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SUMMARY

4 method 1s derived for computing the conformal transformation
between the plane of an aerofoil of arbitrary shape (symmetrical or
carbered), and the plaie of its velocity potential at zero 1ift (in
which the aerofoil contour becomes a slit), in order to permit zalecula-
tions of the wvelocity at points off the surface. The integral equation
which relates the contours i1s derived by an application of Cauchy's
theorem, and solved te the order of the square of thickness ratio, The
solution i1s found by representing the ordinate distribution by a Fourier
series. The rapid tailing-off of the Fourier coefficients for all smooth
aerofoll shapes then leads to high accuracy being achieved with a com-
pearatively small amount of effort. As an example, the transformation
and surface velocity distribuiion are calculated by this approxamate
method for a 50 per cent *hick Piercy serofoirl, and are found to have
an error of less than 1 per cent, Higher accuracy can, of course, be
expected for smaller and more realistic thickness ratios. The solution
of the inverse problem, of caleulating the section shape for a prescribed
velocity distribution, by ihe present method, is alse briefly outlined,

The method 1s straightforward and has proved easy to use as a
cowputing routine,
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1 Introduction

A simple and zcourate methoed is described for calculating the
conformal transformation of an aerofoil into a slit along the real axis,
ard hence for finding velocity distributions in potential flow, An integral
equation which determines the transformation is obtained, and 1ts solution
found at pivotal points, equally spaced 1n © = cos™1(2x-1), by represent-
ing the shape of the aerofoil as a Fourier series in 6.

The work was urdertaken in order to make possible velocity calcula-
tions at points off the aerofoirl surface, in the trailing edge region,
which are required for the prediction of boundary layer effects on 1ift by
the methods of Ref.1, In Section 8 it 1s shown how, for this purpose, the
present transfermation may be fitted to the appropriate analytical form near
a trailing edge of finite angle =,

A solution of the mapping problem may, of course, be found to any
desired accuracy by the Theodorsen-Garrick® method of successive approxima-
tions, and the present method will, by the Unmiqueness theorem, lead to the
same answer, However, the transformed variable is here cxpanded explicitly
as a power series in the thickmess ratio, & say. The method is not
adapted to the process of successive approximations, but it gaves at once
values which seem to be of sufficlent zccuracy for most purposes (namely,
three or Pour figures of decimals, for aerofoils which are not too thick).
This approach 1z thought to be new,

Retaining enly the firsi wwo terns of the puwer series leads to an 3
expression for the velocity which is equivalent to that obtained by Weber
but the present Feurier representation enables the third term, in 62, to
be retained without dafficulty., The mirerical work, even when this extra
term 18 used, 18 substantially lighter than that of Ref,3, since it involves
fewer multiplications, Morsover, the integral squation connecting the
arvuTo1l with the slit plane has some intrinsic interest,

3

The greater part of the paper, Sections 2-8, applies only to symmetric
sections, For carbered aerofoils, considered in Section 9, the method has
not been elaborated beyond the term in e, To this order of accurzey, it
reproduces the known results for no-lift angle, ete. The integral equation
in the transformation of a cambered profile contains terms coming from the
two points of the aerofoil at different chordwise positions (one on the
upper and one on the lewer surface), which correspond to a single point of
the slit, and calculations correct to the order of £“ arec rather
complicated,

2 An outline of the wethod (for symmetric sections)

2.1 The transformation of an aerofocil inte a slit

Consider a symmetric closed aerofoil ¢ in the complex z-plane,
with its chord line along the real axis from O {leading edge) to 1
(trailing edge), and let Z = £(z) be the unique conformal transformation
which takes the region cutside C into the region outside a slit, T say,
exterding from O to a along the real axis of the complex Z-plane, such

that %% - 1 at infinity*, Suppose the points z = X4+ iy of € transform

* It is well known (see Ref.11, p,70) that there is one and only one

anelytic function, defined cutside C, which has the required properties.



to the point £ = E + io of T, =o that & 15 real., Then 1t is shown in
Section 3 that

1
dx g -1 [ av(x') dx!
ag - ® ax' " E- &'’
O

or, what is the same,

a

E = x+%[ %—:%}-+constan‘t. (1)
o}

The integrals herec are Cauchy principal values, and primes are uzed for
durmy variables {so that E' = E(x'% is the point to which the points

x' + iy' of the aerofoil transform), Also, in the integrals, y 1ia taken
positive (for, for any value of x in (0,1) there correspond two values of
v for which x + iy lies on C ).

ow (1) is an antegral equation for & zn terms of x. If the

thickness ratio e 15 introduced, by replacing the ordinate y(x) by
e y(x), (so that Yoo = %)}  then the solution of (1) may, it 1s not

unreasonable to assume, be expanded ar a power saries 1n & (valad for
suitably small values of & ):

E = X+ & [f1(x) - f1(o)] v & [fz(x) ~ fz(o)] +oaee (2)

Expressions for f1(x) and fz(x) are cbtained in Secbion 4.

Putting x =1, the length of the slit is given by

a = 1+ e [f1(1) - fﬁ(o)] . 82 [f2(1) - fa(o)] + eee (3)
Then also
af dar
%% = 1+ & d; 4-62 6t§ + ess (%)

2.2 'The velocity or. the aserofoil

Tn flow at zero incidence with unit velocity at infinity, the velocity

along the aerofoil surface is Simply-lgg- , since & 1s the complex

velocity potential of the corresponding parallel flcw in the Z-plane,
This wvelooity may be written

o
o
N
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o
r
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(X

In flow at incidence @ with circulation X . the velocity at a point

E = %(’.4— cos @) (6)

of the glit 15 easily shown 1o be

K
ein (¢-a) - ==

sin ¢

; (7)

and 1f ¥ has the Joukowsk:r value
R = =-masinaoa

of ideal fluad tkeory, this velocaity is

cos o + tan% 51N o , (8)
which mar be written
1
cos a * (g.__;__g_\ 31n o . (9)
° /

Thus the velocity of 1deal flew in the aerofoil plane at laciience & 18
given 2a the aerofoil by

. 2% *
q = %E v & (%%) rcos a4 (-—-é———§> sin a] , {10}
[

the X signs corresponding to the upper and lower surfaces,

2.21 Veloedity at leading edge

If p 25 the leading edge radius, then near the leading edgs

(X = E 0
2 (a;,;f P
& m =
ox 2%

L

E _ “d_é)
- L
= 4% LLE,

2 <l .
A, T -f' <§>L.E,J sin o (11)



