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A mthod is derived for computing the conformal transfor~mtion 
between the plane of an aemfoil of arbitrary shape (symetrioal or 
cmbered), and the pl.a.e of its velocity potential at zero lift (in 
which the aerofoil contour becomes a slit), in order to perrriitr ~alcula- 
tions of the velocity at points off the surface. The integral equation 
which relates the contours 1s derived by an application of Cauchy's 
theorem, and solved to the order of the square of thickness ratio. The 
solutxon is fomd by representing the ordinate distribution by a Fourier 
series. The rapid tailing-off of the Fourier coefficients for all smoth 
aerofoil shapes then leads to high accuracy being achieved with a oom- 
paratively small mount of effort. As an example, the transformation 
and surface velooity distribution are calculated by this approxmate 
method for a 50 per cent thick Pmrcy aerofoil, and are found to have 
*n error of less than 1 per cent. Iiigher awuracy oan, of cowse, be 
expected for smaller arid more realistic thickness ratios. The solution 
of the inverse problem, of calculating the section shape for a prescribed 
velocity distribution, by the present method, is also briefly outlined. 

The method IS straightforward ancl has proved easy to use as a 
computing routine. 
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I Introduction 

A simple and accurate method is described for calculating the 
aonformal transformation of an aerof'oll into a slit along the real axis, 

ad hence for finding velocity distributions in potential flow. An integral 
equation whioh determines the transforroatlon is obtained, ad Its solution 
found at pivotal points, equally spaced m 0 = co~-~(;?x-l), by represent- 
ing the shape of the aercfoil as a Fourier series in 8. 

The work was urdertaken in order to make possible velocity calculi- 
tions at points off the aerofoll surface, in the trailing edge region, 
which are required for the pre&ction of bourdary layer effects on lift by 
the methods of Ref.1. In SectIon 8 it IS shown how, for this purpose, the 
present transfcrmatlon may be fitted to the appropriate analytwal form near 
a trailing edge of finite angle 7. 

A solution of the mapping problem ma 
8 

of course, be found to any 
desued. accuracy by the Theodorsnn-Garric method of successive approxlma- 
tlons, and. the present method will, by the iJ=queness theorem, led. to the 
same answer. However, the transforrced variable is here expanded exp1icltl.Y 
as a power series in the thickness ratio, E say. The method is not 
adapted to the process of successive approximations, but it gives at once 
values which seem to be cf sufficient accuracy for most purposes (mly, 
three or four figures of decimals, for aerofoils which are not too thick). 
This approach 1s thought to be new. 

Retayning only the first tw tcrws of the puwer series leads to an 
expresszon for the velocity which is equivalent to that obtained by Weber3, 
but the present Four-per representation enables the third terrri, in s2, to 
be retained without &ffioulty. The numerical work, even when this extra 
term 1s used, 1s stistantlally lighter tian that of ReP.3, since it involves 
fewer I;iultiplwnt~ons. Moreover, the integral equation conneoting the 
n~z~Xo~l~~th the slit plane l-as some intrinsic Interest. 

The greater part of the paper, Sections 2-8, applies only ta spetric 
sectlone.. For canlbered aerofoils, ~onsdered In Section 9, the method has 
not been elaborated beyond the term in E. To this order of accuracy, it 
reproduces the known results for no-lift angle, etc. The integral equation 
in the tramfonnatxon of a nsmberea profile contains terra coming from the 
two points of the aerofoil at different chordtise psltions (one on the 
upper and one on the lower surface), which correspond to a single point 
the slit, and calculatrons correct to the order of s2 are rather 

of 

complicated. 

2 An outline of the rrethod (for <metric sectlonsl 

2.1 The transformation of an aerofoil Into s. slit 

Comider a syrrmetric closed aerof'oll C In the complex z-plane, 
with its chord line along the real axis from 0 (led+ edge) to 1 
(trailing edge), ad let 1: = f(s) be the unique cirnfornal transfomtion 
which takes the region outside C 
exterding from 0 to a 

into the region outside a slit, P say, 

c3.f 
along the real axjs of the complex ?$pla.ne, such 

that z + I at infinity*. Suppose the points z = x+ iy of C transform 

0 It is well known (see Ref.11, p.70) that there is one and only one 
analytic function, defined outside C, whch has the required properties., 
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to the point r; = c + io of I‘, EO that g is real. Then It is shown in 
Seotion 3 that 

or, what is the ssm, 

c 1 
= x+; 

au 

I 
F; _ 4' + constant . 

0 

. 

(1) 

The integrals here are Gaudy prmclpal values, and primes are used for 
dumny variables (so that 5' = c(x' 
x1 + iy' 1 

is the point to which the points 
of the aerofod transform . Also, in the mte&?als, y is taken 

positive (for, for ar.y value of x m (0,l) there correspond two values of 
y for which x + iy 1~s on G ). 

Now (1) is an mtegral equation for 5 in terms of x. If the 
thxkness ratio E 1s ~ntmduced, by replacing the ordmate y(x) by 
E y(x), (so that ymx = 4) then the ;olutlon of (1) may, it IS not 
unreasonable to assume, be expanded a? a power sp.rxs 1x1 E (vald for 
suitably small values of E ): 

E; = x + E [r,(x) - f,(o)] + e2 [f2(x) - f2(o)j + . . . 

Expressions for f,(x) ad f2(x) are obt?lned III SectIon 4. 

Futtmng x = 1, the len&h of the slit is &lven by 

a = I + E [f,(l) - f,(o)] + E2 [f2(1) - f2(o)J + . . . 

Then also 

5% al 2% 
dx = l+s-gy+s ax+ . . . 

(2) - 

(3) 

(4) 

2.2 The velooitg or. the azrofoll 

9 flow at zero lncliience with ur,lt velocity at infinltiy, the velocity 

1 I 
cc along the aerofoll surface 1s simply de , s~cce rJ 1s the complex 

velocity potential of the correspon?iy parallel flow 1x1 the c-plane. 
This velocity may be written 

(5) ’ 
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In flav at incidmco a kth circulztmn K. the vcloclty at a point 

x = - *a sin a 

(7) 

Thus the velocity of rcieal flow in the aerofiii.1 plane at inm.&nce a 1s 
gliren 011 the aerofo~lby 

the i: SL~TB correspondzng to the upper and lower Surfaces. 

