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Summary. 
The arc cross section is supposed to be a region in which heat is supplied to a continuous stream and 

in which a body force acts. Pressure variations are assumed small so that incompressible potential flow 
methods can be used to calculate streamlines and thence flow velocities of the compressible gas by a simple 
transformation. Example calculations are made in which a non-potential slit is used to obtain a positive 
drag coefficient, and flowdiagrams are given. For  future work it is suggested that some of the region con- 
stituting the arc should be separated from the external stream by an impenetrable boundary since this 
should enable closer agreement with experiment to be reached. 
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1. Introduction. 

It is sometimes necessary to supply heat to a high pressure gas stream, for subsequent expansion in 
a hypersonic wind tunnel for example, and electric arc heaters offer a promising way of doing this 1. By 
its nature the heater must involve relative motion between the arc and the gas stream and one possible 
configuration is for the gas to flow in a direction transverse to the arc. One such arrangement 2 is for the 
arc to be struck across an annular gap between two concentric circular electrodes and made to rotate 
around the annuhls by an imposed axial magnetic riel& In addition, the gas flows axially through the 
annuhls. In many such applications it is considered to be a reasonable approximation to regard most 
of the arc as a uniform column of conducting gas past each element of which the free stream flows in a 
two-dimensional manner 3. In such a flow the arc loses heat by convection, which leads to the formation 
of a wake, and the viscous dissipation that accompanies this restllts in the arc having an aerodynamic 
drag-', which in the steady state is opposed by electro-magnetic body forces. 

The boundary conditions of the flow past the arc have been a matter of much conjecture'*. Does the 
gas stream flow straight through the arc or does the arc behave something like a hot solid cylinder? If 
the latter, does the solid boundary coincide with the boundary of the conducting region, or is it quite 
different'? The present Report attempts to throw some light on these questions by examining the effect 
of heat addition to the gas in a localised region. To do this the gas is assumed to be inviscid and non- 
conducting (both thermally and electrically} outside the region of heat supply. The addition of heat to 
a gas stream in circumstances of this sort has been considered before *s, but it happens that in the case 
of a high pressure arc heater, the flow velocity is usually small, so that pressure variations are small 
compared with variations in specific volume. Thus throughout the flow region of interest 

°(D P~i > (1) p Dt 

and if the right hand side of (1) is neglected in the energy equation, a particularly simple form results, 
namely 

div v = G(x,y). 

Here 

p is the gas pressure, 

t the time, 

p the gas density, 

and 

(2) 

Neglecting the right hand side of equation (1) is equivalent to assuming that the speed of sound is 
infinite, often referred to as an assumption of incompressibility. In the present Report, however, the term 
incompressible is reserved for flows in which there is no density change, even though the sound speed is 
infinite; the assumption of infinite sound speed applies throughout the Report. 

For practical arc heaters it may turn out that large velocities of the arc around the annulus are desirable, 
and Mach numbers approaching or even exceeding one may be used : in such circumstances the approxi- 
mation (2) would need to be re-examined. 

*A recent survey of flows with heat addition is given in Ref. 6, but the flow past an electric arc as con- 
sidered here represents a rather special case. 

_v the flow.velocity - a vector in the (x,y) plane normal to the arc axis, (see Fig. l) 

G is a function concerned with the supply of heat to the gas which is zero outside the cross section of 
the arc. 



The form of equation (2) suggests that there is an analogy between the flow field through an arc and that 
of an incompressible fluid through a region of sources. By making use of this analogy, a solution to the 
compressible flow problem of a gas passing through an arc can be found in terms of the solution to the 
incompressible flow problem where the arc is replaced by the region of sources. In principle the method 
of solution is one of iteration, although this may not be a serious limitation for the purpose of obtaining 
general flow characteristics. 

2. Flow Equations fo r small Velocities. 

The steady state flow equations for a compressible inviscid gas subjected to body forces may be written, 

continuity 

div p v = 0 (3) 

momentum 

p (_v grad) p = - grad p + f  (4)  

energy 

D (_~ _ Q l d i v q  (5) - -  _ - - - - _  De+p_~ \P] P P Dt 

where f is the body force per unit volume ] 
- ~ not per unit mass as more commonly used 
Q is the heat addition per unit volume 

e is the internal energy of the gas per unit mass 

_q is the heat flow vector 

Now for a perfect gas 

{ O(1) 10 } 
Dt y - 1  P ~ + p - ~  (6) 

where ~ is the ratio of specific heats, and the second term on the right of equation (6) will be small com- 
pared with the first term for practical arcs with small flow velocity. The temperature ratio between the 
centre; of the arc and the incident free stream, for example, may be as much as 100 with a comparable 
ratio in specific volume, whereas the pressure ratio will be everywhere near unity. Physically this means 
that the energy equation is almost entirely an equation of heat flow at constant pressure with negligible 
contribution from the kinetic energy of the flow. It also implies a low Mach number of the mainstream. 

In the present Report, the last term in equation (6) is neglected and considerable simplification results. 
At the same time it is convenient to write 

_q = - k grad T (7) 

where k is the coefficient of thermal conductivity and T the absolute temperature. Since k may be assumed 
a function of Tonly, without serious error, equation (7) may be written 

q = - g r a d  • (8)  



where q) is the heat flux potential.  Equat ion  (5) now becomes,  with & 

: C,) ~2-i p(_v grad) = -Q+!v2  co. 
P P 

From the continuity equat ion (3), however,  02 grad) p = - p  div v so that  (9) may be written 

(9) 

div v = ( ? - _ 2 : ( Q + V  2 1 ~  qD) _= G(x,y). (10) 
?P 

For  the purpose  of analysis we suppose that G(x,y) is zero outside the arc, so that  the arc consists of  
an inner electrically conduct ing core where Q and V 2 (I) are both non-zero,  sur rounded by a thermal  
boundary  layer (which is very thin in practice) where Q, but not V z ~, is zero. The problem is, then, to 
find a flow field that satisfies equat ions (3), (4) and (10). 

