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Summary. 
A study of steady lift interference effects in wind tunnels with several different wall conditions has 

been carried out using a three-dimensional resistance network. The methods by which the various 
boundary conditions were simulated on the network are described in detail; conditions included closed, 
open, slotted and perforated walls. The evaluation of interference parameters is described, and for a 
completely closed tunnel these parameters are compared with analytical results. Numerous other 
examples of a rectangular wind tunnel have been studied and the resultant interference parameters are 
tabulated. 

Section 

1. Introduction 

2. Mathematical Background 

2.1. Governing equation 

2.2. The small wing 

2.3. Boundary conditions 

2.4. Interference parameters 

3. Finite 

3.1. 

3.2. 

3.3. 

3.4. 

CONTENTS 

Difference Solution using Resistance Network 

Resistance network analogue to the finite difference equations 

Choice of mesh spacing 

Simulation of the wing 

Boundary conditions 

4. The Closed Square Tunnel 

*Replaces A.R.C. 29 237. 



CONTENTS cont&ued 
Section 

5. Different Tunnel Configurations 

5.1. Streamline curvature corrections in ideal slotted tunnel with solid side walls 

5.2. Perforated tunnel 

5.3. A typical tunnel 

5.4. Slots covered with perforations 

6. Conclusions 

7. Acknowledgements 

List of Symbols 

References 

Appendix 

Illustrations--Figs. 1 to 14 

Detachable Abstract Cards 

1. Introduction. 

Due to the presence of the walls of a wind tunnel, the flow around a wing is different from that in an 
infinite field. This difference between the two states of flow is termed the interference. One particular 
form of interference w~ll be discussed in this Report, namely the lift interference. 

A reduction in the magnitude of this interference can result from certain modifications to the tunnel 
walls; typical modifications are the introduction of longitudinal slots or perforations. Therefore, con- 
sideration has been given to developing a general method of studying lift interference on small wings in 
slotted and perforated tunnels. 

The lift interference in a wind tunnel can be analysed by determining the distribution of the perturbation 
velocity potential throughout the tunnel. If the analysis is restricted to linearised compressible flow, the 
distribution of the perturbation velocity potential is governed by the Laplace equation in three dimensions. 
Any particular problem can then be analysed by modelling the small lifting wing at the centre of the tunnel 
with boundary conditions set on the tunnel walls to simulate the type of wall under consideration. The 
following wall conditions commonly occur; closed and open walls, ideal slotted walls, perforated walls 
and slotted walls with viscous effects. 

In an earlier report ~1) ideal slotted wall interference effects in the wake of an oscillating wing were 
studied by an electrical analogue of a linear partial differential equation in two dimensions. The basis of 
the analogue is that the network of resistances has the same equations as the finite difference form of the 
governing equation. From this previous study, information concerning the steady upwash interference 
in the plane of the wing for slotted-wall tunnels was obtained from the two dimensional solution. But 
further information concerning the streamline curvature, or streamwise gradient of interference upwash, 
needs a three-dimensional solution on the resistance network. A three-dimensional network also permits 
the representation of perforated and non-ideal slotted boundaries. While the method of representing 
ideal slotted boundaries is the same as for the two-dimensional analysis, the perforated and non-ideal 
slotted boundaries require more complicated techniques involving a step by step method. 



The first part of this Report describes the resistance analogue and the techniques required to represent 
the various boundary conditions. Then the closed tunnel is considered in detail and the accuracy of the 
network method is assessed by comparing the analogue results for the closed tunnel with certain analytical 
results. This is followed by a detailed examination of square tunnels with various wall conditions. 

2. Mathematical Background. 

2.1. Governing Equation. 

The governing equation for linearised compressible flow of Mach number M is, 

"-2"82q ~ 82~ b 02~ M 2 / '02~ -_ 02~"~ 
(1 - -M)~x2  +-~y2 +-~-z2 = ~ ~-O--~+2Ua--~t ) (1) 

where ~b is the perturbation velocity potential and x, y, z are the Cartesian co-ordinates, Figure 1. For 
steady flow the equation reduces to 

2 2 2 84 ,  a4 ,  a4 ,  (1-M2)T -x  = 0 (2) 

By the transformation 

x = ½ flhX, y = ½hY, z = ½hZ (3) 

where fl = (1 -M2)  ~ and h is the height of the tunnel, equation (2) reduces to the Laplace equation 

8X 2 t--~-~+ ~ = 0 (4) 

In the following analysis the interference effects are measured by the difference between the perturbation 
velocity potential within the tunnel, tk, and for the same model in a field of infinite extent, q~,,. The difference 
between these two quantities is called interference velocity potential. 