2.21 Velocity nt lea&.rs: edge 

IS the leadmy edge radms, then near the ledin& edge 

and equation (IO) becones 

(11) 

-e- 



2.3 The use of Elourier ser'les 

The expressions for f,(x), and other functmns xrhich are obtained in 
Section I+ ars Cauchy princ~palvalxesof oertam integrals, 2nd to evaluate 
them we make the transfomat~on 

x : 4 (I + 00s e) (for 0 6 0 6 x) (12) 

and assumetnat y is given by a Fourxx sine serve? UI 0. For practical 
purposes a tnmcated sine series 

N -7 
y = 

> 
an Sin. 7 F (N even) (131 

Iid 

can be fitted with ixgh accuracy (see AppendixA). The an are in effect 

co-ordmates of the aerofoil shape, and are obtamed from the values, y of 
y at the N- 1 Gomts xp (where P' 

BLCI =J$ 
P 

p = 1, 2,..,, N-l) 

by the equations 

N-l 
a = 1 

n N yP sin rl t3 : P 
for n = I,..., N-l (45) 

(which is, fcl fixed pi, 8 mtrix mltlplicat~on). This is shown in AppenctixA 
to give an exact mterpolatlon at the N- 1 points x 

P' 
and to fit with high 

accuracy at Internedlate pouts, men y and one or more of its derivatives 
with respect to 0 are oo=tmnuous U-I i3. 

Ml The functions f,, dx , etc., 2.. and -& (which 1s not usually known 

numerically) are then given by trlgonoretrx expressIons at the pouts x ; 
e.g. P 

N-l 

0 

Y&L 2 
dx = - sin e * ce 

P P 
n an co- p , 

N-l 

a cosr.Op. 
n 

(16) 

* 

(17) , 



The advantage of specifying the aerof'oilby mealls of the Rwrier 
coefficients a n is that these tail off very rapidly, and usually all 
except, say, the first half dozen map be rounded to zero. A comparatively 
small amount of computation is then involved in evaluating the various 
?unotions m the expressions for velocity. Examples showing this rapid 
convergence are given in Tables I, II and III. Also, these first few non- 
zero a can be found to high accuracy using quite a small number of points 
in the gormula (15) 
at IO0 intervals). 

- for instance, N = 18 (thus using the values of 0 

2.4 The relation of the present work to Miss Weber's 

Niss Pl'eber obtains an equation ((2-12) of Ref.3) for the velocity 
on the surface of a symmetrical aerofoil at sero incidence, oy considering 
the distribution of singularatzes necessary to cancel the velocity compo- 
nent of the undisturbed stream normal to the surface. The analysis leading 
to the equation is exact, certam approximations being made later to simplify 
+ he solution. The velocity, ds has been pointed out in Section 2.2 above, 

is sir;lply 1% ( , and equating this to Miss Weber's expressIon leads, after 

a little redaction, to the integral equation (1). 'sic derive the result in 
Seciion 3 by contour integration without reference to singularity distribu- . 
tions. Miss Weber's later aporoxmatrons are equivalent to retaining only 
the term in the first order o: thickness ratio (the f, term in our 

a4 3Y2 equation (2)) in the expressions for 5 and s , but retaimng the dr 
0 

term, rrlxch IS of the second order (except that it becomes infinite at 
the leading edge). 