3. Proposed method of solution. 

Consider  the equat ions 

Po (-vi grad) v i = - grad Pi + F-i 
} (11) 

div v; = Gi(x,y) 

where P0 is a constant  and the suffix i is used to denote that  the equat ions (11) relate to the flow p rob lem 
of an incompressible fluid. In fact the prob lem is very like that  of  flow over  a source distr ibution G~(x,y) 
in the presence of body forces ~'~ where _f'; and Gi are both zero outside the arc, as is f i n  equat ion {4). 
There  is, however, a difference in the m o m e n t u m  equation,  to be discussed in detail later. 

For  the purpose of solving equat ions (11) in the examples used later the force distr ibution E~ will be 
assumed to be conservat ive such that curl _F; = 0 and an irrotat ional  solution can be found from a velocity 
potential.  This puts a restriction on the nature  of the body force distribution_f for which a solution is 
obtained,  but it is not essential to the method that  _F; should be conservat ive provided that a solution to 
equat ions (11) can be found for ~_,~ and Pi. 

If equat ions (11) have been solved it remains necessary to adapt  the solution to satisfy equat ions (3}, 
(4) and {10). For  the flow outside the arc a physical a rgument  is helpful in suggesting a method of doing 
this. We suppose that v has everywhere the same direction as p; so that the streamlines are unchanged 
in turning the incompressible solution into a compressible  solution. Then since div v = 0 in this region 
!~ grad p := (L by (3) so that p is constant  along the streamlines. This leads to the following picture:  

{ 1 ) s t ream tubes that  do not pass through the arc contain incompressible flow ; 
(2} stream tubes that pass through the arc are fattened in the process (by el'flux from the sources in 

the case of v;) so that their cont inuat ion downs t ream of the arc contains fluid at a new constant  density 
such that  

pl(uA)l = p 2 ( u A )  2 = constant  f12) 

where A is the area of  the s t ream tube, u here is the streamwise velocity I_vl, and the suffices l and 2 
denote  constant  values ups t ream and downs t ream of the arc respectively. 

It remains to satisfy the m o m e n t u m  equat ion (9). This can be done ( s i n c e f a n d  _F; are zero outside the 
arc) with 

P = Pi (13) 
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provided the momentum flow along a stream tube is the same for _v as for _t, i, i.e. 

p _v 2 A = Po -v~ 2 A (14) 

where p is the density at upstream infinity, and hence throughout the incompressible solution. 

From (14) 

P ~  (15) v = _V i 

Mathematically the result (15) with p = Pi follows at once from the momentum equations in streamwise 

co-ordinates (s,n), viz 

8u 8p 

pu 8s - 8s 

pu 2 _ 8p 

R On 

(16) 

3p 
since &-s = 0. 

Thus the solution given by (13) and (15) certainly satisfies the compressible flow equations (3), (4) and 
(10) outside the arc, and can clearly be made to satisfy the same equations inside the arc by suitable choice 
of_F i and Gi. Substitution of(13) and (15) together with (1 i) in equations (4) and (10) result in the following 
expressions for _F i and G~ after some simplification 

-Fi = f -  Po _v, div _v i = f -  Po _vi G i = f -  _v i @ G 

Gi = ~ G 

t (17) 
where G is given by (10). 
To obtain a complete solution of the compressible flow equations for k n o w n f a n d  G would thus require 
the following iteration procedure 

(i) guess a distribution of_vi and p within the arc 
(ii) determine _F i and Gi from (17) 
(iii) solve equations (11) for _vi and p~ 
(iv) determine p: equation (12) may now be generalised, since equation (15) applies both inside and 

outside the arc, to 

x / ~ o  A ui = constant,  (18) 
where equation (18) applies along a stream tube and ui = [_vll 

(v) use the new values o fp  and _v i as a better approximation and repeat steps (i) to (iv) until a satisfactory 
agreement is obtained. Then derive _v from equation (15). 

In practice, however, the body force distributionfis not well known for the inside of an arc, and on the 
other hand a reasonable guess of the density distribution can probably be made, so a more useful process 
at the present stage seems to be to solve the equations for reasonable distributions of Gi and Fi and 
examine the resulting flow fields for the different values of the corresponding body force distribution. 



4. The Momentum Equation in the Source flow. 

It is of interest to derive the momentum equation from first principles for a flow in which a source 
distribution is present. Consider the x-momentum balance in the parallelepiped of Fig. 2 with sides 
parallel to the co-ordinate axes. There results 

~p 
+ x) ay dz- pu g dy dz 

(p+~cl,) (v+~d~ ": au (19) 

wherefx is the body force per unit volume in the x-direction. Equations similar to (19) follow for the y- 
and z-momentum, and the combined result may be written 

p (_v grad) _v +_v div pv_ + grad p = f .  (20) 

In the absence of sources the term _v div p_v vanishes by continuity, but where mass sources are present 
div p_v is finite. 

It is not strictly necessary to cast equations (11) into the form appropriate to mass sources given by 
(20). The solution of equations (l 1)is only a step towards solution of (3), (4) and (10) and provided this 
can be successfully accomplished, there is no need to obtain a complete physical interpretation of the 
intermediate solution. On the other hand, a physical picture is often useful, and this can be retained for 
the intermediate solution by writing the first of equations (11) as 

Po (_vi grad) _v i + grad p + Po _v~ div _v i = _F i +_F~ ] 
where I (21) 

_F, = Po -vi div _v i 

i.e. _F~ represents the additional body force necessary to hold the sources in position as a result of the 
momentum Po v~ div v~ that they give to the free stream. This force has a positive component in the x- 
direction indicating that the sources exhibit a negative drag. 