= (5) 

Since both ~b and ~,, satisfy the Laplace equation, ~b~ also satisfies the Laplace equation. 
The results are to be presented in terms of the interference upwash velocity 8~JOz and the streamline 

curvature which is proportional to 02d~jOxSz, and therefore the interference potential must be determined 
to a good accuracy. Moreover the interference potential is often far smaller than ~b and q~,,, and cannot 
be obtained to a sufficient accuracy by solving for these and taking the difference q~- ~bm. 

Thus an alternative method is adopted whereby the accurate values of ~i are obtained from two 
successive solutions of the Laplace equation. The first analysis is in terms of ~b, and from this solution 
and a knowledge of the values of ~,, on the boundary, the boundary values of ~b, can be calculated from 
equation (5). These values of ~b~ are then set as boundary conditions for a second solution of the Laplace 
equation. The boundary conditions applied in both solutions are shown in Figure 6. The accuracy of this 
method was discussed in Reference (1). 

In practice two iterations, i.e. four solutions, have to be obtained, because of initial approximations 
in representing the Small lifting wing, (see Section 2.2). Initially the value of ~b on the small arc surrounding 
the wing is set equal to the value of q~,, at these points. Once an approximate distribution of ~bi has been 
obtained for an analysis in terms of ~bi, then a more accurate value of ~b = ~b,, + ~b~ can be set around the 
wing. 



In this study only rectangular tunnels are considered having a height h and breadth b. Ideally the 
tunnel should extend from minus infinity to plus infinity, but when obtaining a solution using a finite 
difference method it is impractical to represent infinity. Therefore a finite length of tunnel, - 8 ~< X ~< 8, 
was considered. On the upstream and downstream boundaries, the boundary condition to be enforced 
is 34,/OX = 0. The adequacy of this assumption is discussed with reference to a particular example, 
Section 5. 

2.2. The Small Wing. 
A small wing is positioned at the origin of the tunnel, Figure 1. It is represented as a vortex doublet 

starting at the wing tip and extending infinitely far downstream. The perturbation velocity potential of 
this vortex pair can be expressed as, 

 scLz ( x ) 
4 , , - - 8 r c ( y 2 + z  2) lq(x2+fl2y2+flZz2)~ (6) 

In terms of the co-ordinates X, Y and Z, 

_ usc z ( x ) 
4,,. 4nh(y2+z2) \ lq  (XZ+ y 2 + z 2 )  ½ (7) 

Equation (7) indicates that in the wake of the small wing (X/> 0, Y = Z = 0), 4, takes an infinite 
value. This cannot be satisfied directly with a finite difference method, and therefore values of 4,,. are 
calculated for a small arc surrounding the wing, and are set on the equivalent nodes of the resistance 
network. Figure 2 indicates the shape of the arc on which the potentials are set. 

2.3. Boundary Conditions. 
A variety of boundary conditions occur on the walls of wind tunnels; they are each described below, 

and are then formulated in mathematical terms for rectangular tunnels. 

(i) The open boundary. On the open, or free, boundary, the pressure remains constant and equals the 
undisturbed pressure far upstream. The assumption is made that this condition may be linearized and 
applied as if the free boundaries are not distorted by the presence of the wing. Thus the perturbation 
velocity potential is zero, i.e. 

4, = 0. (8) 

(ii) The closed boundary. On a closed wall there is no velocity component normal to the wall; thus 

04,~On = 0 (9) 

where n is the outward direction normal to the wall. Hence for a rectangular tunnel the conditions on the 
side walls are that O4,/OY = 0 and on the roof and floor O4,/OZ = O. 

(iii) The ideal slotted boundary. For an ideal slotted wall, as an alternative to applying separate con- 
ditions for the slots and slats, an equivalent homogeneous condition, t2) 

O4,/Ox + K324,/OxOn = O, (lo) 

is often used. This can be integrated to give 

and 
4,±K O(a/ay = 0 on the side wall y = ±½b 

4,-k K t~4,/Oz = 0 on the roof or floor of the tunnel. 



Previous studies using the resistance network (1) have indicated that for four or more slots the homo- 
geneous condition is a good approximation. 

By the transformations of equation (3), the homogeneous conditions become 

~b + F aq~/a I Y[ = 0 

q~+F a4 , / a ! z l  = 0 
(11) 

where F = 2K/h is a non-dimensional slot parameter. 

