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Summary.

The equations of motion for supersonic flow over a symmetrical wing at zero incidence are linearised
and the pressure coefficient at a point in the wing mean plane is expressed in terms of the finite part of
a singular integral. The equation is modified in such a way that the finite part can be calculated analytic-
ally, leaving a regular integral to be evaluated numerically. A method of correcting this value of pressure
coefficient, to enable an estimate of the value on the wing surface to be made, is discussed. Numerical
results for three wings are given and compared with previous results and with experiment.
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1. Introduction.

Both in the design of supersonic wings to have a given pressure distribution (Reference 1) and in the
calculation of the pressure distribution on an arbitrary cambered wing at incidence, an essential pre-
liminary is to be able to calculate the pressure due to thickness on a symmetrical wing at zero incidence
in supersonic flow. To do this exactly is a task that still lies well beyond the capabilities of even the most
advanced digital computers, so that it is necessary to have recourse to linearised theory and then to
correct the results whenever possible for the principal second order effects. The most important of these
occurs in the vicinity of a leading edge that is rounded, but still ‘subsonic’ in planform with respect to
the free stream velocity, and it is then reasonable to suppose that a correction method similar to that
commonly used at subsonic speeds will give good results in the supersonic case also.

The present Report describes a numerical method of evaluating the solution to this problem in linearised
theory, and suggests a possible form of leading-edge correction.

The principal difficulty in the numerical analysis is to evaluate the finite parts of a number of singular
integrals; a computer programme based on the analysis presented in this Report has been written in
Algol, and values of the pressure coefficient C, at points on various wings have been calculated. The
same problem has been considered previously by Haines, Rollins and Osborne (Reference 2), but their
numerical techniques are not strictly applicable to wings with rounded leading edges, so that an artifice
has to be used to convert the rounded leading-edge shape into an equivalent sharp-edge one. Moreover
their method differs from ours in that they calculate the velocity potential at points over the wing and
then differentiate numerically to evaluate the velocity field and pressure coefficient.

An appropriate expression for C, is derived in Section 2 for the linearised equations of motion. Modifi-
cations required in order to evaluate C, numerically are described in Section 3. Section 4 contains details
of the programme, the way in which the wing geometry must be specified for the programme and a dis-
cussion of the accuracy of the calculations. Details of the calculated values of C, for three wings are
described in Section 5.

2. Outline of Method.

We wish to determine the distribution of velocity and pressure on an isolated symmetrical wing with
rounded leading edges at zero incidence. Cartesian axes are taken as in Figure 1 so that the mean plane
of the wing is z = 0.

In three-dimensional linearised theory we consider the velocity field

U= Uy(rg+V o) (2.1)

where 1y is the unit vector in the direction of the free stream velocity (U,) and ¢ is the perturbation
velocity potential.
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Then ¢ satisfies the equation
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If M is the free stream Mach number then
=M?*-1.

Equation (2.2) has a solution of the form (Reference 4)

-3

lxyiz) = - H‘Qz’(é””[ 2 g2 (- n)2+22}] s 23

where z,(£,1) is the wing thickness distribution and X is the area in the plane z = 0 cut off by ¢he forward
Mach cone from the point (x,y,z) (see Figure 1). Equation (2.3) can be written in the form

1 n2{x,y,2)
¢(xayaz) = —f G(x,y,z”?) d’l (24)
n1(x,y.2)
where
x-Buw 5, ; -4
Glxy.21) f ‘(5 ) [(x— &2 —B? {(y—n)? +z2}] &z, @5)
x1(n) .
= (y —n)*+2*
1, and 5, are the roots of the equation
x(n) = x—Bw ‘ (2.6)

and x,(n) is the x co-ordinate of the wing leading edge — see Figure 1.
Differentiating (2.4) with respect to x gives

_0¢ "8G
= ——;fm a?dn—-—G(x,y, le) 24— G(x,y, ,m) 27
Here
G @ [*7Pe oz, 2 62 N
P I Lo A R I
rx—Bm oz -3/2
= -7 (x=& 5 [(x—rf)z--B2 {(v—ri,‘2+22}] g (2.8)
J xp{m) 6
where j:denotes the finite part of an infinite integral (see Reference 4).
Similar expressions can be found for 9 and @
dy 0z

In this Report we are concerned with wings having rounded leading edges and therefore the streamwise



slope of the wing can be written in the form

9z, _f(ap)
5E = gt (2.9)
where a and f are the non-dimensional co-ordinates
¢ —sxi(p)
o == , = y/s,
scf) B=n/ (2.10)
s is the wing semi-span,
sc(p) is the local chord, and
sx;(B) is the x co-ordinate of the wing leading edge.
Thus, the radius of curvature at the leading edge (R,) becomes, from (2.9)
Ro(ﬁ) 2
= 2 [f(0, 2.11
wp = 2Uep] @11)

and so near the leading edge,

oz, _ [ Ro(B) ] P [ Ro(1/s) ] !
78 2AE—sxy(B)) 2(E—x(m)
As n—1n, or n—1,, the integrand of G becomes infinite and the range of integration becomes zero.
Hence we have to obtain the limiting values of G asp —#, and n—1#,,

lim lim [Rytn/s)] o
1
G(x,y,2,) ~ If{o_”l_‘] |:x —-x;+ Bw:|
n—n nonl 2

y x - Bw dé
o (E=x(m)x—&~Baw)

b
d
Now j‘a m = n independently of a and b and so
Ro(n1/5) * Ro(8,) H
G(x,y,z, )=‘n|:—°——— =4ig| —— | , 2.12
P : x—x(n,) ? x—sx)(B1) ( )
since #, is a root of equation (2.6). Similarly
Ro(B) |*
G X2,y =3 T l: '————9——‘_] .
(x.1,2,12) = 3 x—sxi(B,)
Also, from equation (2.6) we have
on, x—x(n,)
— = — 5 2.13
3x T (x=x(mtan Ao+ B2 (r—ny) @1

. . d
where Ag, is the leading edge sweep angle atn = n,, tan'l( x{‘i(nl)) )
1
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Putting z = 0, we obtain from equations (2.7), (2.8), (2.12) and (2.13)

c,— - zacﬁ ((;;y,o)
2w Ro(ny/s) ] *
_EJZIHxLde+B+mnAm [x~mw0}
L1 [ Ro(ﬂz/s):l *
B+tan Aoz X—xl('?z)
cz,
" ° ~Bln—y| (x=¢) oE de

) = — 2.15
wnere (x . '7) £I("} [(x_ 6)2 _BZ (’,’_y)2]3/2 ( )

The forward Mach cone intersects the wing mean plane in the two straight lines

& =x4BH-y).

In general these lines cut off an area which can be divided into five regions (see Figure 2). Regions 3
and 4 disappear for those points (x,y) through which the Mach lines do not intersect the trailing edge.
In this case Region 5 adjoins Region 2.