The present rethod is thus very stilar to hers in principle, and 
ng both with equal aocuracy will not differ by 

~~~,U':~a~b~~~~o~e~~~~e~. Horever,the numerical work is cut consider- 
ably by the explicit use of the an's, since only the first fevF of these 

differ appreciably from zero. Most of the for?milae in Ref.3 are of the 
form 

s(xp) = s 
",P yn 

an3 these involve more work, and sre more open to computational errors 
through cancellatux between reasorably large psitlve and mgative terns, 
than the equivalent sums, such as 

N-l 

c 
a n cos n 0 

P 
n=l 

used here. (Aotually, forrKi.a (15) 2s the only one whxh is open to the 
above ObJectlOIUS - once the computer ha3 safely found the an and rounded 
them off, his task is easy.) 

Table III ahow the an's for LA.E.1& aerofoil, which were com- 
puted using N = 18; all except 6 were then rourded-off to aero, so that 
the remaining operations for computing at 17 pivotal points were 

- 10 - 



multiplications of vectors containing 5 or fewer elements into a 17 x 6 rrsltrix, 
p&g]* As a check on the accuracy,~ the shape corresponding exactly to 

these 6 rounded values (i.e. computed from them) has also been tabulatd, and 
is seen to agree very closely with the origmal shape. 

3 The Integral Equation 

Let us consider contours C and l', and the mapping 1: = f(z), as in 
Section 2.1. Then the mverse mppmg of the c-plane onto the s-plane defines 
z as a firnctmn of t;. 

Consider 

where c is a fmed real pomt on the slit I?, and the integral is taken 
round the contour 7, + Y2 + P 

3 
+ rq, as m Fugue 1: r, is the real axm 

from -R to C-6, r2 is d small ;ed-circle of radius 6 round & , 

r3 
is the real axis from 5 + 6 to R, and r 

4 
is the upper serm-circle 

/C"l=R. e 

The oorrespondlng contour in the e-plsne L also shown in Figure 1 - 
note that the pou-~ts correspond5ng to t'cosc points of I'1 ad r 

3 
which are 

not also points of r , lie on the real axls of z . - (18) . 

Now on r4 , for large R, sinoe 

dt;+l 
dz at x$iluty (see Section 2.1) 

z q 5 + fg + 0 (R-l), far jome oonstant IC , 

so that 

t:- z 
m= $ + 0 @-2) 

Thus 

Em 
R+m 

i 4 

Also, 

(19) 

(20) = 

. 

(21) 
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where e 
z=c. O 

is the point on the m sxk of C: correspondmg to 

But, since s has no smgularlt~es mszde or on I‘, + I'2 + I.3 + I'& , 

then by Cauchy's theorem 

i 
C-Z $-y-p = 0. (22) 

r,+r2+r3+r4 

Therefore, from (20), (21) and (22) 

1i.m 
xi (z,-Cl - II = Rh Lo H a.c . (23) , 

If we c&e magmary parts in thus equatmn, then, recalling that .y' = C 
for Ef i 0, 85' 1 a, (IS), we have 

x(x-F)th = -P a e y’ d&’ 
i 0 k-E’ ’ (24) 

wterc x + isy 1s the point on the w Pall3 of C corresponding to 
r:= E, x' t is y' that for r; = 5', and P mbcates the Cauchy 
Prmc~pal value of the mntegral. 

(h = uragmary part of the constant -X) . (25) 

Thus 

E = x+ %P 
I 

a$?$ t constant . 

0 
(26) 

('ihIs 1s essentially oquatmn (I).) 

Xow here is a well known result (see Ref.&, Appenrlix I, equation (37) 
witii n = I) concermng &fferentiation of Cauclly Prmcipal valbea: 

*2 "2 
a --p r(u,) fb,) 
au zggLp 5c&hsL* 

J 
--- . u-v u-u U-U (27) 

1 2 
Y 9 

Applying this to (26) we have, smce y' = 0 for c' = 0 ana for c' = a 

- 12 - 



4 The evaluation of' the coeffxlents of the first two powers of E 

The integrals m this sectmn are all Cauchy Principal Values, and so the 
symbol P ~111 be dropped. Equatxon (28) is then 

where E; = a corresponds to x = 1, (30) 

(31) 

since the ongins correspond. 

We shall solve equaLIon (31) by flrxizng ;ippraXim%te V3lue.5 for g 
(in terms of x), substltutlng them m the right hand szde of (31), ad 
using the result as a closer ;pproi;lmation 

A first apprOXJJNt3On (obtained by puttIn& s = 0 in (31)) is & = x, 
which leads to the second approximation 

say, where 

= x + E Lf,(x) - P,(o)] 

Now, by hkngler's result already quote- (e;iu;lt;on j27)), 

1 

$ f,(x) = i 
J 

* , 

x'=O 

= g,(x) , 

(32) 

(33) 

(34) - 

(35) - 



The third approximatmn to 5 is therefore given by 

1 

I 

Y' 
& = x+% x- 

(I+ E 9;) 
ax' + const. 

0 
x' + E (f,-r;) 

where f' zi f I ,(x') etc. 
f, - r; 

Thw, expardin6 1 + E x _ x, , -7 + O(2) & - F;' 
x-x 3.n th? numerator, 

we obtain 

(37) 

.y’ 
x - x’ 

y’ dx’ x - x’ c 9; - 

+ const. 

fl 
- r;-? 

-- 
x - x’ 

-I 

(33) 

I (neglecting term in 3 e ,...) 

The last term on the right does mt kave a smgdarlty at x1 = X, 

(from (35):. The integxmd is thus boun&d and my be inte@x.ted by parts. 

Thus, m-writing (38) 

= X+Ef,(X) x - XI dX ax’ + oonst., 

0 

by parts, (nmm y(o) = y(1) = 0). 

Thus 

E 2 x + E [f,(x) - f,(o)] + s2 [f&X) - f2(0)1 , 

say, where 

f2(X) = + 
’ f, -P' 

I 1 ti&' 
x - x' dx' ' 

0 

smce the origms of x and E, correspond. 

5 The evaluation of f,(x) and f>(x) 

(40) 

(2) 

(41) 

With the exzress~ons (12) and (13) for x anA y, f,(x) and f2(x) 
may be expressed as functions of 8 , ming the well-icnown resAt.s for 
Cauchy Prmcipal values: 

- 14 - 



If n > 0, 

7r 

1 

I 

sin n0' sin 0' 20' 
7[ cos0'-cose- = - 00s ne , 