2.3 The use of Pourier serieg

The expressions for f, (x), and other functions which are cbteined in

Section & are Cauchy principal values of certain integrals, cnd to evaluate
them we make the transformation

x = % {14+ oos 8) (for 0 < 8 & x) (12)

and assume that y 1is given by a Fourier sine series 1n 0, For practical
purposes a truncated sine series

N
Ty
¥y = > 2 sin r B (N even) (13)
/ 'n
ni=1

can be fitted with high accuraey (see Appendix A), The s, are in effect

co~ordinates of the aerofoll snape, and are obtained from the values, y_, of
y at the N-1 points %, (where P

6 = o = PI-}‘-, D=1, 2,00., §-1) (14)
by the equatrons
N-1
2 .
&, = NZ yp sin a ep, for n=1,i.., N1 (15)
p=1

(which is, fer fiwed N, a matrix multiplicataon), This is shown in Appendix A
to gave an exact interpcolation at the N- 4 points xp, and to fit with high

accuracy at intermediate points, when ¥y and one or more of its derivatives
with respect to & sare convinuous in 3.

af
The funciions f1, Ix etc., and %‘}% (which 1s not usually known

numerically) are then given by trigonometric expressions at the points x_ ;

e,
ay) . __2 _ . o
(dx) = PP Y na com ﬁp R (16)
o P L

f1(xp) = X a cosn OP . (17)



i%

The advantage of specaifying the aerofoil by means of the Fourier
goefficients 2, is that these tai1l off very rapidly, and usually all

except, say, the firgt half dozen may be rounded to zero, A comparatively
small amount of computation 1s then involved in evaluating the variocus
funetions 1n the expressions for velecity, Examples showing this rapid
convergence are given in Tables I, IT and ITI, Also, these first few non-
zero & oan be found to high accuracy using quite a small nurber of points

in the formula (15) - for instance, N = 18 (thus using the values of 6
at 10" intervals).

2,4  The relation of the present work to Miss Weber's

Miss Weber obtains an equation ((2-12) of Ref,3) for the velocity
on the surface of a symumetrical aerofoil at zero incadence, by considering
the digtribution of singularities necessary tc cancel the velocity compo-
nent of the undisturbed stream normsl to the surface, The analysis leading
to the eguation 185 exact, certain approximations being made later to simplafy
the solution. The velocity, as has been pointed out in Section 2,2 zhove,

is simply ‘%% !, and egquating this to Mise Weber's expression leads, after

a little reduction, to the integral equation (1). We derive the rcsult in
Seclion 3 by contour intezration without reference to singularity distribu-~
tionsg, Mliss Weber's later approximations are eguivalent to retaining only
the term in the first order of thickness ratio (the f, term in our

< 1 2
equation (2)) in the expressions for & and %% » but retaining the (g%j

term, which 1s of the second order {except that it becomes infimte at
the leadang edge).

The present xmethod is thus very sumilar to hers in principle, and
results obteained by ap %ylng both with equal accuracy will noi differ by
wore than a (thlckﬂBSS§ term, Hovever, the numerical work 1s cut consider-
ably by the explicit use of the an's, since only the first few of these

differ appreciably from zero. Most of the Tormulae in Refl.’ are of the
form

N-1

-

S{X == 3 ¥
( p) ap 'n

and these involve more work, and are more open to computational errors
through cancellaticn between reasonably large pesitive and negative ferus,
than the equivalent sums, such as
N-1
a_ coen B
n

=1

used here, {Actually, formule (15) 23 the only one which is open to the
above cbgections - once the computer has safely found the & and rounded

them off, his task is easy.)

Table ITI shows ths an‘s for R.AJE.104 aerofoirl, which were com~

puted using N = 18; all except 6 were then rourded-off to uero, so that
the remaining operations for compubting at 17 pivotal points were

- 10 -



multiplications of vectors contalining 5 or fewer elements into a 17 x 6 matrix,
npw i
jg . As a check on the accuracy, the shape corresponding exactly to

@S

these 6 rounded values (i.e. computed from them) has alsc been tabulated, and
ig seen to agree very closely with the original shape.

3 The Integral Equation

Tet us consider contours ¢ and T, and the mapping & = £(z), as in

Section 2.1, Then the anverse mapping of the {-plane cnto the z-plane defines
z as a function of £.

Consider

ls

az ,

% -
E-

where £ iz a fixed real point on the slit I', and the integral is taken

round the contour P1 + P2 + T3 + I",+ , a4s in Figure 1: P1 is the real axas

from -R to & -~ &, Ty is a small semi-circle of radius & round E ,

P5 is the real axis from & + 6 to R, and Tl is the upper semi-~circle
}.

2| = =,

s

The corresponding contour ain the z-plane 1. also shown in Figure 1 ~
note that the poinis corresponding 1o those poants of P1 and Y., which are

not also points of I', 1lie on the real axas of sz , (18}

Tow on Ph , for large R, since

%% > 1 at infimty (see Section 2,1)

[n
it

4=t 0 (R-1), for some constant k

i
so that
-z : -2
Ft = Zpro @) (49)
Thus
lim § -z -
R-—)ne[ g% =K (=0)
L
Also,
%ilg[ é:édz; = =-mtl % (Residus ofé:z at % = E)
2
= mi (E_:"Z'Q) (21)

- i1 -

(L.}



dig

L i i i . 2] C ar
where zo is the point on the upper side of corresponding to

Z=E|

I

E-1
then by Cauchy's theorem

t3

But, since has no singularitaes inside or on ', + P2 + I, +T

! 300

E-Za . o, (22)

P1+P2+13+Ph

Therefore, from (20), (21) and (22)

. Llim L -z
e <, [ Fper. e
I‘1+I‘3
If we vake 1maginary partc in this equation, then, recalling that y' = O

for E' <0, E'>a, (18), we have

a
IQ"_I
"{x-E) + A = - P ]‘ ~ , (2u)
- 1
| &-z
where x + iey 12 the point on the upper ball of C corresponding to
£=E, x'+iey' that for ¥ = &', and P andicates the Cauchy
Praincipal value of the integral.
(» = 2imaginary part of the constant -x), (25)
Thus
-1
T 1
£ = X+§Pf %_—dé—;+constant. (26)
o]

(This 1s essentaally equataon (41).)