Now if we express everything in the non-dimensional co-ordinates « and 8 we obtain

(x.y,0) = (X.Y,0)

—sxyY
where = XTS(X;,()—), Y = y/s.
The Mach lines become
o= 0,0,
1 * *
where oy = @ [X c(Y)+x(Y)—x(B)]
and | @y = B(f— Y)/c(f)
Thus. o= 2" @-0f@p)dudp
R WJ o clB)at (ay — oy — )2 oy + oy — )32

+ 1 Ro(B1) i+ 1
B+tan Ay, [ x—sx;(8,) B+tan Ag,

% [ RO(ﬂZ) ] ¥ (216)

X~sx?(/32)



where o* = o, —a, in Region 1

= o, +a, in Regions 2 and §

It

1 in Regions 3 and 4.

This is a non-dimensional form of equation (19) in Reference 1.

From (2.16) it is possible to calculate C,. However, the double integral is not suitable for numerical
evaluation in this form as the mtegrand has a square root singularity at « = 0 and behaves like
(g +a,—o)" 3% at « = a, +a,. One of the singularities at o = a, +a, always lies outside the range of
integration with respect to a but in the course of the spanwise integration «, >0 as f— Y and hence
o, —a, ~ 0, + 0. Thus, in this case, as o approaches the Mach line, these two singularities combine to
form a pole of order three.

Before a numerical procedure can be used, it is necessary to remove these singularities from the inte-
grand and evaluate their finite parts analytically, leaving only regular functions to be calculated
numerically. The necessary analysis is described in Section 3.

3. Analysis.

In this Section we describe a method of converting the double integral in equation (2.16) into a form
which is suitable for numerical evaluation. It can be expressed as the sum of a double integral having only
square root singularities and a number of single integrals. The analysis will be considered in detail for
Region 1 (Figure 2). For the other regions, the analysis is similar and is outlined in Appendix 2

The double integral is replaced by

B2 fray— x>
f f Hy* @) dedg,
BiJ O

oy —a
c(B) ot (ot —a, —o)* (g + 1y —a)’/?

X [f(otaﬂ) —f(oty —%2.5)

o ¥ ay o, —a\?
X{Kl(ﬁ)<al~a2) +K2(ﬂ)(al )( - ) }

+
KO ot [y, az,ﬁ)—%f(al—az,m}} ()

(ot —0(2 N

where

H.*(a.f) =

Here K ,(B) and K ,(p) are weighting functions with the following properties:

K B+Kp) =1, )
K (B)(a;—ay) % >0as oy —0, >0,
Kp)—»1asa,—0, L (3.2)
K,(B)a, t*>0asa, -0,
and K,(p)—1asa;—oa,—0. J




H *(«,f) is the integrand of (2.16) except for certain terms that have been subtracted in order to ensure
that it contains only integrable singularities in the region of integration. These terms have been chosen
so that they can be integrated analytically with respect to o.

We shall show that H,*(%,f) is regular in Region 1 except when a = 0 or ¢ = oty — a5, where it has
square root singularities. Consider the chordwise integration at the general section B =p* Asa—o, —a,,

dl —

Hifef) ~ c(B*) ot (g — ot — )2 (ory + oty — )2 [f(a,ﬁ*) Jemoah

(B*) at (a—oy +0t,)
(g —o)*?

X {(‘11 —0tp) fo (g — 0z, f*)— 5 f (o, —az,ﬁf)} ]

x {Kupyrkapm } - X

Since K (B*)+ Ky(*) = 1,
K (p*) (@ —ay)"3* >0as a; —a, —0
and S0uB*)—f oy —og,f*) is 0 (x—a; +2,)

it can be seen that H*(a,*) is regular apart from a square root singularity at ¢ = o; —a,.

It is necessary also to consider two special cases. As f* — M[ 1] (i.e. the f co-ordinate of the intersection
of the Mach line and the leading edge), «, —~2, — 0, K,(8*) (2, —t;)~ %> - 0 and K,(B*)— 1. Then

oy —o

H o, f*) ~ c(B*) ot (ot — oty — )32 (o + o, —a)

372 [f(“,ﬁ*)“f(%—“z,ﬁ*)J ’

as «—a; —u, and it can be seen that H,*(a,$*) is regular apart from a square root singularity at
o = 061 ——062.
Also as f* > Y, a; — 0, Ky(B*) o, * -0 and K,(B*)— 1. Then as o — o, —a,,

H* (%) ~ ——1 "% [f(a,ﬁ*)__f(al_ocz,ﬂ*)<a x )5

o) —a) L ot o 1%

—~ (o —oty +0ty) {f“ g‘ —02B) S~y %) ]

2
1 —“2)% (ot ~ 0‘2)3/2

The expression in square brackets is ol(@—a; +a,)*] and so in this case H (o, f*) is regular at o =
al ——062.

The weighting factors K (8) and K ,(8) are necessary because the functions subtracted from the inte-
grand to give it the required behaviour near f = Y are singular at § = M [1] and vice versa.

A transformation can be defined which maps the square root singularity onto a point outside the range
of integration. Consider the integral

j T da
0 0‘*(“1—‘12—05)%’

and make the transformation

o =025, —a)(1+0*(2-0. (3.3)



Then the integral becomes

J‘ bo3d¢

L @=

and the integrand is regular in the range of integration.
Applying this transformation to

j H,*(o.p)da,

o]

we obtain

j’ 3oty —) Fy (,f)d {
L1 o) (4= (ay — oty — ) (o 0, — )

where

i
Fy@p) =f(a,li)—f(a1-azvﬂ){ Kn(a : az) +K2(oc aia)
1 1

ay oy —ay3?
20,
Kot (@—a;+a,)

L (CRCAVACRSAU S VEE R (.5)

B2 [=i—az
Now the double integral J. H,* (a,f) d o d B can be evaluated numerically provided that the

0
method used does not requireﬁt’he value of H,*(a,f) at points where o = o, — ;. At these points, although
H *(a,B) is regular it is numerically indeterminate because both numerator and denominator are zero.
We use a Gaussian integration formula which overcomes this difficulty because it does not use the end
points of the range of integration.
The contribution from Region 1 to the integral of (2.16) can be expressed in the form

~ r J’ 3, — o) F, (0,) dC dP
_.c(B

) (4— £t )* (g — o —00) (o4 +°‘2‘—°‘)3/2

— o)} () — oy — )2 (o + 0y — )2

_J- fﬁl " K, (B) (o, —a)f(oy —ay.f)dadp
c(B) («

_f J:ax az I(Z(B)oczf(a‘—az,ﬂ)dadﬁ

c(B) ot (o — oy — ) (2 y)?

