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Summary. 
Three planforms, rectangular, delta and symmetrical tapered, have been selected for combined 

theoretical and experimental aerodynamic research. Numerous linearized theoretical methods have been 
applied to each planform in oscillatory pitching and plunging motion at subsonic, sonic and supersonic 
Mach numbers. After a brief review of available theories, the calculated and measured data are presented. 
For each wing, separately, the lift and moment derivatives are studied as functions of Mach number, 
frequency parameter and pitching axis. It is found possible to link results from the various theories 
approximately by continous curves against Mach number for fixed values of the frequency parameter. 
Satisfactory comparisons with experiment are found in purely subsonic or supersonic flow, but in the 
transonic region uncertainties of tunnel-wall interference may mask the true discrepancies due to wing 
thickness and other non-linear disturbances. With the aid of exact or analytical theories for the particular 
wings, seven general theoretical methods have been appraised. Finally an attempt is made to review the 
status of linearized theory in the narrow transonic range where effects of frequency and Mach number 
become very large. 
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1. Introduction. 
The theoretical prediction of oscillatory wing loading is a necessary preliminary to flutter calculations. 

Generalized aerodynamic forces in rigid and elastic modes must be determined theoretically to ensure 
adequate flutter margins. In most applications linear theories are used, and the accuracy of such methods 
has been constantly tinder review. This has led on the one hand to 1-nathcnlatical or numerical improve- 
ments within the linear framework, and on the other to comparative measurements. For practical reasons 
experimental aerodynamic forces are largely restricted to rigid modes, and when comparisons are success- 
ful greater reliance can be placed on the theoretical derivatives for elastic modes. 

There is reasonable confidence in calculations by linearized lifting-surface theory as applied to 
oscillating wings at low subsonic and high supersonic speeds. Moreover, it is shown in Ref. 1 (Acum and 
Garner, 1961), that for rigid pitching modes the derivatives are fairly well predicted by linear theory at 
Mach numbers below 0.8 and above 1.4; in the sub-critical range discrepancies between theory and ex- 
periment tend to be systematic, and in the upper supersonic range they can often be reduced to acceptable 
limits by a simple correction for wing thickness. Experimental information for lower supersonic speeds 
is scanty, while that in the upper subsonic and transonic range may be subject to uncertainties in tunnel- 
wall interference and restricted to rather low values of the frequency parameter. At the same time the 
assumptions of linear theory become increasingly restrictive as sonic Mach number is approached; 
moreover, there are important effects of wing thickness and shock waves beyond the scope of oscillatory 
theories. 

Nevertheless, a firm theoretical basis is necessary to bridge the transonic speed range. However re- 
strictive and difficult linear theory may become, it retains some significance. A preliminary objective for 
any understanding of the behaviour of transonic oscillatory forces is the establishment of complete 
theoretical curves of pitching derivatives against Mach number for a range of fixed values of the frequency 



parameter. The purposes of the present investigation are to discover to what extent this can be achieved 
with particular reference to general theoretical methods, and to examine the relevant experimental data. 
The three planforms of Fig. 1, selected from the NPL experimental programme, cover many facets of the 
problem. Measurements on the rectangular and symmetrical tapered wings have been made, but un- 
fortunately the experimental rig for testing the delta wing at transonic speeds was never completed. 

The rectangular wing of aspect ratio 2 is an obvious choice in view of the large amount of analytical 
and numerical work done on it; the theoretical difficulties are acute in the low supersonic range. The 
complete delta wing of aspect ratio 1.5 is fairly representative of current thought for high-speed aircraft; 
it is well covered by theoretical work especially at sonic and supersonic speeds, but the high subsonic 
range poses the greatest theoretical challenge. The symmetrical tapered planform provides a fairly high 
aspect ratio 4.33 with a fair degree of taper and is chosen because it can be treated by established theo- 
retical methods for general frequency outside a small range of low supersonic Mach number. At low 
supersonic speeds in our present range of interest, the first two planforms have leading edges which are 
respectively always supersonic and always subsonic, whilst for the third planform the leading edge 
becomes sonic within the range. This is illustrated in Fig. 2; the Mach lines at M = 1.075 indicate the 
relative complexity of the theoretical problems for the three wings. 

Available subsonic, sonic and supersonic theories are discussed separately in Sections 2.1, 2.2 and 2.3. 
At low supersonic speeds the need arose for a general method applicable to the widest practical range 
of planform and frequency parameter, and such a method was programmed at Hawker Siddeley Aviation 
Limited (Kingston) under contract to the Ministry of Aviation. The investigation has also demanded a 
large amount of computational work, some of which was carried out at the de Havilland Division of 
Hawker Siddeley Aviation Limited and the South Marston Works of Vickers-Armstrongs (Engineers) 
Limited under M.o.A. contract; there has also been close collaboration with the Structures Department 
of the Royal Aircraft Establishment. The  provision of theoretical and experimental results is discussed 
in Sections 3.1 and 3.2, where the sources of data are acknowledged. 

Sections 4, 5 and 6 describe the numerical results for each planform in turn. Acum 2 (1962) has already 
given an account of the calculations and measurements that existed at the time. A greater understanding of 
the various sources of error has led us to reject some of the data. For the rectangular wing in particular, 
the measurements at the higher frequencies are invalidated by model distortion, and those at subsonic 
Mach number require large corrections for slotted-wall interference, which have recently been formulated. 
The prospects of the general theoretical methods for subsonic and supersonic speeds are assessed in 
Sections 7.1 and 7.2, while in Section 7.3 an attempt is made to appraise their status in the problematical 
transonic speed range. Some general conclusions may be drawn from the investigation (Section 8); 
some fields for possible future theoretical and experimental developments have been exposed. 

2. Theoretical Background. 

2.1. Subsonic Flow. 
With very few exceptions, solutions by subsonic lifting-surface theory are calculated by collocation 

methods in which the boundary conditions are applied at a finite number of points inside the planform. 
The linearized integral equation over the planform area S 

w(x'Y!= f f 
S 

(1) 

relates the upwash angle w/U to the non-dimensional wing loading 1. The kernel K, a rather complicated 
function of streamwise and spanwise distances, Mach number and frequency of oscillation, is discussed 
at length by Williams 3. He has derived equation (1) and has reviewed the theoretical problems that it 
poses. 

The kernel fu~action in equation (1) simplifies considerably when the frequency ~o is small. Multhopp's , 
theory, described in Ref. 4, applies to this limiting case. The general treatment of equation (1) for arbitrary 



frequency was pioneered bv W:ltkin~ cr <~I s and lnas been developed subsequently by many authors. 
Rcfs. 6 to ,~ differ in detail but are very similar in principle. Richardson's <' melhod, being somcwhal 
more convenient for calculation, was the first to be programmed for a digital computer and has been 
used extensively in the aircraft industry. It is, however, less accurate than Acum's v method which is not 
yet fully programmed. In Ref. 8, Davies has combined the greater accuracy of Ref. 7 with the speed of a 
fully mechanized Mercury programme; nevertheless, there are limitations imposed by the capacity of 
the computer, which may be more important than was at first thought (Section 7.1). All these collocation 
methods apply to a wide range of planform. 

In Fig. 3, the delta wing in pitching and plunging motion is used to illustrate some features of the 
methods of Refs. 4 and 7. The wing is defined by its leading edge x~(y), chord c(y) and semi-span s. The 
collocation points (Xp~,y~) are defined by 

and 

I 2rip ] 
xp~=xl~+½cv 1 - c o s 2 N + l  j , p =  1,2 . . . .  N (2) 

122~ 
y~ = s S i n m + l , V  = 0, _ 1  . . . .  + ½ ( m -  1), (3) 

where x~, = xt(y~), c, = c(y3, m is an odd integer denoting the number of collocation sections, and N 
is the number of collocation points at each section. Fig. 3a shows their arrangement for the combination 
re(N) = 11(3). 

In the chordwise direction the wing loading l(x',y') includes N terms of a Fourier series. Then, to avoid 
a logarithmic infinity in upwash from the double integral of equation (1) at v = 01 the apex of the planform 
is rounded so that in equation (2) 

5 
XIO = ~ Xl(O)'~- Xl(Yl) 

5 1 
C o = g C(0) -F~ C(yl) 

(4) 

The artifice of equation (4) is not used in Re/'. 8, since Davies conveniently replaces equation (3) by 

V~ 

Yv = sCOSm+ 1,v = 1,2 . . . .  m (5) 

where m is even, thereby eliminating the problem of collocation points on the centreline. Nevertheless, 
there remains an implicit logarithmic singularity at y = 0, and it is unknown whether the method of 
Ref. 7 or 8 is preferable in this respect. Richardson's 6 method is programmed to include odd or even 
vahles of m. 

2.2. Sonic Flow. 
One of the earliest theories for an oscillating three-dimensional wing at M = 1 is due to Mangler 9 

(1952). He gives the leading terms of the analytical solution for a complete delta wing, which suffice for 
small values of the frequency parameter. The developments in sonic lifting-surface theory are examined 
in Refs. l0 and 11. The two mathematical treatises are to some extent complementary, since Landahll°  
is primarily concerned with his contributions to the analytical theory of rectangular and delta wings, 
while Davies II also describes a collocation mcthod for arbitrary ptanform. 

In Chapter 3 of Ref. 10, Landahl gives a solution in series for delta wings. This extension to the theory 
of Ref. 9 applies if the product of the aspect ratio and the square root of the frequency parameter is not 
too large' we write 



A2O < 1, (6) 

where in terms of geometric mean chord 

A = 2s/~ ~ .  
(7) 

5 = coe/u 

Chapters 4, 6 and 7 of Ref. 10 describe separate theories for oscillating rectangular wings at M = 1, 
The first leads to an expansion in powers of aspect ratio and frequency parameter; as for the correspond- 
ing theory for the delta wing in Chapter 3, the condition (6) restricts calculations to fairly low values of 
either A or ~. The second of Landahl's theories is essentially for high aspect ratios when the interaction 
between the side edges can be ignored; it is the simplest of the three and gives fair accuracy provided that 
A2~ is large (> 2, say). The third theory is exact but would require unlimited computation; in practice, 
it reduces to the second theory with an additional term which is amenable to automatic computation. 
The parametric restriction 

Az~ > 1 (8) 

seems reasonable, so that for rectangular wings Chapters 4 and 7 of Ref. 10 might be expected to cover 
the whole range of aspect ratio and frequency. 

The collocation method of Davies ~1 has many of the features of those in use for subsonic flow. The 
governing differential equation is simplified by the substitution M = 1. A relationship similar to equation 
(1) is derived, and the kernel function is formulated on princi~.es similar to those in Ref. 5. The form of 
load distribution l(x',y') varies accordingly as the trailing edge is sonic or subsonic. Numerical solutions 
are again designated by the combination m(N) of collocation stations across the span and chord. There 
is little practical restriction on planform; unlike Landahl's theories, Ref. 11 can be applied to curved 
planforms and has been used for the symmetrical tapered wing of Fig. 1, but the method fails if the fre- 
quency parameter is too small. 