3 

and 

( see, for &stance, Ref.5, Apoendzx I). 

5.1 An expressroc for f1(x) 

Now f,(x) IS, by defm~tmrl, 

Thus, wrltmg 

Y-1 
. 

y' = 
c 

an sin ,i El' 
n=l 

and 

(33) b ecomes 

or 

(see (33)). 

(after (12) and (IJ)), 

f,(x) = an 008 ne , by (4;L) . 

Cleariy then 

(42) 
i 

(43) = 

(44) 

(45) = 

. 

- 15 - 



and. SO 

. 

5.2 An expression for r,(x) 

The defuntlon of f2(X) Was 

(47) 

f2(X) = ; 
’ f,(x) - fqx') 

i x - x' dy(x') (by (41j). 
X'ZO 

Now N-l 
“-y(x’) = 

c 
n a* co.5 n 9’ de’ , (4s) 

n=l Z 

ard, from (451, 

N-l 

f,(x) - f,(x’) = am (co5 me - cos me’) . (49) 

Thus N-l N-l 
f2(x) = 

zc, 
na I m an m,n En= 

where 
7i 

I 2 
m,n = -x i 

cos ne' cos me“ - 00s me @' 
cos 8' - DOS e I 

0 

_ 1 7( 005 (n+n) 
i 

8’ + cos (m-n) 9’ ae, 
7c co3 8’ - cos e 

) clearly, 

0 

(50) 

(52) 

from (43). 



There are two oases to consider: 

(1) m>n Then sin /m-n\ 0 = sin (m-n)D, so that 

I = _ 2 sin (m-n)0 
m,n sue * 

(2) m < n.. Then sin jm-n\ e = - Sill (3-d-l) 8, 20 that 

I = 0. 
m,n 

Thus, from (50) 

N;’ N-2 

f,(x) = - 2 
ic 

sir. (m-n) d na a - 
S-n=, lr. n 81n e . 

m>P, 

If now we write 
N-l-r 

then (55) can be re-written as 

(53) 1 

r 

(54) 

(55) 

f 

(56) 

(57) 

5.3 
CLfl Evaluatn: - , f df2 
dx 2 

and. - 
dx 

'We have seen from 07) mn2 (47) that f2 ad cx &ri- of the form 

(58) * 

, 
Now It is well krown ttat sm (n+l)e/sin 4 can be exqressed. as a linear 



(59) 

for certain con‘stants 8, . 

Then 

M M-l 

2 a sinnO = 2p sin 0 + n 0 c 2 p, coo ne sin 8 , 

kl 

M-l 
= 2 p, s3.n e + 

c 
p, (ml (Ii+?) e - s=n (n-l) 6). (60) 

EG1 

ComparFng the coeff2.cients of s1n ne on both sides of (60) we have: 

$ El =2% 

h I-2 = 2 5c-1 

PM-3 - %-, = 2 Q-2 

41-4 - 4vl-2 = 2 %I-3 
. . . . . . . 
. . . . . . . 

B, - P& = 2 a3 

P, - P3 = 2 a2 

2 PO - P, q 2 a, 

(61) 

N- f,(x) = c a, cos ne 

n= 

-18 - 



we have also 

df2 
N- 

==2 
z’ 

sin ne nd --- . n s3.n e 
n=l 

we oan then express (63) in the fom (59) by the Sabove process, and obtain 

*2 
N-l 

dx= 
L 

e n 3x. ne, say. (64) 
II= 

6 The N~.merx~A ?rsc. Zxur- -_ 

(1) Clkmse the nilrrher of' pivotal pomts N to be used. (The oholce 
of N depends on the act-uracy required. ,Jor the fux3t K-l Fcurier ~3.m 
ooeffmxnts to be rzllable, the last four mst be neegllglble to the requred 
degree of accuracy.) * 

(2) Cslculdte (or read frorr a graph) the values or y 
x = 2 (I+ cos ep), an; 

P 
= y (xp), -vhere 

for p = I, 2 ,..(. , N-l, (see ("4)). 

(3) Fird 
N- I 

2 a n=iT yp sm n 6 , f’o: n = 1,2,...N-1, (see (15)). 
P 

and then 
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(4) Make a table of n a n for n = l,...,M. Then 

c 
x-3 - cj’&j = 4 M-2) %Le2 

. . , . . . 
-b 

"I 3 
z 4.2n2 

2c -0 
c 2 = 4.19 

Tier+ from (61) srd (47), 

dfl 
IF 

-G = 
Lb 

OrI 
cos ne . 

(6) Find 

M-r 

k, = 
c 

II an a n+r ' for r = I,2 ,... p-1. 
n=l 

(Jf an and n a. n are tabulated III adJacent columns, the calculation 

of k r is very simple. The k's taper off xuch 2nore rapidly than the 

a's, ti2 smce they represent double sum; sm~'-arly f2 and dx we 

%-2 = - 4 %-I 
aM-3 = - 4 G-2 

G-4 -*+I+ *= - 4 ki&3 . . . 
+-a 

3 
= -4k2 

2d -d2 = -4k, 0 
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Then 

M-2 

f2W = dncosn8 . 

(8) Kox find eo,..,, se3 from the equations 

Q-5 - %I-3 = 4 (M-4) $lw4 
. . . . . , . 

el - e3 = 4. 2a2 

2 e* - e2 = 4.45 

Then,frm (61), (63) and (64) 

a2 
ix- 

-xii-= 
2 

e n co5 ne . 
n- 

(9) Then calculate 3 , f,, 2 , f2, 2 at x=0, x = 1, ana at 

the pivotal pomts x = xp, p = 1, . . . . N-f, using the expansions of these 
functions as sine and coeme series gxven &bow. 

(IO) Then, mtroducmg the tin&mess ratio E , 

g = x + 6 [f,(x) - f,(u)] + E2 rf2(X) - f&)1 , 

ana 
FE, *, 2dp2 
ax = l+sx+E ax’ 

can be computed at x = 0, 1 nrd at the pivotal points. 

Then we have a = E (?) (by (3)). 

(11) Then tma 

!2) 

(4) 



(12) Then the velocity cf xleal i'lcw on the aerofo~l surface, at 
mcidence a, by (IO), cm be computed from the fomiula 

(the + signs refer to upper and lower surfaces). 

(13) The leading edge radius (at x = 0, f3 = 7x) is often Paown 
a prIori, but It can easzly be found sume, for srm.11~ - 0 

M 

y = E 
c 

(-lp n an (n-s) + 0 ((7t-cQ3) (from (13)) 

Ix1 

and 

x = $ (n-e)2 + 0 ((7&)4) (from (12)) 

EnI 22 = 2 s 

M 

p = ato 2.x CC 
(-1)" n an 2 

> 
. 

lIZI 

(For the example gzven m Tables I and. II, this @es p = 0.197, vrhlch 
compares mlth the exact known value p = 0.200.) 

(14) The velomty at the leading edge, at mc~dence a, can now 
be foti (from 11). It is 

6 . I The Inve-se Problem - Calculation of shape for a prescribed. 
Velocity Distrxbutlon 

It has been shown that, correct to order E, of 

N 7 
y = E 

L 
a sin ne n 

n.4 

then 

i.e. to this order c-x is the h.arr.wnc corqugate of y. This makes 
it possible to deduce the aerofoil shape corresponding to a prescribed 
velocity distrlbutlon, correct to order E. 

- 22 - 



Suppose q(x) is prescribed, then to the first order in 83, ezluding 
surface curvature, 

x. 

4; = 
i 

