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Rott end Crabtree have considered the ohordwise boundary-layer 
flow on a yawed ur?inite cylinder with chordwise stream velocity 
JJ = 0 P, (x is the oo-ordinate in the chordwise diraotion). They 
showed that this yields 'similar' velocity distributions, and when there 
is no suction, the spenwse velocity profiles are approximately CcinCident 
wi.th the exaot Blesius profile, on a scale dotermincd by the ratio cf the 
nom&l cc-o-r&&ate to the momentum thickness. This phenomenon has been 
further examined, and en explenation of it is given. 

The work has been further extended to the case of distributed 
suction; end numerical solutions have been obtained for the spanwise 
flow for those cases for which the chordwiso solutions were available. 
The velocity distributions are presented in tables and graphs. It is 
shcwn that with distributed suction the sperm&se profiles also form 
universal systems, one system for each distribution of suction, the 
representative profile being the one for zero pressuro-gradient end the 
corresponding suotmn. 

Besides numerical solutions, an exact analytic solution of 
ths spenwise flow has been obtained for the chordtiise stream velocity 
u = c x-IA, and velocity distributions for different suction 
distributions are given. 

Another exact solution obtained refers to the spanwise floW 
for the chordwise stream velocity U = c/x. This is the well-known 
aQ'mptotio suction profile, for w&i& tho ratio of the displaccmont 
thiokness to the nomentum thiotiess is found analytically to be 2.0. 

Further, it has been observed. from earlier results that 
the momentum thickness and displaooment thickness decrease with 
inCreaSsmg suotmn and also with decreasing positive pressure-gradients. 
It is shown here that the ratio of the displacement thickness to the 
momentum thiokncss decreases with inoreaslng suction and is nearly. 
independent of the pressure gradient for w given suction. For large 
suctions, the variation of the above ratio is small enough to be ignored 
for all practical purposes. 

Finally, the behaviour of the spanwise flaw in the boundary 
layer is ccmpared with the chordwise flew, and cnrl-ain conclusions 
are drawn for very~ng I’ronrn~u-grailie~lts. 
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1. Introduction 

The boundary-leyer flow over an infinite yawed cylinder is 
of considerable interest, because many modern aircraft have swept-back 
wings . It is well-known that for the infinite yawed cylinder, the 
laminar boundary-layer equations seprrate, and it becomes evident that 
laminar chordwise flow is independent of the spsnwise flow. The fact 
has been supported by the experxnental observations of A. D. Young and 
T. B. Booth in their work on the profile drag of infinite yawed w~.ngs. 
But the spenwise flow can only be computed if the chordwise solution 
has been given. 

W. R. Sears2 has considered the spsnwise flow for zero 
pressure-gradient in the chordwise direction, and has shown that m 
this case both the chordwise and spanwise velocity profiles are the 
exaot Blasius' profile. He has also concluded that in this case the 
boundary-layer remains unaffected by the yaw of the leading edge, and 
the flow at all points is zn the direction of the free-stream. 

3. C. Cooke3 has considered the case when the chordwise 
velocity distribution at the edge of the boundary layer is of the form 
U = cp; which yields 'similar' profiles for the chord&se flow. 
Making use of Hartree's solutions4 for the unyawed wing he has computed 
the spanwise velocity profiles for the range of 0, covered by Hsrtree. 

The absence of any pressure-gradient term in the spanwise 
flow equation led Rott and Crabtreefi to suggest that the spsnwise 
proriles are of similar shapes. They made use of Cooke's solutions in 
the development of sn approxunate method for the case of an arbitrary 
chordwise velocity distribution at the edge of the boundary layer; and 
found that Cooke 's spenwise profiles, when plotted against z/By, ley 
very close together and approximated closely to the Blasius' profile. 
An explanation of this observation is sought in the present paper, and 
it is also found that even better agreement with the Blasius' profile 
can be obtained, if the velocity ratio is plotted against .&p. 

Y 
In view of the possible practical applications of boundary-leyer 

control by suction, to swept-wing aircraft, the calculations have been 
extended in the present paper tr. include a range of values of distributed 
suction, end the spanwise profiles have been obtained. For these 
calculations, use was made of the chordwise profiles that were available 
from the solutions of two-dimensional flow with distributed suction, an 
account of which is given below. 

The solution to the simplest problem of flow over a flat 
plate, when the suction velocity is 
obtained b 

s 
% roportionel to xq, was first 

Schlichting end Bussmann . The same problem was considered 
by Preston , and on his suggestion Thwaites8 computed the solutions on 
a differential analyser for a number of suction-param ters. 

9 
An approximate 

solution has also been obtained by Watson and Preston using the 
Piercy-Preston iteration method. Its interest is mainly academic but 
suggestions for practical applications have been made by Preston end 
Thwaites. 

The solution for another important case of stagnatiog flow 
with constant suction was obtained by Schlichting and Bussmann . This 
case is of significance, because the suction velocity becomes constant 
and the condition can be made practical by applying suction from the 
front stagnation point of a wing over a part or whole of the chord. 

To the knowledge of the author, no other solution for positive 
m or 0 is lulown. 
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A large number of solutions for negative values of m (or 6) 
has been obtmcd by Thwaiteslo by relaxation methods, end exact solutions 
for the cases m = -l/3 (or p = -1) end n = -1 (or p q -m) 
have also been obtsmed. 

In the present paper the author has oonsidered the SpaWiSe flow 
for the cases given above end has also carried out sn analysis of t'ne 
spenwise profiles for different suction-distributions. 

2. Notation 

x9 Y# = 

u> VI w 

U 

VO 

P 

WO 

+ 

rl 

V 

m 

f(V) 

U 

p(n) = - = 

U 

Y 

B 

F(Y) = 

K s F. = 

V 
g’(ll) a G’(Y) = - = 

‘IO 

a 

co-ordinates measured in the chordwise 
direction, spenwise direotion, and normal to 
the surface respectively. 

velocity components in x, y, z directions 
respectively. 

Chordwise velocity attie edge of the 
boundary layer. 

spanwise velocity in the free-stream 

statio pressure in the boundary lsyer 

normal suction velocity at&e surface 

stream fknction 
i 

u 2 
a non-dimensional quantity = -- 8' 

( ) vx 

kinematic viscosity = 

index in the relation 

aflfrmction defined by $ 

M/P 

= pux+ r(n) 

non-dxmenslonal chordwise velocity 

a non-dlmensionel quantity = 6 [$(wl)] r) 

an 
semi-wedge angle = -- 

ltm 

[3 (m + A)]' f(q) 

value of F(Y) on the surface 

non-dimensional spanwise velocity constents 

angle in radians given by K = &!cosh B- 

Y 
a variable given by Z = -- t siti a 

d-z 

G t(z)/ 
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G(Z) a f?unction given by F(Y) = fiGi 

J a Auction given by GL - Z = l/J 

6 an iliteger dkot3.ng stkp of integration 

G: (2) = G;(Y) = -: 

VO 

.$(Y) = 
i 

' FdY 

X(Y) = ,6:$(Y) 

E(Y) = 
I 

f XdY 

S(Y) = '; - G'(Y) 

M(Y) = G'(1 - G') 

4 spanwise displacement thlclcness 

eY spamvise momentum thlclaxss 
-0 

n 
6~ central differences of orde- n 2-r 
t(Y) =jf t'dY, a general function 

3. Theory end I\r.nlvsis 

The boundary Ieyer equations fcr the laminar flow over an 
infuixte yawed cylinder are 

au au 1 ap a% 
u -.. + w -- = - - -- + v --- , . ..(I) 

a~ a2 p ax a2 

a-f av a% 
u -- + yJ -- = v --- , . ..(2) 

ax a2 a2 

ap 
-- = 0, 
az 

. ..(3) 

and the equation for contxnuity 1s 

au avi 
--+-- = 0. 
a~ a2 

.,.(4) 

This/ 

- 
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This ellows the use of the stream-function '$ ior which 

a+ a+ 
u s -- ad. w = m--e 

a23 ’ ax 

The boundary conditions are:- 

(a) at the surface, e = 0, u = v = 0, 

end IV q VT0 is zero or non-zera according 
as ihe boundary 1s solld Or pOrOUS, 
end 

(b) at the edge of the boundary layer 

e -,w, u = u, v=v 

au 3-7 a% a% 
-- = -- f --- P w-m = 0. 
a2 a.2 a.2 a.2 

If the flow outside the boundary layer is irrotational 

au av 
-- - -- = 0. 
ay ax 

au 
..a(5 

Since the oylinder being infmite in length, -- = 0, 

so that V = constant = V, (say). Using equatic-1 ($ and the 
boundary condition at the edge of the boundary layer, equation (1) gives 

dU 1% 
U -- = - " _-* . ..(6) 

c3.x p ar 

Applying the well-known transformation 

q = (cux)~ f(r)), 
u 3 

r) = -- z, 
( ) v, 

and using the velocity distribution U = mm, equation (1) reduces to 

where 

f"'+ + (m+l) ff" = m[(f')"-11, . ..(i) 

u 
f'(n) = - , 

U 

and [ (?+I) f + (m-l ) 7~9 I. 

This is the well-known equation obtamed by Falkner and Skan". 

..e(B) 

The/ 

- 
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The bowdary conditions are 

f'(0) = 0 

and f(0) is zerb or non-km-o according as the boundary is solid or 
porius, and 

f'(W) = 1. 

Hartree4 used the transformation 

m+l Y z2 
J’ 

--- q 
2 

Ill+1 
F(Y) = --- r(q), I- '2 

p 22 --- , 
Ill+1 

snd ocnsi?tered equat.tlon (7) m the form 

F”’ + WV’ = P[(F')a-l], 

. ..(9) 

. ..(I01 

with the bourdary oonditions:- 

F'(0) = 0, 

F(0) = zero, 

F'(@') = 1. 