J‘ :f““ 2 Ky (B) (2 —ap) [y — ) fa (01 — 0, f) = 3 f ey — 5, B)] d a dB

c(B) (g — o) (g — oty — ) (ot + 01, — )2



where 8, = Y and 8, = M[1].
It can be shown that

?F" 2 (o, —o)d o _ 1
0 (oty — oty — )% (ary + oty — )32 B —(0612—0622)5
?F"—“z (g —aydo o [y —op)t +(oty +25)*]? “(al—az
o (ag—oy—a) (o +o,—o)¥? & 2, o+,
*1Ta2 do
e {0
Hence
j j a)F (ocﬁ dldp
el dpE- cZ)%(ocl — o) (g + )
K flu—onBdf [ K
* ] o B =) +oc2>*+L, B s {(“‘ ol Camanf)

—1f (0~ ) } 8 {IOg [(ors — 02)* + (erg + )T

20,
oy —a; |
(oz] + o5 ) } dp.
The last integral in (3.6) has a logarithmic singularity at o, = O0(x,;—0as - Y).
This is treated by rewriting the integral in the following way:

2
j ———K‘——{(al—az)mal—az,ﬁ) Lf (o= az,ﬂ}

g, (B) (1 —a13)"
_ 3
x {ZIOg ((al—ocz)“r(“r*“z)’L) *(Zi+22> }dﬁ

B2 Kl !
- L: {W [(“1—az)fa(“1—°‘2’ﬁ O az’ﬂ] (V)X

X [Xfu(X,Y)—%f(X,Y):' } log2a,dp

oY) X3 (B

The second integrand in the above expression ~ «, log 2 «, as a, — 0 and so is regular.

Thus, we obtain

)

(3.6)

! ‘[Xfa(X,Y)—%f(X,Y)}{J’ log—dﬁ+[(ﬂ ¥)log (B— V)~ BL }



. _fz J 3 (o, — ) Fy () dC dp
Y L@ ) (o oy — )

B2 K\ Sl —x,.8) dB
i Py oy —a5) oty “‘952)ZL
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0‘2) /2 @

p,C(ﬁ)(O‘l_
{2log |:(rx1+1_7)2L +(a1—a2)1‘] —(u)z } dp
oy oy

B2 K 1
_jﬂl {(m?(ﬁ)(dliaz)3/2 l:(a1—az)fa(fxl“ﬂﬂzaﬁ)" f(OH Ocz,ﬁ ] —%C(Y)XS/Z

X [Xfa(X,Y)—%f(X,Y)] } log2a,dp

-~ [Xfa(X Y)—3f(X, Y)] { J log 2(ﬂ dB+ [(B—Y) log (ﬂ—Y)—ﬁ] Z}
(3.7)

For Region 1, the contribution to the integral of (2.16) can be evaluated from (3.7) where ¢ is defined
by (3.3) and F, (2.8) by (3.5). The formulae used to calculate the contribution from the remaining regions
are given in Appendix 2.

Finally, we note that the calculated value of C, is at a point in the wing mean plane, whereas in an
experiment the value measured would be that on the surface. This means that some correction should
be made to the calculated results before direct comparison with experiment is made. This problem is
discussed in Section 4.4 of this Report.

4. Computation.

4.1. The Programme.

The computer programme has been written in Algol and developed using an English Electric KDF 9
computer. A flow diagram of the programme and details of the input information required appear in
Appendix 1.

The integrations are performed using Gaussian Integration formulae and the coefficients for both
the 10 point and 20 point formulae are built into the programme. In each region the double integral is
evaluated as a repeated integral in which integration in the x direction is followed by integration in the
f3 direction. Clearly if the 10 point formula is used, the integrand has to be evaluated at 100 points in each
region.

With the Kidsgrove Algol fast compiler using the Gaussian 10 point integration formula, the time taken
to calculate € at a point involving only Regions 1, 2 and 5 is approximately 15 seconds and for a point .
involving all five regions approximately 25 seconds is needed.

4.2. Wing Sections.

In this Report we consider wings having rounded leading edges. The wing slope in the free stream
direction can be expressed in the form, equation {2.9),

oz

ﬁ,_a 5faﬂ)
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0 . . .
With —(%' defined in this way, we obtain

z, = sc(f) g(0.f)

where

g(o.p) = f o~ ¥ f(of) do.
0
If the thickness-chord ratio of the wing sections at different chord stations is constant, then f(x./3)
will be independent of § and all wing sections will have the same slope at points where the lines ¢ =
constant cut them.
A large class of wings have ‘similar’ sections and for these, f(,f) can be expressed in the form

flB) =f1(@)f2B).

The polynomial f,(f) defines the variation of thickness-chord ratio along the span. The three wings
considered in this Report have ‘similar’ sections; two based on the RAE 101 aerofoil and one based on
the RAE 103 aerofoil. In the programme, the function f,(x) may be expressed either in the form

N

D [l =Zli o

or(ii)  fi(e) = a_1+a£a,- o .

For more general wings, the programme is arranged so that f(x,f) is specified by a function of « for
a number of values of f and an interpolation procedure is used to calculate f(x,f) at intermediate values
of f. The position and number of these S-points where f(«,8) is defined, may be specified arbitrarily.

. . o 0z . oz )
In our calculations, f,(«) is an approximation to «? (ﬁ and can be derived from values ofa—' at discrete
b

points, by standard curve fitting procedures. Polynomial representations of type (i) have been calculated
for the RAE 101, and 103 aerofoils using the method of least squares. The coefficients are given in Appendix
3. It was found impossible to cover the whole range 0 < « < 1 accurately with a single polynomial, so a
number of polynomials are used. These have been arranged so that together they define a curve which
is a piecewise continuous approximation to the given aerofoil. In general, f,(«,8) will be discontinuous
at points where the curves represented by the polynomials join. However, it is unlikely that these dis-
continuities will have a significant effect on the calculation because f («,8) i$ evaluated at only a few
points on either the Mach lines or the trailing edge of the wing. Also the Gaussian integration has the
effect of smoothing out any discontinuities in the integrand. Nevertheless, it would seem desirable to
have the smallest number of polynomials consistant with an approximation of given accuracy.

In order to assess the effect of the choice of polynomial representation of thickness on the calculation,
an alternative set of polynomials was used for the RAE 101 aerofoil and values of C, on Wing 1 cal-
culated again. The two sets of results are compared in Table 3 and are within 1 per cent of each other
for most points.

4.3. Accuracy.

For a general wing, the overall accuracy of the calculation is difficult to assess. In theory, the range
of integration can be continually subdivided until any required order of accuracy is achieved, but this



would require such a large amount of computing time that it is impracticable.

The computed results for Wing 1 agree satisfactorily with the analytical results obtained by Weber
(Reference 2). Further, the results obtained by the method described in this Report have been compared
with experimental results available for the wings considered in Section 5. We conclude that the overall
accuracy of our calculation is satisfactory in the cases we have considered and since there is no reason to
suppose that the accuracy of the calculation will be significantly different for other wing shapes, we believe
that the method described here will produce satisfactory results in general.

The accuracy of the evaluation of the single integrals and the integration in the chordwise direction
of the double integrals can be checked by any simple integration procedure in which the interval is
progressively subdivided until the results converge. Wherever it seemed necessary, this checking pro-
cedure has been carried out using a Simpson integration formula and is described in Section 5.

In addition, a check on the accuracy of the chordwise integration has been carried out for the case of
a parabolic wing section (f(«,8) = 1) which allows an exact solution of the integral in terms of complete
elliptic integrals (Reference 3).

From equation (2.16), we have for the chordwise integration in Region 1,

r= Jf (o, = 2) ) do

0" ('([f)a% (061——062—06)3/2 (051+a2—a)3f’2 .