qb4 LlJE . 

0 

X 

Thus if 

s 

q(x) Jx - x is expressed as a Fourier cosine series, namely 
0 

x 

I q(x) 86.x - x = I: an co5 rid 

where x = & (I + cos 0) , thee? the oorrc:iponding aerofoil shape is given by 

&? = c an SIII n 0. 

To allow for mrf~ce oumature near the nose, the 
require iteratmn of the above solutmn: the nwt 
by fitting a Foumer cosme series to c-x, 

calculatzon of shape will 
appromtmn oemg given 

where p J (j$y 7 is cal:Jlated from the first approxmation. If neaessary 

the abo: solutaon could. be lteratcd agein. 

7 WO’lorl~ cd exal~.pleg 

7.1 Eiercy aerofoil j0 per cent thick 

As a chec:; on tl-.e azcurasy of the znet);od, At h-.s been a;jplied with X = 18 
to calculate the trahsformtion and the velocity distribution at zero and IO0 
incidence, on a l-‘~.ercy aerofo~.l 50 per sent thick, nhose transPo?mntion 1s 
known analytica!ly (see Ref.?, pp.212-218). The aerofoil chosen was obtained 
by takinf: Y as 2 , and z = 43/'2 z,, ;n the notatron of Aef.7, anLi has a trawl- 
mg edge ang1.e of 2 . 'The resilits am plotted, together w.th the aerofoil 
shape, in Figure I+, and are gzven in full in Tables I, II. The aerofoil f 
or&rates were co.zput?d to 4 plar a of dec:?lal,, m.3, retainLLg the same 
nmber of f!.;a-es in the Fcuner co-or~Lmat% 

an' k (which rounied to 0 
after 14 and 6 tsm. respectzvelyiyl, Eour-figzud agre&.ent with the exact . 
va1ue.s vms foxed (Table I>, The calculetlon WI:, then crrrie3 out retaining 
three fq+m; ody (Tz.bl- II). Ir thx case an, k, rounded to 0 after 
7 and 2 tmms ri::p"" tively, and the point: s:;L~~~~ as squares in I%.,ve 4 
were obtained. The exumcy is still extraordmarily h&r for such a thick 
aerofoil, amI xhc hbour relatxvely l?ght. A few pumts obtamtd by the 
Weber method ae also i:.cludoJ in the Ewe. 
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. 

? 

7.2 R.k.E.101 and 104 aemfoils 

The method has been applied to calculate the transfomtion and 
Velocity dutrlbution for these two nerrbers of the R.k.E, famxly of 

symmetrical aerofoils (Ref.8). The oalculatlons were actually performed 
using N = 18, but the Fourier coeffloients an are of course independent 
of the r&rber of pivotal points (pravlded they are not too few). TO 
illustrate thus, the Doeffxolents calculated by usxcg N = 8, N = 16, ad 
N = 18 are gxven for the 101 aerofoll in Table III, and are seen to agree 
with each other to well vvlthln the aozuracy of the ccmputug method. The 
table also lists the remalnlng coeffloients k,, oI,, dn and en for 
these two aerofoils. For the 104 aemfo~l, the shape recalculated from 
tI-2 rounded-off values of an 1s also given xn the table, and the 
vzlocity at zero lncuienoe and the relation between E and x is plot@5 
In Figure 5 for three tbzkness ratios E = 0.15, 0.10, 0.06. (These 
aerofolls are berng used for oalculat~ons of boundary layer 1x33 reduo- 
tlon factors, to be issued ;n Ref.9.) 

7.3 $I.&@+CCblc herofoil with dzscontztnulty in Slope 

~?or smooth shapes such as the Piercy aerofoil, the sine series, 
beside3 bexng an exact interpolation at the pxvotal pints, fxts wrth 
very high aocuracy at intern,edxtc positions (see Ref.10, Uhapters 7-10). 
An example was therefore calculated to see how nw& the shape represented 
by the sine series would differ from the true shape for an aerofo~lwith 
s. dxuxntmnulty in slope. The profile ohosen had xts front half circular 
and recir half cubic, with a disoontuuxty u. slope of cot-'(l/3) at 
x = 0.50, and a pox& of inflexxon at x = 0.75. Tne Fourier sine noeffl- 
cler>ts for lnterpolatuq to this shape are taozlated, and the computed 
shape compared with the exact shape, 1x1 Figure 6. The rra;drmun discrepancy 
is about 4 per oent, close to the dlscontunu.ty, and is produced b the 
non-unxfom convergence at this point of the Fourier serx?s for 
phenomeno,l). 

d(Gibbs' 
The conrpu?ed pressure distrxbutlon would thus be egected to 

be reasonably accurate over the greater part of the profile, but not near 
the !ru.k (where in any case vlscoslty effects would predomumte in the reai 
flow). 

8 Gaiculation o? velocity off the aerofo3.1 surf%ce 

This method of csnfornul transformation was developed in the cause 
of an attempt tc. relate the nexgbbourhood of z = a in the slit plane to 
the nelghbourhoed of z = 1 m the aerof'oil plane, in order to perform 
calculations of the type described in Ref.1, where the clrculatlon round 
an aerofoll with boundary layers 1s obtained from a relatzon between the 
velocltles at two pouts off the surface of the aerofo~l, nar;.ely the points 
at the outer edges of the upper and lower boundary layers at the traxllng 
edge. 

For an aeroforl of trailxng edge angle 7, the transformation In the 
neIghbourhood of the trail-Lng edge mt be approximately that mhxh takes 
the tangents nt the trawling edge Into the slit, namely 

c */w -- 
a 1 = A (z-1) ) 

say, where 
0 = 2-;, (66) 
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or more accurately, 

cl - - I = A (z-l) 2/u 
a [I + B (z-l) + . ..] (67) 

(3hg.2). Thus L? the relatmn between r, and e 1s known at several pomts 