It is interesting to note from equation (17) that 

_F i = f -_F~ .  (22) 

This implies that the body forcef is  the same as the total body force _F i +_F s in the incompressible source 
flow, and in particular that the solution of the problem of heat addition without externally applied forces 
(for small pressure changes) can be derived from the solution of the problem of mass sources in an in- 
compressible flow also without externally applied force, since the momentum equation is given by (21) 
with _F i +-F, = 0. This last equation is not, however, satisfied in general by potential flow since vorticity 
can be introduced by the term P0 _vl div _v i. 

4.1. Comparison with a Classical Result. 

It is well known (see, for example, Prandtl v) that a single point source of strength S (i.e. issuing S units 
of volume of fluid per unit time) experiences a thrust of magnitude P0 S Uo if held in potential flow with 
a free stream velocity Of Uo. The same result can be obtained from equation (20) by considering a uniform 
source distribution div F, enclosed within a sphere. In potential flow, superposition of the velocity field 
(-G) due to the sources on that due to the free stream (u0) results in a flow field that satisfies 

p (_v grad) _v + grad p = 0. (23) 



Hence, by (20), the total body force _F is given by 

_F = f Po (-Uo+-V~) div p~ 

vol 

= Po div_v~ f(_uo+_v~) 

vol 

Hence 

= Po go div _v s (vol of sphere) 

since by symmetry ~ _vs = O. 
J 

_F = (Po S Uo, 0, 0) 

(24) 

(25) 

in agreement with the classical result. 

5. Example Solutions. 
Analytical solutions have inevitable limitations, and for detailed comparison with experiment it may 

be that  numerical methods will need to be used. However, analeti~al solutions are often helpful in the 
early stages of an investigation and a few simple cases are discussed here. 

The incompressible flow past the mass sources may be represented by means of a velocity potential ~b 
defined by the relation, 

1 04~ 10q~ 
u - v . . . .  (26) 

" a Ox' a ay" 

For simplicity in these examples, the arc is assumed to have a circular outer boundary of radius a; the 
origin is taken at the centre of the circle with x in the direction of the free stream, and x,y are made non- 
dimensional with respect to a. Non-dimensional polar co-ordinates (r, 0) are also used so that r z = x a + y2 
and the outer boundary of the arc is given by 

r = i .  (27) 

It is also assumed that two forms of the velocity potential exist, ~1 and q~2 say, where 4h covers the 
• a 4 ~  

region r 2 > 1, and q~2 the inner region r 2, < 1. It is required that 4~, ~ r  and ~?q~00 are all continuous at r = 1, 

although in the more complicated example of Section 5.2. a discontinuity in velocity is allowed within 
the arc in order to represent a positive drag. 

The total drag force is given b y - f ~ r  where 

1 2~ 

f x z = a 2 f  r d r f f ~ d O : a 2 f f ~ d S  
0 are 

(28) 

and where dS is a non-dimensional element of area. From (22) 

f~ = Fix + po ui div vi 

- a  ax ~ Ox Ox z F Oy Oxay t - ~ x x ~ x 2 + ~ y 2 )  (29) 



by (11). To simplify (28) and (29) we can make use of  the continuity of  pressure and obtain 

arc 

= \?7j - 

boundary  
+ \ - U )  - \ 6 , /  

dy + ds. 

arc 

(30) 

It follows that if there are no discontinuities in velocity within the arc, the first term in (30) vanishes by 
virtue of  the boundary  condition at r = I. The integrand in the second term in (30) is the product  u div v 
and it will be convenient to take examples in which only one term in the velocity potential, say (~2h,  

makes a net contr ibution to div ~, i.e. to the heat supplied to the airstream. The second integral in (30) 
may be integrated to give 

2a \ Sx ] \ ?y } J a ~y ~x 
boumlary  boundary  

dx 

so that there is no contr ibution tofx w from terms for which the velocity vanishes at r = I. In addition. 
doublet-like terms produce no contr ibution by reasons of symmetry  so that fxT depends only on the 
product  of the heat supply term and the uniform velocity term in 4)2. The net result is the same as that 
given in Section 4.1., that  f~r = Po Uo S where S is the total increase in volume of  the fluid in unit time 
per unit length of arc. The transformation to compressible flow does not affect this result because tile 
local momen tum and pressure gradients are unaffected by the t ransformation so that the total body force 
as deduced from the external flow field must  be unaltered. 

The preceding argument  shows that the drag of the arc will always be negative as long as the flow 
field is deduced wholly by potential methods. In reality, however, the wake originates in viscous flow that 
induces rotation and leads to a positive drag, so that a region must be introduced where the flow is not 
of  potential type. For  mathematical  convenience the region is condensed into an infinitesimal slit along 
the y-axis across which the velocity is discontinuous andJ~ r is now given by integration over the two semi- 
circles, x > 0 and x < 0. This is equivalent to locating a line of  sources along x = 0 but discarding the 
./i~ that would accompany  them in potential flow: then if the line source is made stronger than the net 
source for the whole arc it follows that the potential part of(/~ 2 contributes a net sink and a positive drag*. 
This method is applied in the example of Section 5.2. where the line source can be regarded as being 

included with a oh2 term that extends over the semicircle for x > 0 and for which ~ V 2 including the 
,J 

line source is zero" thus the net heat addit ion is still given by the term ~bzh. Physically the significance 
of this is that all the viscous effects that bring about  a positive drag are supposed to take place in the 
slit at x = 0 across which there is a discontinuous pressure drop and increase in velocity. This method 
of  representing the effects of  viscous drag is illustrated by Ktichemann and Weber8;  an alternative 
would be to introduce rotation by a distribution of  vortices in the wake, or as a limiting case, by two 
line vortices along the wake boundary.  In addition, however, the application in 5.2. contains a certain 
arbitrariness owing to the interchangeability between pressure gradient and body force within the arc;  

*Actually a much weaker line source is sufficient, as in Section 5.2., if the velocity at x = 0 is high. 



this interchangeabil i ty has no net effect as long as the flow is wholly potential ,  but  when a non-potent ia l  
slit is used the drag  and overall  pressure d rop  are affected as discussed in 5.2. below. First, however,  we 

consider simple examples  with no slit. 