Now here is a well %nown result (see Ref.lL, Appendix I, equation (37)
with n = 1) concerning differentiation of Cauchty Prancipal values:

Us !
4 . flv) & _ 5 af(v) dv f(u1)_-f(u2) (27)
du * w-v dv u-vou-u u-y, .

e Wy

hpplying this to (26) we have, since y' =0 for &' =0 and for E! = a

p
1 =§'—§+§PJ A (28)

- 12 -



& The evaluation of the eoefficients of the first two powers of &

The integrals an this section are all Cauchy Principal Values, and so the
symbol P will be dropped. Hguation (28) is then

a
dx [
! d = JE (29)
£7=0
where & - & corresponds to x = 1, (30)
Also equation (25) beccmss
a a
g ! t t e 1
E=x+;[jh*f%?ﬂﬁ':la (31)
o 0
since the origins correspond.
We shall solve ecquation (31) by finding approxaimate values for §
(in terms of x), substatuting them in the right hand side of (31), ard
using the result as a closer cpproxaimation.
A Pirst approxumation (obtained by putting & = 0 in 31)) is E = x,
which leads to the secornd approximation
E = x+ —-[:jﬂ - ]. *— &Y‘ )
= x+ & [f,(x) - £,(0)] (32)
say, where
.1
- 1) ytax! :
ﬂ&)*’xf x o~ xt "’ (33)
(o]
Now, by Mangler's result already quotel (equation (27)),
d oy
3= ) = f;—%* ’ (3t

X’—O
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The third approximaticn to & 1is therefors given by

. vt (1+ e g])
— — 1
£ = x+~ ]' T s (f1“fi) dx' + const. {37)

where £} = f1(x') ete.

£ -7 !
Thus, exparding 1 + g il S <f E-& + 0fe )) in the numerator,

x - x’ x - %'
we obtain
o y! ax' | e2 ! gragt o, F1 7
E= xa | YTv t ??i[ % - %' (B Ty Tt
o]
+ const, (38)

{nsglecting terms in 83,...)

The last term on the right dees noct have a singularity at x' = x,
{from (35)), The integrand 1s ihus bounded and may be integrated by parts.

Thus, re-writing (38)

g a £, - %
2 f
= K 4+ 8 f (%) %;-j‘ _— x‘ g%} dx' + const., (40)
0

g = xvele,()-2(] e [5,) - £,00)], (2)

say, wherse
1

f !
- R <A
f,(x) = ,tf az' , (41)

x - x' ax!
o

since the origins of = and & correspond,

5 The svaluation of f1(x) and fz(x)

With the expressions (12) and (43) for x ani ¥, f1(x) and fz(x)

may be expressed as functions of B, using the well-known results for
Cauchy Prancipal values:

-l -



if n>0,

™

aos B! - cos 8

i j° gin nO' sin 6' 36!
s

o)
and
™
1 ccs nB' ag!
9 cos B! - cos 8
)

{see, for instance, Ref,5, Apvendix I).

5.1 An expression for f1(x)

Now f1(x) 13, by definition,

1

= =~ cos nd ,

sin no

sin 6 *

(see (33)).

(after (12) and (13)),

1 Tii dx!
e x - x!
)
Thus, writing
-1 “1
y' o= Z a_ Sin o ot
n=1
and
' = % {1 + cos €") J
/
(33} becomes
Nt i3
T (X) = - 1
1 ~/
n=1
or
N-1
.\
f1(x) = Ziﬁ a_ ©os 1@,
=

Clearliy then

) -
sin rd! sin o' d4do!
a 1
n cos 6! - cos B
0

by (42) .

df‘l -y
35 - —>—J nansnln@,

- 45 =

(42)

(43)

(42)

(45)



L

and zo

=

-

o 0 a sin nd
it} sin €

]

i

5,2  An expression for fz(x)

The defimition of fz(x) was

Now

ay(x")

ard, from (45),

Thus

where

from (43).

f1(x) -r

1

(by (41)).

- . (x!
1 £,(x) - £,(x') ()
T x x - x! dyix
x'=0
N-1
= j{: na cosn8!ad’ ,
n
=1
N-1
-l — - w«if
1(1 ) = 2{; a_ (cos m6 - cos 10 ).
ik
N-1 N~
fz(x) = ZZ na a. Im,n
=1 0=

ﬂ
j_j’ 008
S
Lv]

2 cos mb

t _ A
cos mb o0s mb a6

ccs 8' - cos B
os no! '
5 ~ nos 9 aé

(m+n) 8' + cos {m-n

) 8!

gos B - cos O

asr,

clearly,

gin nf  sin (mn) 8 sin im-ni 8

sin ©

sin ©

- 1€ -

sin ©

?

(47)

(48)

(43)

(50)

(51)

(52)



There are two cases to consider:

(1) m>n  Then sin |m-n} 8 = sic (m-n)}®, so that
- sin !m—n!e
Im,n - S " ein 8 * (53)
(2) m< n. hen =in lm—n‘ 6 = -~ sin (n-n)} 8, 30 that
I, = 0o (54)
Thus, from (50)
v (men) o
. o sin {m-n) ¢
f.2(1) - 2 2 z "% % T sin 0 (55)
F=0 =
m>n
If now we write
N-i-r
kr - Ty fnar (56)
n=1
then (55) can be re-written as
=2
gin ré
£,(x) = -2 z g SRIO (57)
af, af,
5.3 Evaluatang P f2 and ey
df1
We have scen from (-7) and (47) that £, end — arc of the form
M
Pt
sin nd
Z‘ n sin & ° (58)
Il=

3]



-1
B, cos nd (59)

==
for certain constants Bn .
Then
M N-1
22 txnsinne = 2{50 sin6+z ZBncos nd sin 9 ,
= =1
M-1
= 28,58+ Z B, (s1n (n+1) 8 - s1in (n-1) €). (60)
=1

Comparing the roefficients of sin nd on both sides of {60) we have:

~N

=3

B
g = 2 %y
s~ Byq = 2 B
Py, = Pyup = 2 M3 ‘ (61)

Bz—B}-{- = 25!3
[31 -33 = 2(12
2[30—52 = 26(1

/

The equations (61) can be solved for B ., By nyeesss Bys By successively

when the values of Gyps eeses & BTE known, {(In practice it is simpler

.1
to fand By, By 3y Py gsesss ond then B o, Bygreeee)

af

To evaluate -a-;— and f_. 1t 15 best to express them in the form

2
(59) before doing any computation, Then if

d cos n (62)