on the surface near the trailmg edge, the constants A, 5, . . . my be fitted, 
and the veloslty at pomts off the surface but close to the trailmg edge my 
be fcwx3. from the correspondmg velocity m the slxt plane. 

For points cn the aerofo~l surface 

z-l = x-lkiy, 

and 

In partmular, fcr aerofo~ls with zerc curvature near the trallmg edge - e.g. 
the 3.h.R. fmdy, which are sedge shaped over the;r rear querter or 50, 

z-l = (x-l) I-1th.n; 
( > 

and 

1 - 5 = A pi,-x) se0 ; 1 2/w 
L . 

(68) 

(65) 

Hence 4 is evaluated by identlfylng E, and x at me point near the traxlmg 
edge between equatmns (2) and (@), a:~3 calculations st points off the surface 
oan proceed by the method of Seotmn 3 of Reference 1. Th3.s IS dls7usse.l nore 
fully in a repo-t tc be issued la+&. It has been found, for 101 ad 104 aerc- 
foils of several thxicnesnes, that, correct to :, fugues, the same value of A 

1s cbtamed for a given profile by id.entX'ying (2) and (69) at 0 I '6 , for 

p = 1, 2, 3, "L' 4. This 1s 211 u?lloatmn of the consistency of the T.&hOd. 

A lies between 0.9 and 1.0 13~ th%? atmfc~'s vath 2. e betvreen 0.15 ar,ci 0.06. 

9 - Cubered aercfoiis 

This seotiou can only be regardcii as an outline of the extension of the 
present mthcd to i contour of general slope, vrhxi: does not possess a line 
of symetry. 

. 



now oorreopruj. XII general & pmts, z, and z2 say, of ir. Exactly 
as in Section 3, we oonsider 

taken in thla ease round the contour r, + r 2 + . . . r7 shown ~.n Fq.7. 

As before, sume there 1s no c~rculatlon 

?. = i:+-$+o (I+) 

at large dxstancus. (Cmculation ~0~1~3 introduce a logar~thmc ten, 
causmg the mtegral round I' 7 to diverge.) The lmlts of the mtegrals 
round l?2, r 5 and. r 7 are respectively 

2K, ?ri l&z,), xi (C-z,), (70) 

f 
c *a = 0, 

r,+*.r7 

we obtam 

Xl (2 •t 2 - 25) - 2x = lim 
12 RccJ b-+0 

(71) 

(72) 

'Nrltlng z, = x, + isy 1' z2 = 3 + isy, on the left, and correspondmg 
expressmns on the right, we ilbtain 

XL (X, + "2 - 2E) - TCE (y,+ - i?K 

a&r 

i 

- x1 - 1.sy’ 

=P ---1 
a E;’ 

5 - E;' 'a'-P 
0 

i 
(73) 

0 E - &’ 

where, as in Section 3, z = t: + 2 + 0(X-') at intinity. Equating real 
find imagmary parts yields 
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(7G) 

(75) 

respeotlvely. 

NOW 

Y, - Y* = 2 Yt , (76) 

the thickness 3.m%r:bxtmn wms;ldered m the earlier part of the paper; 
we may mite also 

Yl + Y2 = 2 yc + const (77) 

where y is the camber dl-tributan masum-l km the nc-lilt drreotmn. 
0 

We may introduce dso tLe tern 

Ax 1 s (x1 - x2) (78) 

for the relative 3~spl.acement of' pomts on the acrofoll su.rfacc which correspond 
to the sake poxt OE the -Lt. In the symnetxm.1 cass, clearly Ax = 0, so 
that eqaatior: (7l+) A d~:xally zero, dii (75) riiucec to the eqmtron alrear~y 
studled, rimely 

(79) 

which is the sam as (1). 

In the u~syimetrma‘i case, to obtair? a solutxm correct to 0~3.w .? we 
are entitled to mpiace y,(x,)' y2(x2) by y,(x), y,(x) respectively on 
the left had siue of (74), where, 

x, = 4. (XI * x2), (80) 
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(81) is an integral equation for Ax, which will be soived in Section 9.3. 

9.2 Fourier representation of cambered shape 

In the general case, mth x = $ (l+cos e), the "upper" surface of 
the aerofoil corresponds to 0 m (0,~) and the "lower" to 0 m (x, 2%). 
We my then replace the whole contour by a serxes of the form (A.6): 

m m 
Y(8) = an sin n0 + &b. + 

c 
bn DOS na (82) 

n-z I 

for 0 m (0,2x). (The White series 1s wrltten here for the oonvonxence 
of avoidmg the 4 bN term. In practice b,'s tall off like the an's Of 

the earlxr soctlons, and % would not enter the computation.) 

NOW for f3 in (0,x) 

Yt = 6(Y -Y) 1 2 

= & [Y(e) - y(2+fJ)l 

m = a n sm n6 , as before. (83) 

Simlarly 

m 

Y, = 
c 

bn cos nk3 (84) 
n.4 

+ a constant, which may mthout loss of generality be put equal to 0. 

9.3 The evaluation of Ax 

To evaluate Ax oorrect to older E , we replace the mtegral 
equatx.on (81) by 

dY 
EC = 1 

dx x 
. (85) 

0 

Substltutmg from (8J+) for yG, and mtrducing 0, @I, this becomes 

m 7c 
sin n0 

E nb 1 
n sun e = 7t I 

cl (Ad) 
cam ef - cos e * 

'3 
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and therefore 

(87) 

c 

9.4 The vcloc~:v on t:,; acros'o-1 _l----- 

Cm-rest to m.LLIr E) equation (75) xay be iunttar 25 

-$, (Ax) 0 zi> ' ) (93) 

i.e. 



Now bn are the Fourier coeffwients of the camber distribution when it 

is measured from the no-lift direction, and are given by 

b 2 = - 
n ?i i 

y, cos ne ae. 

0 

If now yc 2s measured from a line at a (swdl) xxlination a o to this, 

It has the value 

j;c(sa~), = 3TC-xtana, 

and the cosine coeffxlents become 

7x 

iTn 22 ; 

i 

yc 00s ne de . 

0 

Then 

Tn = bn for n = 2, 3,... 

and 

(94) may then be written 

m 

a = - n5 
0 c n' 

Id 

(97) 

(98) 

which expresses the dlrectlon of the no-lift lxne relative to a dlreotron 
fixed In the aerofod, in terms of the csAer distribution measured from 
thrs fixed duxdaon. 

The standard expression 
1 

Yb m = 1 