5.1. S o l u t i o n s  w i t h  S y m m e t r i c  V e l o c i t y  P o t e n t i a l .  

Apar t  f rom the uni form velocity term, the velocity potentials  considered here are symmetr ic  in x and 
y so that  the corresponding velocities are ant i -symmetric:  Fo r  the outer  flow (r ~> 1) 

49 x = - Uo ar  cos 0 -  u h a log r ,  (3 1 ) 

and for the inner flow (1 >~ r >~ 0) 

492a = - - U 0  ar cos O + ½ u h  a(1 --rZ)--Ul a r  2 (1 --rE) 2 COS 2 0 

49 2b = --  UO ar  COS 0 + ¼ Uh a(1 -- r 2) (3 -- r 2) --  u l ar2(1 --  r2) 3 cos20. J (32) 

The  first te rm in 491 represents the free s t ream with velocity (u,v) = (u0,0) and the second te rm represents 
the flow away f rom a symmetr ic  source distr ibution within the circle r = 1. 492~ and 492b a r e  possible 
match ing  solutions where the third t e rm and its derivatives vanish at r = 1. The  corresponding source 

distr ibutions are given by 

1 V2 1 ( ! 0 4 9  0249 1 02~'~ 
G i = diV_Vl = - ~  49 = --~-~ -~-r -~--~2 --[-/~ ~ 0 2 j  (33) 

where V z is non-dimensional .  F r o m  (32) 

- V 2  492a = 2a U h + 2 a  Ul{(1 - - r 2 )  2 - 4 r 2 ( 3  --4r2) cos20} 

- -  V z 492b = 4a  u h (1 -- r 2) + 2a ul (1 -- r z) {(1 -- r2) 2 -- 6r 2 (3 -- 5r 2) cos/0} j (34) 

The  basic difference between 492~ and 492b is seen to be that  in 492b the source strength vanishes at r = 1 
as it should in practice, since it is supposed to include the effects of  thermal  conduct ion.  The  total mass  
outflow upon  which depends the total  heat  supply to the a i rs t ream by (17) and (10), is given by the integral 
of  G~ over the region r < 1 and equals 27ra Uh in each case. 

The te rm in u 1 is in t roduced to allow a var ia t ion of the distr ibution of body  force within the arc. This 
is possible because - V p  a n d ~  are interchangeable  in the m o m e n t u m  equation,  and because the te rm 
vanishes at r = 1. Two  extreme assumpt ions  are possible : t ha t~  = 0 in which casefx = u div v everywhere,  
or that  Vp = 0, in bo th  cases for the ui t e rm only. By either assumpt ion  the pressure is the same at r = l, 
since the flow is wholly potential ,  and for the same reason the total  drag is the same, a l though neither 
of  these results is t rue in the next example.  The drag  may  be calculated entirely f rom the external stream, 
since it is given by the sum of the pressure drop  in the x direction together  with the fall in x - m o m e n t u m ,  

bo th  integrated a round  r = 1. By Fig. 1 

i i 1 

-I -i -i 

1 I 1 

-i -I -I 

1 1 

.ofd 2 2 2 f (ut - ur + vr - -  v~) + a p o  d x  (Ub Vb-- U, V,). 

- - 1  - - 1  

(35) 



From (32) 

u~ = Uo +UhX + 2 U l X ( 1 - - r Z ) ( l - - r 2 - - 2 x  2) 0~<r~<l 

Ub = UO + Uh X(2 -- r 2) + 2 UlX(1 -- r2)2(1 -- r 2 -- 3 x 2) 

va = Uh y - - 4  U 1 x2y(1 - - r  2) 

Vb = Uh y(2--r2)--6 ul x 2 y(1 - - r 2 )  2 

(36) 

and from (31) 

7 
U = Uo + Uh X/r  L l <~ r 

J v = uh y / r .  
(37) 

Substitution in (35) gives, as expected 

drag = - 2~ Po Uo uh. (38) 

may be verified t h a t |  div v = 0 for the term in u~, a result which follows also from the fact that the It 

flow due to u~ across, r-= 1 vanishes everywhere. 
. J  

The two examples considered here are therefore unrealistic in that they relate to arcs with negative 
drag and a further lack of realism is indicated by the pattern of stream lines illustrated in Figs. 3 and 4. 
The stream lines are the same for the compressible flow as for the incompressible flow, and the lack of 
realism referred to is concerned with the way in which the flow leaves the arc on the downstream side. 
Equations (34) show that the heat supply to the airstream approaches zero at r = 1 from an essentially 
positive value so that the temperature of the gas is still increasing as it leaves the arc, whereas in reality 
~t must fall m this region as the gas becomes less electrically conducting. These two shortcomings arc to 
some extent removed in the next example. 