(iv) The perforated boundary. Perforated wind-tunnel walls have a large number of usually circular 
openings, and it is assumed that the outflow and pressure drop across the boundary are proportional. 
A linearised approximation leads to the equation, 

q P 0n = 0 (12) 

where P is the porosity parameter. The transformation of equation (3) leads to the conditions 

a4a/Ox+(f/P) Oga/OlY I = 0 on IYI = b/h 
(13) 

Odp/dX+(fl/P) 349/alZ I = 0 on !Z] = 1 

(v) The non-ideal slotted boundaries. If a slotted tunnel wall has viscous effects within the slots, the 
homogeneous conditions for ideal slotted and perforated boundaries can be combined to give (3~ 

O(o/aX + F o2cb/axolYl + (3/P) a4VolYI = o 
(14) 

Odp/aX + F ~2dp/dXO[ZI + (fliP) a /aIzl = 0 

2.4. Interference Parameters. 
The interference effects in rectangular tunnels are expressed approximately in terms of the following 

four parameters. 
(i) The local interference upwash, 60, at a small wing is defined by 

60 - 2b ( O q ~  
USCz OZ ) o' (15) 

where (Oq~JOZ)o at the origin is evaluated from the analogue solution by numerical differentiation using 
a three-point finite-difference formula. 

(ii) The distribution of the interference upwash along the axis of the tunnel, 6, is expressed as, 

USC------~z \ 6Z ) ' (16) 

where (3~bJOZ) is evaluated on the axis of the tunnel Y = Z = 0. 
(iii) The third parameter, 6o is defined by 

a f  ° 
ao = --~ a(x) dX, 

- -  0 0  

where 6(X) is defined in equation (16). 
The evaluation of this parameter is considered in the Appendix. 

(17) 



(iv) The final parameter, 61, denotes the steady streamline curvature, 

di 1 = 4b ( ~32¢i ~ 
USC----~ k~XeZ / o (18) 

The quantity (~2~gi/~X~Z) is evaluated at the origin using a finite-difference expression. 
Generally wind tunnels of any shape are expressed approximately in terms of three parameters 6o, 6 o 

and 6 1  . 

3. Finite-Difference Solution using Resistance Network. 

General analytical solutions to the type of problem specified in the previous Section are not available; 
but solutions can be obtained by the numerical technique of finite differences. This technique requires 
that the governing equation and the boundary conditions are expressed in finite-difference form resulting 
in a large number of simultaneous equations. The solution of these equations for a three-dimensional 
field can either be obtained with a digital computer or by means of a pure resistance analogue computer. 
Since a large number of solutions is required for each tunnel shape, the analogue computer method is 
selected. 

The analogue computer has been used previously to investigate two-dimensional problems of slotted- 
wall interference, and its extension to represent three-dimensional problems requires a more complex 
resistance network together with additional techniques to represent the boundaries. Since the analogue 
computer solves instantaneously the finite-difference equations, the convergence of any iterative tech- 
niques required on the boundari6s can be traced. 

3.1. Resistance Network Analogue to the Finite Difference Equations. 
The Laplace equation, 

~2~)/~X2 + ~2~)/~y2 .-F ~2~)/~Z2 = 0 (4) 

can now be written in finite difference form for the irregular Cartesian mesh shown in Figure 3a as 
follows : 

c3X2 l - ~ - i + ~ - ~  = d l  + d-----3 dl F d 3 ,/ (19) 

2 ~2-~bo ¢4-~b0 2 (q~s--~bo ¢6--¢0"~ = 0  
-F d2+d~4 d------~ ~ d4 + d - ~ ,  \ d5 ~ d6 ] 

If a resistance network is constructed by inserting resistances between terminals corresponding to the 
nodes of the finite-difference net, Figure 3b, then the condition that the total current entering node, 0, 
is zero leads to the equation, 

V I - V o  V2-Vo Vs-Vo V4-Vo Vs-Vo V6-Vo 
R, F R ~  + R ~  + R~-~-- ~ R ~  -t R----~ = 0 (20) 

For this electrical equation to be analogous to the finite-difference equation, each resistance must be 
chosen so that it is proportional to the mesh spacing and inversely proportional to the cross section 
that it represents, Figure 3c. For example, 

R, = G [4d1/(d2 +d4)(ds +d6)l 

R5 = G [4ds/(dl + d3) (d2 + d4)] 
(21) 



where G is a scaling factor chosen to give resistances of suitable magnitude. 
If a similar method of derivation is followed for any other node. identical magnitudes are obtained 

for each resistor when considering the condition of zero total current for nodes at either end of a resistor. 
When these resistance values are substituted in equation (20) and the whole equation is multiplied 

through by a constant proportional to the volume represented by the node 0, 8G/(dl+d3) (d2+d4) 
(d 5 q- d6) , then the resultant equation, 

dr+d3 \ dl q d3 + d-f-~ d2 

2 (Vs-Vo V6--Vo'~ 
+d-~d6 \ ds + d6 ,] = 0 

V4- Vo "~ 
- - 4  d4 ) 

(22) 

is analogous to the finite-difference equation (19). Hence the velocity potential and the electrical potential 
are analogous quantities, thus 

V = G'q~ (23) 

where G' is a suitable scaling factor. 
This single network can be used both for solutions in q5 and in q~i, since both satisfy the Laplace equation 

and refer to the same size of field. 