0 Ti i 

0 
xh (I -x)3/2 

which 1s obtained by the first. apyroxlvation in l?ef.Z, nlay easily bedwwn 
to be equzvdent ta (99). 
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APPENDIX A 

Interpolation b:{ Fourier Series 

Given an integer N, denote F by e , for any integer p . 

Then if f(e) is any funotxon, and if for a: integer m (< 0) 

2N-1 -ImB 
a q L 

m 2N c 
f(er) e r , 

r=O 

@.I) 

then the function 

N-l 
de) = ‘n ’ 

in8 + 5 (aN elNe + a -N e 
-iNe 

1 (A. 2) 

N-l ) 

may easily be shown to satisfy 

f-(e) = de) for @ = 0 
F' 

p = 0, 1, 2,..(2N-1). (A. 3) 

If now we put 

a 2N-1 
m 1 

sin 
bQ = ?? f(e 1 r 00s m 0, 

then, dearly, a0 = 0, % = 0, and 

2a 
2" 

= bmyiam. 

(A. 4) 

(A.51 

Thus 

g(0) = $ b. + & an) eine + (b,+i R~) emin 1 
+ 4 bN (eme + eWiNe) 

N-l 
= ;bo + (b, 00s nf3 + an sin no) + &b, cos NO , (A. 6) 

which 1s theuzual way of expressing the interpdating trigonometric poly- 
nominl. This full representation 1s required for the cambered prof'lles 
considered in Section 9. 
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Now, given any function r'(e), we can define a new function f(0) In 
(0,271) by the rules 

f(0) = P(x) = 0 

r(e) = F(B) 
3 

if o<e<7I 
f(Zrr-6) = - F(0) 

(A.71 

(ana sutsde (0,2x), f(ej can be defumf! as havina period 2x.) For the 
func t1on f ( 0) it 1s akar that 

b = 0 m fcxc all xl, 

and. that 

(A. 8) 

Hence from (A.3) and (A.6) It follows tkat 

N-l 
F(o) = 

c 
an nin nt? , for e = e 

P' p 
5 1,2,..(N-I) , (A. 9) 

n;l 

where the value of 5i n 3.5 given by (AS). 

The formla (A.9) is the well-knmm sme mterpolation, required in 
Section 2.3, equdion; (13), (I!+) and (:5). 

A. I The goodness of tke fit in between the - p IvotaX pomts 

(For a good general 3mcuss,on of t'nls pcint see Re;.lO, Chapters 7-10.) 

If e(e) is a function of perld 2X, and possesses a pth derlvatlve 
(see footnote), then it is well hewn (see, for exmple, Ref.5, Appendrx II) 
that using the formula (A.2) for intexpolatxon aL 2N points in (0,2x) means 
that for all 0 

- 

Footnote: In fact, it is mt ncmssary ror f to have p' derivatives, but 
onlyl); 5ut thm, in xklltion, th?r: mst be a fun&lo2 #(6) such that 



When we have a sine series interpolatmn (using (A.y)), for the permdic 
function f(O) to be continuous (let alone to possess derlvatlves) It IS 
clearly neoessary for F(O) to be contxuous, and to satisfy 

P(0) = F(n) = 0. 
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APFENDIXA 

k treatment of the mapping problem of marl y 
applymg the "direct" apnroach Co the me+hod of --- 

Theodorsen ad Garrmk 

Let C be a contour m the complex z-p&m, and let r = e p(e) be 
its polar equation 

(see Fzg.3(1)). @.I) 

Let I' be the umt cwcle in the Z-plane, 

and u the angular cn-ordmate (xx that I' is the curve G = e is ) 

(ste l"ig.J(xi.)). 03.2) 

Now, let f(c) be any f'unctum regular outsde and on r (and, XI 
particular, regular at mnfmxty, then, lf' Z. is any point on I? , we 
have, from Cauchy's Theorem (usmg methods solar to those of Section 3), 

. 

03.3) 

wher? the latter integral 1s znken OT~I any large circle, 1~1 = R say. 
But the lmt of this integral, as R+-, is clzarly 2xif c' where 
f m 19 the limt of f(G) as 5-fm. 

so 

PyJ+ P +x1 f(Q = 2n1 f . m 
r 0 

say, so that 

2x lo- =* f(e)ie 
J 

i(u-uo)/2 
da 1 2i sin -g LT- Q. 

0 

2x 
= &P 

I 
f(eLa) (cot & (a- co) + i) ~37 . 

d 
(85) 
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If me substitute this in (4) and take real parts we have 

. cot 3 
2x 

11 1 

ia 
(u-u,) au - $f f(eia) - 71 f(e O) 

0 

A 
zz- 2x f 

i m l 

Now let g(Z) be an analytic fmction, such that g(Z)k is regular at infinity, 
Iliapping the exterirr -d' I' on to that of C. 

Let us put 

Thus is a many-valued function, but ws can clearly take one branch of it which 
is analyLi0 on and Jutside T, ard is regular at infinity. 

If L:=P, then 

f(P) = lsg (,F(e)+~e/‘p) 

( where e F(B)+ie is the point on C corresponding to the point e iu on rl, 

=: F(0) + i (e-(s) 

( or, at least, we can choose our branch of f(S) so that this is so), 

= F(B) - i u(u) 

‘(where u(e) = o - 0) . 03.7) 

Thus, substituting this in (G), 

27l 2.x 

4-P 
I 

F(B) cot + @-a,) & + 3 
i 

u(u) c?u+ ?c u:a) = - 2x 
1 

f 
02, c3.8) 

0 c? 

Now, we know (me Ref.11) tbm.t there oertainly is such a function g(z) 
(mapping the exterior of r pn to that of C) and that all such mppings 
must be of the form z = g (&PC) for some real mm&r @. It is very 
easy to see that for one of these transformtions 
with 

.Aev C), (namely lA3.t 



2x 

u(cT) = -&P 
i 

F(6) cot & (u-u,) b. (B. 9) 
0 

(Thu is the m&n integral equation of !heodorsen and Gmriok @ef.Z).) 
Thus, to sunxr~~ioe, we know that there 1s an analytx f'unotion g(c), 
such that g(g)/C is regular at ud'xnlty, mapping the exterior of I' on 
to that af C, w-d such that (8.9) holas. 

Now, it 1s well known, ad can easily be proved by the Calculus of 
l-&dues, that zf 

F(e) = F (a- u(c)) (by (B.7)) 
m 

= $a + 0 c ( "n cos ncr + bn sin no) 
l-G1 

then 

2% 
' P -zi i 

F(e) cot ', (a-a,) do- 