It can be seen from Fig. 5 that if the uh term is made large enough a stagnation point develops in the 
flow and the external flow may not reach the arc boundary at all. When this happens there exists, in the 
incompressible flow, a wake behind the stagnation streamline that never closes and is such that the 
streamlines in this region all originate from a single point as in the case of a point source but with the 
difference that the flow velocity there is zero rather than infinite. Again flow diagrams of this type arc 
unrealistic because they require the creation of fluid behind the stagnation streamline (it is clearly no 
longer possible for this creation to be replaced by a density change in transforming to the compressible 
flow because the external flow does not penetrate to this region at all) but it turns out that they are never 
in fi~ct needed to represent strong heat supply in this type of example. The velocity u has the value Uo-  Uh 
at the point x = - 1, so that if the net source strength is increased from zero a stagnation point will be 
produced at x = - 1  for Uh = UO. Before this happens, however, the stream tubes will expand in area 
as they pass through the arc to an ever increasing extent so that there is no limit to the drop in density 
that can be obtained from equation (18). There is therefore no limit to the heat source strength G, given 
by equation (17) with G, fixed, that can be obtained without introducing a stagnation point solution. 
Fig. 3c is an illustration of flow that has no stagnation point although it is very near to forming one, and 
shows a large expansion : in Fig. 4c a stagnation point has just formed. The flow solutions with stagnation 
points are not wholly absurd because the creation of fluid could represent approximately the condition 
of small axial flow along the arc with a steady feed from this flow into the wake. The equations in this 
case are discussed in the Appendix. 
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5.2. Solut ion wi th  a Non-poten t ia l  Ve loc i ty  Jump.  

As explained earlier a positive drag may be obtained by introducing a slit in the potential flow at 
x = 0 across which there is a velocity increase. This is done by introducing a u 1 term with the condition 
that u 1 = 0 for x < 0; the term chosen is different from those used in the last example since it is necessary 
that the coefficient of ul should not vanish at x = 0. In addition a heat sink effect (caused, for example, by 
radiation loss) is introduced on the downstream side of the arc so that the streamlines are closing in this 
region. This calls for a matching term of doublet type in the external flow, and the resulting velocity 
potential is given by, 

(01 = - u  oar  cos 0 - u h  a log r + ( u  2 a cos O)/r r >/1 (39) 

c~2 = --Uo ar cos 0+¼ uha(1 - - r 2 ) ( 3 - r 2 ) + u l  arcos  0(1 - - r 2 ) 3 - k U 2  a r  cos 0(3 - 3 r  2 + r 4 ) ,  

0 ~< r ~< 1 (40) 

where u ~ = 0 for x < 0. 
In practice, u o and u h are both positive, Ul and u 2 both negative. The corresponding velocities are 

U = U o + U h X / r 2 + u z ( x 2 - - y 2 ) / r  4 ~ r> /  1 

v = u h y/r  2 + 2 uz xy / r  4 J 
u = Uo + Uh x(2 - r 2) - u 1 sZ(s - 6 x  2) - Uz{3S 2 + 3 sr  2 + r 4 - x2(6s + 2r2)} 

v = uh y ( 2 - r 2 ) + 6  ul s 2 x y + u 2  x y ( 6 s + 2 r  2) 

where s = 1 - r 2. Finally, the source strength Gi is given by 

(41) 

t 0~<r~<l  

(42) 

a 2 G i = - V2q~ ---= 4auh s -  24 Ul axs(r 2 - s) + 24 uz axs. (43) 

If u a is negative, equation (43) shows that this term provides a heat sink in x > 0 and a heat source in 
x < 0 with no net source strength. The term in ul integrated over the region x > 0, r ~ 1 gives a contribu- 

tion to j Gi of 

1 n/2 

f f 32 - 2 4 u x a  r d r  r s ( r 2 - s ) c o s O d O  = ~ u  l a (44) 

0 -~ /2  

and with ul negative this represents a net sink. Since ul does not appear  in the external flow, it follows that 
32 

the discontinuity at x = 0 is equivalent to a net source of - ~  u la  distributed along the line x = 0, as 

may be verified directly from the velocity jump. Locally, however, near r = 1 on the downstream side of 
the arc the contribution of a negative u t is that of a heat source and in order that this shall not override 
the effect of u z in this region it is desirable that (4 u h + 24]u~]x-241u2]x)r= 1 should be negative for most 
of the boundary in x > 0. 

To estimate the drag we may again start with the potential flow drag given by (35), when substitution 
of(41) once more gives the expected result (38). However, as explained earlier, it is intended that any forces 
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acting in the slit shall be excluded, since we do not want  to represent  potential  flow in this region. This 
can be allowed for by using (35) across the slit, i.e. 

l 1 

s,it drag f dytu -u / 
- 1  1 

(451 

where the suffixes / and r refer to the values at x = 0 -  and x = 0 +  respectively. Only terms in it 1 con- 
tr ibute to (45), and the magni tude  of their contr ibut ion depends on the assumpt ion  made about  the 
pressure distr ibution associated with this term. If the two extreme assumpt ions  referred to in 5.1. are 
denoted by 

I ,  ~ = 0 ,  V p 4 = 0 l  for t h e u ~ t e r m  

I I ,  V p = 0 ,  ~ # : 0  J 
then in I Bernoull i 's  equat ion holds and since v = 0 at x = 0 the first term in (45) becomes  equal to half 
the second term in magni tude and opposi te  in sign. In II the first term in (45) vanishes, so we may  write 

1 

slit drag = ½ kapo [ dy(u 2 - u~) (46) 
i )  

- - 1  

where k has the value 1 in l and 2 in lI. 

So far (38) and (46) assume wholly potential  flow but we now destroy the potential  nature of the flow 
across the slit by discarding the slit drag. The net drag is given by subtract ing (46) from (38), and after 
substi tution of (42) in (46) this gives 

drag 

a p o  
- - 2 7 r  Uo u a + k ( - 0 " 9 1 4  Uo ul  +0"341 u2 +2.464 u I l/2). (47) 

Or, if a drag coefficient is defined by 

then 

drag = Po a u 2 Co (48) 

Ct) = - 2 ~ z  ~ a + k ( - 0 " 9 1 4  ul +0"341 ff2 + 2"464 ~1 b~2) (49) 

where Oh, ~ ,  and fi2 are non-dimensional  wdues of Uh, ltl and u2. The same result may be obtained from 
Ji,r where the integrat ion is carried out over the two regions x > 0 and x < 0 but excluding the localised 
torces in the slit at x = 0. 