18 -



we have alao

T
daf
Z2 sin nd
— = L A,
dx 2 o C“n sin O (65)
=t

We can then express (63) in the form (59) by the above processz, and obtain

=),

de
T Z ¢ cos n@, say. (64)
=

-

6 The Numer.cal Zroe. dure

(1) Choose ithe nurber of pivotal points N %o be used, (The choice
cf N depends on the accuracy requared, Jor ihe first N-1 Feurier sine
ceefficients to be reliable, the last four musi Be rnegligable to the requared
degree of accuracy, )

(2) Caleulate (or read from a graph) tbe values of Y, =¥ (xp), where

x =% (1+ cos Bp), and

BP = 21\-;3 , for p =1, 2,..., 81, (see ("4)).
(3) PFipd

-1
2
a_ = ﬁz ¥, sin n BP , for n=1,2,,..8-1, (see {(15)),
a=1
(This 15 best done by setting cut the (=-1)tl: srder saquare sysmetric matrix
[8111 Eﬁ?ﬁ] and multiplying tne veclor iyp} wito at, ) The last few a  so

obtained should be neglagible., Choose an integsr 17 such that &1 Bppr e

are all negligible, but not By hen take
s
¥ o= & &in ne (vy (13)),
=1
and then
il
\ b, (5))
z = ) & 0o nd by, {(451).
1 n :
b
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(4) Make & table of aa  for n=1,,..,M. Then

u
c_izz_ 2 Lnaﬂcosnﬁ.

dx sin 6
=l

(5) PFand Ry Oyseens O, from the equations

A{..MBM

B
]
_-
1l

u—-.?j
il

-2 b (M=1) ay

b (0-2) &y o

M-3 T M-t T
c1-2:3.—_)+.29.2
2cc~02:4.1a1

Ther, from (61) and (47),

(6) PFind
M-r
k = Z na a s for r=1,2,...,M=1,
T n o nr
n=1

(17 a and na are tsbulated in adjacent columns, the caloulation

of kr is very simple. The k's taper off much more rapig%y than the

2

a's, since they represent double sums; simlarly f2 and Fa ore
df
numerically much smaller than £ ’ and -dsg- .)

(7) TNow faird dosenss & from the equations

M2

Yo = T ARy
L3 bl

I
i

d1—63 = -—i;.kz
2(:10 -6.2 = —lq.k,i
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Then

M-2
fz(x) = ;z; d, cos né .
A=

(8) TNow find @greens By 3 from the equations
vy = b (M-2) a0
eM—l;. = 4 (Iﬁ—j) dM—j

S5 = O3 = & OF4)

. .« ® L S

e1 - 63 = 4L, 2 dz
2 eo - 82 = 4,1 d1

Y

Then, frem (61), (63) and (64)

df2
‘a‘}-{": g cosne.
af af
dy hanlt -2 - _
(9)  Then calculate e T g fy ge 8t x=0, x=1, endat
the pivotal points x = x§, p=1, «¢e., N-1, using the expansions of these

functaons as sine and cosine series given above,

(10) Then, introducing the thickness ratio e
H

E = %X +8 [f1(x) - f1(u)] € [f2(x) - £,(0)] , (2)
and
ar ar
%5 N R &2 __Z_, {L)
X dx dx

can be computed at x = 0, 1 and at the pivetal polnts,

g (1) (oy (3)).

Then we have a



i

(12) Then the velocity cf ideal [lcw on the aerofoil surface, at
incidence a, by (10), can be computed from the formula

(the + signs refer to upper and lower surfaces).

(13) The leading sdge radius (at x =0, © = %) is often known
a priori, but 1t can easily be found since, for small m - ©

M
y o= e) (Nna (x8)+0 ((x-8)°)  (from (13))
and
v = % (2-8)% + 0 ((x-8)*) (from (12))
.2 e 2
1im n
P = a0 %z- = 2 (é Ei: (~1)" n an> .
n="

(For the example given in Tables T and II, this gives p = 0,197, wvhich
compares with the exact kmown value p = 0.20C.)

(14) The velocity at the leading edge, at inecidence &, can now
be founi: {(from 11), It is

[‘g‘a“ (g‘g') J% SN’
P \dX/,_ )

6.1 The Inve—-se Problem - Calculation of shape for a prescribed
Velocity Digtrabution

It has been shown that, correct to order e, if

N
-
y = € an ain nd
=1
then
N
E-x = g Zanc:usne
=1

i,e. t0 this order & -x is the harmunic conjugate of y. This makes
it pessible to deduce the aerofoil shape corresponding tc a prescribed
veloscaty distribution, correct to order .
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Suppose q{x) is prescribed, then to the firzt order in &, excluding
surface curvaturs,

x

E = [ gix) dx .

<

X
Thus if j‘ q{x) dx - x is expressed as a Fourier cosine series, namely
!
X
QiX) dx - x = I 2 cos nd

o)

where X = %-(1 + cos €), %hea the corresponding asrofoil shape is given by

¥y = Eansn.nne.

To allew for surface eurvature near the nose, the calculation of shape will
require iteration of the zbove solution, the nert approxumation oeing given
by fitting a Fouraier cosine series to E-x,

X

[ @ T

ax

the above soclution could be i1terated agzain,

2 3
wherse f; + (%XD :r is caloulated from tne first approxamation, If necessary
[V

7 Worked exarples

7.1 Plercy serofoil 50 per cent thick

As & chech on tce accuracy of the method, 1t h=s heen applied with N = 18
to ecalellate the transfornation end the velocity distribution at zero and 10
incidence, on & Prercy asrefo1l hC per aent ihick, whoss transformation is
known analytically (seec Ref,7, pp.212-218). The aerofoil chosen was obtained
by taking v = %-, and 2 = ¥3/2 zy, in the notation of Jef.7, ard has a trail-
ing edge angle of % . 'Ihe results are plotted, together with the serofoil
shape, in Fagure k4, and are given in full in Tatles I, II, The aerofoll
urdinates were computed to 4 plec.s of decimal., and, reftain.rng the sgame
numwber of fisures in the Fourier co-ordinates & kn (which rounded to O

after 14 and & terms respectively), four-figur. agreement with the exact
values was found (Table I). The caleulation was then cerried out retaining

thres fagures onty (T=bls II}. T this case &, kn rounded to O after

7 and 2 terms r.up3~tively, and the polinis shew. a8 squares in Tagure 4
were obtained, The escurzcy is siill extraordinarily hagh for such a thick
aerofoil, and the labour relatively lighu. A few puints obtained by the