He tabulated the solutions pnrtly by direct computation and partly on 
a differentid analyser for a series of values of P, and found that 
values of P less than -0.1988 will not yxZt velocity dlstributlons, 
whloh satisfy the boundary conditions. 

For flow with suctzon the conditions F'(O) = 0 and 
F'(w) = 1 are essential, but if F(0) = K, then from (8) and 
(V), the suction velocity at tha surface 1s given by 

W. = -qy!, (Y$ . ..(n) 

The solutions of equation (IO) with suction are the chordwxe 
solutions and have been described In the introduction for different oases. 

Usmg the same expressions for $ and r~, and taking 

g'(n) = -v-, the equation (2) reduces to 
VO 

t: "' + 3 (m+l) fg" = 0, . ..(12) 

with boundary oondrtions g'(0) q 3, g!(w) = 1, and the condition 
for f(0) the same as in the chordwise flow. Usa Hartree's 
transformation (9), and taking g'(q) = G'(Y), the equation (12) 
reduces to 

G"' + IG" = 0, . ..(13) 

wltld 
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with the boundary conditions: 

G’(O) = 0, F(o) = K, G’(W) = 1. 

Cooke' has studied the case for K = 0 and has given solutions which 
were based on Hertree's solutions. 

The solutions for different values of K and p are considered 
in the present paper. 

3.1 Zero-suction Case 

by Cooke3, 
No theory is given for this case as this has been dealt with 

and the results of Rott end Crabtrees ~21 be discussed later 
on. 

3.2 Suction Case 

(4 m (or p) = 0: In this case the chordwise velocity at 
the ed.ge of the boundary leyer becomes U = c q constant, end the 
pressure gradient is zero. -The equation for chordwise flow reduces 
(puttlng m = 0 ,322 (7)) to 

f"' + ; ff" = 0, . ..(14) 

with the boundary conditions 

f'(0) = 0, f(0) = AK, and. f'+) = 1. 

The equation was studied end solvea by Thwaitesg for aifferent values 
of K, although in his case the equation was slightly different in 
form. The solution is 

where oi is determined by the boundary condition 
giving the solution as 

f'(w) = 1, th-ds 

i 

n 
U Oe 

-$jfdi7 
an 

- = f’ = 

I- 

- - - r - - -  - -  l 

U O3 e-Tlfd'l dn 
,O 

The corresponding spe.tnnse equation reduces to 

. ..(I51 

g IfI + + fg” = 0, 

with the boundary conditions g'(O) = 0, g'(w) = 1, and 
f(0) = &-K. 

. ..(16) 

The solution of (16) is 

. ..(I71 
v 
-- = g’ 

VC 
60 

the constant of integration being evaluated from the boundary condition 
g'(w) = 1. 

The/ 
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The 
equation (16) 
by Thwaites8. 

solutions (15) and (17) are identical., and thus the 
1s taken to be solved, because (14) has already been solved 

m = , (b) Stamation F13w (m =1): In this CRSC, putting 
m (7), the chordvvlse flow eqoatxon becomes 

f"' + ff" = (f')S- 1, . ..(I81 
Wo 

with the boundary condtions: f'(0) = 0, f(O) = - ----.+. = K, 

end f'(DJ) z 1. 
(CUF 

Thx equation was studied and solved by Schlichting 
and Bussmenn , 

The correspondrng 
m q 1 in (IZ), reduces to 

spanlnse flow equation, obtained by putting 

Ls “1 + f g” = 0, . ..(I91 

Hnth the boundary conditions: 

g'(O) = 0, f(0) = constant = K 

and g'(co) = 1. 

The solution of (lg), is 

. ..(20) 

The spanwise velocity proflles have-been obtained by numerical 
integration of (20). 

(c) General Case (m Bositive or negative): Inthls case 
the chordwise equation will be given by (IO), which has been iiscussed 
before. 

The corresponding sparxise-flow equation, from (13), is given 

G"' + F G" = 0, 

with the boundary conditions: 

F(0) = K, G'(0) = 0, G'(co) =I, 

and the solution of (21) is ,v 

. ..(Zl) 

V 
J 

Le-Fay ay 

-- = G’(Y) q 

VC 

$.eIIEy--- ) 

I 

dY 
.o 

. ..(22) 

the constant of Integration bemng evaluated from the boundary condition 
G'(w) = 1. The velocity profYAes are obtalned m the present paper 
by numerical methods of integration for those cases for which chordwise 
solutions are available, 
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(a) Special Case of m = - l/3 or 0 = - 1: In this 
case the chcrdwxe flow equation is obtained from (10) as 

F"' + FF" = -[(PI)" -I], . ..(23) 

with the same boundary conditions, and after integratmg twice the result 
is 

F' + $P = +y=‘+ Ki + +I?, . ..(24) 

where A is a constant of integration end the cthar constant has been 
evaluated by the condition Y = 0 in (24). 

Thwaites12 has studied the values of the constant 'A' end 
has found, that for a valid physical soldion, the suction velocity must 
not be less than that gzven by K =&. 

I’ i Thwaites' Exact Solution for the Chordwise Flow: 
Using Thwsites' 2 transformation in wkoh he defines a, Z, end G, 

K = &cash a 

Y 
z = -- + sinh a 

VT 
. ..(25) 

F(Y) = &G,(Z) 

equatlcn (2$,) reduces to 

G; + Ga 1 = Z'+l, 

1 
and, putting G, - Z = -, this in turn becomes 

J 

. ..(26) 

J'-225 = 1, . ..(27) 

the solution of wlvch is 

J;; Za 
J = --e [erf Z + B] 

2 

2 
B = -- eaasinhaa - erf (siti a). 

VG 

This is evaluated by the boundary condition on the surface 

Y = 0, Z = sinh a, F(0) = ficcsh a 

G,(si.nb a) = ccsh a 

J(sinh a) = ea 

. ..(28) 

. ..(a) 

b. . ..Oo) 
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Malung reverse substitutions, Thwaites 12 has obtained the 
exact solution given by 

u 
- = PI(Y) = ,--4-.e 

J;; 
. ..(31) 

u D 

vihere 

N = 1 , 

and 
The corresponding exact solution for the s~snvrise f2.c~~ is given below. 

(ii) The Exact Solution for the Spanvise Flow: From 
equation (21), the spanwise flow is given by 

G"' + F G" = 0, . ..(32) 

with the boundary conditions: 

C-'(O) = 0, F(0) = K, G'(w) = I. 

Using the transformation (25), and puttiw G'(Y) = G;(Z), the above 
equation reduces to 

G;' + 2 GiG; = 0, . ..(33) 

with the boundary condxtions: 

2 = sink a, G,(sinh a) = -: 
YE 1 

G;(oinh a) = 0 ’ 

z = 03 G:(m) = 1 
J 

where dashes denote differentiatxons with respect to 2. 

The solution of (33) is given by 

i 
G; (Z) = - 

the canstsnt of integration being found from the con&Son 

z ->c-J, G:(w) = 1. 

. ..otb) 

. ..(35) 

The/ 

I 
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The numerator of the solution 

From (28) and using the relation G,(Z) 

(35) is evaluated as follows.- 
1 

3 z+ -, we get 
J 

2 
G, = Z + -- . 

v4-T 

e-2 
--------- , 
(erf 2 + B) 

which makes the numerator equal to 

1 Z 
e-$ 

1% 2. (p 
, ,-lo&f Z + B)' . e J;; dZ , 

sinh a 
2 

. ..(36) 

since, usmg (29), log (erf sinh a + B) + sinPa = log - ea. 
A- 

Integrating further between limits, the numerator becomes 

1 
e" j -2 -__-- - ------- 

I 

. . ..(37) 
erf six-h a + B erf 2 + B 

The dexyxninator is at once evaluated by msking 2 = co in (37), and 

usmg the definite integral 
r 

e-t= at 3\/;;/2. 
0 

Thus the profile is given by 

erf sinh a + B 
1 - ----------- 

V erf Z + B 
-- = G;(Z) = ------------------ , . ..(38) 
VO erf sinh a + B 

I - -------------- 
l+B 

where B is a constant given before in (29). The boundsry oonditions 
ei-e satisfied, since 

Y = 0, Z = sinh a, GJ(sinh a) = 0 2 
Y = W) 

. ..(39) 
z =w, G;(w) = I I’ 

The error-function has already been tabulated for a large 
renge of the variable, and so from (38), ',he velocity profiles for 
different K ten be obtained. 

As en example, the velocity profile for K = d? is given 

Y 
-- = ---------- 

VO 

erfZ* .(I+;), 

erf Z + -- 
&- 

. ..o@) 

a mnce/ 
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2 
sum? from (25) an? (29) a = 0, and B = -- and the boundary 

VG 
conktions are satzsfled. When K is large, B decreases to smaller 
values, ad the rrrrmmum value of B is -1. I 

(iii) Case B = -1: 
From (38), we have 

Behaviour when K is very large:- 

erf sinh a + B 
1 - -------_c----- 

v erf 2 + B 
-- = -------_____------ , 

VO 
1 -erfsinha+B 

l+B 

Y K 
where 2 = 

cosh a = z ' 

Ema 

Puttmg, 

2 
B = -- eG-sinhaG - erf(sinb a), 

VG 
erf sinh a -5 B 

co = ----------9 
l+B 

snd usuq the asymptotic oxpansionfbr the error-function we get 

v 
-- = l- 2 T - 5. p - . . . . . . . . . . . 