Integrating by parts gives,

e f(e.p) L I
I = finite part [(m‘g(“l—az““) (o +a,—a) ] .
. ]ﬁ af ()= 4/ @B) b
o Bt (o oy —o)t (o +oy—a)?

The term in square brackets is infinite at both limits and so the finite part is zero. Putting f(«,f) = 1
gives

= 1 e do
—2C(B) 0 “3/2(“1‘("2"0‘)%(“14‘0‘2_0‘)%

This integral can be expressed in elliptic integrals. It can be shown (see Reference 5, Section 234.04)
that ’

- da = 2 " dc? u du
4] a3 (o — oy — o)t (gt —o)t (o — o) (g o)t ) '

x

fora >0

oy o) (e —oy—a)

where SHT Uy = s =) (2, T o= )
’ o~y \?
and modulus k={ ——=
oy oy
Also f de?udu = F(pk)—E(pk)+dnu tnu, .
0

where sin¢ = snu,



Thus, in the limit ¢ — 0 (¢ — n/2), the last term is infinite and the finite part has the value (K(k)— E(k
where K(k) and E(k) are the complete elliptic integrals. '

Hence
I= —L I [E(k)-—K(k)]
B c(B) (oty —ay) (051_“2)%
. _ B(f-Y)
fFwe write T XN+ -xh)
_ _ E()—K(k)
then I* = —C(ﬁ)a13/21 = m,
1-6\
and k= (m) .

In Legendre’s notation, writing k = sin 6 then gives

_1—sin®#
T 1+4sin?0

We are particularly interested in the chordwise integration near the point (X,Y) where the singularities
on the two Mach lines combine i.e. small values of 6(8 ~ /2). Values of I* for 8 = 85°, 87°, 88°, 89° are
given in Table 2.

Now we have to express equation (3.7) in a similar form. Putting f(a.f) = 1, f(0.f) = 0, K, = 1,
K, =0,a = a;7 and a,/o; = J then gives for the chordwise integration,

! 3=y
* — 3/2 =
1 c(Byo > 1 [1{4__C2)»§(1__5_7)(1_‘_5._;-)3"2

oy N P e—146) B 15
x[l (1—5) MERTIEE Jdc (=o) (11 o)

1 [(1-0)F +(1+6)1]?
T—ayn o8 25 ’

+

where Y =

I* has been calculated from this equation using Gaussian 10 point integration and compared with the
exact solution in Table 2. It can be seen that our numerical calculation for this simple case is extremely
accurate,

4.4. Surface Velocity Correction.

It is well known that simple linearised theory—in which the boundary conditions are applied and the
velocity calculated, both in the mean plane of the wing—is invalid near a rounded leading edge however
thin the wing may be. It is necessary therefore to make some form of leading-edge correction. There are
a number of equally plausible possibilities; the one suggested below is based on the proposals of Haines
et al (Reference 2), which is equivalent in concept to the ‘Riegels rule’ used in subsonic two-dimensional
calculations. At the same time it is convenient to make some allowance for the lateral component of
velocity



G,
vy= UO%‘

Although this makes only a second order contribution to the total velocity on the wing surface. it is known
that improved accuracy can often be obtained by including a rough approximation for it.

Suppose that the perturbation velocity vector (v,,r,) in the plane z = O has been calculated using
linearised theory. The resultant velocity makes an angle = tan™' (—v,/v,) with the x-axis. Define new
axes &7 in this direction and perpendicular to it. The velocity components along these axes then become

Ve= Ugcosy+uv,secy
V,=Upsiny.

Now we assume (by analogy with two-dimensional cubsonic theory) that in going from the plane
z = 0 to the wing surface, the component V, is unchanged, but the component V, is multiplied by the

(__
62, 52,

oz, . . . N
where — = — cos l//—é% sin , the wing slope in the & direction. Thus V', becomes replaced by

o0& ox
V=V, [H*(Z—?)Z ]_%,

and hence the total velocity V' is given by

14 2
(V)2 = Uy?sin? ¢l+—-—:;—zj .
1 i)
(%)
Now define 8 by
0z, [0z
tanf = ——~ [ -2
an dy | ox
so that for an untapered wing 6 is equal to the sweep angle A.
Then
0z, % cos (0—y)
o6 dx cos@
and hence

v
, (cos Y+ —=sec ¥)?
(-V~>2 = sin? Y + Uo

2
Us 1+(%) cos? (0 —y)sec? 0
X



This can now be used with the exact pressure-velocity relation, to calculate C,’ (the corrected value of
C,), where s

.2 p—1 VT 2 @.1)
c, —W{(HTMZ [1_<58)_]> 1 }

Here M is the free stream Mach number and y is the ratio of the specific heats of air (approximately 1-4).
The above equation reduces, in linearised theory to

¢

v
M 2 X = 27
Cp UO 0x

but it is probably better to use the exact equation when possible,

This analysis requires the knowledge of both v, and v,, but our computer programme is designed to
calculate only v,. Although v, could be calculated in a similar manner, the computing time required
would be increased significantly. We feel that the extra effort needed to obtain values of v, is not really
worthwhile.

Accordingly, the simplifying assumption is made that, except near the root or tip, ¥ = @ = A, the
local angle of sweep. For an untapered wing, A is just the leading (and trailing) edge sweep angle, but
for a tapered wing it is less obvious what value should be taken. Since the main effect of the correction
is near the leading edge, it is desirable that at least A should take its local value (tan~! dx,/dy) there.
We therefore suggest defining A by

dx;, x—x; dec

tan A =
dy c dy’

thus allowing A to vary along the chord in an appropriate manner.

We must also allow for the fact that v, is zero at the root (and probably also at the tips) of the wing.
This can be done crudely by following the analogy of the corresponding subsonic theory (Reference 6),
in which A is replaced by A*, defined by

A*=(1-K)A,

where K is a function of y. For want of any other evidence we define K as in subsonic theory by

K = K,+K,
0-068 —0-122(y/c,)
h K, = r .
where . 0068+ y/c, for y/c, < 0-557
= Qfor y/c, = 0-557

0073—0098 2=
" s—y
and K, = o for : <0745
0104+ ’
t

S—Yy

t

=0 for

=0745.



Here ¢, is the root chord and ¢, is a representative tip chord. For a tapered wing, use the actual tip chord
or 0-1 times the root chord, whichever is the lareer. For a planform having a curved edge at the tip. this
representative tip chord may be taken as 0-4 times the chord at y/s = 0-75.

With this definition of A* we then have

v\ (cos A* + ;jf sec A*)?
< ....... ) =sin? A*+—— . 70, I (4.2)

1+ <(,Z') sec? A
‘x

* which, when inserted in equation (4.1), gives the value of /Cpl. At the root (f = 0) this reduces to

VN2
(2.) ()
as it should.

Alternatively, in view of what is known about the leading edge correction in subsonic flow (Reference

0
6), it may be preferable to replace %-ZJ by
0x

0z,

. (1—=M?cos? Ayt

Here we have used A, (the leading-edge sweep angle) in place of A* to avoid the possibility of
1 —M? cos? A becoming negative near the root or tips.
This gives

(cos A* +ilj—x- sec A¥)?