Ordinary linearized theory is based on the differential equation of sound propagation in moving 
co-ordinates and depends essentially on small perturbations for its accuracy. Very near M = 1 the 
perturbations from uniform flow cease to be small, however thin the wing may be, and the ordinary 
approximation breaks down. In Chapter 1 of Ref. 10, Landahl has suggested an alternative linear equation 
which will be more accurate at near-sonic speeds, provided that the frequency is not too small. The two 
differential equations are identical in the limit M ~ 1. Subject to a severe condition 

[ 1 - M[ < < ~,  (9) 

Landahl derives a transonic similarity law which enables his theory of Chapter 7 to be used very near 
t o M =  1. 

2.3. Supersonic Flow. 

The problems of unsteady supersonic flow have been reviewed by Watkins 12. There is a great diversity 
of methods ranging from exact solutions for low frequency or expansions in powers of frequency for 
particular wings to numerical procedures involving a box method or collocation for general planforms. 
Each of these approaches can play an important role at low supersonic speeds (M < 1.4), where the diffi- 
culties are greatest. As already discussed and illustrated in Fig. 2, the type of planform influences the 
character of the problem. 

For the rectangular wing some special analytical solutions are available for pitching and plunging 
motion. The low-frequency theory of Miles 13 covers the low supersonic range M ~< 1.118, and the ex- 
pansion to the seventh power of the frequency by Nelson et al ~4 applies down to M = 1.118; difficulties 
with interacting tips arise for lower Mach numbers when the frequency is not small. For the delta wing 



there is an expansion to the fifth power of the frequency by Davies 15 ; although this is valid for any super- 
sonic speed, the restriction on frequency becomes increasingly severe as Mach number decreases. An 
exact solution for the symmetrical tapered wing at low frequency is given in Ref. 16 and covers the range 
M >/1'035 for which the leading edge is supersonic or sonic. Stewartson's 1 v theory is general in frequericy 
and has been programmed as a box method with a diamond grid of Mach lines subject to two conditions, 
that the leading and trailing edges are supersonic and that the Mach lines from the side edges do not 
intersect on the planform. Fig. 2 shows that the restrictions for the three planforms are respectively 
M >~ 1.414, M >~ 2.848 and M >/1.102. In the present investigation this box method is only helpful for 
the symmetrical tapered wing. 

Methods of calculating derivatives for general planforms are needed, especially for the low supersonic 
speed range where frequency effects are large and the solutions in Refs. 13 to 16 are inadequate. 
Richardson's 6 paper contains a proposal for a general collocation method in supersonic flow; a modified 
procedure, based on this, has been presented and programmed by Harris 18. Allen and Sadler 19 have 
developed a refined box method with very little restriction on planform, frequency or Mach number. 
As shown in Fig. 4 for the delta wing at M = 1.03, a diamond grid of Mach lines is used. Special formulae 
are derived for treating incomplete boxes that are intersected by the perimeter of the planform ; the three 
types of incomplete box are differently shaded in Fig. 4 according to the number of vertices on the plan- 
form. Refs. 18 and 19 have been applied to the selected planforms, and the outcome is reviewed in Section 
7.2. 

3. Pitching and Plunging Derivatives. 

3.1. Theoretical Calculations. 

All the theoretical methods discussed in Section 2 have been used in the present numerical investigation. 
They are listed in Table 1 which shows the type of method, its range of applicability, and where relevant 
numerical results may be found. A general combination of pitching and plunging motion is represented 
sectionally in Fig. 3b, in which 0o and gZo denote the amplitudes of pitch and plunge respectively. The 
oscillatory lift and pitching moment are expressed in the form 

L = p U 2 S [0 o (lo + i~lo) + Zo (l~ + i~l~)] e ~'' 1 , (10) 

all{ = p O  2 Sc [0 o (too+ ivmo)+ z o Onz + igm~)] e ic°t ) 
where the frequency parameter ~ is given in equation (7). The derivatives, defined in equations (10), may 
be calculated for an arbitrary pitching axis x = x0 = h~ from the formulae 

Io = A - B h  ~ 

I0 = C -  Dh 

- m  o =  E + F h + B h  2 

- too  = G+ H h +  Dh 2 

(11) 

and 

I z = B  

1~ = D 

m= = (A + F)+ Bh 

rn~ = (C + H)+  Dh 

(12) 



where the coefficients A , B . . .  H are fully tabulated for the rectangular, delta and symmetrical tapered 
wings in Tables 2, 3 and 4 respectively. The headings include the corresponding derivatives for a pitching 
axis Xo = 0 through the leading edge of the root chord. 

Of the calculations in subsonic flow, those by Refs. 4 and 7 have been computed at the NPL, and those 
by Ref. 6 are due to Bishop 2°. Davies 8 has published his re(N) = 8(2) solution for the symmetrical tapered 
wing, and Woodcock 21 gives most of the results by Ref. 8 for the rectangular wing; those for the delta 
wing and the m(N) = 12(6) solutions for the other two planforms have been specially computed at the 
RAE. 

Most of the derivatives for M = 1 by Refs. 9 and 10 have been computed from the analytical formulae. 
Results from the more accurate high-frequency method in Chapter 7 of Ref. 10 are taken from Landahl's 
curves for the rectangular wing at M = 1 ; the corresponding solutions for M = 0.9 have been received 
by private communication from Landahl and are used to indicate the rate of change of derivatives with 
Mach number near M = 1. Davies has sent unpublished results by his sonic theory 11 for each of the 
three wings. 

Of the calculations in supersonic flow, those by Refs. 13 to 16 have been computed at the NPL from 
the published formulae and tables, and a few results for the symmetrical tapered wing by Ref. 17 are 
taken from solutions by method (ii) of Ref. 22. The results in Refs. 18, 19 and 22 have been supplemented 
to fulfil the present investigation. Harris has provided additional solutions by his theory 18 for the delta 
wing from the RAE Mercury computer, as have Vickers-Armstrongs on a Pegasus computer for the 
symmetrical tapered wing by Ref. 19. Shortly before the NPL DEUCE computer was dismantled, the 
box method based on Ref. 17 was applied to the syl~metrical tapered wing at M = 1.105 very close to 
its lower limit; it was also used at M = 1-08 to give velocity potentials near the side edge, that were 
needed to check the additional solution by Ref. 19. 

3.2. Experimental Values. 

The provision of oscillatory experimental data has been hampered by uncertainties in slotted-wall 
interference and model distortion. Moreover, the development of a rig for testing complete models at 
transonic speeds was curtailed, so that anticipated results for the delta wing are lacking. Figs. 17a and 
17b of Ref. 2 include direct pitching derivatives, - too and -too, measured on a half model of the rect- 
angular wing at three frequencies. The measurements at the two higher frequencies are now considered 
to be unreliable due to model flexibility. A recent paper za claims to provide some theoretical understanding 
of slotted-wall interference on dynamic measurements in subsonic flow. A complete set of four measured 
pitching dcri~atixcs. ~> defined in cquati~ms (I01 and (111. may be torncoted t~ free-stream conditions 
by equations (58) of Ref. 23. This method of correction can bc applied ~ith some confidence, provided 
that the model, the frequency and the Mach number are not too large and that the three interference 
parameters 6o', 6o and <51 are known. These conditions are fulfilled in the NPL measurements on half 
models of the rectangular and symmetrical tapered wings in the 36 in. x 14 in. tunnel with sealed slots 
or in the 25 in. x 20 in. tunnel with its perforated walls sealed. In normal operation, unfortunately:, the 
former tunnel has such narrow slots that viscous effects cast doubt on the sign of the interference para- 
meters. Similarly, as described by Moore and Wight z*, the latter perforated tunnel had uncertain charac- 
teristics due to the positioning of flaps that control the exit area from the plenum chamber to the diffuser ; 
again, the sign of the interference is uncertain. In both cases the pitching derivatives have been left un- 
corrected, although the effects could be quite large. Wall interference appears to persist at low supersonic 
speeds, but the magnitude remains uncertain. 

All the NPL experimental data to be compared with the theoretical calculations are given in Tables 
5 and 6 for the rectangular and symmetrical tapered wings respectively. Some of the latter measurements 
have already been used in Refs. 23 and 24. The most reliable data are the corrected derivatives for M ~< 0-85 
when the ventilations are sealed, and those for the symmetrical tapered wing in the 25 in. x 20 in. tunnel 
with perforated walls for M ~> 1.3 when, except for the derivative lo, the corrections are thought to be 
fairly small. In the speed range 0.9 < M < 1.1 there are uncorrected measurements for both wings in 
two tunnels. The direct pitching derivatives for the symmetrical tapered wing have also been measured 
by Woodgate et al as in a closed supersonic tunnel for M >~ 1.38. The rectangular half-model has an 



aerofoil section 10 per cent thick with round leading edge, but the symmetrical tapered wing, conceived 
as a missile control surface for supersonic flow, has a 5 per cent thick double-wedge aerofoil. 

In the absence of experimental data for a delta wing of precisely A = 1.5, values of the damping deriva- 
tive - m0 have been taken from measurements by Orlik-Rtickemann and Olsson 26 on a half model of 
a complete delta wing of aspect ratio 1"45 at transonic and supersonic speeds. Results for the lower of 
two frequencies from Fig. 9 of Ref. 26 are compared with present theoretical curves against Mach number; 
no interference corrections have been applied, but these are believed to be small for the pitching axis 
x0 = 0"6cr. 

4. Rectangular Wing (A = 2) 

The theoretical pitching derivatives for the rectangular wing are illustrated by Figs. 5 to 15. These 
show the variation with Mach number, frequency and axis position of subsonic, sonic and supersonic 
solutions selected from Tables 2a, b and c respectively. Where possible, a consistent set of results is 
chosen from the different collocation methods, e.g., as defined in equations (2) and (3) or (5), solutions 
re(N) = 11(3) by Refs. 4 and 7, m(N) = 8(8) by Ref. 6 and m(N) = 13(3) by Ref. 11. These numerical 
methods for general planform together with the supersonic box method of Ref. 19 are supplemented by 
the particular analytical solutions for rectangular wings from Refs. 10, 13 and 14. 

Values of the four pitching derivatives l o, lo, mo and - mo for the axis Xo = 0.42g have been evaluated 
from equations (11) and are plotted over the Mach number range 0.7 ~< M ~ 1.3 in Figs. 5 to 8 respectively. 
The full curves for ~ ~ 0 indicate that the low-frequency theories give a fairly coherent picture for this 
range. Rapid variation is shown for 0.9 ~< M ~< 1.1, particularly for the damping derivatives in Figs. 
6 and 8; only - mo is discontinuous at M = 1. Incomplete curves are shown for values of the frequency 
parameter i~ = 0"3 and 0"6. The results by Refs. 6 and 7 reveal the growing importance of frequency 
effects as M increases to high subsonic values. At M = 1, the derivatives for these frequencies by Ref. 11 
are represented by shaded symbols; also plotted are the estimates of the derivatives and their rate of 
change near M = 1 by Ref. 10. These results for sonic flow correlate satisfactorily with both the subsonic 
and supersonic theories. When M > 1, the variation of the derivatives with M and 9 appears rather more 
complicated, but it is clearly seen that large frequency effects persist into the low supersonic range. The 
results by Ref. 19 provide a satisfactory link between the sonic results and those calculated for M > 1.2 
and 9 = 0.3 from the expansion in ~ in Ref. 14. 

