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Surmary

Rott and Crabtree have considered the chordwise boundary-layer
flow on a yewed infinite cylinder with chordwise stream velocity
U = ¢ (x is the co-ordinate in the chordwise direction). They
showed that this yields 'similar' velocity distributions, and when there
is no suction, the spanwise velocity profiles are approximately coincident
with the exect Blasius profile, on a scale determined by the ratio of the
normal co-ordinste to the momentum thickness. This phenomenon has been
further exomined, and an oxplanation of it is given.

The work has been further extended to the case of distributed
suction; and mmerical solutions have been obtained for the spanwise
flow for those caszes for which the chordwise solutions were available.
The velocity distributions are presented in tables and graphs. It is
shown that with distributed suction the spamwise profiles also form
universal systems, one system for cach distribution of suction, the
representative profile being the one for zero pressurc-gradient and the
corresponding suction.

Besides numerical solutions, an exact analytic solution of
the spanwlse flow has been obtained for the chordwise stream velocity
U = cx*®, and velocity distributions for different suction
distributions are given. -

Another exact solution obtained refeors to the spanwise flow
for the chordwise streasm velocity U = ¢/x, This is the woll-known
asymptotic suction profile, for which the ratio of the displaccment
thiclmess to the momentum thickness is found analytically to be 2,0.

Further, it has beecn observed from earlier results that
the momentum thickness and displaccment thickness decrease with
increasing suction and alse with decreasing positive pressure-gradients.
It is shown here that the ratio of the displacement thickness to the
momentum thickness decreases with increasing suction and is nearly
independent of ihe pressw o gradient for any given suction. For large
suctions, the variation of the above ralio is small enough to be ignored
for all practical purposes.

Tinally, the behaviour of *he spanwise flew in the boundary
layer is compared with the chordwise flow, and ceriain conclusions

are drawn for vary.ng pressvve-gradients.
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1. Introduction

The boundary-leyer flow over an infinite yawed cylinder is
of considerable interest, because many modern aircraft have swept~back
wings. It is well-known that for the infinite yawed cylinder, the
laminar boundary-layer equations seperate, and it becomes evident that
laminar chordwise flow is independent of the spanwise flow. The fact
has been su?ported by the experimentel observations of A, D, Young and

+ By Booth' ain their work on the profile drag of infinite yawed wings.
But the spanwise flow can only be computed if the chordwise s>lution
has been given.

W. R. Searsz has considered the spanwise flow for zero
pressure-gradient in the chordwise direction, and has shown that in
this case both the chordwise and spanwise velocity profiles are the
exact Blasius' profile, He has also concluded that in this case the
boundary-layer romains unaffected by the yaw of the leading edge, and
the flow at all points 15 in the direction of the free-stream,

J. C. Cooke3 has considered the case when the chordwise
velscity distribution at the edge of the boundary layer is of the form
U = ox™; which ylelds 'simlar’ profiles for the chordwise flow,
Meking use of Hartree's solutlonsh for the unyawed wing he has computed
the spanwise velocity profiles for the range of £ covered by Hartree.

The absence of any pressure-gradient term in the spanwise
flow equation led Rott and Crabtree? to suggest that the spanwise
profiles are of similar shapes. They made use of Coocke's solutions in
the development of an approximate method for the case of an arbitrary
chordwise velocity disiraibution at the edge of the boundary layer; and
found that Cooke's spanwise profiles, when plotted against z/0,, lay
very close together and approximated closely to the Blasivs' profile.
An explanation of this observation is sought in the present paper, and
it is also found that even better agreement with the Blasius' profile
can be obtained, if the velocity ratio is plotted against z/67.

¥

In view of the possible practical applications of boundary-layer
control by suction, to swept-wing alircraf't, the calculations have been
extended in the present paper t¢ include a range of values of distributed
suction, and the spanwise profiles have been obtained, For these
calculations, use was made of the chordwise profiles that were available
from the solutions of itwo-dimensional flow with distributed suction, an
account of which is given below,

The solution to the simplest problem of flow pver a flat
plate, when the suction velocity is proportional to x™2, was first
obtained by Schlichting and Bussmann®. The same problem was considered
by Preston’, and on his suggestion Thwaites® computed the solutions on
a differential analyser for a number of suction-parameters. An approximate
solution has also been obtalned by Weison and Presion’ using the
Piercy-Preston iteration method. Its interest is mainly academic but
suggestions for practical applications have been made by Preston and
Thwaites,

The solution for another important case of stagnatlog flow
with constant suction was obtained by Schlichfting and Bussmarm~. This
case is of saignificance, because the suction velocity becomes constant
and the condition can be made practical by applying suction from ths
front stagnation point of a wing over a part or whole of the chord.