3.2. Choice of Mesh Spacing. 
For the particular problem of the three-dimensional wind tunnel the mesh is designed to model a 

field with the breadth approximately equal to the height, extending a distance of four times the height 
upstream and downstream of the point wing. Ideally a uniform mesh spacing should be provided through 
the field to minimise the truncation error, but this is uneconomical in the cost of the equipment, and there- 
fore graded nets are adopted. Not only must the mesh be designed to cover the entire field, but also the 
mesh spacing on each cross section must be arranged to provide a fine mesh around the point wing with 
a gradual increase in mesh interval towards the boundary. 

On a plane X = constant the smallest mesh interval is taken to be h/32, with the largest interval of 
h/8. Figure 4a illustrates the mesh spacing for a plane X = constant ; in particular the method of con- 
tinuing all mesh lines through to the boundary should be noted. Due to symmetry only one quarter of 
the tunnel need be modelled, with symmetry about the plane Z = 0, and antisymmetry about the plane 
Y = 0 .  

A similar form of grading is adopted along the length of the tunnel. In the neighbourhood of the point 
wing the minimum mesh spacing is fib~32, whereas, towards the ends of the tunnel, the mesh spacing is 
increased to 2flh. This spacing is arranged so that there is a close mesh spacing in regions where a rapid 
change in distribution of ~b occurs, whilst a wider spacing is used in regions with a slow change in the 
function, the spacing is indicated in Figure 7. 

3.3. Simulation of the Wing. 
The point wing is represented on each cross section by applying to nodes surrounding the axis 

Y = Z = 0, voltages equivalent to the values of q5 m at those points. Figure 2 indicates the nodes to which 
the potentials are applied to an accuracy of ±0"01 per cent of the maximum potential. After this initial 
experiment a second experiment is performed in terms of ~b i. An improved representation of the wing 
can then be achieved by applying equivalent to q~m + ~bi to the nodes surrounding the axis. 

3.4. Boundary Conditions. 
Of the five types of boundary condition listed in Section 2.3, four involve the normal slope O4~/?n. 

Therefore consideration will be given first to the method of setting a specified slope: then the method 
of representing each of the boundary conditions will be considered in turn. 



Take a typical node 0 positioned on the boundary Z = constant where the condition to be satisfied 
is that (&~/~Z)o is specified. Reference to Figure 5 indicates that a fictitious node, 5, occurs, which is 
positioned at a distance d6 from node 0. The function at node 5 can be replaced by the expression, 

45 = ~b6 + 2d6 (¢3¢~/0Z)o. 

The Laplace equation at node 0 then becomes 

a ~ ep 2 2 ,~ 
0 $ ~ ~b 2 (~bl-~b0 ~_~b3-$0) (24) 

0X 2 4-~-Y-5+~ -~ = d 1 +d~ \ dt d a 

+ d - - ~ 4 \  d2 ~ d4 + ~  ~66 +d6 ~-Z 0 = 0  

If on the resistance network the resistor R5 is replaced by an alternative resistor R' with a voltage U 0 
applied at its end, then 

V I - V o  V2-Vo Va-Vo  V4-Vo V 6 - V  o U o - V  o 
R ~  ~ R-----if-- ~ R ~  ~ R ~  F R ~  + R - -  = 0 (25) 

The resistors are chosen in the same manner as before to represent the real part of the tunnel; for example, 

RI = G [4dl/(d2 +d4) d6] 
and 

R 6 = G [4d6/(d 1 + d3) (d 2 + d4)]. 

On substituting for these values and multiplying through by the term proportional to the volume, 
8G/(dl + d3) (d2 + de) d6, the following equation is obtained : 

2 V3-  Vo ) 2 ( V l - V o  4 V,~-Vo~ d, ( v2-v° 
dl+d3 \ 

2 ( V 6 - V o )  8G Uo-Vo 
+-~6 d6 q (dl +d3)(d2+d4)d6 R~--7--- = 0 (26) 

Equations (24) and (26) are of similar form, and since V = G'~b, the final terms of the expression can be 
equated to give, 

Uo-Vo (dl+da)(d2+d¢) G'(Odp) 
R' = 4 ~- ~-~ (27) 

0 

A similar expression can be derived when (~/OY) is specified on a boundary Y = constant. 
If the resistance R' is selected so that U o is very much greater than Vo, then during the initial setting 

of the network the voltage Uo can be applied to be proportional to (Odp/OZ)o. Before the final measurements 
are taken, the voltage Uo must be readjusted so that U o -  Vo is proportional to (Oq~/aZ)o. However the 
voltage V o is generally less than 1 per cent of Uo, and therefore the readjustment is trivial. 