The corresponding low-frequency experimental results from Tables 5a, b and c are plotted in Figs. 5 
to 8 over the respective Mach number ranges 0.71 ~< M ~< 0.87 in the sealed 36 in. x 14 in. tunnel, 
0.84 ~< M ~< 1.09 in the slotted 36 in. x 14 in. tunnel and 1.00 ~< M ~< 1.18 in the slotted 25 in. x 20 in. 
tunnel; the plotted data for the sealed tunnel correspond to the measurements corrected for wall inter- 
ference. When M ~< 0-87, low-frequency theory is in fairly good agreement with experiment except for 
the substantially lower experimental values of lo in Fig. 6. For the derivatives 1o, mo and - too, experiment 
indicates a marked increase with subsonic M followed by a decrease through the sonic and supersonic 
speeds; this is broadly similar to the theoretical variation, but the region of most rapid change occurs 
experimentally at a lower Mach number as might be expected with a 10 per cent thick aerofoil section. 
On the other hand, in Fig. 5, there is a large reduction in the measured lo at M = 0.94, 0.99 and 1.00, 
although the comparison between low-frequency theory and experiment improves at M = 1.10 and 1.18. 
In Fig. 9, the theoretical mo and -mo  for M = 0.866 and ~ ~ 0 are plotted against axis position Xo/Cr, 
together with the measured values for several axes given in Table 5d as 

'M = 0.868, Sealed 36 in. x 14 in. tunnel, Corrected' 

and 
~M = 0.844, Slotted 36 in. x 14 in. tunnel, Uncorrected'. 

Both sets of experiments give a variation of mo with axis position consistent with theory. The comparisons 
• for -m,~ are not so good, the measured results indicating less change with axis position than the theory 

8 



predicts. A small theoretical effect of frequency on the pitching moment at M = 0.866 is shown by the 
broken curves for ~ = 0"3 and 0.6. 

The theoretical frequency effect is seen to be most marked near M = 1. By the analytical solution for 
M = 1 (Ref. 13), -too tends to infinity when ~ ~ 0, although the other pitching derivatives remain finite 
in Table 2c. For  0 ~< ~ ~ 0-6 at M = 1, values of the derivatives lo and lo for the axis Xo = 0.42g are plotted 
against ~ in Fig. 10. Results by the sgnic theories in Chapters 4, 6, 7 of Ref. 10 are restricted to different 
ranges of ~ that are complementary, as indicated in Table 1. When ~ --, 0, the results by Chapter 4 of Ref. 
10 and by Ref. 13 are identical, whilst slender-wing theory gives the same stiffness derivatives but neglects 
terms of 0(A 2) in the damping derivatives. The full curves plotted in Fig. 10 represent the general colloca- 
tion method of Ref. 11 applied with re(N) = 13(3) terms; for ~ = 0.2, a solution re(N) = 13(2) gives 
similar but less accurate results. Comparison of the various theories show that the method of Ref. 11 
is in good agreement with the analytical solutions for f >/0.2, as expected, it deteriorates at smaller values 
of'~. 

The variation of the direct pitching derivatives with axis position is illustrated in Figs. 11 to 13 for the 
transonic Mach numbers. For  M = 0"99 and M = 1.014 in Figs. 1 la and 1 lb respectively, - mo is plotted 
against Xo/Cr for frequency parameters ~ ~ 0, 0-3 and 0.6. These theoretical results indicate a large decrease 
in pitching damping as the frequency increases, particularly for the supersonic Math  number. This 
characteristic is typical of the effect of much higher frequencies outside the transonic speed range. It is 
seen from Fig. 11 that the curves of - mo for ~ = 0.6 are very similar at the two values of M. For  Mach 
numbers in the range 0.866 ~< M ~< 1.2, Figs. 12 and 13 respectively show curves of mo and - too for 

= 0.3. Whilst mo shows relatively small changes with M, the curves of -m0 vary considerably. At all 
axis positions, -rno increases rapidly as M = 1 is approached through subsonic or supersonic values. 
As M increases from 0-866 to 1-2, there is a progressive upstream shift in the position of minimum damping 
from 0"65cr to 0-20or; the derivative remains positive for all M in the range. 

Linearized theory predicts the sonic and low-supersonic region as the most sensitive. This is illustrated 
in Figs. 14 and 15, by complete curves of mo and -mo  against M, by which the authors attempt to sum- 
marize the various theoretical and experimental data for the rectangular wing. Representative theoretical 
curves for ~ ~ 0, 0-3 and 0-6 are drawn for the wider range of Mach number 0.4 ~< M ~< 1.6. In Fig. 14, 
the effect of frequency on mo is small when M < 0.8 or M > 1"2, but in the intermediate transonic range 
the derivative shows large variations with both Mach number and frequency. The rapid variation of 
the 9-~ 0 curve just above M = 1 is a feature of the exact theoretical solution 13 and is retained; on the 
other hand, the numerical solutions for 9 = 0.3 and 0.6 have been smoothed on either side of M = 1 
to give the curves in Fig. 14. The experimental data are limited to frequency parameters in the range 
0.07 < ~ < 0.16, and the corresponding curve of mo agrees remarkably well with theory not only below 
M = 0.8 but at the low supersonic speeds. The undulating experimental curve in the high subsonic 
range never departs far from the theoretical estimate. In Fig. 15, for reasons of clarity and lack of data, 
the ~ = 0-6 curve is not extended below M = 0.8. The curve for ~ = 0.3 in this region makes use of the 
extension to subsonic low-frequency theory in equation (19) of Ref. 27, which becomes 

(~m0/0~)9.~ o = (A/16) (l o mo)~o (13) 

in the present notation. Fig. 15 shows small frequency effects for M < 0.8 and also for M > 1.4. The ex- 
perimental curve shows fair agreement with theory outside the range 0.9 < M < 1.1 ; within this transonic 
range it corresponds roughly to a theoretical curve for a frequency parameter between 0.3 and 0.6 dis- 
placed by 0.05 to 0.10 down the Mach number scale. 

5. Delta Wing (A = 1.5). 

The variation of the pitching derivatives with Mach number, frequency and axis position is illustrated 
in Figs. 16 to 24 by subsonic, sonic and supersonic solutions taken from Tables 3a, b and c respectively. 
The results plotted for subsonic flow are the collocation solutions re(N) -- 11(3) by Refs. 4 and 7, m(N) = 
11(4) by Ref. 6 and re(N) = 12(6) by Ref. 8. The collocation method of Ref. 11 with re(N) = 14(3) is given 



for M = 1' some comparison with the analytical solutions for the delta wings from Refs. 9 and 10 is 
included. For low supersonic Mach numbers the expansion method of Ref. 15 is restricted to low fre- 
quency, but results from Ref. 19 cover the higher frequencies. 

In Figs. 16 to 19, the pitching derivatives for the mid-root-chord axis x0 = e are plotted against M 
for 0.7 ~< M -4< 1-3. The full curves by Refs. 4 and 15 for ~ + 0 cover all but the high subsonic range 
0.99 < M < 1. These subsonic and supersonic results in Figs. 16 and 18 indicate good correlation in 
lo near M = 1 but are rather less satisfactory for too. The variation of these low-frequency derivatives 
with M is not large, especially when M > 1. On the other hand, in Figs. 17 and 19, the results for l o and 
- m o  both tend to + oc or - oo as M --+ 1 from below or above. It is therefore particularly interesting to 
study how the damping derivatives vary through the transonic region 0-9 < M < 1.1 for the higher 
frequencies ~ = 0.15 and 0'30. Although lo and - m o  decrease rapidly between M = 0-99 and M = 1.03, 
the values for the two finite frequencies are very similar. The frequency effects at higher Mach numbers 
diminish even more quickly than for the rectangular wing. 

The effect, of frequency on the sonic pitching-moment derivatives is illustrated in Fig. 20 for the axis 
x0 = 1.5& In the analytical solution for the derivative - m o  at small ~ (Ref. 9 or 15), the terms of 0(log 9) 
are found to cancel for this particular pitching axis, leading to a finite value for - mo when ~ -+ 0. Further- 
more, neglect of terms of 0(A 2) gives the slightly lower value for - m o  corresponding to slender-wing 
theory. For ~ ~ 0.3 in Fig. 20, the theories of Refs. 9 and 10 indicate a very small frequency effect on 
mo and - m o  for x0 = 1-5~. The results by the collocation method of Ref. I 1 are smaller in magnitude, 
but again show little effect of frequency when ~ > 0.15. At the lower frequencies, as for the rectangular 
wing in Fig. 10, the accuracy of the solutions m(N) = 14(3) is seen to decrease, particularly for the damping 
derivative; moreover, the solution re(N) = 14(2) gives poorer comparisons with the analytical results 
at 9 = 0.05. 

Values of - m o  plotted against axis position Xo/Cr are presented in Figs. 21a and 21b for the Mach 
numbers M = 0.99 and M = 1.01. In Fig. 21a, the curves for ~--+ 0, 0'15 and 0"30 show a steady decrease 
in - m o  as the frequency increases or as the axis moves downstream. On the supersonic side, however, 
the curves for ~--+0 and 0"15 in Fig. 21b show an increase in - m o  with ~, although the curve for 9 = 0.30 
indicates a subsequent decrease. For 9 = 0.15 and a wider range of Mach numbers, the variation of 
mo and - m o  with Xo/C~ is illustrated by Figs. 22 and 23 respectively. Over the range 0.90 ~< M ~< 1-281, 
remarkably similar curves are obtained for each derivative as a function of Xo. There is a small increase 
in mo as the Mach number departs from unity for pitching axes forward of Xo = 0.8c~. In Fig. 23, the 
curves of - m 0  show less systematic changes with M, but the damping consistently decreases, whilst 
remaining positive, as the pitching axis moves downstream to 0.8e~. 

Measured values of - mo are available from Ref. 26 for a complete delta wing of slightly lower aspect 
ratio A = 1.45 with pitching axis x0 = 1.2& The summary of data in Fig. 24 corresponds to this axis and 
Mach numbers 0.4 ~< M ~< 1.6. Theory and experiment compare satisfactorily throughout the subsonic 
speed range; close to M = 1 the experimental curve (~ = 0.13) has similar shape to the theoretical curve 
for the frequency parameter  ~ = 0.15. The estimated theoretical curve for 9 = 0.30 is omitted as it is 
virtually indistinguishable from that for ~ = 0.15. Since the pitching axis is near to the aerodynamic 
centre and m o is small, equation (13) gives a small value of ~?mo/O~ in subsonic flow as ~--, 0. Only in the 
range 0"9 < M < 1-2 is there appreciable frequency effect in Fig. 24. Marked disagreement in - m o  
between experiment and theory appears as soon as the flow becomes supersonic. Similar differences are 
observed above M = 1.4, and these may well continue up to M = 2.848 when the leading edge becomes 
sonic. 