<%

Weber method are also ircluded in the figure,

il



-

7.2 R.,AE.101 and 104 aercfoils

The method has been applied to calculate the transforrmtion and
velocity disiribution for these two menbers of the R.A, L, famly of
symretrical aerofoils (Ref.8). The oalculations were actually performed
using N = 18, but the Fourier coefficients a = are of course independent

of the nurber of pivotal points (provided they are unct too few). To
11lustrate this, the scefficients calculated by using N = 8, N = 16, and
N = 18 are given for the 101 aerofoil in Teble III, and are seen to agree
with each oiher to well within the accuracy of the computing method. The
table also lists the remasinaing coefficients kn’ O dn and e, fer

these two aerofoils, TFor the 104 aerasfoil, the shape recaleulated from
the rounded-off values of a 18 also gaven in the table, and the

valecity at zero incidence and the relation between £ and x is plotted
in Figure b for three thickness ratios & = 0,15, 0,10, 0.06. (These
aerofoirls are being used for ocalculations of boundary layer lift reduc-
tion factors, to be issued in Ref,9.)

7.3 Ellipto-Oubic Aerofoil with discontinuaiy in Slope

For smooth shapes such as the Piercy aerofoil, the sine series,
besides being an exact interpolation at the pivotal points, fits wath
very high accuracy at intermediate positions (see Ref,10, Ohapters 7-10).
An example was therefore calculated to see how much the shape represented
by the sine series would dxffer from the true shape for an aerofoil with
a discontinuity in siope, The profile ehoszen had 2ts front half cireular
and rear half cubie, with a disoentiauirty in slope of cot'1(1/3) at
X = 0,50, and a poant of inflexion at x = Q.75. Tne Pourier sine noeffi-
cilents for interpolating to this shape are taoulated, and the computed
shape oompared with the exact shape, 1n Wigure 6, The maximum discrepancy
is about 4 per cent, close to the discontinuity, and is producedﬁgy the
non-uniform convergence at this point of the Fourier series for (Gibbs'
phenomenon). The computed pressure distributzon would thus bs expected to
be reasonably accuraie over the greater part of the profile, but not near
the glnk (where in any case viscosity effects would predominate in the real
flow}.

B Calculiation of velocity off the aercofoil surface

This method of cenformal transformation was developed in the course
of an attempt tc relate the neighbourhood of % = a in the glit plane to
the neighbourhced of 2z =1 1n the aercfoil plane, in order to perform
calculations of the type described in Ref,1, where the cairculation round
an aerocfoil with boundary layers is obtained from a relation between the
velocaities ai two points off the surface of ihe aerofoirl, nanely the points
at the outer edges ¢f the upper and lower boundary layzrs at the trailang
sdgs.

For an aerofoil of 4railing edge angle <, the transformation in the
neighbourhood of the tralling edge must be approxamately vhat which takes
the tangents at the trailing edge into the slat, namely

!
{
~
1]

4 (z-1 )2/“’, (65)

8ay, where

W = 2-=, (66)



or more accurately,

%..1 - A(z_1)2/“ [1+3B (2-1) + ...] (67)

4

(F1g.2). Thus 1f the relation between % and =z 18 inown at ssveral points

on the surface near the trailing edge, the constents 4, B, ... may be fitted, &
and the velocity at points off the surface but close lo the trailing edge may

be fourd from the acrresponding velocity in the slat plane.

For points on the acrofoil surface

z -1

x -1+ iy,

and

1]

&4 = 5oy =<1-§)em.

In particular, for aerofoils with zero curvature near the trailing edge - &.g.
the R.4.8, famly, which are wedge shapced over their rear quarter or oo,

il

z -

(x=1) (1 - 3 tan ;g-) (68) .

ei(ﬂ—?/E)

il

(1—x)sa3%

and

W

2/u
1 - é & [}1mx) sec %:} . (63)

Hence A is evaluatsd by identafying & and x at cne point mear the trailing
edge between equations (2) and (69), ard calculations at points off the surface
can proceed by the method of Section 3 of Reference 1. This 1s das-usseld nore
Pully in a report to be issued laterd. It has been found, for 101 and 104 aerc-
foils of several thicknesses, that, correct to 3 fipures, the sawme value of A

18 obtained for a given proale by identifying (2) and (69) at 8 = %% , for

p=1,2, 3 orlk This 1s an indication of the consistency of the msthod.
A lies between 0.9 and 1.0 for {ihs.. aerofoils waith & Dbetween 0,10 arnd 0,006,

9 Camberad sercfolls

This section can only be regardced as an outline of thes extension of the
mm sk weathAad Fa e mamtbenrn AP serern]l choane whirk Anas ot mossess A2 Tine
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¥

now correspond in general two points, 2, and 7, say, of O, Exactly

as in 3ection 3, we consider

;. - & P
f g - ; d‘:& H
taken in this case round the contour I"i + I, + .. I'7 shown in Frg.7.

2

As before, sinoe there 1g no circulation

Z = Z,+%§£+O(R—1)

at large distances, (Circulation would introduce a logarithme term,
osausing the integral round I‘? to diverge.) The Lumits of the inbegrals

round [,, I'y and T. are respectively

2’75 7
2%, =i (E.'—z_l), i (E.-zz), (70)
and since
=z _
f Esfa - o, (71)
I’1+..I’?
we gbtain
. 13 | 4
L (z1+ 2,~28) - 2x = R,m,m6+0 %—TgTdE' (72)

I 1+I‘3+I‘4+1 6

Writing zy =X, + iay1, Zy = Xy ok ir—:y2 on the lcft, and corresponding

expresaions on the right, we abtain

gl (X1+J(2 - 2E) - ﬂs(y1+y2) - 2K

&,
E' - x' - 183! E' - x! - iey!
:pf 1 165‘—?[ :25' < ag (73)
J -

where, as in Section 3, 2 =& + 7—&- + O(R-1) at infinity. Equating real

and imeginary parts yields
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Al

e (y,+7,) + eonst —— 4, (74)

ay’-y' R
(xﬁ +Xé-—2€) + oonst = -~ 8 %‘/ﬂ -é—:“g% ac! , (75) v
fud
respectively. )
Now
y1 - yz = 2 yt » (76)

the thickness distr-bution sonsidered in she earlier part of the paper;
we may write also

yy v T, = 2 Ty const (77)

where ¥, is the cambsr di-tribution measurced ’ron the neo-1ilt direction.