V/ 2 2 0
) = sin? A 43
(UO > - +1 N (62,)2 sec’ A* (4.3)

) T e
which when inserted in equation (4.1) gives the value of C 2.

It should be noted that for highly swept wings of the type we consider, since v,==v, tan A, then v,
may be numerically greater than v Thus it is not justifiable to ignore r /U, unless we a'so ignore (v,/Uy).
Hence it is not appropriate to use equations 8a and 8b of Reference 2.

5. Calculated Examples.

5.1. Wing 1 - Constant Chord, 55° Swept Wing of RAE 101 Section.

This wing (wing A of Reference 2) is shown in Figure 3. It was chosen so that a comparison of our
numerical results could be made with the analytical results of Weber and the numerical results of Haines,
Rollins and Osborne. However, the wing that we use has the true rounded leading edge of the RAE 101
aerofoil, whereas the results obtained by Haines ¢t al and Weber are for a sharp leading edge approxi-
mation to the RAE 101 aerofoil. Some disagreement in the results near the leading edge is therefore to
be expected. The results are compared in Figure 4.

On the centreline (Y = 0), apart from near the leading edge, there is good agreement: and the same



with the difference in the shapes of the assumed sections. us explained in the previous paragrapn.

A detailed investigation of the numerical calculation for this wing has been made. The results obtained
by using the 10 point and the 20 point Gaussian integration formulae are compared in Tablc 1. The
values obtained with the 10 point integration formula are within 2 per cent of those obtained using the
20 point integration formula for most points and the extra time needed to carry out the calculation using
the 20 point formula does not seem to be justified in general.

The point (09, 0-3), where the difference is 9 per cent of the (small) value given by the 20 point formula,
was chosen for closer study. A detailed print out of all stages of the calculation was obtained and graphs
of the various integrands were examined. A selection of these graphs are shown in Figures 5a, b, ¢ and
d. It was found that most of the curves were smooth and well behaved like those in Figures 5a and b.
The results obtained by the Gaussian and Simpson integration procedures agreed very closely. Even
in the worst case, Figure 5d, the difference was only 6 per cent of a small quantity, for the 10 point in-
tegration formula. In Figures 5c and d the violent oscillations that occur are caused by discontinuities
in f (x,f) where two polynomials join (see Section 4.2).

5.2. Wing 2 — Tapered, Swept Wing with a Curved Tip.
The planform of this wing (Wing B in Reference 2) is shown in Figure 6. The leading edge was approxi-
mated by the following polynomials.

0<n<05417, x{n) = 1-680857 .
05417<n <1, x(n) = — 146769 +71-4511n—109-9240n + 57-52324> .

The results are compared with those of Haines et al in Figure 7.

5.3.Wing 3 — N.P.L. 55° swept wing of RAE 103 section.

The planform of this wing is shown in Figure 8. The leading edge was approximated by the following
polynomials.

0.< 7 <42013, x{n) = 1428148y

42013 < 5 < 94207, x,(n) = 2252-205702 — 2947-567216 4 + 167214628072
5362678671 + 106:3962154* — 13-373899° + 10403364
— 04580177 +0-000874 78

94207 < n < 95158, x,(n) = 19324:89767 —4093-739369 7 + 217004967 7>

A half-model of this wing has been extensively tested in the 20 in. square transonic tunnel at the N.P.L.;
a comparison of experimental and calculated pressure distributions at four spanwise positions is shown
in Figures 9 to 12 for a range of Mach numbers from 1-1 to 1-4. Near the root (y/s = 0-22) the agreement
is good at all Mach numbers, and also at the tip (y/s = 0-88) at M = 1-1 and 1-2. Even at these Mach
numbers the calculations slightly underestimate the peak velocity in the middle of the half wing (y/s =
0-66), and at higher speeds a shock wave appears and moves outward and rearward as the Mach number
increases; and under these circumstances there is naturally poorer agreement between theory and ex-
periment. Bearing this in mind the overall picture seems reasonably satisfactory, although there is
insufficient evidence to assess the relative merits of the two leading-edge corrections, equations (4.2)
and (4.3).
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LIST OF PRINCIPAL SYMBOLS

(M?—1)2, see equation (2.2)

The length of the chord at the point (c,f)

The pressure coefficient at a point

A corrected value of C, for a point on the wing surface

The corrected value of C, using equation (4.2)

The corrected value of C, using equation 4.3)

A function used in evaluating the wing slope, see equation (2.9)
See equations (A1.2) and (A1.3)

See equation (Al.1)

of (,B)
Jda

See equation (3.5)

See equation (2.5)

See equation (2.15)

See equation (3.1)

Expressions for integrals appearing in Section 4.3

The contribution from Region 1 to the integral in equation (2.16)
Weighting functions defined by equations (3.2)

Free-stream Mach number

The f co-ordinates of the intersections of the Mach lines with the leading edge
The B co-ordinates of the intersections of the Mach lines with the trailing edge
Unit vector in free-stream direction

Radius of curvature at the leading edge, see equation (2.11)
Semi-span of wing |

Perturbation velocity component in streamwise direction
Velocity vector

Magnitude of free-stream velocity

Perturbation velocity component in spanwise direction

u

v

See Section 4.4

Co-ordinate in streamwise direction

Non-dimensional x co-ordinate
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xi(n) = sx,(f) x co-ordinate of leading edge

y Co-ordinate in spanwise direction
Y Non-dimensional y co-ordinate
z Co-ordinate in vertical direction
z{x,y) Hall-wing thickness at point (x.1)
2 Non-dimensional co-ordinate in streamwise direction. See equation (2.10)
o, = VB [Xe(Y)+x(Y)— x;(B)]
%, B~ Y)je(p)
I Non-dimensional co-ordinate in spanwise direction
B..5; Limits of integration in spanwise direction
p* A particular value of §
¥ Ratio of specific heats (1.4)
0= tan'l(—(zz'/(i:l)
&y / ¢x
¢ Perturbation velocity potential
W = tan™' (—r,/e,)

Angle of sweep

Ao, Leading-edge sweep angle at § = M[1]
Ao, Leading-edge sweep angle at § = M[2]
z Area of integration
& Dummy variable of integration in x direction
] Dummy variable of integration in y direction
N1l Roots of equation (2.6)
e Transformation variable, see equation (3.3)

w = I: (y—m? + 27 " l
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APPENDIX 1
Details of the Programimie.

1. Wing Geometry.

(a) Leading Edge.

