 4 o). Numerical example of Appendix ITI.
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Fic. 18. Component of lift (Lo7/V W) due to a positive angle of
. Numerical example of Appendix III,

incidence at the stern (67)
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T
F16. 19. Component of drag (Der/AVW) due to a positive angle of
incidence at the stern (7). Numerical example of Appendix IIT.
a=0-50]
a=0-40
a= O=30:\
a= O”Q@\
a=0-20 \\
100 a=0°15{
M 0, a=0-10 \\
a=005. | —
AVWSO a=0
o ol o2 03 —

Fic. 20. Component of pitching moment (Mor/AVW) due to a positive

angle of incidence at the stern (07).

Numerical example of Appendix ITI.
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F16. 21. Component of pitching moment (M.607/AV W) due to a positive
angle of incidence at the stern (67). Numerical example of Appendix III.
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F1c. 22. Variation of penetration () with angles to horizontal of stern (67 + )
and the central portion of keel («+ 4 ). Numerical example of Appendix ITI.
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