1

We may introduce a®se ithe term

Ax = % (I.q‘ = xz) (78)

L]

for the relative lasrlacement of points on the aerofoil surface whish correspond
to the same point on tho slxt., In the symmetrieel case, clearly bx =0, so
that equation (7L4) .s id.rntically zero, «nd (75) r.ducec to the ejuation mlready
studied, namely

2 (x~E) + oonst = - s %—j. ET:"ET dg! (79)

which is the same as (1).

In the unsynmelrical nase, to obiain a soluticn correct to ocrder e we
are cntitled to replace y1(X1), yé(xz) by yd(x), yz(x) respectively on

the left haud sice of {7L), where,
X, = © (x,‘ —\-x‘z), (80)

is also the first appro.duatwon to &, according wo (75).

Use may now be made o. lhe rosult {(27) lor dutfereniiating Cauchy
integrals, (since Ax wveaesser 1y vamshes et £ =0, a, the twe ends of
the alit), We cbtain

¥

[y
cg

=%
dy .
g =L = l[ aféx) (81)
™
8]



(i

(81) is an integral equation for Ax, which will be solved in Section 9, 3.

9.2 Fourier representation of cambered shape

In the general case, wath x = % (1+cos 8), the "upper" surface of
the aerofoil corresponds to 9 1in (O,x) and the "lower" to 6 in (m, 2x),
We may then replace the whole contour by a series of the form (A.6):

o [+
- 1 1
v(8) = ;i; a sinnd + zb  + EE: b cos nd (82)
n= n=1

tor 8 uin (0,2r), (The infinite series 1s wratten here for the convenience
of avoiding the %‘bN term, In practice bn's tail off like the an‘s of

the earlier scctions, and bN' would not enter the computation, )

Now for 6 in (O,n)

z (v, - yz)

¢

1

% [y(e) - y(2x-0)]

L)

zi; a sin nd , as before, (83)
=1

Similarly

y, = Z b cos nd (84)
=

1

+ a constant, which may without loss of generality be put equal to 0,

5,3 The evaluation of Ax

To evaluate Ax correct to order & , we replace the integral
equation (81) by

1

dy '
e 1jdAx . (85)

g — = -
dx x x - %!

<

Substituting from (84) for ¥, and introducing 9, ', this becomes

o YL

sinnd _ 1 d_(Ax')
eznbn sin & ifl'.f cog B! ~ ooa 8 ¢ (86)
Y=

]
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Kow cowparing (86) with (43), w3 ces tuas

o
a(az) = e nb cosnb, (87)
=)
and therefors
@
™
A = n b eiv 0@, (88)
ﬁIﬁ
(+ eorstant, which = 0, sincs Ax 18 to vanich at 8 = O, = .)

9.4 The veclocitv on thc acro®oll

Correct to ordasr e, equation (75) may be writter as

D
th

M + & £, () "W pce sarlace) (89)

1
i

% 4+ AX = € fﬂ{x) (lo gr oux "ase) , (90)

These give the point on t"“ slx:% cerresponding fc yoints x on upper ard lower
sarfaces respectively., Equally, “he vel 1es on the upper and lower surfaces
are respectively

e - (nf - AY 2—1—>
dg | 4 Voo < fayy
am | = L K Ax) - o " __E l1 + o (a;;? i (91)
| ag a N0 2 /ey VE ,
e = (} = (ax) - ¢ T L: + & K§X>_J 92}

These expressions mayv be evalacted rormerically at p.votil poirts, using tre
series (45) for ?1(x) ana (38) fur Ax,

2.5 The no-1ift ancle

In th: foremorrg paragranh; the no- 1% position has been asgsumed kncwr,
If thic as not the saoee, howover, an erpression for tle o-11lt anple measu ed
from ary chosen chord line may be deduced Iror tnc cunsiderstion tbat‘
should be single valuxd 2t & =— =, *n ¢-der &, this reguires QZ!

L) 0 o, (93)



Now bn are the Fourier coefficients of the camber distribution when it

is measured from the nc-11ft direction, and are given by

18
2
bn = 'K'f ¥y, cos né de.

0

If now y, 38 measured from a line at a (small) -nclination N

1% has the value

j, (sey), = y_ - xtana,

and the cosine coefficients become

=
b =g[§cosn8d8.
n b e
)
Then
Enzbn for n =2, 3,...
and
b‘l =b_1 - cxo

(94) may then be written

[+
a = - nb ,
o E n
n=

1

(95)

to this,

(96)

(97)

(98)

(99)

whaoch expresses the direction of the no-1ift line relative to a darection
fixed 1n the aesrcfoil, in terms of the camber distribution measured from

this fixed dairectaioun,

The stardard expression

4 - _f _yax
° T ®) <z ()2

(100)

which 18 obtained by the flirst approyrimation in Ref.2, may easily be -shown

to be equavszlent to (992).
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APFENDIX A

Interpolation by Fourier Series

Given an integer N, denote i by ep , for any integer p .

N
Then if f£(0) is any function, and if for any integer m (i 0)

2N-1
4 -J.rner
or.m = -Z—N" f(&r) e »
F=0
then the function
N1
. ind 4 iNg ~iNg
g(e) = x e 5 (aN e @y )
n="={N-1)

may easily be shown to satisfy

£(8) = g(o) for © = ep, p=0,1, 2,..(20-1),

If now we put

a
m - 1 ( )
bm =¥ r’ cos r

then, cleaxrly, a, = Q, ey = 0, end

Thus
N1
v
g(e)z-‘a—bo T:(b—la.)e +(b+1a)e :l
n=
+-};bN (elNe + _lNe)
N-1

(bn cos n@ + & sin nd) + 3 by cos N9 ,
=

]
(MBS

(4.1)

(4.2)

(4.3)

(A.5)

(A.6)

which 18 thewual way of expressing the interpclating trigonomestrie poly-
nomial. This full representation 18 required for the canmbered profiles

considered in Ssction 9,

- 32 -



Now, given any function F(€), we can define a new funotion f£(6) 1in
(0,2r) by the rules

f(o} = £{x) = ©
f(e) = F(e) ] if O << (A. ?) )
f(2r-8) = -~ 7(9)

(and outside (0,2x), f£(8) can be defined as havinz pericd 2w=.) TFor the
function f£(8) it 1s clcar that

b = 0 for all mn,
m
and that
N-1
2 - .
8, = EZ_, d(ﬂr) sznmﬂr . (4.8)
r=1

Hence from (A.3) and (A,6) 1t follows that

N-1
8) = Z a sinné, for €= BP, p=1,2,..(8-1) , (4,9) .

n=1
where the value of = 15 given by (A.8).