(i) The open boundary. On the open boundary the condition that the perturbation velocity potential 
is zero can be applied to the network directly by setting zero voltage on the nodes at the boundary. 

(ii) The closed boundary. A closed boundary on the plane Z = constant is described by the condition 
O~b/OZ = 0. Reference to equation (27) indicates that this condition can be satisfied automatically by 



omitting the boundary resistors, R, and leaving the boundary nodes free to take their own voltage. 

(iii) The ideal slotted boundary. If the equivalent homogeneous condition is to be satisfied on the tunnel 
roof, then 

4)o + F(O4)/8Z)o = 0 

o r  

( 8 4 ) / S Z ) o  = - 4 )o /V  = - V o / V 6 '  

With this substitution equation (27) becomes, 

(Uo - Vo)/R' = - (d l  + d3) (d2 + d4) Vo/4GF 

Now if the resistance R' is selected so that 

(28) 

1/R' = (d 1 + ds) (d2 + d4)/4GF , (29) 

then this condition will be satisfied by setting the voltage Uo = 0. 
Therefore the homogeneous condition can be satisfied on the tunnel roof by connecting to every 

boundary node a resistance calculated according to equation (29) and applying zero potential to the 
other end of these resistances. An identical method is adopted to satisfy the homogeneous condition 
on the side wall Y = b/h. 

(iv) The perforated boundary. The perforated boundary, unlike those described previously, cannot be 
represented automatically on the resistance network, but requires an iterative method. By writing the 
boundary equations for the roof Z = 1 as 

e 4 ) / e z  = - ( P / B )  e 4 ) / o x ,  (30) 

it becomes apparent that a step by step method can be devised whereby trial values of O4)/dZ are enforced 
on the boundary by setting the appropriate voltage Uo to the resistors R' to satisfy equation (27); from 
the resultant potential distribution 04)/8X can be calculated., and the trial values of 04)/8Z can be adjusted 
to satisfy the condition of equation (30) at all the nodes on the boundary. Thus, by iteration a porous 
boundary can be modelled. 

(a) Resistors, R', are connected to each boundary node of value inversely proportional to (dl + d3) 
(d2 + d4). These resistors are chosen to be of high value compared with the network resistors which ensures 
that the voltage Uo is of an order higher than the voltage Vo (Uo/Vo > 100). Thus in equation (27) Vo 
can be neglected and the voltage Uo is directly proportional to the slope (34)/8Z)o. 

(b) Once the trial values of (84)/3Z)o have been enforced on the boundaries of the network, the dis- 
tribution of the function 4) throughout the tunnel is given immediately by the electrical voltages. However, 
until the boundary conditions have been satisfied, only the potential distribution on the plane Z = 1 
need be measured, and from these readings the term (04)/OX)o dan be calculated. 

(c) The term (O4)/OX)o is calculated from a suitable finite-difference formula. In regions where the mesh 
spacing is irregular, three-point formulae are devised so that the first term of the truncation error is h 3. 
For example, to calculate (O4)/aX)3 at the node X = 3/16 with values of the function ~b3, and 4)2 at 
X = 2/16, and 4)~ at X = 5/16, then 

(04)/0X)3 = (1/6h) (4)5 + 34)3 -44)2). (31) 

(d) The boundary condition is satisfied when, at every node on the boundary plane Z = l. 04)/8Z 
applied to the network in the manner described under (a) equals -(P/fl) 84)/OX. 



The convergence of this method is discussed with reference to examples in Section 5.2. An identical 
method is used for the perforated side walls. 

(v) The non-ideal slotted boundary. In representing the slotted boundary with viscous effects a technique 
similar to that described for the perforated boundary is adopted. Since equation (14) can be expressed as 

c3-Z= B \ ~--X+ ~ - - ~ )  (32) 

on Z = 1, trial values of (Oc~/OZ)o can be applied to the network as the equivalent voltage Uo ; then from 
the resultant voltage distribution the right hand side of the expression can be calculated from finite 
difference expressions. The steps to be followed in satisfying this boundary condition on the resistance 
network are identical to those listed in the previous sub-section, apart from the need to record more 
voltage readings from which to evaluate the second derivative. Convergence of this technique is discussed 
in Section 5.3. 