Three cases are illustrated in Figs. 6, 7 and 8 for values offia, t~l and u2 given in Table  1 below. 

T A B L E  1 

0-2 
0.2 
0"2 

ul if2 

- 0 " 4  - 0 " 6  
- 0"4  - 1 "0 
- 0 ' 5  - 0 ' 6 8  

1 
CD, k = 1 C ~ , k  = 2 I 

t 
- 0-245 0-767 / 

0-150 1.56 
O. 1 2 4  1 - 5 0  
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The large variat ion in  drag coefficient between the values for k = 1 and k = 2 makes it possible to 
choose any value in the practical range (say Co < 1) by suitable choice of  k. The effect of a positive drag 
coefficient appears in the external flow as a drop in pressure in the wake, where some further readjustment 
of  the flow must  take place. Figs. 6, 7 and 8 illustrate three different flow patterns. In Fig. 6 the flow 
passes directly th rough  the arc and the streamlines show first a large expansion followed by a smaller 
cont rac t ion;  numerical  values for the centreline stream tube are shown on the diagram. These values 
are greatly exaggerated by compar ison with any possible practical flow and correspond to enormous  
temperatures near the centre of  the arc as shown by Table 2. 

T A B L E  2 

x y P/Po T/To 

--2"90 
--0 '910 
--0"512 
--0"213 
--0"013 

0'087 
0"187 
0"587 
1"01 
3"01 

0'101 x 10 -2  
0'990 x 10 - z  
5.04 x 10  - 2  

6"44 x 10-  2 
6"84 x 10  - 2  

6"88 x 10  . 2  

6'79 x 10  - 2  

5"00 × 10 -2  
1"97 X 10-2  
1"19 X 10 -2  

0'860 7"36 x 
0.172 1"68 x 
1.41 9"41 x 
2'47 7"28 x 
2'79 3.04 x 
3"15 - 8 . 1 4  x 
2"96 -4 .61  x 
1-25 - 9.48 x 
0"606 - 1'93 x 
1-00 - 2 ' 6 3  x 

10-5 
10 . 2  
10-2 
10-2 
10-2 
10 .3  
10-2 
10 -2  
10 -2  
10-4 

I '0 
0"258 
1"49 x 10  . 4  

2'97 x 10 - s  
2"01 x 10 - s  
1'60 x 10 .5  
1'87 x 10 .5  
1"93 x 10 -4  
5"15 x 10 . 3  
5"29 x 10 .3  

1.0 
3.88 
6.71 x 10  3 

3'37 x 104 
4-98 x 104 
6"25 x 104 
5'35 x 104 
5"18 x 103 
1"94 x 102 
1"89 x 102 

0.860 
0.339 

115 
454 
622 
788 
684 

89.9 
8.44 

13-8 

Al though the absolute magni tude of  the temperatures in Table 2 is excesswe, the distribution is quali- 
tatively correct, and on Fig. 6 the mean value of  TIT o between the two outer streamlines shown rises to 
a peak of  about  60. It  is also possible to compare  the overall heat supply with a practical value. Specimen 
labora tory  measurements  for an arc being driven between two parallel electrodes are, in m.k.s.a, units : 

current = 1200 amp 

electric field = 1700 volts/meter 

lateral velocity = 100 m/sec 

core radius = 0.0045 m 

from which the heat supply, neglecting radiation, is 1200 x 1700 or 2.04 x 106 joules/meter, sec. 

F r o m  (10) and (17) 

7P 27p ~/22 
G = G~ P l ~-e~ (50) Q=~-I ~-1 v p  

For  an order of  magni tude compar ison  we may, take a mean value of  ~ o / P  based on the downst ream 

and upstream values of uA taking the outermost  streamline of  Fig. 6. This gives a mean value for ~ o / P  
of about  7, and then integrating over the circle for the uh term of - V2q5 gives 

Q = 27p × 7 x 27zauh = 5"67ZCpauo (51) 
7 - 1  7 - 1  

13 



since u h = 0.2 Uo. Substitution of the measured values given above together with 7 = 1.4 and p = 105 
newtons/m 2 (atmospheric pressure) yields Q = 2.8 x 10 6 joules/meter, sec or something like twice what 
it should be allowing for radiation. 

Fig. 7 is analogous to Fig. 5 where the external flow does not penetrate the arc at all and where an 
open wake persists downstream. Analysis of this case for a slow axial flow would be possible on the lines 
indicated in the Appendix. Fig. 8 is not different in principle from Fig. 6, but illustrates a flow pattern 
in which a stagnation point has very nearly been created but not quite. In the incompressible solution 
the swollen central region (shaded in Fig. 8) consists largely of fluid being created and then destroyed 
again a little way downstream and the analysis based on through flow would result in even more extreme 
temperatures than are given by Table 2. Fig. 8, however, does give a strong hint that more practical 
solutions could be found by introducing a region within r = 1 to be defined by an inner impenetrable 
boundary which in turn acts as a line heat source for the external convection. The reason for saying this 
is that although the shaded region of Fig. 8 together with its mirror image includes about 45 per cent of 
the arc cross-section a numerical integration shows that it includes only about 7½ per cent of the net Gi. 
The net heat supplied to the compressible gas in the same region can be estimated directly from the 
stream lines of Fig. 8. The heat content in the wake is pu Cp T per unit area, and to a first approximation 
(pT), u and C~, are all constant, so that the heat content is directly proportional to the stream tube size. 
If we neglect the heat content of the flow upstream of the arc, this means that the shaded area of Fig. 
8 receives rather more than 10 per cent of the total output from the arc. The net heat supply however, 

can be expressed as j Gi, /p°  and in view of the very large value o f ~  in the shaded area of Fig. 8 

/ t  

v p  
this integral amounts to the difference of two nearly equal quantities : thus only a very small change in 
the streamline pattern would be needed to enclose a large area with no net heat addition, and which 
could be represented by an impenetrable boundary enclosing recirculating flow. Once this had been done 
a more reasonable temperature distribution could be represented. 