The formula {4,9) is the well-known sine interpolation, regquired in
Section 2.3, eguations (13), (14) and (415),

A The goodness of the fit in between the pivotal points

(For a good genmeral Giscuss.on of this peint see Rei,10, Chapters 7-10. )

Ir #(8) is a function of period 2%, and pozsesses a pth deravatave
(see footnote), then 2t is well known (see, for example, Ref,5, Appendix 1I)
that using the formula (A.2) for interpolation al 2N points in (0,2%) means
that for a1l ©

~(p-3)
i£(0) - g(8)] < EGZT_TT(‘”%) : f 113 (0] a0 . (4.10)
[}

Foctnote: In faot, it is not nenessary for f 1o have p derivatives, but
only (»-1); bYut thern, in eddation, ther> must be a function ¢{B6) suck that



When we have a sine series interpolation (using (A.9))}, for the pericdic
function f£(6) +to be continuous (let alone to possess derivatives) 1t 1s
clearly necessary for F{(0) +to be contanuous, and to satisfy

Flo) = F(x) = O,







APTENDIX B

4 treatment of ihe mapping problem of nearly circular areas,
applying the "direct” aporosch to ihe method of
Thecdorsen and Garrick

Iet C be a contour in the complex g-plane, and let r = eF(e) be

its polar equation

(see F1g.3(1)), (8.1)

Let T be the unit circle in the &-plane,

and o the angular en~ordinate (oo that T is the curve % = 810‘)

(see Feg.3(1i)), (B.2)

Now, let f(%) be any function regular outs.de and on I (and, 1n
particular, regular at infinity, then, af Z;o is any point on I, we

have, fror Cauchy's Theorem (using methods similar to those of Section 3),

£(z) ar _ £i%) 4z
P16 ?Q-ZOJrﬂl f(éo) = f Z’"Z'o’ (B.3)

T

whers the latter integral 1s taken over any large ecircle, ]z| = i say.
But the limit of this integral, as Res w, is clearly 2nif , where

f 1s the 1imt of f({&) as Zow. “

o0

So

£ (;_ 4 + |1 ;f‘(?:';o) = 2wl f‘m . (B.4)

g
S
A
A
)

Now, on I', & = elo—, and ?;o =8 O, say, so lhat

o @ ar _ o #0391 & ae
& - Zo o*7 - elo-o
XL Q
2 i(o-o_ ) /2
_pf e ie O 4o
- 21 sin (0‘»» O‘O)
o]
2n
= %P f £(e™) (cot L (o- g ) +1i)ar. (B.5)
[+]



If we substitute this in (4) and take real parts we have

27

2x N ic-o
EP[ Rf(aw).cot%(o‘-o’o)dn'ngcfjf(ed)~ﬂjf(e )

4
:-27:4/ £ (B.6)

Now let g(Z) be an amalytic function, such that g(Z)/% is regular at infinity,
mapping the exterier »f I' on to that of C,.

Let us put

£(2) = log (g(8)/%) .

This is a many-valued function, but we can clearly take one branch of it which
is analyvic on and outside T', and is regular at infinity.

If % =e°, then

f(eio') = log (eF(B)+1B/eio‘)

eF(e)+ia

(where is the point on C corresponding to the point em on T},

= F(B) + i (6-0')
(or, at least, we can choose our branch of f£(%) so that this is so),
= F(8) - i u(e)

(where u(7) = o -8). (8.7)

Thus, substituting this in (&),

27 2R
i f P(0) cot % (o‘-o‘n) o+ & j u{o) do + n ulr) = - Zﬂ]fm . (B.8)

o &
Now, we know (sne Ref,11) that there certainly is such a function g(%)
(mapping the exterior of T on to that of C) and that all such mappings
must be of the form z = g (e %) for some real mmber p. It is very
easy to ses that for one of these transformations z(e™ %), (namely that

L)



2 .
(o) = - -};{Pf F(8) cot & (cr-o‘o) de, (8.9)

(This is the main integral equation of Iheodorsen and CGarrick (Ref.2),)
Thus, to summarisz, we know that there 1s an apalytic funotion g(&),
such that g(Z)/% is regular at infinity, mapping the esterior of T on
to that of C, and such that (2.9) holds,

Now, it 1s well known, and can casily be proved by the Calculus of
Residves, that 2f

P(8) = F (o-u(e)) (by (B.7))
&
= % a +Z (2 cos no + b_ =1n no)
[s] I n
=1
then
2
1
- 5«:??[ B(6) oot & (¢-0) do
[#]

[ae]
Z (- b_ cos no + a_ sin no)
n n

6 (6),

i

where € F(0) denotes the Fourier Series in ¢ , conjupgate to that
for F{8).

Thus, from (B.9) and (B.7),

u(le) = 6F (o-uls)). (B.10)

Now, if C is nearly ocircular, F(8) will be small and we can derive
more and nore accurate approxumations o u(o‘) thus (usang the approach
of Scotion 4):

(1) u(e) = oO.

(11) u(e) = eF(c) = ¢1(<r) , say.
(ii) ufs) = 6F(0‘-u1(o‘)),

ok
(]
Py
Q
o
i
G
fﬂ'
Q
o
i@

i

uy (o) + uz(o‘) say,
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(av) u(o)

it

6 F (5-1,(0) - uy(0)),

i

e [F0) = oyr) Bt (02 L

2d02’

1 3~ %% 3y

u1+u2+32-e, uzf dF:’,

= u, +u2+u3, say.