6. Symmetrical Tapered Wing (A = 4"33). 

The various solutions for M ~< 1 and M > 1, given in Tables 4a and b respectively, are illustrated in 
Figs. 25 to 34 by the pitching derivatives as functions of Mach number or axis position when ~ ~ 0, 
0.19 and 0.38. For this planform, the only analytical solutions available are the low-frequency results 
for M >~ 1-035 by Ref. 16, and so greater emphasis is placed on the general numerical methods in super- 
sonic flow. The subsonic collocation methods are represented by Refs. 4 and 7 with m(N) = 11(3) and 
also by Rcfs. 6 and 8: the results plotted for M = 1 correspond to re(N) = 14(3) by Ref. 1 I. In supersonic 
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flow, the solutions are mainly from the box methods of Refs. 17 and 19, but Ref. 18 is represented by a 
collocation solution m(N) = 10(4) at M = 1'102. 

The four derivatives lo, lo, mo and -m6 are plotted against Mach number in Figs. 25 to 28 for the mid- 
chord pitching axis Xo = 0.79& The full curves for the subsonic and supersonic theories when ~ ~ 0 
show substantial changes in all these derivatives over the range 0.9 ~< M ~< 1.2. Steady sonic theory gives 
lo = 3.40 and m o =  1.37; the corresponding damping derivatives at M = 1 are unknown, but they 
appear to include a singular contribution of0(log ~). The results for ~ = 0.19 and 0.38 indicate a very large 
frequency effect for the transonic Mach numbers, which persists into the supersonic range to a greater 
extent than for the other two planforms. The range of M is reasonably well covered for ~ = 0.19 with 
good correlation between the results by the different theories; for ~ = 0.38, however, there are greater 
uncertainties in the direct derivatives mo and -m0  for  low supersonic M. 

The measured pitching derivatives for x o = 0-79~ from Tables 6a to 6d provide experimental results 
for ~ < 0.08 over the whole Mach number range of Figs. 25 to 28. Here, the plotted data from Tables 6a 
and 6c for the two tunnels with slots or perforations sealed are the values corrected for wall interference. 
The variation with Mach number from these experiments (M < 0.87) is similar to that predicted by 
theory, although the lattergives rather higher values of lo, lo, mo and -m0. For  the slotted 36 in. × 14 in. 
tunnel and the perforated 25 in. × 20 in. tunnel, the values plotted from Tables 6b and 6d respectively 
cover the Mach numbers 0.84 ~< M ~< 1.09 and 0-85 ~< M ~< 1.30. Between these experimental results there 
are some quite large discrepancies, but neither set suggests such large variations near M = 1 as theory 
would indicate for ~ = 0.05. As already discussed in Section 3.2, these uncorrected transonic measurements 
could be subject to large, but uncertain, tunnel-wall interference. Figs. 25 to 28 show better agreement 
between theory and experiment for the supersonic values M = 1.2 and 1.3, except perhaps in Fig. 26 
where wall interference on lo still predominates (Refs. 24). The variation of the subsonic pitching-moment 
derivatives with axis position and frequency parameter is illustrated in Fig. 29 by the values of mo and 
- m 0  at M = 0.9 plotted against Xo/e,. Experimental results at four axis positions from Table 6e are in 
fairly good agreement with the theoretical curves of too. For  the damping derivative, however, the 
measurements (points Y) from the perforated 25 in. × 20 in. tunnel are consistently below theory, whilst 
those points ×) from the slotted 36 in. × 14 in. tunnel indicate a larger rate of change of - too  with Xo/Cr. 
The discrepancies between the two sets of experiments are attributed to the peculiar tunnel-wall inter- 
ference effects mentioned in Section 3.2. 

Theoretical values of -rno at M = 0"99 and M = 1-035 are plotted against Xo/Cr in Figs. 30a and 30b 
respectively. For the subsonic case, the curves of -m0 for ~ ~ 0, 0.063, 0.19 and 0.38 show, as ~ increases, 
a large and progressive loss in the pitching damping for all axes. As the frequency increases in the super- 
sonic case, there is a very large reduction in the rate of change of - m o  with Xo/C,, until at ~ = 0"38 the 
two Mach numbers give similar curves of - too. As for the rectangular wing in Fig. 11 at transonic speeds, 
these are typica ! high-frequency effects that appear to develop at surprisingly low frequencies. In Figs. 
31 and 32, the pitching-moment derivatives for 9 = 0.19 are plotted against Xo/C, for Mach numbers in 
the range 0.90 ~< M < 1.25. Fig. 31 shows a very consistent variation in mo with Xo for .all M, and for a 
wide range of pitching axis there is a gradual decrease in this stiffness derivative as the Mach number 
grows. Fig. 32 illustrates the very large increase in damping as the axis position moves downstream or 
the Mach numbers approach M = 1 from above or below. Negative damping occurs at the forward 
axis positions for Mach numbers 1-064 ~< M ~< 1.25, and this is typical of the higher aspect ratio of the 
symmetrical tapered wing. 

The theoretical and experimental data in Figs. 27 and 28 are reproduced as estimated curves in Figs. 
33 and 34 over the extended Mach number scale 0.4 ~< M ~< 1.6. This allows additional supersonic 
experimental data from Ref. 25 to be included. The theoretical curves for non-zero frequency are known 
in detail above M = 1-1 and are thought to be more reliable near M = 1 than for the other two wings. 
Additional results by Ref. 8 for ~ = 0-63 are used to extend the range of frequency on the subsonic side. 
In Fig. 33, faired theoretical curves of mo for the mid-chord axis are drawn; at the non-zero frequencies 
the derivative appears to have a minimum very near M = 1 and two maxima that spread away from 
M = 1 as ~ increases. As for the rectangular wing, the experimental curve fits the theoretical data satis- 
factorily at subsonic speeds; but, in contrast to Fig. 14, the curve is much flatter around M = 1. A rapid 
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fall near M = 1.2 leads to supersonic experimental data somewhat inconsistent with those of Ref. 25. 
As described in Ref. 16, allowance for the 5 per cent thick double-wedge aerofoil section gives the corrected 
low-frequency curve, added in Fig. 33, which lies between the two sets of experimental data. In Fig. 34, 
there is the familiar growth and decay of frequency effect on -m o  through the transonic speed range, 
0.85 < M < 1-30 in this case. In the upper transonic range an increase in frequency eliminates negative 
damping for the mid-chord pitching axis. The mean experimental curve corresponds to frequency para- 
meters 0.03 < 9 < 0-08 and is in excellent agreement with theory for the subsonic and supersonic ranges 
M < 0.9 and M > 1.3 ; for the latter, this is confirmed by the measurements of Ref. 25, in Fig. 8 of which 
a small theoretical correction for the double-wedge aerofoil improves the comparison of - mo. Transonic 
flow appears to start abruptly at M = 0.9 and results in an experimental curve similar in shape to a theo- 
retical one for ~just greater than 0.2 but with a positive displacement of0.10 to 0" 15 along the Mach number 
scale. It is interesting to note that this displacement is in the opposite sense to that observed for the 
rectangular wing in Fig. 15; the most likely explanation lies in the fact that the rectangular wing has a 
round-nosed section in contrast to the double-wedge section of the symmetrical tapered wing. If this is 
a true explanation, change to a round-nosed section might well introduce small or negative pitching 
damping on the symmetrical tapered wing at low frequencies in the transonic speed range, perhaps 
nearer to M = 1 than theory predicts. 

7. Appraisal of Theoretical Methods. 
In spite of the different characteristics of the three wings, it is possible to draw a few conclusions about 

the general theories that have been applied. Apart from the numerical results presented in Tables 2 t o  
4, there is extraneous evidence from less successful computations. The accuracy of collocation solutions 
in subsonic flow is also more clearly defined in the light of recent developments relating to Ref. 28. Con- 
trasting features of the four subsonic theories of Table 1 have already been discussed in Section 2.1, and 
the appraisal is continued in Section 7.1. Likewise, the relative merits of Refs. 17 to 19 in supersonic flow 
are considered in Section 7.2 as a sequel to Section 2.3. 

Ref. 11 is the only general theory for sonic flow discussed in Section 7.3, but we attempt to review the 
status of linearized theory in transonic flow. In this respect it is unfortunate that the experimental evidence 
is rather less conclusive than the composite theoretical analysis. 

7.1. Subsonic Flow. 
Subsequent to the present calculations for low frequency by the theory of Ref. 4, the improved 

programme of Ref. 28 has been developed. In Ref. 4, the parameter m as played a dual role in defining 
both the number of collocation sections and the number of spanwise integration points. It is now estab- 
lished that these should be independent, and in Ref. 28 the number of spanwise integration points is 
chosen to be 

= q(m+ 1 ) -  1, (14) 

where q is either unity or an even integer. It seems that collocation error in Ref. 4 is much less serious 
than spanwise integration error : in the present examples m = 11 is probably adequate, but N should be 
much greater. Moreover, the larger the number of chordwise terms (N), the larger q needs to be, since 
the integration errors are aggravated as collocation points approach the leading edge. With N = 3, 
changes in lo up to 3 per cent have been found as a result of increasing the parameter q, and there are 
corresponding errors in the other pitching derivatives. However, these would have smaller magnitude 
on Figs. 5 to 8, 16 to ! 9 or 25 to 28 than the worst subsonic discrepancies that appear. The largest errors 
can possibly be attributed to the use of larger values of N for which the parameter q is more crucial. 
The general criticism of Ref. 4 applies no less to Refs. 6 to 8 or indeed to any collocation method in 
which the chordwise integration of equation (1) is carried out first and insufficient attention is paid to 
the spanwise integration. 

An exponential factor in the kernel function of Ref. 7 introduces a form of load distribution which, for 
damping terms in the limit as i~ --, 0, becomes distinct from that in Ref. 4. However, Ref. 4 can easily be 
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modified to be consistent with Ref. 7, and for the rectangular wing this has almost negligible effect on the 
damping derivatives. For practical purposes Refs. 4 and 7 may be regarded as equivalent in the limit 
as ~--* 0. A few comparisons between Refs. 4 and 8 are available for the rectangular wing (M = 0.8, 

= 0-01) in Table 2a and the delta wing (M = 0.80 and 0.99, ~ = 0.015) in Table 3a; agreement is satis- 
factory, but less good in the latter case when a large number of chordwise terms (N = 8) is used. The 
comparisons between Refs. 4 and 6 for the rectangular (M = 0.99, 9 = 0.03) and delta (M = 0.99, 

= 0.015) wings are rather poorer. 
It is particularly unfortunate that the difficulty of spanwise integration so discredits Richardson's 6 

method. Its distinctive feature is that N plays the dual role in numbering the chordwise collocation 
points and integration points. Computationally, this facilitates the extension to fairly large values of N ; 
but the collocation points then extend so near the leading edge that errors in spanwise integration (with 
q = 1) seem prohibitive and result in wavy distributions of chordwise loading. In many applications the 
parameter N may inevitably be either too low for accurate chordwise integration of equation (1) or too 
high for accurate spanwise integration at every collocation point. The results for the rectangular and 
symmetrical tapered wings seem reasonably good, but the delta wing has proved the most difficult to 
handle by Ref. 6; the re(N) = 10(6) solutions given in Ref. 20 for this wing have been largely ignored in 
favour of the 11(4) solutions. Yet the considerable frequency effect on -mo between Refs. 4 and 6 in 
Fig. 19 is inconsistent in magnitude and sign with equation (13) of Section 4, unlike the point (O) at M = 0.9 
corresponding to Ref. 7. Indeed, the evidence from Ref. 6 has had to be ignored in the preparation of 
Fig. 24. 