The present examples have not been pursued to the extent of evaluating current distributions since 
this would be premature, but in order to do so the method would be to calculate temperature (T) and 
density (pl distribution on the lines of Table 2 throughout the arc cross section. The distribution of 
G~ would be given by (43) and of G by (17). V2qO follows from the temperature distribution, and Q from 
equation (10). Then Q = EJ-Qn~, where Qt~ is the radiation loss calculable from p and "E and since the 
electric field E is constant over the (x,y) plane this would give the distribution of current density, J. 

6. Conclusions and Further Developments. 
The conclusions may be summarised. 

(l) Solutions to the problem of flow of a gas through a region of heat supply at nearly constant pressure 
may be obtained from incompressible potential flow through a region of sources. 

(2) The velocities downstream of the heat supply are related to those upstream by equation (18), viz 

x ~ 0  A ui = constant.  

(3) If the region of heat supply arises from an electric arc, then the simplest potential flow solutions 
relate to arcs with a negative drag, and with maximum temperatures on the downstream periphery of 
the arc. 

(4) By introducing doublet-like terms a more reasonable temperature distribution can be obtained, 
and by introducing a line singularity, arcs with positive drag can be represented. 

(5) The solutions are extremely sensitive in the central regions and seem likely to imply impractically 
high temperatures for practical amounts of net heat supply. 

Following conclusions (4) and (5) the most hopeful line of development seems to be to prescribe an 
inner impermeable boundary;  otherwise the treatment would be similar to that in Section 5.2. The shape 
of the inner and outer boundaries might well come from spectroscopic measurements of temperature in 
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the laboratory. Since it is unlikely that the measured boundaries would turn out to be circles the corre- 
sponding solutions would probably involve numerical rather than analytical methods. 

A well known practical difficulty with high pressure arc discharges is that they are often unstable. The 
calculations of Section 5 leave an impression that this is not very surprising on the grounds of heat 
addition alone. A sudden local current excess might, for example, cause a temporary stagnation point to 
form and this could have a disproportionate effect on the flow. Another argument is that if the arc does 
contain a stagnation region (the inner boundary of Conclusion 5) then the dense external flow is diverted 
around the rarefied column of recirculating flow and in the neighbourhood of the stagnation point one 
might expect instabilities of the Rayleigh-Taylor type. These aspects deserve further study, but it is worth 
noting that if they do contain the root of the instabilities of an arc across an airstream, one might expect 
that a superimposed axial flow of the type discussed in the Appendix could be used to improve the 
stability. Practical arrangements for such a flow would, however, be difficult. 
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LIST OF SYMBOLS 

Stream tube area 

Drag coefficient 

Electric field 

Body force (equation (24)) 

Body force (equation (22) also (17)) 

Heat supply and source strength (equation (10) and equation (17)) 

= h + - ~ u  2 

Electric current density 

Heat liberated/unit vol 

= Q + V 2 0  

Source strength (Section 4.1.) 

Absolute temperature 

Arc radius 

Internal energy/unit mass 

Body force in compressible flow 

= e + p/p, enthalpy/unit mass 

= Thermal conductivity (equation (7)) 

= div p_v 

Pressure 

Heat flux vector 

Co-ordinate (made non-dimensional by a in Section 5) 

Distance along streamline 

Time 

Sometimes used for the streamwise component of_v, otherwise the x componcnt 

Variables in the velocity potential 

Velocity vector (u,v,w) 

Rectangular co-ordinates, non dimensional by a in Section 4 

Heat flux potential (equation (8)) 

Angular co-ordinate 

p Density 

q5 Velocity potential (q51 outer, q~2 inner) 

Non dimensional velocities are denoted by (5,/~, #) if required 
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A P P E N D I X  

Two Dimensional Arcs with a Net Output of Fluid. 

A.I. Momentum and energy equations. 

Suppose that fluid is created within the arc column by mass sources so that div pv + 0. The momentum 
equation was derived for this case in the main text (equation (20)) and may be written in tensor notation 

(A1) 

The energy equation follows in the same way, where we suppose that the created fluid particles possess 
the ambient enthalpy but no kinetic energy : 

O (puiH)-h O 
Ox--~ ~x i (pul) = Q. + fi ul (A2) 

where h = e + p/p 

H = h+½u2,(u z = uZl+u~) 

= Q + V2q) 

Rewrite (A.2) as 

Oh 1 u2 ~ i ? + p u  u j - -  = O. +Jlu~ pU i 7 + ~ OUj 
i )X i c X i OX i 

(A3) 

multiply (A1) by u~ and subtract from (A3) to give 

Oh 1 2 Opul @ 
pU, U ---u,&, = 0 

or  

Oe O ( ; ) _ ½ u 2 O P U  ~ pu, +pu, - Q  (A4) 