Thus, to caleulate u(o) (either from (iii) as u;+u,, or from (iv) as
Uy Uy uj) we merely need to fit a Fourier Series t¢ F(o) (using the

interpolation formulae (A.4) and (A.6))., Then (after rounding some of the
cecfficients to zero, if this is possible) the Faurier Coefficients of

Ugs Uy and uy can be found, from the definitions of Uy, Uy and uj,

by a few simple additions and multiplications., Thus we obtain the expansion
of u(c’) as a finite Fourier Series. (It is then possible, as Theodorsen
and Garrick have pointed out, in Ref,2, to caleulate log (g(%)/Z) at any
point ocutside T, very sumply, by deriving its prwer series expsnsion (in
negative powers of %) from the Wourier Series for u(e). )
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TABLE 11

0.Ms

Plercy Aerofeil (€ = C.5): 3 Figure Calculatior

n x ey £e €1, ﬁ-i g® L g f, E 3 exact '—1—-%- % exact s

01 1.C00 ¢ C.27M oo =0.016 1.4221 1,430 | 1.750 ) 1.788

1] 0.9%2 | 0,055 0.218 0,265 ~3. 547 G012 =0,G18 t4t2) 1,417 | 1,760 1.788 3

2| 0,970 | 0,107 | 0.084 0,248 | =1,667] =0,002 | =0,016 | t.367] 1.377 | 1.780 | 1.779 1.

31 C.935 | Ou151 | =0.013 0.220 =1, 004 “0u 7 1e304] 1,311 1.785 | 1.766 1

4 1 0,882 ! 0,193 0. 023 C.182 w(.622 =0, 018 1.213| t1.224 { 1,762 | 1,748 1.

51 0821 ¢ 0,223 | =0.0014 Q137 =366 =0, 019 1107 1117 § 1721 | 1722 I

B} 0,750 | 0.243 0,001 0. 083 =0, 176 ~0, 020 0.985) 0.995 | 1.680 | 1.638 1a
7 1 0.871 | 0.250 | =0,001 0,037 =0, 021 =0, C21 0.854, 0.863 | 1.645] 1.544 Ta

8 | 0.587 | O.245 =0, 014 Cc.118 -0, 023 0.718] C.727 ! 1,803 | 1.588 1.

9 | 0,500 | 0.230 (e G2 0. 242 =0, (24 0.581] 0 592 § 1.534] 1.518 1.
10 ' 0413 | 0.205 ~0.1C3 0.343 -0,025 1 0.451! 0.281 | 1.435] 1.438 1.
11 | 0.329 | Oe1y2 ~0. 133 0,419 «0,027 0-335! Cu347 | 1,323 ] 1,340 1.
12 ) 0.250 | C.137 »0s 155 0. 287 =0, 028 0.235!l 0245 1 1216 1.236 1.
i3 | 0.179 | 0.100 =164 Q. 527 =34 029 0.1531 0.180 | 1,112 1 1.119 1.
14 ¢ Q.17 ¢ 0.067 -0, 166 0. 523 -0, 030 0.087: 0,095 | 0.9B5¢ 1.000 1.
15 | 0.0687 | 0.0%9 -0, 161 04 530 =3,031 | 0,041| 0,048 | 0,815 0.874 1.
18 1 0,030 | 0,017 «0,150 00573 1 -0.052 | c.o12! 0,018 | 6615 0. 734 1.
17 | 0.008 | 0.004 «0,140 04506 ~0,052 | 0,000 0.004 | 0.455} 0.554 1.
18 Lo | o ~0,135 @ -0.032 * 0 o ‘toagol o

NOTE: The second order terms are simply:
g¥ 1, = ~0.024 4+ 0,008 ces
daf



TABLE TII

Fourier and related coefficients for RAE 101 and 104 aerofcils

{1) RAE 104
Recalculated |
nl| x y ¥ 2, 3, o | Xy o @ °y
{from rounded (Rounded off)
. values) {1 = 8)
0| 1.0000 0 0 0.644 0,082 0,336
1 | 0.9924] 0.009% 0.010 0.4404 0,440 wlo120} ~0.034] 0.084| 0.416
2 | 0.5899| 0.0359 0,035 ~0,1020 ~0.102 0o 472} 0,048} 0.032 | ~0.096
3| 0.9331| 0.0797 0,079 00461 0,046 =0,304} ~0,007| ~0,008 | 0.160
41 0,8830| 0,1394 0.139 «0,0128 “0,013 0.0801 0.0021 0,004 0
51 0.8212| 0,2124 0,212 0,0040 0.004 w0, 056 0 04096
6 | 0,7500} 0.2971 0,298 0.0005 0 0 0 0,004
7| 0.6710} 0,3836 0,384 0, 0009 0 =0,056 | ~0.001
8 | 0.5868} 0,4547 0,452 ~0. 0030 =0, 003
9 1 0.5000) 0,4903 s 490 ~0,0007 |
19 | 0.4132] 0.4995 0,499 9.0009
11 ] 0.3250] 0.4879 0.450 =0, 0009 |
12 | 0,2500| 0,4570 0.457 00008 i
12 0,1786| 0.4087 0.408 -0.0019 |
14 | 0.1170} 0.3485 0,344 0.0017 i ‘
{15 | v.0870} 0.2703 0,278 -0, 0014 ; |
16 | 0.0%02§ 0.2000 0.154 0.0010 : :
17 | 0.0076] 0,0944 0.103 0, 0008 | |
18 0 0 o ! i
(2) RiE 101 z
n & & B! % %n % 4 ®n
(8 = 8) | (N=16)] (N=18) [(Rounded=off)
(M =€)
" 0.654 0.104 0,088
11 0,4085| 0.4082 | ©.4082 0,408 ~1.152 =0, 052 0,024 0
2 |~0,1469 | =0..468 | =0,1466 00,147 =0, 324 -0, 014 ~0.008 o
31 ~0.0218 | ~0.0218 | =0.0219 0,022 0,024 0. 003 0 0,064
414 0,0060 | 0.0056 0.0056 0.008 =0, 060 0 0,004 |
5} =0,0027 | ~0,0027 | =0.,0027 0,00 -0, 072 «0, 001 '
6 "0-0032 "'0..0031 "0-0031 "00003
71 o.00t0f ©0.0001 0, 0001
8 =0,0008 | =0.0006
g -0,0000 | ~0.0009
10 0,0002 0.0001
11 ¢ «0, 0001
12 “0,0004 | +0,0004
13 0 0 ,
14 0., 000t 0 i
15 =0,0002 | ~0,0002
18 0 ]
17 0
18
- L4 -
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FIG.4. CALCULATIONS FOR PIERCY AEROFOIL
50 PER CENT THICK.
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