The only direct comparison between Refs. 7 and 8, for the rectangular wing with M = 0.99 and 9 = 0"6, 
is quite encouraging, and other results by the two theories appear to be reasonably consistent. No con- 
clusions are possible regarding the relative merit of odd or even values of m (Section 2.1). Both methods 
suffer from the computational difficulties that are now imposed by the need for a large number of spanwise 
integration points, but less so than Ref. 6. Given a large enough computer, a desirable improvement in 
each method would result from increasing the number from m to ~ by a technique similar to that used 
in Ref. 28 with equation (14). Without this refinement, however, the direct pitching derivatives mo (Figs. 
14, 33) and - m o (Figs. 15, 24, 34)show a broad pattern of good correlation between theory and experiment 
for the three wings over the range of Mach number M ~< 0-85. In this sub-critical range, with the possible 
exception of lo, the measured derivatives depart from linearized theoretical prediction by amounts that 
are quite compatible with likely effects of aerofoil thickness or viscosity. 

7.2. Supersonic Flow.  

For each of the wings in supersonic flow the results of linearized theory can be obtained with con- 
fidence, provided that the Mach number is high enough and the frequency small enough, say, M > 1.2 
and ~ < 0.2. Consider first the manner in which exact special theories give place to approximate general 
theories as the Mach number decreases and the frequency parameter remains constant. For the rect- 

" angular wing in Figs. 5 to 8, the link between Refs. 14 and 19 looks satisfactory for all four derivatives 
when ~ = 0.3. Likewise for the delta wing at ~ = 0"15 in Figs. 16 to 19, there is fairly convincing agreement 
between Refs. 15 and 19, the worst difference being of order 0"05 in lo. For the symmetrical tapered wing 
at ~ = 0.19, the lift derivatives in Figs. 25 and 26 follow smoothly enough from Ref. 17 to Ref. 19, but 
discrepancies of about 0-1 in mo and 0.5 in -mo appear in Figs. 27 and 28. 

Since two of the wings have streamwise symmetry, it is interesting to apply the reverse-flow theorem 
to obtain exact relationships between the derivatives, as in equations (41) of Ref. 29. With the aid of 
equations (11) and (12) and with representative length ~, it is found that  the coefficients A , B  . . . .  H should 
satisfy the identities 

F +(cf fS)  B +  D - 0 (15) 
and 

H + (or~O) D - B/~ 2 - O. (16) 

From the results in Tables 2c and 4b, excluding cases in which i~ ~< 0.1, the following table of typical 
magnitudes of the left-hand sides of equations (15) and (16) is obtained. 
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Wing Method 
Typical magnitude 

Equation (15) Equation (16) 

Rectangular Ref. 19 0"00s 0"01 s 

Ref. 17 0.00 0'015 

Ref. 18 0.00 0.02 

Ref. 19 0.01 0.07 

Symmetrical 
tapered 

With the possible exception of the value 0.07 from equation (16) by Ref. 19, the listed discrepancies are 
negligible in the present context. Equations (15) and (16) can never give positive assurance of accuracy; 
the derivatives mo and -m0, which are most in doubt for the symmetrical tapered wing, involve the 
coefficients E and G that do not appear in these equations. The particular values of E and G in Table 4b 
for M = 1"102 and ~ = 0'19 show Refs. 18 and 19 in fair agreement and cast some doubt on results of 
Ref. 17 for M = 1'105 and "~ = 0.19. Rightly or wrongly, Ref. 17 is given full credit in Figs. 33 and 34, 
because of its convincing behaviour relative to the exact theoretical curves in the limit 9--+ 0. 

In view of the large frequency effects and rapid variations with Mach number in Figs. 25 to 28, the results 
at M = 1.102 for two frequencies by the method of Harris 18 are fairly encouraging. But those for the 
delta wing by Ref. 18 in Table 3c would plot rather unsatisfactorily on Figs. 16 to 19. Now, a fairly slender 
delta wing at a low supersonic Mach number presents a severe challenge to a collocation method; in 
view of the small number of collocation points, examination of the solutions in Table 3c shows that the 
method has promise. Moreover, in the calculations of Ref. 30 for another series of planforms at higher 
Mach numbers, Ref. 18 appears to achieve success; further theoretical comparisons in Ref. 31 confirm 
this. 

The most important general supersonic theory in the present investigation is Ref. 19, developed 
specially by Allen and Sadler and programmed for the Pegasus computer. This is a highly complex box 
method in which refinements abound. Not only is there careful treatment of incomplete boxes, shaded 
in Fig. 4, but for the delta wing at low supersonic Mach numbers there is a supplementary procedure to 
improve accuracy in surface integration when the ratio of box span to local wing span is no longer small. 
The theory caters for subsonic and supersonic leading and trailing edges and has been applied to each 
of the three wings at or near M = 1.01. The solution for the rectangular wing at M = 1.05 and f = 0-3 
in Figs. 5 and 7 appears unsatisfactory, and those for the symmetrical tapered wing at M = 1.035 and 
M = l'064 in Figs. 25 to 28 are hard to reconcile. The reverse-flow check from equation (16) for Ref. 19 
is not perfect. In spite of these minor criticisms the theory ranks as a considerable achievement. Un- 
fortunately, the programme of calculation is exceedingly complicated, and for a small computer this has 
proved a serious drawback. In a later research contract to obtain additional results for the delta wing, 
the supplementary procedure failed to operate and the calculations without it were unsuccessful; for 
some other reason the Pegasus computer programme failed in the tip region of the symmetrical tapered 
planform. As mentioned at the end of Section 3.1, the error was confirmed by a special application of 
Ref. 17, and for M = 1.08 and f = 0.19 the DEUCE programme was used to correct faulty values of the 
velocity potential. The solution in Table 4b was then completed by the Pegasus programme and used 
satisfactorily in Figs. 25 to 28. That a simpler, more restrictive, programme should come to the rescue 
of a highly refined one illustrates the danger of over-elaboration. Correctly applied by its authors, Ref. 19 
has made the present investigation possible and has enabled the continuous curves of Figs. 14, 15, 24, 
33 and 34 for non-zero frequency to be drawn in the speed range 1.0 < M < 1.1. 

A final comment on supersonic theory follows from Fig. 2. The Mach lines illustrate the complexity 
• ,of the problems for the rectangular and symmetrical tapered planforms. Each distinct region, bounded 

14 



by reflected Mach lines from the wing tips, usually implies discontinuous curvature in the derivatives 
against M at the critical value where the partibular region first appears on the planform. The delta wing, 
on the other hand, is free from such effects; yet its slenderness and its subsonic leading edge have made 
it the most difficult of the three planforms to treat by general methods, it may be asked, how profitable 
a similar investigation for other types of planform would be. Present experience for the delta wing tends 
to discourage the study of a slender wing with curved edges. A tapered wing with sweptback trailing edge 
is, perhaps, more promising, but there is no counterpart to the particular exact theories on which the 
present investigation leans so heavily. As for the delta wing in Fig. 24, serious discrepancies between 
linearized theory and experiment might well extend far into the supersonic speed range until both leading 
and trailing edges have become supersonic. 

7.3. Transonic Flow. 

The only general theory considered for M = 1 is that of Davies 11, and the results in Figs. 10, 20, 31 
and 32 show an encouraging measure of success for each of the three planforms. In Table 2b for the 
rectangular wing with ~ = 0.20, there appears to be excellent convergence as the number of chordwise 
terms (N) is increased from 2 to 4. There are indications for the rectangular and delta wings in Figs. 10 
and 20 that an increase in N improves comparisons between Ref. 11 and analytical theory. The corre- 
sponding convergence for the symmetrical tapered wing with ~ = 0.38 in Table 4a is less impressive, but 
remains, satisfactory. All in all, the theory provides a confident link between those for subsonic and 
supersonic flow, unless 9 falls below 0.1, say. With this limitation Ref. 11 can be expected to apply to a 
wide range ot~planform. 

The present investigation has revealed two interpretations of transonic flow. From the linearized 
theoretical standpoint it may be regarded as a narrow region in which the effects of frequency and Mach 
number become very large. On this rough basis the graphical results lead to the following table of ranges. 

Wing A Transonic range 

Rectangular 0.95 < M < 1.15 2"00 

Delta 1.50 

Symmetrical tapered 4.33 

0.97 < M < 1.05 

0.90 < M < 1-20 

Having regard to Ref. 27 and equation (13), we might expect that the extent below M = 1 would 
increase with aspect ratio. The same tends to be true above M = 1, but it is remarkable how rapidly 
the theoretical transonic disturbances on the delta wing disappear. From the practical standpoint, 
however, non-linear effects of wing thickness, shock waves and boundary layers must lead to a broader 
interpretation of transonic flow. All wings are expected to show discrepancies between theory and 
experiment in the range 0.9 < M < 1.2; there is evidence at higher Mach numbers from Ref. 31, as well 
as Fig. 24, that the discrepancies persist for wings with subsonic leading edges. 

This leads us to consider the status of linearized theory in the transonic speed range. Given fairly 
reliable theoretical curves, it is pertinent to discuss how these illuminate or are illuminated by the ex- 
perimental data. Figs. 14 and 33 suggest that, although theory predicts the order of magnitude of too, 
empirical improvements would be difficult. By contrast, there is a tendency for the experimental curves 
of pitching damping in the high subsonic or low supersonic region to adopt shapes that resemble theo- 
retical curves with the frequency parameter more than doubled; moreover, such comparative curves 
may need to be displaced one way or the other along the Mach number scale (Figs. 15, 24 and 34). It 
would be difficult to assess the purely theoretical shortcomings due to linearization, but these are probably 
large in the transonic region and could conceivably account for the types of discrepancy mentioned 
above. On the other hand, the experimental data are bedevilled by uncertainties of wall interference, 
which preclude further appraisal of transonic theoretical results. 
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The present difficulties of wall interference on the damping derivatives are threefold. As explained in 
Section 3.2, both the slotted 36 in. × 14 in. and perforated 25 in. x 20 in. tunnels had uncertain wall con- 
ditions outside the transonic range, but the interference problem goes deeper than this. Even for other 
ventilated tunnels to which Ref. 23 can be applied in subsonic flow, large interference persists at transonic 
speeds when there is no theory of wall correction. Furthermore, it is demonstrated in Ref. 24, that inter- 
ference-free conditions cannot readily be extrapolated from experimental results on smaller and smaller 
half-models, because of the dominant influence of the tunnel-wall boundary layer. If this were removed 
or thinned, the delta wing could usefully be tested as a half-model and an extended programme of dynamic 
measurements on the other two wings would clearly be desirable. Firmer conclusions might then be 
drawn from the combined theoretical and experimental analysis. 