A polynomial approximation to the leading edge is used in the programme. A procedure {(y) is used
to cvaluate £ at a point on the leading edge corresponding to a given value of #. In practice there may
be more than one polynomial to cover the range 0 <75 <s. The curve defined by the polynomial is a
representation of the leading edge in cartesian co-ordinates (£,n) with axes as shown in Figure 1. The
coefficients of the polynomial are automatically adjusted within the programme for use with the non-
dimensional co-ordinates («,f). The input information required to define the leading edge is:

nl, the number of polynomials defining different sections of the leading edge,

ml, the degree of the polynomial of highest order,

b1{i], the n co-ordinates of the points at which the curves represented by the polynomials join,
i=12,........ nl—1.If n1 = 1, then no values are supplied.
A1[i,0] ... A1[i,m1], the coefficients of the i’th polynomial,i = 1.2,..., nl.
Then

nl

E=xn) = E Allijln, i=12,...,nl.

i=0

It should be noted that if any of the polynomials is of degree p <ml then the coefficients of n* where
k=p+1t,p+2, ..., ml must be read in as zero.

(b) Truiling Edge.

The trailing edge is defined in a similar way to the leading edge and the value of { at a point on the
trailing edge corresponding to a given value of  is calculated using a procedure tr(n). The input informa-
tion required to define the trailing edge is:

n2, the number of polynomials defining different sections of the trailing edge,

m2, the degree of the polynomial of highest order,

b2[i]. the n co-ordinate of the points at which the curves represented by the polynomials join,
i=12,...,n2—1. I n2 = 1, then no values are supplied.

A2[i0]... A2[i,m2] - the coefficients of the i’th polynomial.

Then

m2
& =tr(y) :EAZ[I',}'] W, i=12,...,n2
=0

(¢} Chord.
The length of chord at a point # is calculated using a procedure c(y) where

cln) = tr(m)—Un).

(d) Wing Slope.
As explained in Section 4.2, we use for the wing slope the expression

0z,

™ = Ol_%f(asﬁ) = “_}.fl (2) f»(B).
X

9]
t2



In the i)rogramme we define f,(f) so that

m4
SfaB) =ZA4[i,k] i (ALY)
k=0
and we define f(x) so that either
m3
f1(@) =ZA3[:‘J,I¢] ok, (A1.2)
k=0
or
m3
fil@) = A3[iy,—1] +a£A3[i,j,k] o (A1.3)
k=0
where

i=12,....,n3andj=12,....,n4.

In order to obtain accurate representations of a wide variety of surfaces, the programme has been
arranged so that different parts of the wing planform can have the slope represented by different functions.
The wing planform is divided into n4 areas by the lines

B = constant = b4[i],i=1,2,...,n4—1

and then each of these areas is subdivided into n3 sub-areas by the lines
a = constant = b3[ij],j=12,...,n3-1.

giving a total of n3 x n4 sub-areas. For each sub-area (defined by i and j) the coefficients A3[ij,k], where
k =0,1,...m3 must be given so that values of f(«) may be calculated. If equation (A1.3) is used to
evaluate f'(«) then an extra coefficient 4A3[i,j,— 1] is required. For each area (defined by the parameter
i) the coefficients 44[i,k] where k = 0,1, ... m4 must be given so that values of f,(f) may be calculated.
In practice not all the areas defined by the lines § = b4[i] may need to be subdivided into n3 sub-areas.
Suppose area p needs subdividing into g sub-areas where g < n3. Then we put b3[p,j] = 1 for g <j < n3
and the coefficients A3[p,j,k] associated with the sub-areas for which g <j < n3 are made equal to zero.
These coefficients are never used but are required by the input procedure. An example of how a wing
planform might be divided up is shown in Figure 13. For the wings described in Section 5 only one area
was ever used.

In the programme two integers S1[i] and 52[i] are associated with each of the areas defined by the
lines § = b4[i]. These integers are chosen by the user and act as switches within the programme. If the
wing sections within the area are ‘similar’, then S1[{] must be positive and in this case the wing slope
will be calculated using f,(«) f,(f) at the point («,8). If S1[i] is made negative, then the wing slope will
be calculated by interpolating between the values of f(x) f,(B) at the points (, b4[i —1]) and (&, b4[i]).
If $2[1] is made positive, then f,(a) is calculated using equation (A1.1) and if S2[{] is made negative, then
fi(e) is calculated using equation (A1.2).

The input information required to define the wing slope is:

n3, the maximum number of sub-areas within an area,

[ ]
(Ve



nd, the number of areas of wing planform,

m3, the degree of the polynomial of highest order associated with /(%) in a sub-area,
mé, the degree of the polynomial of highest order representing f,(f) in an area,
h3[ij]. the % co-ordinates of points where the sub-arcas adjoin (see notes above),
ha[i]. the i co-ordinates of points where the areas ddjoin-if only one area then no value is
supplied,
St{i], switch, integer determining whether interpolation is used to calculate the value of wing
slope,
S2[1], switch, integer determining whether f (%) is calculated from equation (A1.1) or equation
(A1.2).
A3[igk], coefficients of /() in each sub-area
A4lik], coefficients of f,(ff) in each areca

2. Other Procedures.

(a) Mach Lines.

The value of « on the Mach lines, corresponding to a given value of § is evaluated using the procedures
P1(f)) and P2(/5) where

PL(B) = a((B)—a,(f)
and
P2(BY = =, () + 2,(f).

The expressions %,(f3) and a,(f) are defined in Section 2 of this Report.
(by Weighting functions.

The weighting functions K1(f) and K2(f) have the properties described in (3.2). In the programme
K1{fi)1s defined as follows

K1(B) = 107 — 15t 4+ 61>
where
t=(M[1]-p/M[1]-Y) in Region 1,

t = (f—M[2])/(N[2]-M[2]) in Region 5.

and t = 1 in all other regions

A typical graph of K1(f5)1s shown in Figure 14.

(c) Interscction.

In the non-dimensional co-ordinates («,f) the leading edge is given by « = 0 and the trailing edge by
a = 1. The procedure intersection calculates the values § = M[1] and § = M[2] where the Mach lines
intersect the leading edge. It also tests to sec whether the Mach lines intersect the trailing edge and if
they do, it then calculates the values f = N[1] and § = N[2].

(d) Integration procedures.

These procedures calculate the integrand of the various integrals in equation (3.7), for use in the
Gaussian integration formula. The modificd Gaussian points are evaluated using the relations



b 1
ff(X)dx = }b—a) f f*y)dy
a -1

n

=3b- aZG S*@))

J=1

n

_ b -aEa,ﬂej)

i=1
where
f) =1*0),
x=3{(h—a)y+a+h],
G; are the Gaussian weight factors
and g; are the Gaussian points.
Then the modified Gaussian points are
e; = (h—ayy;+a+h]

INPUT DATA

Programme Symbol Explanation
4 An integer representing the output device on the computer {line printer = 30)
S3 The number of Gaussian points used (either 10 or 20
nl The number of polynomials defining sections of the leading edge
n2 The number of polynomials defining different sections of the trailing edge
n3 The maximum number of sub-areas within a region of the wing planform
n4 The number of areas of wing planform
ml The degree of the leading-edge polynomial of highest order
m2 The degree of the trailing-edge polynomial of highest order
m3 The degree of the polynomial of highest order associated with f(x) in a sub-area
m4 The degree of the polynomial of highest order representing f,(8) in an area
b The value of the wing semi-span
B (M?—1)%, where M is the Mach number of the free stream

The number of points at which C, is required

b1[1] The co-ordinates of points at which the leading-edge polynomials change. If
: nl = 1 then no values are supplied
b1[n1—1]