4. The Closed Square Tunnel. 

For the particular problem of a square tunnel with closed boundaries certain analytical results are 
available, and by comparing the analogue results with the analytical results an assessment can be made 
of the reliability with which the resistance networks represent three-dimensional tunnels. The analytical 
results of Ref. 4 are for tunnels of infinite length having all four walls closed and a small wing positioned 
at the centre of the tunnel. 

The tunnel represented on the resistance network extended in the streamwise direction between the 
limits X = ~-8. On the upstream and downstream boundaries, the condition enforced was ~34)/0X = O. 
On the tunnel walls and roof the closed boundaries require that O43/OY = 0 or Oc~/c~Z = 0, and these 
conditions were satisfied as described in Section 3.4. The small wing was modelled by applying potentials 
to the arc surrounding the wing, and the four separate solutions were obtained as outlined in Section 3.3. 
The steps required in obtaining the solution are outlined in Figure 6. 

From the final solution in q~i, the distribution of ~b~ throughout the tunnel was recorded. The analytical 
solution for the interference potentials within the tunnel has not been evaluated, but certain interference 
parameters are readily calculated to permit the following comparisons. 

(a) The distribution of ~ along the axis of the tunnel is known from Ref. 4. A comparison with the 
analogue results, Figure 7, indicates that the finite-difference solution of the resistance network gives 
satisfactory results without serious discrepancies due to the limitations in the streamwise direction. The 
analytical and analogue results for 60 and 61 are compared in Table 1 and an estimate of the expected 
accuracy is included in the table. 

TABLE 1 

~0 

Analytical Analogue Estimated Accuracy 

+0.1368 +0-134 ±0'005 

+ 0.2401 + 0.245 :k 0.01 

(b) The distributions of ~b and ~b i in the plane X = 0 can be determined from a two-dimensional 
finite-difference solution on a resistance network as described in Reference 1. Comparison of the three- 
dimensional solution in the plane X = 0 with a two-dimensional solution using 64 x 64 mesh intervals 
demonstrated that the differences in (b were less than 0.5 per cent of the maximum value of q~ set on the 
arc around the wing. 

10 



(c) Information is also available concerning the perturbation velocity potential at large streamwise 
distances. Far upstream ~b should vanish and on the upstream boundary of the resistance network at 
X = - 8 its values were zero apart from a very small random error. 

In the distant wake the potential distribution should be double that at the wing. When the results 
on the plane X = 8 are compared with accurate values from the two dimensional solution on the fine 
network, no error greater than -+-0.2 per cent of the maximum potential is found to occur. This confirms 
that the finite analogue is adequate. 

From this detailed examination of the closed square tunnel it is apparent that a satisfactory analysis 
of the interference effects in steady flow in three-dimensional tunnels can be achieved. Nevertheless, 
when other tunnel boundary conditions are applied further checks are essential. 

5. D!fferent Tunnel Configurations. 

Various problems with different wall conditions have been studied to give information concerning 
tunnels of practical interest. For each problem the parameters 6 o and 61 are tabulated and diagrams of 
the distribution of the interference upwash along the axis of the tunnel are included. Reference is also 
made to any practical difficulties encountered in the satisfaction of the boundary conditions. 

5.1. Streamline Curvature Corrections in Ideal Slotted Tunnel with Solid Side Walls. 

The first study was aimed at checking the validity of an approximate theory for a tunnel with ideal 
slotted roof and floor and solid side walls. An approximate expression for the variation of the streamline 
curvature with the slot parameter F has been suggested in Reference 5, and was evaluated for a tunnel 
with h/b = 0.89. The reliability of this result is questionable because in the limiting ease of the open roof 
and floor the result is found to differ from the known analytical value. Therefore the problem has been 
analysed in detail on the resistance network. 

With the resistance network representing the rectangular tunnel, three intermediate values of the slot 
parameter F were investigated with (1 + F)- 1 = 0.35, 0.65, 0.85, together with the limiting values 0 and 1 
for the closed and open boundaries. Three sets of boundary resistors, R' were required, one for each value 
of F; for the closed tunnel no resistor is required whilst for the open tunnel the function q~ = 0 is set on 
each of the boundaries. With the ideal slotted boundaries the operation is automatic, but two rounds 
of experiments in both q~ and ~bl were required. 