8. Conclu,~ions. 
(1) Linearized subsonic, sonic and supersonic theories give results that can be linked approximately 

by continuous curves of pitching derivatives for fixed values of the frequency parameter. 
(2) The delta wing is more difficult to treat by general theories than the rectangular or symmetrical 

tapered wing, but in each case exact supersonic theory has provided a vital source of confidence. 
(3) Although the same general theories could be applied to many other types of wing, a similar investi- 

gation for a slender curved planform would be rather difficult, but a sweptback tapered wing would be 
more promising. 

(4) From a theoretical standpoint the transonic speed range may be defined as a limited region in 
which effects of frequency and Mach number become very large. This range appears to broaden with 
increasing aspect ratio and to narrow with increasing sweepback. 

(5) For the unswept wings near M = 1, the theoretical damping derivatives show marked decreases 
in magnitude and less dependence on Mach number as the frequency parameter increases. These are 
typical high-frequency effects that develop surprisingly quickly with frequency at transonic speeds. 

(6) The available comparisons between theory and experiment are satisfactory in purely subsonic or 
supersonic flow, with the reservations that the measured lift damping derivative to is somewhat below 
theory in subsonic flow and that for swept wings the practical transonic speed range may extend until 
the leading edge is supersonic. 

(7) Curves of experimental damping derivatives against Mach number near M = 1 tend to resemble 
the theoretical curves with the frequency parameter more than doubled and with a positive or negative 
shift m Mach number, possibly dependent on aerofoil section. 

(8) It is essential to devise interference-free experiments at transonic speeds, particularly on the damping 
derivatives. This should lead to more precise inference from combined theoretical and experimental 
analysis. 

(9) If the present investigation were extended thus, it would stand as a yard-stick for the appraisal Of 
any subsequent non-linear approaches to the formidable problem of transonic lifting-surface theory. 
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M e t h o d  

Ref. 

T A B L E  2a  

Theoretical Derivatives for the Rectangular Wing (A = 2) in Subsonic Flow. 

re(N) 

7(3) 

11(3) 

8(8) 

8(8) 

8(8) 

8(6) 
10(6) 
8(8) 
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0 .600 

0 .800 

0 .866 
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0 .950 

0 .970 

0 .990 

0 .990 
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TABLE 2a--continued 
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T A B L E  2b 

Theoretical Derivatives for the Rectangular Win 9 (A = 2) in Transonic Flow. 
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T A B L E  2c 

Theoretical Derivatives for the Rectangular Win9 (A = 2) in Supersonic Flow. 

tO 

Method  

Ref. re(N) 

13 
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0.30 

0.40 
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0.20 

0.30 

0.40 

0.60 
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1.574 

1-582 

1.556 

1.528 

1.579 

1.679 

1-775 

1.851 
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1.982 
1-984 
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1-879 
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0 
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0.044 
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lo 
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0-567 

-0"036  

- 0 . 4 8 2  
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- 0"582 

-0"667  
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0"016 

0"333 
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1'679 

1"775 

1"851 
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1.520 

1.496 

1.466 

1.428 

1.334 

- -  m 0 

E 

0 
0-006 

0.020 

- 0.004 

- 0-037 

" 0.010 

0.118 

0.234 

0-337 

0.460 

0.593 

0.650 

0"667 
0.732 

0.741 

0.667 

0.750 

0.704 

0.654 

0.603 

0-673 

0.662 

0.649 

0"632 

0-590 

m z  m to 

F 

- 1 . 5 7 1  

- 1-574 

- 1.582 

- 1 - 5 5 6  

1.528 
- 1.579 

- 1.679 

- 1-775 

- 1 . 8 5 1  

- 1.928 

- 1.982 

- 1.984 

- 2.000 

- 1-964 

- 1.778 
- 1-500 

- 1.879 

- 1-834 

- 1.779 

- 1-708 

- 1.520 

- 1-517 

- 1 . 5 1 1  

- 1.501 

- 1.466 
J 

m m o  

G 

30  

4.109 

3-424 

4.566 

5.062 

4-684 

3.263 

2.151 

1.390 

0.708 

0.225 

0-110 

- ~.059 

0"099 

0"250 

0"012 

0"088 

0"175 

0"276 

0"243 

0"253 

0'265 
0-281 

0"324 

m~ - lo 

H 

- 2.749 

- 2-486 

- 2 - 1 2 3  

- 3.275 

- 4-038 

- 2.980 
- 1.675 

- 0"800 
-0-301  

+ 0.022 

+ 0.049 

- 0 - 0 6 8  

0 

- 0 . 2 6 8  
- 0 - 7 5 7  

- 1 . 0 0 0  

- 0 - 5 5 3  

- 0-590 

- 0 . 6 3 9  

- 0.705 

- 0-992 

- 0-986 

- 0 . 9 8 2  

- 0 - 9 7 8  

- 0 . 9 6 8  



TABLE 2c--continued 

Method 

Ref. 

19 

m(N) 
M 

1.014 

1.014 
1.031 

1.014 
1.031 
1.050 
1.075 
1.118 

1.014 
1.050 
1.106 

0"03 

0"10 

0"30 

0"60 

I o 1~ I o l~ - m o  m ~  - Io - m o  m ~  - I o 

A B C D E F G H 

1 " 5 4  

1"60 
1"63 

1"80 
1"79 
1"85 
1 " 6 9  

1"70 

1"78 
1"79 
1"71 

- 0"002 

-0"011 
-0"014 

-0"012 
0"000 
0"005 
0"026 
0"092 

0"014 
0"046 
0"055 

2"80 

2"49 
2"86 

1"40 
1"24 
1"16 
0"890 
0"088 

1"01 
0"888 
0"836 

1"53 

1"59 
1"61 

1"71 
1"70 
1"77 
1"60 
1"60 

1"61 
1"61 
1"55 

0.025 

0.119 
0.175 

0.468 
0.486 
0.595 
0-475 
0.521 

0.643 
0-689 
0-675 

- 1 . 5 4  

- 1 . 5 7  

- 1 . 6 0  

- 1 - 7 0  

- 1 - 7 0  

- 1 . 7 7  

- 1 . 6 2  

- 1 . 7 1  

- 1 . 6 2  

- 1 . 6 6  

- 1 - 6 0  

4-00 

3.38 
4-03 

1.88 
1-75 
1.65 
1.42 
0.529 

1-08 
0.987 
0-884 

-2 .82  

- 2-61 
- 3 - 0 3  

- 1 . 8 3  

- 1 . 6 9  

- 1 - 7 1  

- 1.314 
- 0-540 

-1 .58  
- 1 - 4 9 1  

- 1 . 4 3 1  



T A B L E  3a 

Theoretical Derivatives for the Delta Win9 (A = 1'5) in Subsonic Flow. 

bO 

Ref. 

6 

M e t h o d  

re(N) 

11(3) 

11(4) 

11(4) 

11(4) 

11(4) 

10(6) 

7(3) 

11(3) 

7(3) 

11(3) 

8(8) 

12(6) 

M 

0"241 

0"600 

0"800 

0"900 

0"950 

0"990 

0"990 

0"970 

0"990 

0-900 

0"925 

0"950 

0"970 
0"990 

0"900 

0"950 

0"990 
0"990 

0"90 

0"90 

0"99 

0"99 

0"80 

0"99 

0"99 

~ 0  

0-015 

0.050 

0"150 

0"300 

0"150 

0.150 

0-015 

0.300 

A 

0"921 

0"961 

1 " 0 1 2  

1"057 

1 "092 

1,145 

1"124 

1"088 

1"124 

1"021 

1"040 

1"062 

1"087 

1.124 

0"999 

1 "049 
1.120 

1"135 

1 " 0 5 8  

1"050 

1.107 

1-123 

1"007 

1"148 

1"156 

t~ 

B 

0"000 
- 0 " 0 0 1  

- 0 . 0 0 1  

- 0.009 

- 0"008 
- 0.008 

- 0.007 

- 0.006 

- 0"036 
- 0-033 

- 0 . 0 2 5  

- 0.029 

- 0"010 
- 0.009 

- 0 - 0 1 0  

- 0 . 0 0 7  

0.000 

0"000 

- 0.025 

lo 

C 

2.087 

2.178 

2.292 

2.389 

2.456 

2.826 

2.421 

2.404 

2.420 

2.305 

2.337 

2.372 

2.401 
2.412 

2.309 

2.370 

2.389 

2.475 

2.461 

2.405 

2.557 

2.476 

2.281 

2.593 

2.457 

• 1~ - - m o  I 

D E 

mz -- lo - m o m~ - lo 

F G H 

0.921 1.089 - 0.921 

0"961 1.150 - 0 - 9 6 1  

1.012 1-228 - 1.012 

1.057 1.299 - 1.057 

1.092 1.356 - 1.092 

1.145 1.442 - 1.145 

1.124 1.418 

1.089 1.350 

1.124 1.419 

1.028 1.237 

1-045 1.267 

1.066 1.306 

1.088 1.350 

1.121 1.424 

1.029 1.200 

1"068 1.285 

1.114 1.422 

1.129 1.416 

1-066 

1"058 

1.108 
1 - 1 2 1  

1"255 

1"285 

1"304 

1 "403 

1.204 

1.413 

1.480 

1.007 

1.148 

1-138 

- 1.124 

- 1-086 

- 1.122 

- 1-007 

- 1.027 

- 1-049 

- 1.075 

- 1 . 1 1 4  

- 0-944 

- 0 - 9 9 7  

- 1.079 

- 1.089 

- 1 . 0 4 1  

- 1.035 

- 1.089 

- 1-109 

2.789 

2.967 

3.206 
3.426 

3.597 

4.299 

3.640 

3.514 

3.612 

3"243 

3.321 

3-415 

3.499- 
3-565 

3.256 
3.414 

3.514 

3.612 

3.487 

3.453 

3-760 

3-677 

- 3 " 1 7 6  

- 3"328 

- 3"520 

- 3"688 

- 3 " 8 1 2  
- 4-267 

- 3"839 

- 3"757 

- 3"840 

- 3"556 
- 3 " 6 1 6  

- 3-688 

- 3"758 

- 3 " 8 3 5  

- 3"566 

- 3"697 

- 3"810 

- 3"890 

- 3"734 

- 3-706 

- 3"870 

- 3 " 8 8 3  

- 1.007 

- 1.148 

- 1 - 1 1 4  

3"158 

3"919 

3"668 

- 3.485 

- 4"007 

- 3"922 



T A B L E  3b 

Theoretical Derivatives for the Delta Win9 (A = 1.5) in Sonic Flow. 

t'O .,.q 

Ref. 