VO I -co 1 -co 

1 c-Z2 1 3 
where T = ------- . - 1 - --- + ----........ , 

v%(l+B) Z 22= 424 > 

Also, using the expansion 

K 1 1 
sid a = -- 1 - -- - -A + & . . . . . . K2 2@ , 

and neglecting quent~ties of 0 (l/IF) and higher orders, we get 

v5 e e-Ka'a 
erf sinh a = 1 - - - - - . - 

J;;K ) 

and B = 
2JFeK -Ic2,1 ------- e 

VG 
- 1. 

Then, replacing Z in terms of z and making sdsr approximations, 
the velocity ratlo becomes 

v -- = 
ITo 

) + o(i), 
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Again, making calculations for displacement thLckness and momentum 
thiclaless, we get 

43 

- 6Y wo 1 
------- t I+0 -- , 

V ( > K= 

and 

- ey w. 1 I 
------- 5 -to -- 

V 2 ( ) 
, 

K= 

When, K -a~, v/V0 -> 1 - em', and 1% = z -> 2, which is the 
-'_ 

asymptotic suction caSe for the spendso flow. 

(e) The Case of m = - 1 (or P = -Ml: In this cast 

u = c/x, ma F(y) ;/? f(n) (Rartree's transformation) snd there 

is a failure of the equatloh (10) and (21). Th&tos'2 hsa suggested 
another transformation, whein dealing with the two-dlmenslond flowmth 
distributed suction, and has given an exact solution for this case, which 
serves as the solution for chordwise flow over inhnite yawed cylinder. 

transformation (i) Thwaites' Chordxxse Solution: Using Thwaites' 

3J L dv= [f(ri) + Klog xl, 1 
. . , (41) 

we get u = u f' (4, w = &_",L" , 

L 

7 

x x 
l 

and the chordwise flow equation reduces to 

f"' + K f" = 1 - (f')a, . ..(42) 

which was obtsined sxd solved by Thwaites '2. 

it is worth remarkrrng that with K = 0, aa f'(w) = 1, 
Pohlhausen's solution13 for convergent flow between solid wslls is 
obtained, which is one of the few known exact solutions. 

In the solution of (42; Thwaites" has made an analysis for 
K and has found that for physical validity K must be greater than or 
equd to 6. 

(ii) Tho Exact Solution for Spsnwisc Flow: Using the 

transformation (41), ana taking g'(n) = -v-, the equation of motion _- 
“0 

for spsnwise flow becomes 

6 "I + K g" = 0, 
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with the boundary conditions g'(O) = 0 and g'(m) = 1. The solution 
of (43) is given by 

v 
-- = g’(r)) = 1 - e-Kn, . ..(44) 
vo 

the constants of mtegration being evaluated by the two boundary 
conditions. 

.. Calculating 

$ = 

6; = 

and %= 

The solution (44) can 

other boundexy lwer quantities, wo get, 

.c; (1 -;>a, = ;. q,;, 

.r(, $dz = ;q,", 

4 
-- = 2. 

OY 

..‘.(45) 

. ..(46) 

. ..(47) 

be written m the form 

v 
-- = g'(n) = 1 - e +b/eJJ f . ..(48) 
VO 

since z/e, = 2K 11. 

The solution (48) is the well known asymptotic suction proflle arid is 
Independent of K. 

4. Numerxal Methods of Solutions and Computations 

Besides gzvxng exaot solutionsfbr the spanwise flow over an 
Infuute yawed cylxnder for the cases m = 0, m =-f/3 end 
m =-I, a number of results have boen pbtcnned by numerical methods 
and rather laborious computations. The numerical solution for each 
velocity profzle consisted of three mntegrations, and the calculations 
involved the use of a large number of derivatlvos on the surface of the 
boundary, and preparations of three charts of 'flrute differences', 
one neoessarg for each ktegration. The 'flnite differences' used 
here are the 'central dlfferences"4, and these have the'advsntage that 
they exut alternately end good accuracy is obtained by uxluding only 
few orders. The method was found to be converuent in one more respect, 
that the derlvatlves at the edge of the boundary leyer vanished, and 
made the calculations simpler. Momentum thxkness and displacement 
thrckness wore also calculated by these numerical methods. The 
cslculations are not given here in detail, and only the important steps 
are mndicated. 

The general solution for the velocity profIle 1s given by 

V J 
y,-pay dy 

-- = Cl(y) = -9 ---------- , c.9(45) 
vo i wo-JFdY ay 

JO 
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and its evaluation is carried out in four parts, VW., 

(a) caJ.culation of F from choyrdvtise solution 

(b) calculation of 6(Y) q o FdY, J 
(c) calculation of E(Y) = 

r 
,4(y) dY = 

0 PC3 

d 

s 
X(Y)~uc, 

0 
and (d) calculation of the constant x dy. 

0 

The formula used for the step-by-step integration is 

Ylz d 
6-Y 1 

t’ay = 
t;! 

- e ‘-1 
t; 

- 
I 

= 2 I -- 
t’i 

+ t’h - 1 - -- 12 ( 6%‘;: + GWJI - 1 ) 

11 
+ m-m 

720 ( 

6” 

t’h 

+ 

Pt’; 

- 1 

d 

* . ..(50) 

mal.ntai%u.ng 'central differences' only up to the fourth order. The 
'central differences' on the surface are calculated by the formdcr~ 

and 6%:, = (61')" to" + ; (6Y)a ty , . ..(51) 

neglect&g quantities of ordk greater than 0 iY)a. 
I 

With the aid of 
formulas (50) and (51), the calculations (a), b) snd (c) con be made. 

The constant (d) is evaluated by the formula 

X dY'= 

where higher powers of 6Y are neglected, the boundary conditions at 
the edge of the boundary layer are used, and n is taken to bc cnfIni.te 
by the cotition when G'(Y) q v/V0 = 1. The derivatives of X'c 
on the surface are obtained by differcntxations of 

X'tFX q 0 . . ..(53) 

The derivatives of P on the surface are obtained by successive 
differentiations of the PI- equation (10). 

Thus the velocity is cokul.atcd by the relation 

G'i(Y) = c' Ei . ..(54) 

vhere 0' = &ET-~ ' and the relation (54) provides a defknlte 

2 0 check/ 
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check on the whole calculation, sx-~ce EC3 = l/c' snd G’(w) q 1. 

The momentum thickness and displacement thiclmess are 
calculated by using formulas lflce (52) in the forms given by 

,- 

= G’) dY = 

U + mel r ( ,i -- --- c = 
vx 2 y .i 

ccl 
(1 - GI) dY 

0 
= 

. ..(55) 

6" 

5 
i3 calculatecl using tile? relation By = -- , and the 

$ velocity gradient on the surface is calculated by the formula 

G"(O) = c'. . ..(56) 

The values of Fo, /3, and 6Y are given from the chordwise 
solutxons, and only the corresponding spanwise solutions have been 
Jbtauxed from computations. The method 1s believed to give good accuracy 
for al' practical purposes, because (1) the coefficients of the series 
used are rapidly decreasing, (ii) a large number of derivatives calculated 
from the dlfferentxations of the main diffcrentrsl equations are used 
for the surface conditions, and (iia) the fxnltc 'central difference' 
are used up to the fourth order. 

Yet, there are two goosiblc sources of errors, whxh the 
author has expcrxmced m the process of computation. The first arises 
from the fact that the interval 6Y = 0.5 as used by Thwaites'" is 
rather large, snd better results can be expected with a smaller Interval. 
Secondly, with the mcreasing suction, tha dorivatitlves at the boundary 
increase, and they nay also cause some errors for large suctrons, but 
the errors are confined to the fourth dcclmal place. 

5. DZP.XI~~LO:~ of the Results 

(a) Zero-ouct~on Case: No theory IS developed for this case 
as it has elreadybeen given by Cookej. and the author has oxsmw.ed 
the property of the q&&se profxles noted by Rott and Crabtroe5. As 
mentioned before, they discovorcd that all the spsnwise velocity profiles, 
xf plotted against Z/e ILC very close together and they all 
approxlmatc to the exam T' Dlaslus' profile. The Rrosent author further 
obtax-& the graphs of the span~~so voloclty rattro ngsmnot tw$ other 
boundary-layer quantities, VIZ., (1) 17 and (2) agamat z//"y. 

In the former c,asoI tho proflles were of the semc &ape but 
did not coincide. A graphxal transformation for n was attempted with 
a view to bringing the profiles nearer to coincidence with the exact 
Blasius' profllc, and after&&q suitable factors for 17 mth tho 
help of Blaslus' proflle, all the sppunwisc profiles lay very close 
togothor end approxxnatod to tho oxact Blas~us profile. (The proflles 
arc not shown here.) 

For the latter case, eight spanv&se profiles are plotted, 
and those arc very nearly colnoidont (F1g.1). 

Explanation/ 
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Ex&anatlon.- Tno questions arises why it is that the profiles, 
when plotted against s$Oy and c/6 
to the Alasius' solution; Mereas, w en plotted agaiqt n, they do not 5' 

lie close together and approximate 

lie together. All the quantities 'I, z/e 
3 

m-d .d.6y are non-dimensional 
boundary-leyer quantities, and the only $1 ference LS that t7 is a 
function of m, 1Theree.s .z/ey end d6y are iniiepetient of m. 
Moreover, by neutralising the contribution of m to n by choosing 
suitable factors, the profile, = behaved approximately in the desired way* 
This led the author to show that spanwise profiles plotted against any 
boundary-layer quantity which is independent of m, will lie very nearly 

’ on one curve. 

An explanation of the above behaviour of the spanwise profle~ 
is also apparent from the governing equation (equation (15)) 

G"' + F G" = 0, 

which beers a certain sxnilerity to the Blasius' flow equation 

f"' + ff" = 0. 