To the knowledge of the author, no other solution for positive
m or £ 1is known.

.4
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A large number of solutions for negative values of m (or 8)
has been obtaincd by Thwaites O by relaxation methods, and exact solutions
for the cases m =~1/3 (or B = ~1) ad m = -1 (or B = ~e)
have also been obtained.

In the present paper the author has considered the spanwise flow
for the cases given above and has also carried out an analysis of the
spanwise profiles for different suction-~distributions.

2. Notation
X, ¥, Z co-ordinates measured in the chordwise

direction, spanwise direction, and normal %o
the surface respectively.

u, v, w velocity components in x, y, z directions
respectively.

U Chordwise velocity at the edge of the
boundary layer.

Vs spanwise velocity in the free-stream

gtatic pressure in the boundary layer

LA normal suction velocity at the surface
Y stream function
L
0.2
n a non-dimensional gquantity = (—-) z'
VX
v kinematic viscosity = u/p
m index in the relation
1
£(n) aflnction defined by % = (vux)? £(n)
15 )
f'{n) = - = non-dimenszonal chordwise velocity
g
1
Y a non-damensional quentity = [Z(ms1))"n
2m
B semi-wedge angle = ~e-
14m
3
FY) = [ (m+ )] £(n)
K = Fy = value of F(Y) on the surface
v
g'{n) = 6@ ) = -~ = non-dimensional spanwise velocity constanta
VO
o angle in radians given by K = /2 cosh .
h4
g a variable given by 2 = == + sinh o
V2

G4(2)/
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G (2) a function given by F(Y) = 2 G1(2)
J a funetion given by Gy - 2 = 1/J
g an integer dénoting step of integration
v
Vo
Y
#(¥) = f " FaY
(o]
x(x) = o #(¥)
E(Y) = f Xay
s}

S(Y) = 1 -6' ()

MY) = 6'(1 -G')

*
&y spanwise digplacement thickmess

ey sparwise momentum thiclmess

-3
by 1 . 1 3
Hy = -e--, @x = ex[g(m+1)]2(py; % ’ @y = ey[g(m-i*‘l)} -.[{ %-
y ; /J\_i VX e &

- ik s e P ‘____:.' *

8% = 5[ F{(m+1) 77, ) & = 5; [’:'4’(1-1'*‘1”2'\\;“

n B ~ L o

0 centrel differences of order n

£(Y) =[Ir t1dy, a general function
o

3. Theory and Analysis

The boundary layer equations for the laminar flow over an
infimte yawed cylinder are

Bu au 1 3p 2%y
W ome W= 5 = om et Y ey -'-(1)
ox oz p Bx 922
dv v v
Woem 4+ W omm = U omem vea(2)
s Az 9z°
op
——— = O, 010(3)
0z

and the eguation for contiwmity is

au ow
-t == = 0, ,,,(l,.)
ox 3z

This/
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This allows the use of the stream-function ¥ tor which

o ay
U = == ‘a.nd W = = ==
oz 9x

The boundary condrtions ares:-
(a) at the surface, z = 0, u = v = 0,

Wy 1s zero or non-zere according
as the boundary s solad or porous,
and

and w

Hi

{(v) &t the edge of the boundary layer

Z -0, u = U, v = V

u av 3% vy

_— = e 2 eme 2 oemee = (O,
9z 3z 2z? 9z°

If the flow outside the boundary layer is irrotational

av &V

e e mm = O vea(5)
dy  ox
au
Since the oylinder being infinite in length, -~ = 0,
ay

80 that V = ccnstant = Vo (say), Using equatica (3) end the
boundary condition at the edge of the boundary layer, equation (1) gives

du i op
Uoe = -, . s (6)
dx p ox

Applying the well-known transformation

4

v = (Wx)F £(n), 7 = (U)"

Y
and using the velocity distribution U = ox*, equation (1) reduces to
f 4 L (me1) 28" = mf (£1)%1], vee(7)
u
where £ (n) = -,
U
Uv %—
and w = =% <--> [(m+1) £ + (m-1) 7' 1. voe(8)
X

This is the well-lmown equation obtained by Falkner and SkanH.