A list of the values of 6o and 6, is to be found in Table 2, and the distribution of 6 along the tunnel 
centreline is indicated in Figure 8. In Figure 9 6o and 61 we plotted against (1 +F)-1 and the values 
of 61 are compared with those recorded in Reference 5. It is seen that the error in the solution of Reference 
5 increases as (1 +F)-1 tends to 1. In the analogue solution the estimated accuracy of 6, is +0.025, the 
reduced accuracy arising because less accurate resistors were used. 

TABLE 2 

(1 +F) -x 60 61 

0 

0"35 

0"65 

0"85 

1"0 

+0-130 

+ 0"037 

-0.045 

-0"100 

-0"145 

+0:24 

+0"13 

+0"01 

-0"12 

-0"22 

11 



5.2. Perforated Tunnel. 
Tunnels are sometimes constructed with all four walls perforated, and therefore a series of experiments 

was carried out with a range of values of the porosity parameter fl/P. The results quoted at the end of this 
Section refer to a tunnel having a square cross section with equation (12) satisfied on each wall. 

Only one set of the boundary resistors R' was required for all the values of ~/P, and to these resistors 
estimated values of the term Oct~On were applied as voltages U o. Since convergence to the correct boundary 
condition cannot be achieved automatically, a step by step method has to be adopted. In this step by step 
method the conditions are first satisfied along the centreline of the roof  of the tunnel, and then lines of 
nodes with X = constant are considered. If a record is kept of each trial, the manner of convergence 
becomes clear, between ten and twenty-five adjustments being required. 

Table 3 records values of bo, and b l for a range of values of fl/P. These results are also plotted as curves 
against (1 + fl/P)-1 in Figure 11. Included on the plot of 60 are values obtained for the circular tunnel 
with porous boundaries; the similarity between the square and circular tunnels is very marked. 

TABLE 3 

fl/P ~o ~l 

09  

3"0 
1"0 
0"7 
0"3 
0"17 
0 

+0.1340 
+0.06621 
-0.01996 
-0.05378 
-0"06988 
-0.09697 
-0.1381 

+0.2416 
+0.216 
+ 0.0964 
+ 0.06436 
- 0.0364 
-0.11236 
- 0.2080 

In addition Figure 10 shows the variation of b along the tunnel for each value of fl/P. The estimated 
accuracy for 6o is ±0-01 and for 61 ±0.02. These are based on a comparison of initial results when the 
boundary conditions were only approximately satisfied, and the final solution when the boundary con- 
ditions were satisfied as closely as possible. The differences in bo and 6t between these pairs of solutions 
were noted and used to assess the probable accuracy. Generally the finite length of the tunnel appeared 
to have little effect on the results, for even if the tunnel length was halved similar results were obtained. 
However for the smaller values of fl/P, the magnitude of the parameter  c5 varied rapidly downstream 
from the wing in the region 2 < X < ^~'.. Since there is only a coarse net in this region, the accuracy of 
the results within this region for fl/P = 0.17 and 0.30 are only approximate. 

5.3. A Typical Tunnel. 

In a further study the resistance network was used to represent the NPL 25 in. by 20 in. tunnel 6. The 
tunnel was assumed to have a square cross section with closed side walls but with the following conditions 
on the roof and floor. 

(1) Ideal slotted tunnel with F = 0.1073 on the roof. 
(2) Non-ideal slotted tunnel with F = 0"1073 and flip = 1-0 on the roof. 
(3) Perforated tunnel with F = 0 and ~/P = 1.0 on the roof. 
No new techniques were required for cases (1) and (3), but for cases (2) the boundary condition to be 

satisfied is 

~3dp/OZ = - (P/fl) (Oc~/OX + FO2c~/OXOZ). (32) 

The step by step method is exactly the same as that used for the perforated boundary and described 
in Section 5.2. Though the convergence requires a similar number  of steps, considerably more numerical 
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work is required in evaluating the right hand side of equation (32). 
Values Of 6o and 61 are recorded in Table 4, and included in this table are analytical values taken from 

the curves in Figure 3 in Reference 7. In Figure 12 the distribution of 6 is plotted for each of these three 
cases. 

TABLE 4 

Resistance Network Analytical 

Case 60 61 6o 

1 -0"09655 

2 +.01752 

3 +.00204 

-.1268 

+.1584 

+.1356 

-0 .10 

+ 0"018 

+ 0'010 

5.4. Slots Covered with Perforations. 
Many slotted tunnels are being tested with the slots covered by perforations, and therefore a series of 

tests were carried out to determine the effect of the porous sheet covering slots on the interference para- 
meters of slotted tunnels. One particular tunnel was studied with a single centrally placed slot on the 
centreline of the tunnel roof, the width of the slot was one eight of the breadth of the tunnel. 