A method of solving this given by Watson end Preston' was to write it as 

f”’ + f, r; = 0, a 

an equation 'similar' to equation (13), where fi is a rough 
approximation to fa. It turns out that quite ciifferent and cr&e 
guesses for fl yield f: - curves satiseing the momentum equation, 
which are very close to the Blas~~s' profile. It is seen that, since 
the F in equation (13) is obtained from the chordwise velocity profiles 
(PI), G' must be close to the B1asiu.s' profile. 

(b) Case of Suction: ( 

(i) LO (or m = 01: In this case the solutions 
for the chordwise and spanwise flows coincide, as is evident from (15) 
sl-d (17). The solutions for chor&ise,flow for different suction 
velocities have been given by Thwaiteso, and spanwise profiles based 
on those solutions are given in Table I. 

(ii) Positive Pressure-gradients (9 or m nerativc : 
For positive pressure-gradients, solut~.ons for chordwise flow have been 
given by Thwaites'O, and the oorrespon&ng solutions for spsnwise flow 
are given in Tables 2 - 6 except for m = - l/3 end m = - I. 
(These two cases will be considered seoarately.) Five suction values 
(K = 0.2, 0.4, 0.6, 0.8, 1.0) have b&n considered and solutions for 
four values of P have been given for each value of K. Velocity 
profiles for each value of K have been plotted against s//e and 
are shown in Figs. 2 - 6. Other boundary-leyer quantities erg 
calculated, and the folloiinng conclusions sro obtained:- 

of P 
(a) Par each suction value, the profiles for different values 

comnciCte, a& give approxxnatul;r o.nly one curve when plotted 
on z/ey scale. 

(b) The velocity gradient on the surface increases with increasing 
suction, snd also for increasing values of P for each suction. 

(c) The displacement thiclmess decreases with increasing suction; 
snd it also durxmshes with incrcasmg values of P fo: a particular 
suctlon. 

iW 
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(a) The momentum thickness goes down when the suction quantity 
goes up, and it also decreases 16th increasing p for a particular 
suction. 

(e) The values of Hy are nearly the same for a given suction, 
and the effect of a change of p is negligible. 

(f) Examining the values of Hy in the Tables 2 - 8, it is found 
that Hy decreases with increasing suction, but for large suctio-ns the 
variation is very small. This led the author to suggest that for very 
large suctions, Hy ccn be taken as independent of any suction parameter. 

(iii) The Special Cases, m = - 1 3 and m '= - 1: 

(a) The solutions for the cace m = - l/3 or P q - 1 tu-e 

given in Table 7, and v/V, is plotted against day in Fig.7, for 
different suction parameters (K = 1.414, 1.42f, q.437, 1.50, 7.554). 
It 1s found that all the profiles coincide, and it is suggested that 
they are nearly independent of suction plotted on a z/e scdle 
but the suction must be such that K) for physical valid$ty. 

The values of displacement thickness and momentum thickness 
decrease mth snoressing suction, which is as ususl. The values of 
Hy vary so little with suction (Table 7, Fig.9), they can bc taken 89 
constant. This observation supports the statement in 5.(ii) (f) that 
with very large suctions the variation of Hy is negligible. 

(b) The case of m = - I (or B = - ~2) is the luniti~casc 
snd IS only of theoretical interest. The profile is presented in 
Table 8 and Fig. 8. It is analytically found to be the well known 
asymptotic suction profile, and uhen v/V, is expressed in terms of 

g2iacement thickness and momentum thickness a& obtained in (45) and 
it IS independent of K as given in (48) The expressions for 

(467 1n terms of the suctxm parameter K. It is interesting to observe 
that the momentum thickness is half the displacement thickness, i.e., the 
value of H 
the case c B 

is exactly 2.0. This IS the minmum value of Hy for 
spenvmse flow, whereas Thwaiteslo has obtained a smaller 

value of H in the case of chcrdvslsc flow, and the explanation of which 
is not clear. 

(iv) Negative Pressure-grcdicnts (P or m positive): 
The lack of enough solutions for the chordwise flow prevents the author 
from discussing this domax fully. The only solution available for 
this domain is of the stagnation flow (6 8 1) in the chordwise 
direction given by Schlichting and Bussmann . The corresponding 
spanwise solution has been obtained, and profiles are given in Table 9 
for suction corresponding to K = 0, 0.5, 1.095, 1.9265 and 2.664. 
Other boundary-layer quantities (S;, By, By) have been cslculated and 
are given m ihe same table. 

The velocity ratios are plcttod against r,/0 
7 

in Fig. IO, 
and it is cbcerved that as the suction increases the p cfiles become 
nearer and nearer to each other. This fact suspcrts the previous 
statement that for large suctions the variation in Hy. with suction 
is small, and that for very large suctmns the change in the profiles 
with suction is negligible. 

' The values of Hy are Blotted and in this case also the 
points lie on the Hy-curve obtained from other solutions for the 
-pressure-rise domain as in Pig.9. Thx fact indirectly supports the 
observation, that the profiles based on z/oy, for a particulzz 

suction-value/ 
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suction-value end different pressure-gradients are roughly coincident. 
A direct proof would have been better, but no solution is available for 
these values of suotion-parameter (K 0.5, l.095, 1.9265 and 2.664) 
and other values of p (except /3 = I). 

As usual, the displacement t1uuckness and the momentum thickness 
decrease with increasing suction, as vvlll be evident from Table 9. 

The value of Hy decreases with increaslng suction and ten& 
to 2 - the minimum value of Hy8 as is eyident from Fig.9 and Table 4. 

(v) Universality of Profiles: As has been discussed 
before, (5.(a)), the spenwise profiles for zero suction form an 
approximately universal system on a scale which is independent of m, 
end. the representative profile of that system is the one for m = 0, 
which coincides with the exact Blasius' profile. 

In oese of sustlon also, a smnlar idea of a universal system 
of profiles is contemplated. In the suction case it is clear from the 
previous disouss1ons, that thero cannot be only one universal system of 
profiles f3r all suction distributions, but there ~11 be a series of 
systems of profiles, one for each distribution of suction. The 
representative profile for each system vnll be given by the profile for 
F, = 0 for the correspond&ng suction. For the verification of this 
statement, solutrcns for 0 = 0 are required for suctions giVen by 
K = 0.2, 0.4, 0.5, 0.6, 0.8, 1.0, 1.095, 1.414, 1.421, 1,437, 1.5, 
1.554, 1.9265 and 2.664, but from Table I, only the solution for 
P = 0 end K = I.414 is available for this purpose, and this 
profile has been plstted in Fig.7 against z,/Sy. It 1s found from 
Fig.7 that the profile for /3- = 0 cvmncidcs with all other profiles 
for P = - I, thus verifying the statelent made above. It would 
have beon interesting to obtain further vorifioatlons, but the solutiors 
are lacking for this purpose. 

(VT) Compemson of the Chordvnse and S6s.n~SC Plows with 
Suction: It is not intended here to give a det,uled discussion of the 
similarities and dissirmlarities of the chordwise and span%ise flows, 
but only to point out certain striking features of the two flows 
connected with this a er. 
given by ThwaitesStl~~~S 

The solutions of the two-dimensional flow 
and Schlichting and ~ussman& have been taken 

for the results of the chordwiso flow, and the results for the spsnw-ise 
flow have been obtained by the author. 

Viz: 
The whole discussion is divided rnto the follovting sections 

(a) B = 0, (zero-pressure gradient): In the case of sero X 
suction and zero-pressure gradient it has been shovm analytically by 
scars2 that the tvio.flows (chordwise and spunuilse) have the ssme Blas,ius' 
profile. In the suction cese with zero pressure-gradient, the author 
has shown in 3.2 (a) that the two flows have the sane profile for any 
Vahe Of suction-parameter and the soluti 
by Thwaitesa and Schlichttmg and Bussmann % 

ns have been already given 
for a nmber of suction- 

distributions. Tnwzdl ciiordmse profiles besed on s/e, have been 
plotted together with the spanwise profzles in Figs, 2, 3, 4, 5 and 6, 
and it can be seen that as 0 tends to zero, the chordwise profile 
approaches the spanwise profile for fl = o. It is evident that Ln 
this case all other boundary-layer characteristics for the two flows 
must be the same. 
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(b) /3 > 0 (negative pressure-gradients): 

(1) In this case the value of F"(O) (wall velocity-gradient 
for the chcrdwise flow) is greater then G"(O) (wall velocity-gradient 
for the spzunvise flow), for given values of the suction-parameter and 
pressure gradient, (i.e., given P)(Fig.13). 

(2) It is also found that the momentum thiokness and 
displacement thickness of the chordwise flow are smaller than those of 
the spanwisc flow for given suotion'and pressure-gradient (Fig.16). 

gradient. 
(3) H-i is less than By 
The value of Hx 

for given suction and pressure- 
ranges from 2.218 to 2.077 end ! changes 

from 2.sO5 to 2.0806 as the suction-parameter K increases k om zero 
to 2.664 (Fig.18) for the case of B = 1, which is the only solution 
available for this domain. 

These observations suggest that for negative pressure- 
gradients, the chordwise boundary-leyer is thinner than the spenwise 
one. 

(c) p \: 0 (positive prcssuro-gradients).: 

(T) In this case G"(O) (the wall velocity-gradient of the 
spanwise flew) is much greater than F"(O)(the same quanti 
chordvvlse flow), for any given K end p (Figs. 11 and 12 . 7 

fcr 

(2) It is also observed that the momentum thickness and 
displace-thickness of the spsnwise flow are smsller than those of the 
chordwise fl'lo;r for the same conditions of suction snd pressure-gradient 
(Figs. 12, I!+ and 15). 

(3) Again, the value of 
this domain for a given p snd R. 