Programme Symbol
b2[1]
b2[n:2~ 1]
h?[l 1]
b3[l n3—1]

bz[n41]

S7[n4]
A1[10]
Al[l Jml]

Al[nlinl]
A2(10)]
A2[1 m2]

A3[1]
A3[110]

A?[llmB]

A3[1.n3,—
A3[1n30]

A3[ 1, n3 m3]
A4[1.0]

A4[1 mé]

}
)
")
3
|
}

o |
|
ey
|
)
2

Explanation

The co-ordinates of points at which the trailing-edge polynomials change. If
n2 = 1 then no values are supplied

The a co-ordinates of points at which the functions representing f'(
area 1 (see Appendix 1 Section 1(d))

a) change in

The x co-ordinates of points at which the functions representing f ()
area n4. These points define the limits of each sub-area

change in

The f co-ordinates of points at which the functions representing f,(f) change.
These points define the limits of each area

Switch for each area. If S1{i] is positive then polynomial evaluation of f(2,8) in
arca i If S1[i] is negative then interpolation

Switch for each area. If S2[{] is positive then f,(x) is calculated from (A1.2) in
area i. If S2[{] is negative then f(a) is calculated from (A1.3)

The coefficients of the leading-edge polynomial in the first section of the leading
edge

The coefficients of the lcading-edge polynomial in the nl section of leading edge
The coefficients of the trailing edge polynomial in the first section of the trailing

edge

The coefficients of the trailing edge polynomial in the n2 section of the trailing
edge

The coefficients of f,(x) in sub-area (1,1)

The coefficients of /() in sub-area (1,13)

The coefficients of f,(f) in area 1
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A3[nd,1 —1]
A3[r4,1,0]

A3[n4, 1 m3]

A3[ndn3,—1]
A3[n4,n3,0]

A3[nd,n4,m3]
A4[14,0]

A4[nd,md]

R

X

v

The coefficients of f,(«) in sub-area {(n4,1)

The coefficients of f,(«) in sub-area (n4, n3)

The coefficients of f,(f) in area n4

Switch. If R is positive then all intermediate steps of the calculation are output.
If R is negative then no intermediate steps are output

W values of («.) where the value of C,, is required




Begin

Chapter flow diagram for calculation of pressure coefficient
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APPENDIX 1I

In this Appendix we describe the analysis for Regions 2 to 5. For Regions 2 and 5 the analysis is the
same.

£ 1 B2
_f I 3oy —a) Fy s(,f)dl dp " K, floy +oz,p)df
) ) ma-

fas = R R IR AT A
B2 X
*! el KSR ]
() (222) o
1 2
B2 K 1
1 |
"j {W [‘“1+°‘2>fa(a1+az,ﬁ>—%f(fx1+a2,ﬁ)] ~ X"
X LXfa(XaY)_%f(X’Y)] } 10g2a2dﬁ
1 ¥ \ B2
2B
__(T)}}%_/Z {Xfa(X9Y)"%f(X:Y):' { jlogmdﬁ— [(Y——ﬁ)]og(Y_.B)+B:| }
B i
(A2.1)
where
o B —a, Gy —0ty—0 3/2
Tas @l =S eh vl {Kl(oc +a ) +K2(°€ —d)( 20 ) }
1 2 1 - 2
+
_.Kl (fxlj‘dg)'% (a—‘a1—a2) { ((xl +(xz)fa(oc1 +a2,ﬁ)—%f(al +a2’ﬁ)}
(A2.2)
and
=82 0430-0).
(A2.3)
For Region 2:

pr=N[]  B=7Y.

For Region 5:
By = M[2], 2 = N[2].
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For Regions 3 and 4 three modifications have to be made. Firstly, the integrals in the chordwise
direction have the range of integration 0 to 1. Secondly, in these regions o, +«, is never zero and so we
can make K,(f) = land K,(f) = 0. Thirdly, we have to replace f(«, +a,,8) by f(1,8) since now a, + 2, > 1
and so f(o; + a,,p) is no longer defined.

Then
B 8>
I - _ (dl—'d) F3’4(aaﬁ) da dﬁ _ f(l’ﬂ)dﬂ
e ) Yo (B at (o — oy — )% (ot + oy — )2 A () oty +oy— 1) (o, —a, — 1)?
B2
. SLB)ydp
A c(B) (ary +052)% (a, ~0‘2)4}
B2 ; i
1 1 oy +o,—1 oy + 0y
o[ p(rom-pom) [ (Bs) -(212)
1
(051““2)*'\“(0‘1 +0‘2)%
+2’°g((a1—az—l)*+(a1+az—1)*) b
(A2.4)
where
Fj, 4 (0p) = fla,f)—o? f(1,B)— (e —a; —a,) { fa(l,ﬁ)—%f(l,ﬁ)}
(A2.5)

Here we have used the results

i
(0, — ) d ) i |
(g — oty — o' oty + o0, — )2 (o +o,— D (o —ay — )Y (o o)t (o —op)?
0

and
! (o0, — o) dot _(cxl+a2—1)*_ oy +a, *+210 (0ry — o) + (o + o)t
(g — oty —)*? (ot + 0, —a)? oy —op—1 oy — 0l & (op —oy— ¥ + (o + o, — 1)*
)

The first integral in (A2.4) has a square root singularity at o« = O and at & = 1, 2, +a; = 1. These can be
mapped into points outside the range of integration by making the transformation

a=0252+3-0Y)

(A2.6)
The double integral then becomes
B2 1
~ j J LS (2 —a) (1 —0) F3, 4 (%) dL dp
L AB =0 (o —ap =) (g oy — )2
B
(A2.7)
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Also since a; +a, = 1 at f8, in Region 3 and at B, in Region 4, the second integral in (A2.4) also has
a square root singularity.
In Region 3 make the transformation

B =025[38,+8,+(B,—B1) 2y3—75%]

(A2.8)
and this integral becomes
1
B [ JB)  (Ba—B)(1—73)dy, A29
1 2clp) @y oty — 1P oy —ay— 17 (A29)
-1
which is regular.
In Region 4 make the transformation
B=025[38,+B,+(B2—B1) 2ya+74%]
(A2.10)
and the integral becomes
_ ! S8 (B2=B)(1+y)d vy,
2¢(B) oy +oty— 1) (o; —o, —1)% (A2.11)

Hence,

B2

Byt
[ — _jfl 1-5(ay =) (1=0) F, 4 (a,f)dl df J S(LB)dp
34 — +

2 -1

c(B) 2 -0 (g — oy — )2 (g + oty — )32 A c(B) (g +az) (o —ory)?

B2

1 ay+oy— 1\t /o +ay\?
" j = [fa(l,ﬂ)—%f(l,ﬁ)] [ (al_%_l) —( )

(g —ap)* +(oy + )
+2 log((ml —oy — 1)+ (o, +a,— 1)} ):’ ap

+h(p).