10 

11 

M e t h o d  

1 

m(N) 

Chap.  3 

14(2) 

14(3) 

M 

1.0 

1-0 

1.0 

1.0 

~ 0  
0.01 
0.05 
0.15 

0.05 
0.15 
0.30 

0.05 

0.05 
0-15 
0-30 

A 

1.178 
1"178 
1.178 
1-178 

1.169 
1.164 
1.175 

1.294 

1.278 
1.259 
1.258 

B 

0.000 
- 0-001 
- 0 . 0 1 5  

0'000 

0.001 
0.002 

- 0.002 

C 

- - o ( )  

1.920 
2.186 
2"368 

2.164 
2-284 
2.291 

2.376 

2"058 
2.325 
2-329 

D 

1"178 
1-178 
1-178 
1"178 

1.165 
1.142 
1.118 

1.291 

1-274 
1.235 
1-197 

m m o  

E 

1 . 5 7 1  

1.571 
1-571 
1-571 

1.557 
1.550 
1.566 

1.687 

1.766 
1.734 
1-743 

I mz - -  l o 

F 

-1"178  
-1"178  
-1"178  
-1"178  

- 1 . 1 6 9  

- 1 . 1 6 0  

- 1 . 1 4 4  

- 1.295 

- 1.280 
- 1.264 
- 1-260 

- -  m o  

G 

- - o o  

2.900 
3-300 
3.573 

3"265 
3"439 
3"441 

3"220 

3-004 
3.505 
3.495 

me - lo 

H 

oO 

- 3.490 
- 3.757 
- 3.939 

- 3 . 7 1 5  
- 3.799 
- 3-770 

- 4.058 

- 3 " 8 1 6  
- 4 . 0 1 8  
- 3.967 



TABLE 3c 

Theoretical Derivatives for the Delta Win9 (A = 1'5) in Supersonic Flow. 

tO  
OO 

Ref. 

15 

Method 

re(N) 

18 7 ( 3 )  

7(3) 

19 

M 

1-009 
1 ' 0 1 0  

1.035 
1.077 
1.133 
1.281 
1.462 
1.667 

1.133 
1.281 
1.462 

1,462 

1-010 
1.075 

1.010 
1.075 
1.150 

1 . 0 1 0  

1.030 
1.075 
1.150 

1-010 
1'030 
1-075 

~ 0  

0.150 

0.300 

0.150 

0.300 

0.150 

0.300 

A 

1.172 
1.172 
1.160 
1.142 
1.121 
1.074 
1-024 
0.973 

1-120 
1.075 
1"025 

1.028 

1.135 
1-083 

1.128 
1-082 
1.034 

1"13 
1"14 
1'14 
1"11 

1'14 
1-13 
1'14 

l z  

B 

0 
0 
0 
0 
0 
0 
0 
0 

-0 .001  
- 0 . 0 0 1  

- 0 - 0 0 1  

- 0.005 

0.003 
0.002 

- 0,006 
- 0-002 
- 0.002 

0.001 
0.001 
0"001 
0,000 

- 0.004 
- 0.006 
- 0.005 

1 o l~ 

C D 

1.985 1.172 
2.001 1.172 
2.126 1.160 
2.139 1.142 
2.096 1.121 
1-936 1"074 
1.748 1.024 
1.565 0.973 

2.100 1.111 
1"934 1.070 
1.746 1.021 

1.741 1-014 

1.982 1-115 
1.875 1,069 

2.095 1.092 
1.895 1.045 
1.784 1.006 

2-12 1.11 
2.12 1.12 
2.10 1.12 
2-02 1,10 

2.12 1.09 
2.12 1.08 
2.10 1.10 

- -  m 0 

E 

1"563 
1"562 
1"546 
1"523 
1"495 
1"433 
1'365 
1'297 

1"494 
t '434 
1-367 

1"371 

1'553 
• 1'474 

1"545 
1"475 
1'402 

1"51 
1'52 
1'52 
1 ' 4 7  

1"55 
1"50 
1'52 

m z  - 10 

F 

- 1 - 1 7 2  
- 1,172 
- 1 - 1 6 0  

- 1.142 
- 1 - 1 2 1  
- 1.074 
- 1"024 
- 0 - 9 7 3  

-1"118  
- 1.073 
- 1"023 

- 1"020 

- 1 . 1 3 9  
, - 1"085 

- 1 . 1 1 7  
- 1-079 
- 1"028 

-1"13  
- 1.14 
- 1.14 
- 1 . 1 1  

- 1 . 1 3  
- 1 . 1 2  
- 1 ' 1 3  

- -  m 0 

G 

2-977 
3.001 
3.188 
3.208 
3.144 
2.904 
2.621 
2-347 

3.151 
2-901 
2.618 

2.610 

3"003 
2"834 

3"190 
2"866 
2"684 

3"28 
3"20 
3"18 
3"06 

3"24 
3"20 
3"18 

m~ - lo 

H 

- 3.548 
- 3.563 
- 3-672 
- 3-662 
- 3 . 5 9 1  
- 3.369 
- 3 . 1 1 3  
- 2.862 

- 3 . 5 7 8  
- 3.359 
- 3 . 1 0 7  

- 3-091 

- 3.503 
- 3-328 

- 3.584 
- 3 . 3 1 1  
- 3 . 1 4 2  

- 3.60 
- 3.61 
- 3.59 
- 3.47 

- 3 . 5 9  
- 3-56 
- 3 . 5 6  



TABLE 4a 

Theoretical Derivatives for the Symmetrical Tapered Wing (A = 4-33) in Subsonic and Sonic Flow. 

t'~ 

Ref. 

Method  

re(N) 

11(3) 

11(4) 

11(4) 

11(4) 

7(3) 
11(3) 

7(3) 
11(3) 

M 

0"60 
0"80 
0'90 
0"95 
0"99 

0"990 

0"900 
0"925 
0"950 
0"970 
0"990 

0"900 
0"950 
0"990 

0"90 

0"99 

~ 0  

0"063 

0"190 

0"380 

0-190 

0.190 

A 

2.167 
2.474 
2.763 
2.997 
3.306 

3.289 

2.677 
2.787 
2.915 
2.996 
2.999 

2.651 
2.662 
2.603 

2.742 
2.737 

2.967 
3.000 

l z  

B 

0 
0 
0 
0 
0 

0.019 

0.056 
0.069 
0.090 
0.117 
0-139 

O..166 
0.244 
0.272 

0.056 
0.056 

0.178 
0.172 

/o 

C 

1.742 
1-464 
0.979 
0-421 

- 0.075 

- 1-174 

1.197 
0.909 
0.387 

- 0 . 3 8 9  
- 1.055 

1.226 
0.493 
0.246 

1-281 
1-278 

- 2.460 
- 2 . 2 1 7  

D 

2.167 
2.474 
2-763 
2-997 
3-306 

3.253 

2.581 
2.670 
2-766 
2.815 
2.810 

2.362 
2.311 
2.254 

2.640 
2.636 

2.734 
2.771 

- m  o 

E 

1.071 
1.206 
1.324 
1.406 
1.451 

1.603 

1-320 
1-391 
1.508 
1"666 
1.758 

1.415 
1.644 
1.647 

1.332 
1 . 3 4 1  

1.823 
1.826 

mz - lo 

F 

- 2 . 1 6 7  
- 2.474 
- 2.763 
- 2.997 
- 3"306 

- 3-283 

- 2.670 
- 2.779 
- 2.908 
- 3 . 0 0 0  

- 3.029 

- 2.624 
- 2.699 
- 2 . 6 8 7  

- 2 . 7 3 0  
- 2.725 

- 3.022 

- 3.043 

- too  

G 

1-502 
1-728 
2.101 
2.772 
6.375 

4.025 

2.037 
2.176 
2.312 
2.138 
1-335 

2.011 
1.598 
1-165 

2-255 
2"251 

0"564 
0"932 

m~- Io 

H 

- 2 . 8 1 3  
- 2.670 
- 2.303 
- 1-827 
- 1-376 

- 0 . 4 1 9  

- 2.498 
- 2.274 
- 1.852 
- 1.200 
- 0 . 5 9 2  

- 2.560 
- 1.944 
- 1-672 

- 2.596 
- 2.603 

0.786 
0.534 



T A B L E  4a--continued 

# 

M e t h o d  

Re~ m(N) 

8 8(2) 
12(6) 

12(6) 

11 14(3) 

14(2) 
14(3) 
14(4) 

M 

0.900 
0.990 

0-600 
0.800 
0"850 
0.900 
0-925 
0.950 
0.970 
0-990 

1.0 

1.0 

0"380 

0"633 

0"190 

0"380 

lo 

A 

2.722 
2-661 

1.925 
2.436 
2.614 
2.584 
2.488 
2.493 
2.487 
2.476 

2.994 

2-712 
.2.514 
2.531 

tz 

B 

0-166 
0"280 

- 0"061 
0"097 
0-204 
0"317 
0-3/6 
0"327 
0"349 
0-354 

0.176 

0.308 
0.321 
0.300 

lo 

C 

1.324 
0.182 

2.114 
1-905 
1.586 
1.073 
1.024 
0.994 
0"914 
0.894 

- 2.246 

- 0.045 
- 0'249 
- 0 . 0 8 6  

D 

2.424 
2.291 

1.867 
2.128 
2.171 
2.072 
2.015 
2.013 
2.000 
1.994 

2.773 

2.294 
2.133 
2.158 

- -  m 0 

E 

1.429 
1.741 

0.889 
1.200 
1.416 
1.656 
1.638 
1.657 
1.696 
1.696 

1 . 8 5 9  

1-744 
1.743 
1.695 

I m~ - l o 

F 

- 2.689 
- 2-738 

- 1 . 7 7 1  
- 2 . 2 8 1  
- 2.494 
- 2 . 5 7 3  
- 2 . 5 1 5  
- 2 . 5 3 3  
- 2.554 
- 2.558 

- 3.029 

- 2.786 
- 2 . 6 3 3  
- 2.645 

- -  m 0 

G 

2"091 
1"311 

1-674 
1"981 
2"009 
1"711 
1"529 
1"498 
1-407 
1"351 

1.246 

1.345 
0-900 
0.917 

m~ - / o  

H 

- 2"681 
- 1"664 

- 3"086 
- 3 . 1 0 2  
- 2904 
- 2.466 
-2"378  
- 2 . 3 5 1  
- 2"278 
- 2"244 

0.529 

- 1.443 
- 1.217 
- 1.338 



T A B L E  4b 

Theoretical Derivatives for  the Symmetrical Tapered Win9 (A = 4-33) in Supersonic Flow. 