By is always less than Q in 
Moreover the variat?on of 

with p is very marked, but that of By with ,9 is negligible. 
1% 

Also, the effect of suction on the variation of H, is more important 
for all suctions, but the variation of By wxth increasing suction is 
alwsys small, and for large suctions it is negligible. The maximum 
value of II,: beLomcs even greater than 3.8, whereas the maxzmum value 
gf FY is never greater tnan 2.6. Similarly, tho minimum value of 

goes even below 2, but the minimum 
a%alytioelly ae 2.0 (Fig.17). 

value of H 
For p = - 1, v7 ere large suctions rl 

is obtained 

are obtained, the value of Hx chsnges from 3.42 to 2.56, but the 
variation of H is between 2.12 and 2.13, as the suction-parameter 
increases fromY.414 to 1.554 (Flg.19). 

Even for very large suotlono with p = -W, the value of 
I& varies from I.905 to 2.025 as K increases from 2.828 to 3.6. 
This increase of B with K is a unique behaviour. But for the 
spa$nse flow the value of By is 2.0, and the profile is the asymptotic 
suction profile which IS independont of K when based on ~/i/e,. 

It is clear from above illustrations that the variation of 
Ii, with P is marked, but the effect of p on By is negligible. 
Also, the variation of Hx vxth suotion is important even for large 
suot~ons and for the asymptotic suction case, but the varLatLcn of 

"Jr with K is small and is negligible for large suctions (Figs. 17 and 9). 

(4) Separation Phenomenon:- Tho case of separation arises 
only in the presence of a positive pressure-gradient, whore p is 
negative. For the purpose of investigating this case the profiles of 
the spanwti flo?r have been plotted for velues of (- p) up to infinity 

but/ 
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but they never show any tendency to separation. This can also be seen 
aa, 

from the condition --- 
( > 

vfo av 
= -- -- 

a2 ( ) 
, where the rlghthand 

0=0 v afi z=o 
side is either negatlvc or zero, sxnce w. is negative. Norcover, the 
chordwise profiles plotted m Figs. 2, 3, 4, 5, 6 for large positive 
pressure-gradxnts (/3 = - 0.26, -0.371, -0.474, -0.592, and -0.721) 
are concave near the wall, and shcw a tendency to separation. Also, 
from the arguments of (c) (I), (2) and (3), it 1s clear that m this 
case the chordwise boundary-layer is thicker then tho spsnwisc one, and 
these facts s!:ow that separation 1s prolx a phenomenon of the chordwise 
flow. The seme remark was made by R. T. Jones'5. 

(5) Asymptotic Suction Frofllcs:- Inthccaseof P = -1, 
both the profdos tend to the asymptotx suction profile as K tends 
to 1nfituty. The chordvvloc case wCas consdcred by Thwzutcs12 and the 
author has proved the result for the spanwise flow. 

For p = -w, Thwaites'" has obtained the proflles for 
certain values of 4 ranging from 2.828 to 3.6. The corresponding 
solution for the spsnwxe flo;y has boen obtalned In thx report, and it 
is the svnple asymptotic suction proflle and is independent of K dxn based 

~o~;C?~O~ K 2 828 3 
This profile is shown m Fig.8 to ether with chodtise 

. MCI 3.6 based on 
observe that the chor&iHe profllc for 

$8,. It is important to 
K = 2.828 does not lie on the 

spsnwise as.ymptotro suction profde, but goes above It. As X xncreases to 
3, the chordwise profile nearly coincides with the asymptotic suction profile, 
while for K = 3.6, the chordwise protde goes to the right of the 
asymptotlo suctxon profde as is evident from Fig.10. This behaviour is 
explaIned by the feet that for K = 2,828, H, is 1.905, whxh is less 
than 2; while for K = 
K = 3.6, H, is 2.025, 

3, G is 1.992, very near to 2, and for 
greeter than 2 (the value of Hy for the 

asymptotic suction profile). 

From th.? above discussion, it appears th&t with still greutcr 
suction (K > 3.6), a change -in the chordwise flow could be obtsuled, 
but the spanwise flow would rem:.in unchwed as the asymptotic suction 
case vnth Hy = 2.0. 

6. Conclusions 

It is shown that all the spsnwi~e profiles for a particular 
suction approximately coincide when based on a q/e scale, and form a 
universal system of whrch the profile for P = 0' is the representative 
one. It besrs en analogy to the case of zero-suotlon where the exact 
Blasius' profile is the representative of all the spanwise proflles on 
the same scale, 

Secondly, exact solutions of the spanwise floxv for the cecjes 
P = -1 and p = - w have beer, obtau?ed; and in the latter case 
the solution 1s the asymptotic suction profile. 

Thirdly, It is found that for a particular value of suctlon- 
parameters, Hy is very nearly lndopendent of 0. 

Fourthly, it is shown that H 
suctmn, but is never less than 2.0. 

decreases with lncroasrng 
Ai[so the variation of 

VY with 
suction for very large suctions, 1s so small, that it csn be Ignored. 

Fifthly,/ 
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Flfthly, it is observed that for zero pressure-gradient, the 
two boundary-lsyers are similar; for negative pressure-gradients, the 
chordvnse boundary-layer is thinner then the spanwise one; and for the 
positive pressure gradients the choruwise boundary-layer is much thicker 
than the spsnltise leyer. 

Lastly, it is also found that separation is purely a 
phenomenon of the chordwise flow, and the spanmse profiles never show 
atay tendency to separation. 
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Notes on Table I 

This Table I has been prepared from Thwaztes' solutions8 for 
two-dlmenslonsl flow with suction for the case p q 0. His equation 
was 

f"' + ff" = 0, 

with the boundary conditions: f'(0) I 0, f'(s-3) = 2; f(0) = 2u1, 

u 
where - 

II 

Here z has been used instead of y as used by Thwaites3. 

But in the present paper, the equation is 

f"' + $ f-f" = 0, 

with the boundary oond1tions: P(O) = 0, f'(W) = 1 and. f(0) = VFK, 

u 
where - = f'(?J) = g'(o) = 1", , 

u vo 

* 4 r) = -- 
( > 55 ana qJ = (uux) s f(t)). 

VX 

The di ff; erence is that m the present paper 1) has twice that 
In Thwaites' case . 

The following modifications have been made 121 prepsrq 
Table I from Thwaites' table:- 

(4 rj is made twice that given miRcf.8 

(ii) " = ?- z &f'(n), f' (11) supplied by Thwatcs 8 . 
U vo 

(iii) f(0) = 2Ui, 
(iv) 

(iv) i?. = Ji Ui = K. 
TABLE I/ 
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TrnLF, I 

p = 0 or m = 0 

f,-> 1.0 : 2.0 ; 10.0 5.0 20.0 
y----f-..-..-- ____.- -.-- - _^_.. I- _---_- --.- - _.----_-. 

0.1 

0.2 

0.4 

0.G 

0.8 

0 0. 0 
__--- -- 

0.0705 0.1105 

0.1430 0.2115 

! 0.2685 0.3895 

0.3755. 0.5250 

0, 0 0 0 0 0 
.I 

/ 

---: _._______ -.----L------“.A.--.-- 

o.d5 0.1215 0.0?25 0.0125. 0.1170 

0.10 0.2345 , 0.0250 0.1230 0.0250, 0.2215 

0.15 j 0.3250 0.0375 0.0375 0.3185 

0.20 : 0.4065 0.0500 : 0.2285 0.0500 0.3995 

0.4765 0.6400 0.30 

1 .o 0.5660 0.7300 0.40 

1.2 . 0.6450 0.8000 0.50 

1.4 0.7150 0.8550 0.60 

1.6 0.7700 0.8950 0.80 

! 
2.0 

i 2.2 

/ 2.4. 

/ 2.6 

2.8 

3.0 

0.0750 

0.1000 

0.1250 

0.1500 

0.1750 

0.2000 

0.2500 

0.3000 

0.4000 

0.5000 

0.6000 

0.8000 

0.8650 

0.9200 

0.9500 

0.9800 

0.9900 

0.9950 

1.0000 

3.2 

’ 3.4 

i 3.6 
I 
) 3.8 
I 
j 4.0 
I 

I 4w2 
/ 4.4 

0.8600 

0.8950 

0.9200 

0.9400 

0.9550 

0.9700 

0.9800 

0.9850 

o.pyoo 

0.9950 

0.9950 

0.9950 

1 .oooo 

0.9250 

0.9500 

0.9650 

0.9750 

0.9850 

0.9900 

0.9950 

0.9950 

1 .oooo 

1.0 

1.2 

1.4 

1.6 

1.8 

2.0 

2.2 

2.4 

0.5450 0.0750 

0.6550 0.1000 

0.7350 0.1250 

0 * 8000 0.1500 

0.8850 0.1750 

0.9350 0.2000 

0.9650 / 0.2500 
/ 

0.9800 / 0.3000 

0.9900 ! 0.4000 

0.9950 , 0.5000 

0.9950 0.6000 

0.9950 0.8000 

1.0000 1 .oooo 

1.2000 

0.7850 

0.8700 

0.9250 

0.9550 

0.9850 

0.9950 

1 .oooo 

_--_. -- - ______. ---_- __------ ---.---- 

2/ TADrn 

1.8 0.8200 

0.3155 

0.3975 

0.5350 

0.6400 

0.5300 

0.6350 

0.7150 

0;7800 

0.8250 
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TAT&E 2 

F, = +0.2 

--__ _.____.___ _- _ _ _.. _____ I ._._.._..____ -_ __. . .___._..-..-- -----.,----.-- 

P -> i -0.28 ’ -0.26 -0.20 -0.12 

0.5 0.914 0.2210 ! 0.997. 0.2450 1.089 0.2671 I.141 0.2805 

1.0 1.828 0.4201 1.994 0.4636 2.178 

I.5 2.742 0.5957 2.392 0.6498 3.267 

2.0 j.656 0.7429 3.989 0.7952 4.356 

2.5 4.570 o-8554 4.986 0.8963 5.wc5 

3.0 5.404 0.9303 5.383 0.9559 6.534 

3.5 6.398 0.9720 6.980 0.9835 7.624 

4.0‘ 7.313 0.9910 7.978 o.9948 i 0.713 

4.5 a.227 0.9977 8.975 0.9990 9.802 

5.0 9.141 o.9996 9.972 0.9998 10,891 

5.5 10.055 1.0 10.969 1.0 11.ga0 

0.5028 2.252 

0.6g71 3.423 

0.8395 4.564 

0.9283 : 5.705 

a.9737 6.846 

fl.9922 : 7.987 

0.9981 I v.iza 

0.9995 j 10.267 

0.9998 11.410 

I .o 12.551 

0.5258 

0.7230 

0.86<4 

0.9422 

0*9003 

0.9946 

o.vva7 

0.99% 

0.9998 

1.0 
...__---.-_---l-_I- .___.-__________^___ ____ __---. _ _______--i_.-_-_ -  - . . - - - - -_.  