For Region 3, 8, = 0. 8, = N[1] and h(f) is given by (A2.9).
For Region 4, 8, = N[2]. ft; = 0 and h(f}) is given by (A2.11),

(A2.12)

APPENDIX 111

Aerofoil Polynomials.
(@) R.A.E. 101 — thickness/chord ratio 0-1.
0<a<028
S1(e) = 0:061782 — 0135607 — 0-133082>
+0-738461a> — 7-9941510* 4+ 31-6111630° — 50-68723 305
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028 <a<034
f () = 18:046730 — 2356112500 — | 155-471251a2
—2518-8125020% + 2056-250002a*

034 <x<076
fila) = 0-272028 — 2146999 + 7-6334400°

~ 167667000 +21:219930a* — 142690580
+4-002758°

076 <a< 10
fila) = —0035748 ~0:057645¢—0-001233a%

+0-0051972*

(b) R.A.E. 101 -6 polynomial approximation.
0<a<012
f1(a) = 0061782 —0:1363200 — 0086545602 — 0-19403023
012<a<03
fi(a) = —0-0315057 42975010 — 42-591202 +304-42403
— 1208750 + 2520-995° — 2165-80x°
03<a<032
[z = —0:002697 + 0-37605% — [1185%°
032<a<062
() = 0-652986 — 7038150+ 33-54930.2 — 89-31620°
—134-421a* —107-6420° + 35-82060:°
062 < a<082
[ @) = 604795 —507-399x + 176871 —3279-5943
—3409-640* — 1883-960° + 432-147a° .
082 <a<l0
fi(x) = —0:0260862 — 00897110 +0-0341201%° — 000775194

N.B. The polynomials given in (a) arc a better approximation to R A.E. 101 than the above and are the
ones used in all the calculations except those for Table 3.

(c) R.A.E. 103 — thickness/chord ratio 0-1.

0<a<036
f (x) = 0-056254—0-105745x — 005349542

—0-106233a 4 0-200182¢* — 0-562663°
0-36 <a<042

fi(x) = —24:027736 4 247-8033800 — 956:0182490%
+1636:6749982> — 1049-999999x*

042 <a <0352
fila) = —274:634800+2973-909026a — 12860-6141 6a*

+27763-823962% —29920-859382* + 12876:041672°



052<a <080
S1(@) = 12:251779 — 107-9797250 + 399-043950x2

+790-318651 > + 881:1904510* — 523-7464440°

+129-619017a®
080 <a<10
Sf1(@) = —0-030909 —0-104182c + 003892242
— 000870303

TABLE 1

A Comparison of Values of C, on Wing 1, Mach 1-2 when using 10 Point and 20 Point Gaussian I ntegration.

X Y C, 10 pt. integration C, 20 pt. integration o
005 0 0-186401 0-186401 0
01 0 0113438 0-113438 0
02 0 0-049949 0-049949 0
03 0 0-005426 0-004862 116
04 0 — 0030530 —0-030041 1-6
05 0 — 0049627 —0-049098 1-1
06 0 — 0060656 —0-061616 —1-6
07 0 —0067615 —0-067536 01
08 0 -~ 0067488 —0-068101 -09
09 0 —0-066836 - —0-068098 —19
0975 0 —0-066871 —0-068194 -~19
0-025 0-3 —0-025085 —0-025664 -23
005 03 —0-032150 —0-032236 —03
01 03 —0-048414 —0-048524 —-02
02 03 —0-079968 —0-079934 04
03 03 —0-106006 —0-106655 —06
04 03 —0-107039 —-0107121 —0-07
05 03 —0103536 —0-102987 —0-5
06 03 — 0095017 —0-095814 —0-8
07 03 — 0086464 —0-086970 —-06
0765 03 —~ 0082921 -~ 0081963 12
0-775 03 —0070798 —0-069800 14
08 03 — 0049676 —0-049928 —05
09 03 —0-005350 —-0-005872 —89
0975 03 0-039719 0:039204 11
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TABLE 2

A Comparison of Exact and Calculared Values for a Simple Chordwise Integration.

I*
I* numerical value
0 o exact value 10 pt. integration A
85° 0-0038125 2-:82449 2-82451 0-0007
g7° 00013714 3-33568 3-33571 0-0009
88° 0-0006094 374127 374120 —0-002
89° 0-06001523 4-43450 4-43448 —(0-0005
TABLE 3

A Comparison of Values of C, on Wing I, Mach 1-2 for two Different Approximations to the Thickness
Distribution.

0-05

0-1
02
03
04
0-5
0-6
07
08
09
0-975
0-025
0-05
01
02
03
0-4
05
0-6
07
0-765
0775
0-8
09
0975

Y 4 polynomial fit 6 polynomial fit o
C, C,
0 0-186401 0-186418 0-009
0 0113438 0-113427 —0-01
0 00499487 00499487 0
0 000542626 0-00486795 —10-3
0 —00305297 — 00296780 —-28
0 — 00496268 — 00492956 -07
0 — 00606557 —0-0606683 0-0-2
0 — 00676152 —0-0681522 0-8
0 ~ 00674879 —-0-0683206 12
0 — 00668355 —0-0667964 006
0 - 00668709 —00670641 0-29
03 —0-0250850 —0-0250375 -02
03 —0-0321496 —0-0321535 0-07
03 —0-0484141 —0-0482865 -03
03 —0-0799677 —0-0800282 0-08
03 —0-106006 —0-106999 09
03 —0-107039 —0-106769 —0-25
03 —0-103536 —0-103485 —0-05
03 —0-0950165 — 00951855 02
03 —0-0864637 — 00867300 03
03 — 00829205 — 00820828 -10
03 —00707977 — 00698637 -13
03 —0-0496764 —0:0496614 -03
03 —0-00535026 - 000490073 ~84
03 0-0397188 0-0400351 0-8
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Fic. 1. Area of integration for a general point (x,y,z).
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Fic. 2. Regions of integration for point (x,y,0).
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Fi1G. 3. Plan of Wing 1. R.A.E. 101 section t/c = 0-054.
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Fi1G. 4. Wing 1 — a comparison with the results of Haines, Rollins and Osborne, Mach 1-2.
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F1G. 5a. Values of various integrands in equation (3.7).
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Fi1G. 5b. Values of various integrands in equation (3.7).
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Area 4
b3[4,lb3[4,2)=b3 [4,3]:

F16. 13.  Diagram showing how a wing may be split into areas and sub-areas for defining thickness.
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FiG. 14. Typical graph of K1(f) for region 1.

Printed in Wales for Her Majesty’s Stationery Office by Allens Printers (Wales) Limited.
Dd. 129527. K.S.

49



R. & M

[. “o. 353

o Crown comyright 1968

Published by
Hir Masgrsiy's Syanosiry Orii

T'o be purchased from
49 High Holborn, T ondon w ¢ |
423 Oxford Street ondon w |
13 Castle Street, Fdinburgh 2
109 5t Mury Street, Cardiff CI'1 1IW
Brasennose $treet, Manchester 2
S Fairfan Street, Bnstol |
268259 Broad Street Bumingham |
711 inenhall Street, Beltast BT2 2AY
o1 through any hookseller

R, & M. ™o. 3535

SO Code N 0