But the assumption of small pressure variation implies that 

c~xi "~ Y -  1 Oxi 

and hence (A4) becomes 

C3 ( 1 ) _ ½ u 2 O p u i  
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or, since 

c3 (~) 10pu,  b~ Ou, 
U i - -  __  0 2  - - ,  ~x~ 8x~ Ox~ 

7 Oui Op ui (A5) 
=c)+H  x--7 

Alternatively if the created fluid is in fact produced by a slow drift in the z direction it is more realistic 
to return to the original equations of the text with div p_v = 0 (these equations are valid in 3 dimensions) 
but to consider the flow within a thin slice (Zl < z < zz, say) within which the z component  of velocity is 
negligibly small and all the other dependent variables are independent of z to sufficient accuracy. Then 
if w is the component  of velocity in the z direction we have 

w << u, v (A6) 

3p w -k div 2 PF = 0 
8z 

or approximately 

Ow 1 
0z p 

div2 pp (A7) 

where divz stands for the two-dimensional divergence. The momentum equation in the two-dimensional 
(x,y) flow now returns to the form (4) in the main text, i.e. 

p (_v grad) v = - grad p + f  (A8) 

O_v 
since the extra term pw Oz is small. The energy equation is derived from (10) of the main text, i.e. 

h p div 3 _v = C?. (A9) 

To reduce (A9)to two dimensions it is necessary to substitute for ~w from (A7)which gives 

h p div 2 _v = ~) + h div 2 p v 

o r  

Oui C)+hOPUi 7-1P~x~ = Ox~ i =  1,2.  (A10) 

Both (A5) and (A10) show that the heat Q added to the flow is augmented by energy associated with the 
created fluid, but it~is curious at first sight to note that this energy is less in (A10) where the created fluid 
(this term is convenient, regardless of how the extra fluid is in fact supposed to have been introduced) 
possesses kinetic energy, than in (A5) where the fluid is created with zero kinetic energy. The reason for 
this is if the velocity field is the same in the two cases, then there must be an extra body force in (A1) 

Op ul 
compared with (A8) of an amount  u~ ~ and this force does work that more than compensates for the 

deficiency in kinetic energy. 
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A.2 Relation between compressible and incompressible solutions. 

We know that  the solution v i which satisfies 

Po (-vi grad) _v i + grad p = _F i 

is such that  if v = _v~ P~_o, then _ v satisfies 

provided 

div v i = G~ 

p (_v grad) v + grad p = f t  

div p v = 0 

t 

t 
f l  = V-i+Po Yi Gi. 

In the same way _v satisfies (with mc the mass  created per unit volume per second) 

div pv = mc 

p (_v grad) _v + [_v div (p_v)] + grad p = f 

with 

(All) 

(A12) 

(A13) 

v = _vl Pfff~ (A14) 

provided 

f = -G + P (v grad)_v + [_v div (p_v)] -Po  (vl grad) vl (A15) 

where the term in square brackets  is present if (AI) applies but absent  if (A8) applies. It is clear that  
outside the outer  bounda ry  of the arc where f ,  _/7 i and div (p_v) all vanish, then equat ion (A15) is satisfied 
as before. 

To  complete  the conversion from incompressible to compressible  flow, we must  assume that  the distri- 
bution o f m  c is known and then the required relations can be established by considering continuity along 
a s t ream tube as before. This implies, for an element of  s t ream tube of length ds and area A that  

d 
d~ (p Au) ds = mc Ads 

or for a s t ream tube that  passes right through the arc 

p Au = f m~ A ds (A16) 
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where mc is zero except within the outer boundary of the arc. Since mc and A are known (the latter from 
the incompressible solution) equation (A16) again gives a second equation for p and u which together 
with (A14) is sufficient to determine the velocity and density distributions in the compressible flow. 

With mass being created in the arc, however, the stagnation point solutions in the incompressible 
flow can now be satisfied by a real flow. In this case some of the stream tubes originate within the arc 
from a point where the velocity vanishes (see Fig. 5), and for such stream tubes equation (A16) may be 

modified to 

p Au = font Ads (A17) 

where s = 0 is the point which the stream tube originates. Equation (A17) together with (A14) again 
completely determines the flow field once the streamlines are known from the potential solution. In 
the wake with this type of flow the density is entirely dependent on me, and since pressure variations are 
assumed small this also determines the temperature. For  a real arc heater in which axial flow and cross 
flow were combined, it would not be possible to control the distribution of mc in the central regions of 
the column very directly, but the quasi-two-dimensional treatment suggested in this Appendix may still 
be useful if reliable measurements of the flow were available. 
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REAMLINE.I~ 

(a) ~,~ = o-s ~,:0 

(b) ~,4 = O.S ~.~ = - 0 . 4  

( c )  ti~. = 5In ~, = - 0 . 4  

FIG. 3. Flow diagrams using (J~2a of Section 5.1. FIG. 4. 

(a) ~.~ =o.s ~, = o 

(b) ~ :O .S  5 , : -O .4  

('c) g,~ = s16 ~.~ = - 0.4 

Flow diagrams using q~2h of Section 5.1. 



STAGNATION 
STREAMLINE 

8TAG~NATION POINT 

POINT OF ZERO VELOCITy 
FROM WHICH INNER STREAMLINES EMERGE 

FIG. 5. Flow with stagnation point, ~b2a or  (~2b of Section 5.1. 
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/•STREAM TUBE'[ 
l~ Axls ) 

2'7 9'9 21"7 ~8"5 19-7 

FIG. 6. P l o w  d i a g r a m  for example  of  Sec t ion  5.2. : ~ = - 0-4, ~i 2 . . . .  z ! ,  

FIG. 7. F l o w  d i a g r a m  for example  of  Sect ion  5.2. : ~1 = - 0 - 4 ,  ~2 . . . . .  1.O 

FIG. 8. F l o w  d i a g r a m  for example  of  Sec t ion  5.2.: fi~ = - 0 ' 5 ,  ~2 -- ~ : ' ' :  
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