0 

m 
= (- bn cos nu + an sm nc) 

= e F(B), 

where .5 P(e) denotes the Fourier Serjes in 6 , concju@te to that 
for F(B). 

Thus, from (B.9) s.1~3 b7), 

u(u) = e F (a- u(5)) . - (B. 10) 

Now, if C is nearly airoular, P(0) will be swdl and we can derive 
more alId Lore accurate approxunatl.ons to 
of Scctlon 4): 

u(a) thus (usmng the approsch 

(i) u(b) = 0. 

(A) U(U) = e F(c) = J,(G) , say. 

(ik) u(u) = eF(c- U,(U)), 

; eF(c) - e/j,b) V-J , 



(iv) u(a) = fZ F (G-u,(u) - q(a)), 

L e F(a) - (u,+u2) $$+~(u,+I$ 
C 

2 a% r - 
a.2 1 , 

s u, + u2 + & e 
C 

2&J E 
. u, ~-“2au ’ 1 
= u +u +u I 2 3’ say. 

Thus, to oalculate U(C) (either from (iii) as u,+u~~ or from (iv) as 
u, + u2 + u3) we merely need to fit a B'ourier Series to F(U) (using the 

interpolation, formulae (A.&) and. (A.6)). Then (after rounding some of the 
oeefficients to zero, if this is possible) the Murier Coefficients of 
U,’ u* .%-La “3 cm be found, from the definitions of u 

I' u2 
and u 

3' 
by a few simple dditxons and multiplications. 
of u(a) as a finite Fourier Series. 

Thus we obtain the expansion 
(It is then pusslble, as Theodorsen 

and Garrick have poznted out, in Ref.2, to calculate 
point outside r , 

log C&J/Z) at =w 
very sunply, by deriving its pmver ser-j.es eqmd.on (in 

negative powers of C) from the Fwrier Ser;Lesfor u(U).) 

- 3a - 
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TA&E II 

PlWU 4emTril. (E = 0.5): 3 F1w.re C!dculatlor 

0.271 

0.765 

0.248 

0.220 

9.182 

0.?37 

0.009 

0.037 

-0.014 

-0.Ob2 

-3.lOj 

-o.133 

-0.15: 

-0.164 

-0.166 

-0.1 Gl 

-0.19 

EY 

c 

a.055 

0.107 
0.154 

0.193 
0.223 

0.243 

0.250 

0.245 

0.230 

0.205 

0.112 

0.137 

0.100 

o.cq 

o.qy 

0.017 

0.004 

0 

F 

- 

0 

1 

2 

3 
4 

5 
6 

7 

8 

9 

0 

x 

1.c30 

0.992 

0.970 

0.933 

0.803 

0.821 

0.750 

0.671 

0.54 

0.500 

0.413 

-- 
+ cL!x 

dx 

1.750 
1.760 

1.780 

1.785 

1.762 

1.721 

1.680 

1.645 

1.603 

1.534 

1.435 

1.323 

1.216 

1.112 

0.985 

0.815 

G.619 

0.455 

0.390 

1.788 

1.780 

1.779 
1.766 

1.748 

1.722 

1.668 

I.644 

1.538 

1.518 

1.436 

1.340 

1.236 

1.119 

l.O<CQ 

E2 f2 

a.032 1 

-0.016 

-'LO16 

"OsC16 
-0Ai7 

-0.018 

-0.019 

-0.020 

"o.C:'l 

10.023 

"0.024 

-0.025 

-c.W 
-0.028 

-0.029 

-hojo 

-0.031 

-0.032 

-0.032 

0.335 

01 O 

c.347 

0.235; 0.245 

0.153 0.160 

O.OLs;r' 0.095 

O.cAl 0.343 

0.012 0.018 

0.300 

co 

-3.547 

-1.667 
-1.004 

-0.622 

-0.366 

-0.176 

-0.021 

0.110 

0.242 

0.343 
0.419 

0.407 

o.5z 

0.23 

a.590 

0.513 

0.5936 

co 

3.655 

1.944 
1.417 

1.178 

1.065 

1.015 

1.020 

l.GQ7 

1.02Y 

7.w 
1.c92 

1.112 

1.130 

1.129 

1.156 

1.135 

1.121 

co 

0.218 

0.064 

a013 

o.cu3 

-0.001 

0.001 

-CLWl 

0.012 

%co2 

0.3m 

0.250 

0.179 

0.117 

0. oq 

0.030 

O.cC8 

0.0X 

-0.140 

-0.135 
i - 

XOTE: The second order terns a-8 simply: 

e*12 I -0.024 + 0.003 ~0s 8 



TABLE III 

Fourier and related coefficients for RAE 101 and 104 aer0fCiIS 

11, RAE104 
- 

n 

- 

0 
1 
2 
3 
4 
5 

; 
8 
9 

12 
11 
12 
13 
14 
15 

:; 
18 
- 

I- 

I 
I i 

! 
Recalculated 

Y 
(fro," rounded 
an values) 

0 
0.010 
0.035 
0.079 
0.139 
0.212 
0.298 
0.384 
0.452 
c.490 
0.499 
0.450 
o.eq 
0.408 
0.344 
0.278 
0.154 
0.103 

0 

0.644 -I- -1.120 -0.034 
-0.472 -0.018 
-0.304 -9.007 

0.080 0.002 
-0.096 0 

0 0 
-0.096 -0.001 

0.084 
0.064 
0.032 

-0.008 
0.004 

0 
0. co4 

0.336 
0.416 

Q,.cwE 
0.16C 

0 
0.096 

0.4404 
-0.1020 
-0.0461 
-0.0128 

0.0040 
o.ocO5 

-O.ooqS 
-0.0030 
-0.ooo7 

a.ooos1 
-0.ooo3 

0.0008 
-0.oQ19 

0.0017 
-0.cO14 

O.cQlO 
-o.oG@ 

0.440 
-0.102 
-0.046 
-0.013 

0.004 
0 
0 

-0.003 

12) F&E 101 a i- 
! U 

-r 

~ 

, 

0.088 
0 
0 

0.064 

d II cn an 

LoUllded-OIf) 
tn. = 6) 

0.408 
-0.147 
-0.022 

0.006 
-0.003 
-cl.003 

(N = 18) 

0.4082 
-0.1466 
-0.0219 

0. WyJ 
-0.002y 
"0.0031 

0.0001 
-0.0006 
-0. cxlog 

o.woi 
-0.0001 
-0.ocO4 

0 
0 

-0.0302 
0 
0 

---- 

0.6% 
-1.152 
-0.324 

0.024 
-0.X0 
-0.072 

-O.OZ+I 
-0.011 

0. co3 
0 

-0.001 

9 -0.0X9 
1Q o.om2 
11 0 
12 , -0.om4 

:: I I O.zQOl 
15 -0.0002 
16 -l----L 17 
ta -- ..L_I 
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FIG. l&2 

cl PLANE 

. 

FlG.1. CONFORMAL TRANSFORMATION OF 
SYMMETRICAL AEROFOIL To SLIT. 

FIG.2, TRANSFORMATION OF TRAILING EDGE 
REGION. 



FIG. 3. 

(I) 2 PLANE 

(i 11 5 PLANE 

FIG. 3. MAPPING OF NEARLY CIRCULAR AREAS. 



FIG. 4. 

- EXACT CALC’JLATIOP - 

o 3 FIGURE METk’QD 
Q wEBER METHOD 

02 04~0.6 0.8 

\ 

! o-0 

FIG.4. CALCULATIONS FOR PERCY AEROFOIL 
50 PER CENT THICK. 



FIG. 54) tin 

O-4 X 0.6 0.8 

0 

: 

0 

0 

c 

FIG. S.@i’I VELOCITY OMRIBUTION 
AT ZERO INCIDENCE 

F IG. 5.6) TRANSFORMATION FOR R.A.E I04 
AEROFOIL. 



FIG. 6. 

I I I -- 
----- RECALCULATED SHAPE 

IL- 
0 

01 . 
PIVOTAL POINTS 

a INTERMEDIATE POINTS 

4 
o-2 0.4 x 0.6 0.8 

FIG. 6. EXACT AND INTERPOLATED ORDINATE 
DISTRIBUTIONS FOR PROFILE WITH 

DISCONTINUITY IN SLOPE. 
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