G”(O) 0.4646 0.5157 0.5625 0.5910 

/b)Z 1.3775 I.2478 1.1396 I.0847 
JO 

i 

w 
G’(l-G’)Cf 0.5470 0.5014 0.4591 0.4382 

0 

5 2.518 2.189 2.482 2.475 
____-__~-.----_----- .- .---_ -._- --.. .---._--.--._. -.. .---.--_---_.- _- ._____ --.. 
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PO = +0.4 -- 

I -- -.--. -.-_-__-_---. _-_-- ._._ -_ .___ -.. __.- ___._.__.______ __ .-__ __ -.-__ _- 

I P -~-_ -> ._-_.-_- -0,271 . ..-. - __--.- -0.350 _--.- /__---_-__ --- -- -.-- ---------- -0,300 -. -0.200 ------ 

! Y 

/..--;----;---,.--+ ‘--‘. . _ -. -.--~-‘-;-- ;---’ --. .-... &.-;~~ --- -~ --..- 

-----------$--.. --__ -- 

0.5 1.025 0.2784 I.119 0.3009 1.195 -0,3v37 1,260' 0.3338 

1.0 2.050 0.5Ojl : 2.239 0.5439 2.389 0.5733 2.519 0.5981 

le5 3.076 0.6851 3.359 0.7303 ! 3.5@+ 0.7616 3.779 0.7876 . 

2.0 4.101 02395 4;478 0.0595 4.779 0.8857 5.03 0.3045 

r2.5 5.126 0.9099 5.598 0.9381 5.974 o-9542 5.299 0.9652 

I 3.0 6.151 0.9621 : 6.717 0.9774 7.168 0.9852 7e559, 0,9a96 

j 3.5 7.176 0.9870 : 7.837 0,9933 8.363 0.9957 8.818 0.3978 

4.0 8.202 0.9964 3.956 0.99~ 9.558 0.9993 10,078 0.9993 

4.5 9.227 0.9993 

j 

10.076 a$993 10.753 1.0 11.338 1.0 

5.0 10.252 o.gyyy 11.196 I,O 

I 5e.5 11.277 1.0 
T G” (0) --- -_------..- O.Gl44 .- ----I- - -_ __._.__ Ok658 --. _-_--.- ------- 0.7052 ----L 0.7402 -.---- 

’ i 
/ yl+)dY I.1650 I.0658 0.9985 0.9466 O 

' 

r 0 

G'(l-G')dY o.4a77 O&66 0.4105 0.3969 

I R I = 2.390 2.386 2.386 2,385 

L--.--. -.--- -----I_I. - .- _... --.- -.. _ - -- -_-.- -.I---- _ _-_-_- .--.--- 
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I-_ ------ ---.--. - -- .---. - - _.. .._..._ --_. - _ __ __ .- _ _ .^ -. _ ----- - _----c__. - ----- 

P -> -0.474 -0.450 -0.400 -0.350 
--.-.- --__-__--_-_-__.- __.____..__ - _____. -___-_____..- ._._.- -- -.-------- 

Y 
4% Y/V, z/oy v/v0 %‘/By V/V0 %, v/v0 
--_-_--__.---.- _.__________:-___ - __... -_-.--_ -r-..-.. . .--*----. 

0 0 0 0 0 0’ 0 0 0 
_---.__- ___.____ __ _______ --_.-. .__-_ - ___-_ _-___-. .-_. _- -----.---- --- .-.----.- 

0.5 1.152 0.3356 1.259 0.3588 q.317 0.3715 1.353 0.3793 

1.0 2.304 0.5826 2.518 0.6195 2.6% 0.6390 2.707 0.6508 

I.5 3.455 0.7590 3.777 0.7979 3.950 0.8172 4.061 0.8284 

2.0 4.607 0.8764 5.036 0.9073 5.267 0.9212 5.414 0.9289 

2.5 5.759 0.9456 6.296 0.9G.4 6.5& 0.9719 6.768 0.9758 

3.0 6.911 0.9800 7:555 0.9889 7.901 0.9919 8.121 0.9934 

3.5 8,063 0.9940 8.014 0.9972 9.218 0.998l 9.475 0.9986 

4.0 9.214 0.9985 10.073 0.9994 IO.535 0.9996 1Oe82?3 oa9998 

4.5 10.366 009997 '1.332 0.9999 11.851 0.9999 12.182 1.0 

5.0 11.518 0.9999 12.591 1.0 13.168 1.0 

5.5 12.670 1.0 
I__ ---- _..__ .+---_- _. 

G"(O) 0.7771 0.8337 0.8617 0,8801 

i 
yl-G')aY 0.9982 0.9160 0.8769 0.8542 
0 

I 

w 
G'(l-G')dY 0.434-I 0.3971 0.3737 0.3694 

, 

Hy 2.299 2.307 2.309 2.312 

-  . - - -  _______._ -._-__-_--A 
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TAmE5 

F, = +o.a 

-------------.--.-. - ---.-.---. _ ____. .-. _... _ . ..- -__._- __-_-- ._____- ._^--.--_- 

B -> -0.592 -0.570 -0.550 -0.500 
- ---- . -- ._--- ..____ -.- -_ _.___ - __-- _,_.__ _. -- __.._ -_- ___^ .-. -___-.- _ ..--_ __ ._- -..- - ..- 

z/e 
Y 

V/V0 de/e, 'v/v0 de Y v/v0 

-. 

-- ._.--.- ,__-._-_- ..+-..- - .--- __--.- __ -.. -_ 

0 0 0 0 0 0 
-----___-_ - ._____ - _-__ -__-- ._., -._--_. . . . . ..--. -_ ---- --- ---- ----I--- --- __-_ --- . . 

I.378 0.4oao 1.406 0.4136 1.460 ' 0.4242 

1.0 2.579 0.6503 2.756 0.6763 2.812 0.6843 2.920 0.6995 

1.5 3.a6? 0.8173 4.133 0.8423 4.218 0.8697 4.381 0.8633 

2.0 5.159 0.y16ZL 5.51? 0.9341. 5.624 0.9391 5.841 0.9477 

2.5 ' 6.448 0.9674 6.889 0.9771 , 7.030 0.9796 7.301 P.9837 

3.0 7.738 * 0.9896 8,267 0.9935 a.436 0.9945 a.762 0.9960 

3.5 , 9.028 0.9973 9.644 0.9985 9.842 0.9989 10.222 0.9993 

4.0 ,jo.317 0.9994 11.022 0.9997 11.249 0.9998 11.682 1.0 

4.5 11.607 0.9999 12.4 1.0 12.655 1.0 

5.0 12.896 1.0 

5.5 -.--.- -- .-.- .-_- .-- ______. _ -, . ._.____ ___.____ _ 

/ G"(0) 
/ . 

0.9480 0.9912 1.0050 l.Ojl2 

i f?~-~f)d~ 
I .I. 

0.8G63 0.8146 0.7994 o-7717 

0.3877 0.3629‘ 0.3536 0.3424' 

2.234 2.245. 2.248 * 2.254 ' 
-- .__--____--_ __.._-_ ---. ._____ ___-_-._--_ _ ._.._ -._.-___-_-__.--__-__ 

. 
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TAEVE 6 

Fo = +I.0 

- - _.__ ._._ -._ __--- .--._ - __- _- .-.....-.- .-.- --- --.- -------.-----------..- - .- ._- .-.-.-- 

PT 4.721 -0.70 -0.65 -0.60 
-_.- .-_-.--.. . _- ^.__. --__--_ ___^ _^__ ____ . . _-._ _-_ .__-_ _----. __ -__- .^---__- .--------- 

Y 
"/% v/v, 4% v/v0 dey v/v0 ay v/v0 ~ 

. _^_._ . ..__-________._._..~____ .-__- __.. _ __ . . . - ..--- --- .- ------ __.______._._ _-__ .-.-. ___I 

0 0 0 0 0 0 0 0 0 
- .._. ..__.. - ._._ -___-..-.-.-_-_-.-__ -. _ _-. .-..-...- -- --- ------- ------------ 