The equation to be satisfied on the open portion of the slot was 

aek/ox + (B/P) (ock/oz) = o, (13) 

with ~/P taken as 0, 0.3, 0.7, 1.0, 0% where fl/P = 0 is equivalent to a tunnel with a slot without any 
perforations and fl/P = c~ is equivalent to a totally closed tunnel. 

The occurrence of a slot introduces a singularity at the edges of the slot. An automatic method of 
representing the singularity is possible by modifying the values of the resistance at the edge of the slot 
as described in Reference 8. Then the procedure for satisfying the porous condition is the same as for the 
perforated boundary, described in Section 5.2. 

In Figure 14 the results for 60 and 61 are plotted against (1 +fl/P)-1. Also the distribution of 6 along 
the tunnel axis is recorded in Figure 13. These results indicate that the presence of the perforations 
change the interference pattern to be very close to the fully closed condition even with a low value of 
~/P. 

6. Conclusions. 
This Report has shown that the lift interference effects in steady flow, in wind tunnels with various 

boundaries can be analysed thoroughly using a resistance-network analogue computer to solve the 
finite-difference equation. Detailed results have been presented for a series of typical tunnels and there 
is no reason why any wind tunnel with slotted or perforated boundaries cannot be analysed. 

As an alternative to using a resistance network an attempt is being made to programme the work for 
a digital computer. This becomes possible since a new numerical technique called Dynamic Relaxation 1 o 
can be used as an alternative to the analogue solution of the Laplace equation in three dimensions. 
Preparatory work on the topic is showing promise. 

Generally the accuracy of the results from the analogue computer have been adequate. Greater pre- 
cision will be possible from a digital solution but there will still be the inherent error of the finite difference 
approach. In the particular case of the evaluation of 6 o ' the limited accuracy is primarily due to the 
finite difference error. Because the practical size of the resistance network and the available time on a 
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digital computer are restricted, any appreciable reduction in the finite-difference mesh spacing is not, 
at present, possible. 

Future work on the analogue computer will include an investigation into oscillatory, incompressible 
flow. Equations describing this flow have real and imaginary parts which will satisfy the Laplace equation. 
Separate three-dimensional resistance networks will be used for the real and imaginary parts of the 
velocity potential with interreacting boundary conditions. 
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APPENDIX 

Evaluation o f  6 o. 

Since this project commenced the importance of an interference parameter, 6o, has become apparent, 9 
where, 

i f  ° 60 = 6<x) d x  
- -  x 

(A.l) 

The determination of 6o involves integrating 6 upstream to infinity and it is therefore desirable to know 
accuratelx the values of 6 at planes far upstream. When the network was designed it was only thought 
necessarx to continue far enough towards minus infinity to give good results of ~5o and 61 at the wing. 
Hence there is some difficulty in evaluating 61~ because of the grading of the network far upstream. 

Since part of the integral is between minus infinity and the last plane represented b3 the resistance 
network, it is not sufficient to calculate 60 only from the area under the curve between this plane and the 
wing. For this reason the values of ~ were fitted to the following function between the wing and minus 
infinity : 

6 = ( A o + B  1 sin 0) cos20 (A.2) 

The coefficients A o and B1 took different values for each mesh interval and also were arranged to 
satisfy both end values. 

The closed tunnel was considered in detail. Initially analytical solutions of 6 at the analogue mesh 
intervals were used to calculate 6o and the result obtained in this was very close to the analytical value 
of 6'o. Thus, it was proved that this method of evaluating 6'0 is satisfactory. However, when the analogue 
results were substituted in the formula, there was poor agreement between this value of 6'o and the 
analytical solution. 

Since the poor result was due to the mesh spacing far upstream an alternative solution with a different 
mesh spacing was used. The length of the tunnel was extended to X = - 10 and more mesh points were 
provided in the region far upstream. 

A network of 5 x 5 x 10 was used, thus a coarser mesh spacing was adopted in the Y and Z directions 
and in the X direction near to the wing. Therefore inaccuracies in 60 and 61 occurred; 6 o was nearly 
10 per cent in error. However a comparison of the distribution of 6 with the analytical solution of Figure 7 
shows that with the new mesh spacing, the zero value of 6 occurred at the correct position of X. 

When these results were fitted into equation (A.2) a satisfactory value of 61~ ~vas obtained. The ~alues 
are shown in Table A.1 and compared with analytical and previous analogue results. 

TABLE A.1 

Analytical solution 
Original mesh spacing 
New mesh spacing 

6o 

Closed tunnel Open tunnel 

-0.0361 
-0.0179 
-0.0372 

+0.0814 
+ 0.0807 

Further work is being carried out into the evaluation of 60 for porous and non-ideal slotted tunnels. 
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