M e t h o d  

Ref. re(N) 

16 

17 

18 10(4) 

8(4) 

M 

1.035 

1.064 

1.102 

1.155 

1.414 

1-155 

1 . 4 1 4  

1.105 

1.155 

1-250 

1.414 

1.105 

1.155 

1 . 4 1 4  

1"102 

1"414 

~ 0  

0"095 

0"190 

0.380 

0-019 

0"190 

0"380 

0-019 

0"190 

Io 

A 

4"108 

3"877 

3"517 

3"027 

1"893 

2-975 

1"881 

2-941 

2"798 

2-367 

1"867 

2.262 

2.333 

1.818 

3"536 

2"883 

2"129 

1"897 

1"862 

I z  

B 

0 

0 

0 

0 

0 

0"039 

0"008 

0.202 

0"139 

0"073 

0"033 

0"366 

0-354 

0"118 

0-003 

0"194 

0-261 

0-000 

0"033 

lo 

C 

- 14"572 

- 8.760 

-4"796  

-- 1"974 

+0"556 

- 1-898 

+0"557 

- 3"053 
- 1"550 

-0"114  

+0"569 

- 0"628 

- 0"529 

+0.614 

-4"787  

-2"855  

+ 0-038 

0"534 

0"566 

D 

4.108 

3.877 

3.517 

3.027 

1.893 

2-950 

1.876 

2.796 

2-706 

2-321 

1.847 

1.922 

2.062 

1.741 

3.534 

2.738 

1.828 

1"897 

1.841 

- m  o 

E 

2.436 

2-647 

2.575 

2.282 

1.468 

2-249 

1.474 

2.052 

2-065 

1.809 

1.459 

1.465 

1.609 

1.405 

2-563 

1.913 

1.299 

1.462 

1.423 

I mz - l o 

F 

- 4 . 1 0 8  

- 3-877 

- 3 . 5 1 7  

- 3.027 

- 1.893 

- 3.012 

- 1.889 

- 3 . 1 1 7  

- 2.925 

- 2-435 

- 1.899 

- 2.503 

- 2.619 

- 1-927 

- 3 . 5 3 9  

- 3.041 

- 2.242 

- 1-898 

- 1.893 

- m o  

G 

- 9.705 

- 7.323 

- 4 . 3 9 6  

- 1.885 

+ 0.490 

- 1-796 

+ O-496 

- 2.565 

- 1-404 

- 0 - 1 2 4  

+0 .510  

- 0.044 

- 0.289 

+ 0.562 

- 4 - 2 5 8  

- 2 . 1 5 0  

+0 .756  

+ 0-473 

+0-510 

rn~ - l o 

H 

12.136 

6-113 

2.222 

- 0.307 

- 2.024 

- 0.326 

- 2.025 

+1.133 

- 0.420 

- 1-647 

- 2.006 

- 0.523 

-0 -813  

- 1-940 

2.226 

1.086 

- 1.071 

- 1.995 

- 1.967 



T A B L E  4 b - - c o n t i n u e d  

ta.a 
b ,~  

M e t h o d  

Ref .  r e ( N )  

19 

M 

1.010 

1-035 

1.010 

1.035 

1.010 

1.035 
1.064 

1.080 

1.102 

1.035 

0.019 

0.063 

0.190 

0"380 

lo 

A 

3"65 
4.02 

3.49 
3"60 

2.96 

2.91 

2.79 

2.85 

2.89 

2.59 

B 

0.005 

0.006 

0.035 

0.057 

0-174 

0.168 

0.208 

0.221 
0-201 

0.315 

C 

- 11"71 

- 14"24 

- 5"06 

- 10"52 

- 2 " 1 6  

- 2"02 

- 3 " 1 8  

- 3"42 

- 3"05 

- 0 " 1 7 5  
I 

D 

3"66 

4"02 

3"43 

3"55 

2"73 

2"69 

2"60 
2"67 

2"74 

2"16 

- -  m 0 

E 

1"62 

2'36 

1"90 

2 "02 

1"88 

1"87 

1"64 

1"82 

1"87 

1"79 

m z  m I0 

F 

- 3.65 

- 4.02 

- 3 .49  

- 3.63 

- 3 . 0 1  

- 2 " 9 6  
- 2 . 9 1  

- 3"02 

- 3 .05  

- 2.72 

m m o  

G 

3.87 

- 8 . 8 8  

3.86 

- 5.28 

0.804 

0.844 

- 1.033 

- 2.40 

- 2 . 1 3  

0.886 

ms - lo 

H 

10"07 

11"88 

3"20 
8-54 

0.44 

0-32 

1"72 

1"78 

1"32 

- 1"295 



TABLE 5 

Experimental Derivatives for the Rectangular Wing (A = 2). 

(a) Sealed 36 in. x 14 in. tunnel. Axis Xo = 0.420 

M ~ l o . lo - m o  --mo 

0'603 
0.708 
0.812 
0.868 

0.603 
0.708 
0.812 
0.868 

0-120 
0.104 
0.092 
0.086 

0"120 
0.104 
0.092 
0.086 

1.436 
1.499 
1.590 
1.695 

1.352 
1.405 
1.478 
1.564 

0'536 
0.461 
0.459 
0.366 

0.649 
0.610 
0.663 
0.653 

-0-309 
-0 .335 
-0 .378 
- 0.362 

- 0-296 
- 0-320 
- 0.360 
-0 .345 

0.261 
0.329 
0-482 
0.783 

0.237 
0-295 
0.427 
0.702 

Uncorrected 

Corrected 

( b )  Slotted 36 in. x 14 in. tunnel. Axis x o = 0.427 

M r~ lo lo - m o  - m o  

0.595 0.120 
0.695 0.104 
0.794 0.092 
0.844 0.087 
0.891 / , /0"084 
0"939 0-078 
0"986 0"076 
1"092 0"071 

1.429 
1.465 
1.577 
1.654 
1.702 
0.599 
1'119 
1 . 7 4 1  

0.552 
0.494 
0.542 
0.521 
0.551 
1-940 
0.322 

- 1.127 

- 0.302 
-0 .328 
-0 .364  
-0 .390  
- 0.324 
-0 .530 
- 0"462 
-0"119 

0.234 
0.319 
0.405 
0-548 
0.739 
1.159 
0.904 
0.274 

Uncorrected 

(c) Slotted 25 in. x 20 in. tunnel. Axis Xo = 0.42~ 

M 

1 . 0 0 0 - "  

4.~00 
1-180 

0.158 
0.148 
0.140 

1.013 
1.643 
1.654 

0-808 
- 0.456 
-0-683 

-m0  - too  

- 0.445 0.775 
-0-139 0.377 
- 0.076 0-286 

Uncorrected 
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TABLE 5--continued 

Experimental Deriratives for  the Rectangular Wing (A = 2). 

(d) Effect of axis position (M ~ 0"85) 

M 

0.868 

0.844 

0.084 
0.086 
0.081 

0"084 
0.087 
0"082 

Axis 
Xo/~ 

0.17 
0-42 
0.67 

0.17 
0"42 
0"67 

Tunnel 

Sealed 
36 in. x 

14 in. 

Slotted 

36 in. x 
14 in. 

Uncorrected 

- m o  - m o  

0.062 0"809 
-0 .362 0.783 
- 0.788 0.892 

0.005 0'647 
-0"390 0"548 
-0"778 0"639 

Corrected 

- m o  - m o  

0.046 0.795 
- 0.345 0.702 
- 0.739 0.727 

TABLE 6 

Experimental Derivatives for  the Symmetrical  Tapered Wing (A = 4"33). 

{a) Sealed 36 in. x 14 in. tunnel. Axis Xo = 0.790 

M f~ Io lo :- mo - mo 

Q.078 
0.068 
0.060 
0.057 

0'078 
0"068 
0-060 
0"057 

2-243 
2:427 
2'659 
2"936 

2"083 
2"238 
2"426 
2"650 

-0"737 
- 1.230 
- 2 ' 1 7 0  
- 3'687 

- 0"200 
- 0"497 
- 1'059 
-2 .012 

- 0'622 
-0 .659 
- 0"709 
- 0"667 

-0 .583 
-0"615 
-0"657 
-0"617 

0"603 
0'708 
0'812 
0"868 

0"603 
0'708 
0'812 
0'868 

i 

0-751 
0.999 
1.464 
1.786 

0.604 
0.798 
1.161 
1 . 4 0 1  l 

Uncorrected 

/ 

Corrected 

(bt Slotted 36 in. x 14 in. tunnel. Axis x = 0.79/: 
i 

M 9 1o Io - mo - mo 

0-595 
0.695 
0.794 
0.844 
0.891 
0-939 
0.986 
1.037 
1 "092 

0.078 
0.068 
0.060 
0.056 
0.054 
0.051 
0.049 
0-047 
0.046 

2.255 
2.408 
2.610 
2.732 
2.973 
2.447 
2-580 
2.586 
2.536 

F 

-0 .796 
- 1.256 
-1 .814 
-2 .374 
- 3"893 
- 2"686 
- 2.743 
- 3.839 
- 3.625 

- 0.604 
-0.648 
-0 .696 
- 0-695 
-0 .613 
- 0.645 
-0.581 
-0.571 
-0.571 

0-759 
1.006 
1.312 
1.563 
1.611 
1.580 
1.904 
2.353 
2.985 

Uncorrected 
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TABLE 6- -con t inued  

Exper imenta l  Derivatives for  the Symmetr ica l  Tapered  Wing  (A = 4"33). 

(c) Sealed 25 in. × 20 in. tunnel. Axis xo = 0.79? 

M :d 1o lo - m o  - mo 

0.600 
0.700 
0.800 
0.850 

0.600 
0.700 
0.800 
0.850 

0.078 
0-067 
0.059 
0.056 

0.078 
0.067 
0.059 
0.056 

2.178 
2.328 
2.515 
2.740 

2.021 
2-145 
2-292 
2.473 

-0 .318 
-0 .482 
- 1 ' 0 4 1  

-1 .885 

-0 .140  
-0.251 
-0-677 
- 1-330 

-0 .629 
-0 .665 
-0 .697 
-0 '653  

-0 .592 
- 0.624 
-0 .652 
-0 .610  

0-616 
0-801 
1.151 
1.406 

0.568 
0.734 
1.046 
1.270 

t Uncorrected 

t Corrected 

(d) Perforated 25 in. x 20 in. tunnel. Axis xo = 0-790 

M ~ l o lo - mo - mo 

0.600 
0.700 
0.800 
0.850 
0.900 
1 . 0 0 0  

1 . 1 0 0  

1"200 
1.300 
1.400 

0.078 
0.068 
0.060 
0'056 
0.054 
0.049 
0.045 
0.042 
0.040 
0.038 

2.013 
2.078 
2-307 
2.463 
2-423 
2.245 
2-495 
2-740 
2.378 
2-056 

0.176 
0.100 

- 0.520 
-0"657 
- 1.053 
- 1.310 
- 3.975 
-6 .385 
- 3.603 
- 2.369 

- 0.574 
-0 .597  
-0 .626 
-0 .616  
- 0.543 
-0.581 
-0 .590  
-0 .438 

i -0 .083 
i - 0 " 0 4 5  

0.402 
0.551 
0.856 
1.074 
1.215 
1.987 
2"885 
1.277 
0.144 
0.078 

/ 
i 
, Uncorrected 

(e) Effect of axis ~osition (M = 0-9) 

M - m0 

0.891 

0.900 

Xo/~ 

0-056 0'395 
0.055 0.480 
0.054 0.790 
0.052 1.185 

0.056 0.395 
0.054 0.790 
0-052 1.185 

Tunnel - mo 

Slotted 0.509 
36 in. 0.261 

x 14 in. -0 .613 
- 1.706 

Perforated 0.448 
25 in. - 0.543 

x 20 in. - 1-557 

0.359 
0-594 
1.611 
3.626 

0.730 
1.215 
2.416 

l Uncorrected 

Uncorrected 
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