0.5 1.433 0.4425 1.513 0.4563 1.577 0.4677 1.621 0.4752 i 

1.0 2.866 0.7087 3.026 0.7278 3.153 0.7430 3.241 0.7529 

1.5 4.299 0.8624 4.539 0.8793 4.730 oJ3y20 4.862 0.8999 

2.0 5.732 0.9436 6.051 0.9544 6.307 0.9620 6.483 0.9665 

2.5 7.165 0.9805 7.564 0.9858 7.884 0.9892 8.104 0.9912 

3.0 a.598 O.YY& 9.077 0.9965 9.461 0.9976 9.724 0.9983 

3.5 10.031 0.9985 10.590 0.9993 I$,037 0.9996 11.345 1.0 

4.0 11.465 0.9995 12.103 0.9999 12.614 1.0 

4.5 j2.898 0.9997 13.616 1.0 

5.0 14.331 0.9998 

5.5 35.764 1.0 
.___._ ._..__--. - .____ ..__.. .-_ ..-- ____-.-i.- ----- -- __.. __..._r._._ -. _--.- --,- ------ ----.-------- 

G"(O) 1.q256 1.1613 1.1907 1.2102 

l:l-G')dY 0.7619 0.7262 0.7002 0.6829 
i. 

r 
G'(14')dY 0.3489 0.3305 0.3171 0.3085 

0 

IEY 2.184 2.197 2,208 2.214 



---1---~-----.---.-- -.-._. --_.-.---_ _ -- -_-_--- __-_-- ___ _.---- 

F, -> I.414 1.421 1.437 1.500 i 1.554 
- ._._ --_-__- _____. --____ .-__.- ____ .___________ -_ __--.__-_-_ __. --_---- .-- 

Y %, v/v0 de y I v/v0 z/e y v/v0 z/e y v/v0 zh, v/v0 
--_- -_----__ -___-.- --_-_---_, .----- ._._ - ___. I-_ __-__. -_.--.- __-. 

0 0’0.0 0 0 0 0 0 0 0 
- ---~_- _._._ -_- ____ -._- __ --.-- - __----- 

0.25 

0.50 

0.75 

1.0 

I."5 

-I.50 

1.75 

2.0 

2,25 

2.50 

2.75 

3.0 

3.25 

3.50 

3.75 

4.0 

0.880 0.3169 0.903 0.3218 0.925 0,327O 0.980 0.3420 I.015 0.3527 

1.760 0.5396 1.806 O.y+@ 1.850 0.5548 1.955 005761 2.030 0.5907 

2.640 0.6947 2.709 0.7035 2.776 0.7120 2.939 0.73421 3.045 0.7485 

3.5~1 0.8023 3.613 0.8109 3.701 c.8190 3.9f8 0.8388: 1 4.060'0.8510 

4.400,0.8757 4.516 0.8832 4.626 0.8901 4.898 0.9060 5.075 0.9153 

5.290 0.9245 5.419 0.9305 5.551 0.9359 5.878 0.9476 6.0~0 O.%W 

6.160 0.9559 6.322 0.9604 6.477 0.9642 6,857 0.9721 7.105 0.9763 

7.040~0.9754 7.225 0.978!+ 7.402 0.98?0 7,837 0.9859j 8.120 0.9884 

7.920 0.9869 8,129 0.9889 9.327 0.9904 8,817 0.9933; 9.135 0.9946 

8.800 0.9934 9.032 0.9945 9,252 0.~34 9.796 0.9970 10.150 0.9977 

9.680 0,9968 9.935 0,9975 20.178 0.9979 40.776 0.9987’11.~65 0.9990 

10,560 0.9986 10.838 0.~989 11.103 0.9991 11.755 0.9995:12.l80 0.9996 

II&.O o.yyy411.741 0.9995 12.028 0.9996 12.735 0.9998 13.195 0.9999 

12.320 0.9997 12.644 0.9998 12.953 0.9999 13.715 0.9999 14.230 I.0 

13.200 0.9999 13.548 0.9999 13.879 1.0 14.694 1.0 

14.079 1.0 14.451 1.0 

- 31 - 

!rmm 7 we- 

p = -1 

-I__-___-___--..-.. -._ _ -___-- ..--- --_ .- --- -.--- - ---- 

G”(O) 1.5049 1.5294 1.5574 1.6413 1.7030 

$ 0 ~l-c~)aY 0.6023 O&34 0.5753 0.5437 0.5243 

i 

w 
G’(l-G’)dY 0.2841 0,2768 0.2702 0.2552 O-UC63 

0 

- HY 2.120 2.126 1.129 2.130 2.129 

.-.- - ---.---- ..-.- .----. -.- ---- .__ -.-- -----.---, __ --.. ------_.- 

8) TABLE 
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0 0 

0.2 0.0952 

0.4 0.1813 

0.6 0.2592 

0.8 0.3207 

1.0 0.3935 

1.4 0.5034 

l.a 0.5934 

2.0 0.6321 

2.4 0.6908 

2.8 0.7534 

3.2 0.7981 

3.6 0.8347 

4.0 0.8647 

4.4 0.8892 

4.8 0.9093 

5.2 0.9257 

5.6 0.9392 

6.0 0.9502 

a.0 0.9817 

10.0 0.9933 

12.0 0.9959 

14.0 0.9991 

co 1.0 



- --__--- - ------ -- --~_--- 

Fo-> 0 0.5 I.095 I.9265 2.664 
_____- ____I -_.__ -.---_.-- .__.._I --.--_- .._ .-.. -_.. .._ ._ -._. -_- _-- - ~_ -- -- .--. - 

n de Y v/v0 de Y v/", r) "/ey v/v0 v z/o Y V/V0 n "/ey v/v0 
___._____-__ --- ------+ _,- .-- ----_- -- ---_____- - 

0 0 0 0 0 0 0 0 #O 0 0 0 0 0 
-~- _____---.- --- ____ .____ .._.. .-_. __. __-.- 

0.1 0.2477 0.0570 0.3oA.o 0.090 0.049 0.1872 0.0670 0.022 0.1121 0.0462 0.026 0.1650 0.0711 
0.2 0.4954 0.1141 0.6081 0.$755 0.149 0.5693 o.lgjl 0.122 0.6218 0.2331 0.126 0.7SY5 0.3031 
0.3 0.7431 0.1709 0.9121 0.2566 0.249 0.9515 0.3059 0.222 1.131 0.3869 0.266 1.434 0.4804 
OG4 0.9908 0.2275 1.216 0.3333 0.349 1.334 c.4065 0.322 1.641 0.5131 0.326 2.058 0.6154 
0.5 1.238 0.2836 1.5xl 0.4055 0.449 1.716 0.4957 0.422 2.151 0.6161 0.426 2.703 0.7175 
0.6 1.486 0.3389 1.824 0.4731 0,549 2.098 0.5744 0.522 2.660 0.6996 0.526 3.337 0.79L2 
0.7 1.734 x.z2 2.328 0.5360 0.649 2.480 0.6434 0.622 3.170 0.7668 0.626 3.972 0.8513 
0.8 4.982 . 2 2.432 0.5941 0.749 2.862 0.7034 0.722 3.680 0.8205 0.726 A.607 0.8936 
0.9 2.229 0.4976 2.736 0.6474 0.849 3.24s 0.7552 0.822 4.189 0.8630 0.826 5.&l 0.9245 
1.0 2.477 0.5470 3.040 0.6960 0.949 3.626 0.7996 0.922 4.699 0.8963 0.926 5.875 o.9469 
1.1 2.725 0.5~42 
1.2 2.972 0.6389 

:-$.t 0.7398 1.049 4.008 0.8373 1.022 5.209 0.9223 1.026 6.150 0.9630 
0.7791 1.149 4.390 0.8690 1.122 5.719 0.9422 1.126 7.lG5 0.9745 

1.3 3.220 0.6810 3:953 0.8139 I.249 4.773 0.8955 1.222 6.228 0.9575 1.226 7.779 0.?827 
1.4 3.468 0.7x)1 4.257 0.8b.45 I.349 5.155 0.9173 I.322 6.738 0.9690 j.326 a.h?r, 0.7883 
1.5 3.716 0.7563 4.561 0.8712 1.449 5.537 0.9351 A.422 7.248 0.9776 1.426 s.oLB 0.0922 
1.6 3.963 0.7894 
1.7 4.2'1 0.8194 

4.865 0.8942 :-2; z-g 0.9496 1.522 ;-23 0.9840 1.526 : 9.683 0.9948 
5,169 0.9139 0.9612 q.622 0.9886 1.626 10.3!7 0.9966 

1.8 i-z 0.8463 5.473 0.9305 11749 61683 0.9704 3.722 81777 0.9920 1.726 10.952 0.9979 
1.9 
2.0 41954 

o-a703 
0.8915 

2.;;; 0.9445 1.849 7.065 0.9777 1.822 9.286 0.9945 1.826 11.586 C .9989 
0.9561 A.949 7.447 0.9833 1.922 9.796 0.9962 1.926 12.221 0.9992 

2.1 0.9099 61385 0.9656 2.049 7.830 0.9876 2.022 10.306 0.9975 2.026 12.855 0.9995 ~ 5.202 
2.2 5.450 0.9258 6.689 0.9733 2.149 8.212 0.9910 2.122 10.815 0.9983 2.126 13.49u 0.999: 

-- ---- --- _-._____ -.._- __._ - ---- -- ------- - __-- 

TABLE 9 (con+&)/ 



TAT33 9 (Ccntd.) 
- -__-___ - ---- _I_ ..____ -.. .---.--_-__-_ -- 

0 0.5 A I.095 1.9265 2.664 
_-.____------__ 

’ 2.3 
2.4 
2.5 

j 2.6 
! 2.7 
; 2.8 

i 
2.9 
3.0 

: 3.1 

5.697 

2-g 
6:&0 
6.680 
6.936 
7.183 
7.431 
7.679 

0.9395 
o.yy1 
0.9608 
0.9688 
0.9755 
0.9809 
0.9852 
0.9887 
0.9914 

6.993 0.9796 2.249 a.594 
7.297 0.9846 2.349 a.976 
7.601 0.9885 2.b-w 9.358 
7.905 0.9916 2.549 9.740 
8.209 0.9940 2.669 10.122 
a.513 0.9958 2.749 10.504 
a.817 0.9972 2.af!.v lo.886 
9.121 0.9982 2.949 11.269 
9.425 0.9990 3.049 11 &I 