'I‘he/



The bhoundary conditions are
£1(0) = O

and f(0) is zer< or non~zero according as the boundary is solid or
porius, and

£t = 1.
Hartree# used the itransformation .
m+1
Y 5= |=== 17

2

m+1

F(Y) = ——— f(‘n), > 0-0(9)

N2

2m

g o= =,
m+1

and censidered equation (7) 1n the form
FIH + 'EI:E!H - d(FI)Q_‘I]J .--.(10)

with the boundary conditions:-

F'{0) = O,
#(0) = zero,
Fr{o) = 1,

He tabulated the solutions partly by direct computation and partly on

a differential analyser for a series of values of [, and found that
values of £ less than =0.1988 will not yield velocity distributzions,
which satisfy the boundary conditions.

For flow with suction the conditicns Ff(0) = O and

F'{@) = 1 are essential, but if F(0) = K, then from (8) and
(9), the suction velocity at the surface 1s given by

m+1 Uv %
wy = o K| -, (-—) . --1(11)
2 x

The solutions of equation (10) with suction are the chordwise
solutions and have been described in the introduction for different cases.

Using the same expressions for ¥ and 7, and taking

-
g'(n) = =-, the equation (2) reduces to
Vo
g"T + 12.. (m+1) fg" = O’ .ll(12)
with boundary conditions g'(0) = 93, g'(ee) = 1, and the condition

for £(0) +the same as in the chordwise flow, Using Hartree's
transformation (9), and taking g'(n) = G'(¥), the equation (12)
reduces to

[eALLINPR o B O, “0(13)
with/



with the boundery conditions:

e¢'(0) = 0, F(o) = K, ') = 1,

Cooke5 has studied the case for K = O and has given solutions which
were based on Hartree's solutions.,

The solutions for different velues of K and B are considered
in the present paper.

3.1 Zero-suction Case

No theory 1s given for this case as this hes been dealt with
by Cooke5, and the results of Rott and Crabtree’ will be discussed laier
Ofl,

3.2 Suction Casge

(a) m{or g) = 0: In this case the chordwise velocity at
the edge of the boundary layer becomes U = ¢ = constant, end the
pressure gradlent 1s zero, The equaiion for chordwise flow reduces
(puttang m = 0 an (7)) to

Mroe Lopem = 0, eoo(1h)
with the boundary conditions |
£1(0) = 0, f£(0) = V2K, and £'(0) = 1,
The equation was studied and solved by Thwaites8 for different values

of K, although in his case the equation was slightly different in
ferm. The solution is

u 1
n -
- = Pt P 01 [ ) szdﬂ dn,
U Yo
where o©1 is determined by the boundary condition f£'() = 1, thus
giving the solution as
" _trea
a . e‘?f n an
- = = 5 ____—E‘a- —— 09.(15)
U 7— f 7 an
Jo
The corresponding spanvise eguation reduces to
gl?l + —;- fg" = O, 900(16)
with the boundary conditioms g'(0) = 0, g'(e) = 1, end
£(0) = V2K,
The solution of (16) is easily seen to be
n
v ] ffdn dn
- = g' = R Y s eeeil
Ve : 2o /5dn gy, 417)
o

the gonstant of integration being cvalueted from the boundary condition
g'(DO = 1,

The/
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The solutions (15) and (17) are identical, and thus the
equation {14) 1s taken to be solved, because (t4) has already been solved
by Thwaites®,

(b) Stagnation Flow (m = 1): In this case, puttaing
m = 1 in (7), the chordwise flow equation becomes

o M = (f')z'-' 1, 000(18)
Yo
with the toundary condtions: £'{(0) = o, £(0) = - _-_SI = K,
cp)?
and ') = 1. This equation was studied end solved by Schlichting

and Bussmann®,

The corresponding spanwise flow equation, obtained by putting
m = 1 in (12), reduces to

g o+ £ g" = 0, .”(19)

with the boundary conditions:

g'{0) = 0, £(0) = constant = K
and gl = 1,
The solution of (19), is
n
v ]: e~ /Tdn dn
MR R E
v, ]F e T4 ap
Q

The spanwise velocity profiles have been obtained by numerical
integration of (20),

(c) General Case (m vositive or negativql: In this case
the chordwise equation will be given by (10), which has been Giscussed
before.