----1-----_1-~ ^_ __- - -  ----1---_ - -  . - - . .  -  _.._ - -  

0.9935 2.222 11.325 0.99% 2.2'6 14.124 0.9999 
0.9953 2.322 71.835 0.9993 2.326 L759 1.0 
0.9967 2.422 12.344 0.9996 2.426 
0.9978 2.522 12.854 0.9998 : 2.526 
0.9985 2.622 13.364 0.9999 
0.9990 2.722 13.a74 1.0 
0.9994 
0.9797 
0.9999 

1 3.2 7.927 0.9936 9.729 0.9996 3.149 12.033 1.0 

3.3 a.174 0.9952 10.033 1 .oo 
/ 3.4 a.122 0.9965 
/ 3.5 a.670 0.9975 
i 3.6 a.947 0.9982 

! ;*‘B 9.365 0.9998 

1 319 
0.9992 

I 4.0 
;*‘t2 
91908 

0.9994 

j 4.1 
0.9997 

10.156 0.9998 
j 4.2 IO.404 0.9999 
1 4.3 10.651 1.0 
- ---...-..--...-.------. -L-_---.-- _._. - _____- .I-__---- __ . .-...-.. - .-.-- 1___..----. - ..------_ -__-__ 

I 

;tl 
I 

TAmFJ 2 (ccmta.)/ 
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TABLE 9 (Contd.~ 

I_-_--.---___-- __---- .--_.... .--.- - -.---- 

I-- 

___- ._-_-----.- .-.- ---- 
I?, - > 0 0.5 I.095 1.9265 2.664 

__- __.__ -_-.-- --- --___--_.--- -_-__.- ___^_____ - ---- -- 

G"(0) ' 0.5705 0.9226 1.4052 2.1441 2.8329 

0.77300 0.5797 0.4162 0.3279 

0.3289 0.2617 0.1962 0.1576 

2.5405 2.3502 2.2151 2.1213 2.0806 



8. The Applloation of These Solutions to a Particular Class of Heat- 
transfer Problem 

Negleoting the heat grnerated by diwi.pation and assuming a 
Fran&l number of unity, the temperature distmbution in the laminar 
boundary Layer on a porous oylind~r, unifody heated to a flxed 
temperature Ti and held in a stream at temperature To, is given in 
the present notation by 

aT a'p a?c 
u..-+w-- = -- 

ax a2 a?.= 
. ..(57) 

The boundary conbtions are 

and 

T = T, at z = 0, 

T = To at z = a, 

Then, putting e(n) = 
T, - T 
-----, equation (57) reduces to 
T, - To 

c3" + $ (m + 1) fB' = 0 , 

. ..(58) 

. ..(59) 

with the boundary conditions 

e = 0 at * = 0, 

e=latq=a, 

end when continuous suction is applied on ths cylinder f(0) is a non- 
zero positive quantity. 

Equation (59) is identical with equation (12), with the same 
boundary conditions. Henoe solutions for g'(p) 
in equation (12) will provide solutions for 

(the sparrwise velocity) 
e(n) in equation (59), for 

those oases of two-dimensional landnar boundary-lwer fl.owwhi.ch have been 
used for the calculations of spandse velcoity. 



0.80 

075’ ’ ’ ’ 

0 10 

0.65 

0 60 

t 

0 55 

0.50 
79 

- 0.45 
Vo 

0 40 

lb 18 20 22 24 26 2.8 30 32 3~4 36 30 

0 

30 & 
o-25 ,s- 

020 

8 
0 15 

@I^ 
K X 

1, 

fi=OZ’ b 
@=006 n 
/g=lO x 
$=I.6 A 

6 =-o-1980 t 

Cooke’s spnwue profiles for 

I I I I I I I 1 I I 1 I I I I I 1 t I I I I I I I 1 
0 02 04 06 08 IO 12 14 16 10 20 22 24 26,28 30 32 34 36 38 40 42 4-4 46 48 50 

=/fJy - 



0 75 

0 70 

ChordwIse profile for @ = - 0.28 

Chordwrse profrle for (3 = -0 12 

065t1/ I il;’ I H , 055, I / / , ,,,,, , /yj -F,=K= O-2 l? %mbols-for; 

?J 0 50 

v, 045 

u 0 40 

u 0 35 

qez, z/ey - 

Spanwise proflIes plotted agamst 

60 

0 2.52 5-04 7-56 IO,08 12.60 



0 
v 

v,o 

0 

0 

0 

30 I IPJY I I I 
9 ,I x 

I 
/ 

I /I/ I I I’ I 4.14 460 5-52 644 7.36 8-28 9.20 10’12 II 04 ‘1120 

z 

15 
I 

-,- 
L *Y 

__t 

I/l I I 
’ ~;ted aqalnst & ud 3,panwlse profrles plot 

z z 

0 0.92 I 84 2 76 3.68 4 60 5.52 6.44 7.36 8.; 
J I I I 1 I I J 

?8 9.20 IO-12 II.04 II.50 



o.601+-t-+ I 9’ I, 

SpanwIse profries plotted agamst z /& . 





I?‘1 I I I 

1 i i i i i i i i / il‘i; 



O-60 

0 55 

0.50 

t 
045 

70 

zk 040 

v, 035 

O-25 

0.05. SpanwIse proflIes for ,&=-I plotted ayamst z/jr . 

0 I I I I I I I I I z By - I I 
0 2 94 5.00 0.82 II-76 14-70 

? 
-4 



0 70 

0 65 A--- 
-- -- 

0 60 

0 55 

050 

045 

040 3 
0 

0 35 CD 

0 30 

025J 
I 

0 20 

O-15 -+ 1 

0 JO ~panwm profile together wrth some chordwise profiles 
f7rp = -a plotted agarnst z/-e, and z/_B,respectrvely . 

0.05 

I I I I I I 1 I I I I I I I I I * 
0 06 12 I8 24 30 3-6 42 48 54 60 66 72 7.8 84 90 96 IO.2 108 II-4 120 I26 I.32 I38 144 150 00 

Z/b, Z/BY - 



‘9. FIG 



FIG IO 

C 

d 



9761 I I I I I I I I I I I220] I IO +4. I I I I I I I I I 0: 

0 054 

0732, 

I I I I I I I I 

4. Variation of wall- velocity-gradients 

0.4 + -+ 

C”/?,\ f. I 

I )3,bryy ---- wkh p (negative) and suctron F, 

048 0.52 056 060 064 0.68 0.72 0.76 080 084 080 092 096 IO0 

0.488 

b’, \. 
\‘ +, s n ,I Y 

'\\ t '\, "\ '.lb 

\ I I I I 

I I I P\ Spanwise 

-08Z.‘. . . I-0’. ! I I I I 

\ ! ? 1 i I I I\ I ChordwIse - - - - I 0244- \- 
\ '\ \ \ 

\ 
0 

b 0 0 
\ \ \ 

\ \ 
\ 

0 I?? \ 
\ 
\ 

\ 
\ 

0061- $5 \ \ 

I I 
A I 4 

0 004 008 012 016 020 024 O-20032 036 040 044 040 052 0,56,060 064 060 o-72 O.76 080 084 008 032 096 l-00 
t-s) 

‘=- 



FIG I2 

18 

17 

lb 

15 

14 

13 

I2 

I I 

IO 

09 

00 

07 

06 

05 

04 

I I 
I I I 

Fo - 

Wall - veloc~ty~ radlent, 
a 

momentum thickness ,and 
&spiacement t lckness plotted agarnst K 



,FIG 13. 

3 250 

2 975 

2 700 

2 425 

t 
F ‘b) ? ‘50 
G’(Q) 

I075 

lb00 

I 325 

IO50 

0 77E 

0 5oc 

/’ 
P’ / / / 

/ 

+ 

” ” 

/ / 
/ / 

C*,@ =I C*,@ =I 1’ 1’ 
- - / / 

u =cx u =cx 
/I /I x’ x’ 

I I / / 

d d 
F”(o) (;;;Ldwise ,’ F”(o) (;;;Ldwise ,’ 

I I 
gradlent) 1’ gradlent) 1’ 

>’ >’ / , / , 

\ \ 
\ \ 

(Spanwrse (Spanwrse 
wall -gradient) wall -gradient) 

0 I-0 20 30 

5 - 

Wall - velocIty_yradlents plotted agamst K 

OT 



FIG. 14. 





I 
I I 

i 
: I 
I I’ 



FIG 17 

40 

35 

t 
Hx 
HY 

3c 

25 

ChordwIse 

Spanwrse 

0 . 
I P 
I 
I 

I I 
I I 

I I 

HY 04? x-x-x 
HY 0.6 x- 

“’ 
02 I 1 06 

e---o- 

-x-!+ 

Variatron of H with To and @(neqatlve) 







C.P.(,N& 214 
A.R C. Technml Rep: 

Crown copyright resewed 

Prmted and pubhshed by 
HER MAJESTY’s STATIONBRY OFFICE 

To be purchased from 
York House, Kmgsway, kadon w c.z 

423 Oxford Street, London w.1 
P.O. Box 569, London s B t 

13.a Castle Street, Edmburgh 2 
log St. Mary Street, Cardiff 

jg King Street, Manchester 2 
Tower Lane, Bristol I 

2 Edmund Street, Bmmngham 3 
So Chichester Street, Belfast 

or thmugh any bookseller 

S 0 Code No 23.9OOY-14 

C.P. No. 214 