The corresponding spanwise-flow equation, from (13), is given

by
G" + FG" = 0, eee(21)
with ihe boundary conditions:
| FO) = K, G'(0) = 0, G'(o) =1,

and the solution of (21) is

v .[ o IFAY gy )

- = G'(Y) = ——— e e e reel22

v ) 7%3e-IFdY ar ' (

° {
do

the constant of integration being evaluated from the boundary condition
G'() = 1., The velocity profiles are obtained in the present paper

by numer.cal methods of integration for those cases for which chordwise
solutions are available,

(a)/



- 10 =

(d) Special Case of m = =1/3 or B = =1: In this
case the chordwise flow equation is obtained from (10) as

LTIV ;1L B ,[(F!)Q “1}, a-c(23)

with the same boundary conditions, and after integrating twice the result
is -

P+ 3P = 3P4 AT+ 3K°, voo(2)

vhere A is a constant of integration and the other constant has been
evaluated by the condition ¥ = 0 in (24),

Thwaites'? has studied the values of the constant 'A' and
has found, that for a valid physicel solution, the suction velocity must
not be less than that given by K =+2.

Si) Thweites! Exact Solution for the Chordwise Flow:
Using Thwaites' 2 transformation in which he defines a, 2, end G,
by

-

K = /2 cosh a
Y
Z = ==+ ginh a ; oo-(25)
V2
F(Y) = v26,(2)
equation (24) reduces to
G+ G2 = 2%+, eee(26)
1
end, putting G, - Z = ~, this in turn becomes
J
J'-22J3 = 1, oo e (27)
the solution of which is
\/7? ZQ
Jd = — &g [eer+B] -c-(28)
2
2 g-sinh?o h
where, B = —=8 - erf (sinh 0.). .-.(29)
VR
This is evaluated by the boundary condition on the surface
Y = 0, Z = sinha, F(O) = V2 cosh o
G-:_(Sinh 0..) = cosh a } . Y] (30)
J(sinh a) = &
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1
Making reverse substitutions, Thwaites 2 has obtained the
exact solution given by : H

Y 2
u L —(?§+51nh %) N
- = F‘(Y) = | ===, e X - » oao(31)
U ViR D
whers
- Y . 2
Cof s
¥ & j ¥ 1 V@¢31nh %)
N = erf( -= + ginh a) + B N\N==—+ 8inh a2 + == . © ’
V2 V) ' £
- -
A v
and D = jerf | =—— + sinh o} + B .
v

The corresponding exact solution for the spanwise flow is given below.

(ii) The Exact Solution for the Spanwise Flow: From
equation (21), the spanwise flow is given by

¢" +FG" = 0, eee(32)

with the boundary conditions:

¢t = o, PO) = K, G'(0) = 1.
Using the transformation (25), and putting G'(Y) = G(Z), the above
equation reduces to
G+ 2G,6) = O, -ee(33)
with the boundary conditions:
f‘l
(sish o) = -
7z = aink o G (sinh a) = ~=
oo A
L L] 000(34)
G!(sinha) = O
Z = o G} (o) = 1

where dashes denote differentiatzons with respect to 2.

The solution of {33) is given by

[ z - f Z 26,z
sinh o
. e dz
inh
GQ' (Z) = s & 5 - .- ] 000(35)
—j 2 ¢,az
© az

the conssant of integration being found from the condition
Z ~>00, Gl = 1.

The/
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The numerator of the solution (35) is evaluated as follows.-—

1
From (28) end using the relation G,(2) = 2+ -, we get
J
2 e_za
S e — , veo(36)

V&  (erf Z + B)

which makes the numerator equal to

log = c%

Z

[ e-Zg . ologerf Z + B)? . o VR az,

g8inh a

e a

since, using (29), log (erf sinh a + B) + sinh®a = log = o
7

Integrating further beiween limits, the numerator becomes

‘ 1 1
ec' - e . 000(37)

Ierfsinho,+B erf Z2 + B

The derominator is at once evaluated by making 2Z = oo in (37), and

-]
using the definite integral ./We ¥ at =vx /2.
o
Thus the profile is given by

erf sinh o + B

4 -
v erf Z + B
-_—= Gé (Z) = ) 000(38)
v erf sinh a + B ;

1 G Pk Rk et e e g . g s o ot

1 +B

where B is a constant given before in (29), The boundary conditions
are satisfied, since

Y = 0, 2 sinh a, Gi(sinh a)

° 1 vee(39)
1

Y =00, Z =o0, G, (o)

The error-function has already been tabulated for a large

range of the variable, end so from (38), “he velocity profiles for
different K can be obtained,

As an example, the velocity profile for K = V2 is given

by
2 erf Z 2 ( )
—— I et e ——— . 1+——) »ool\‘-o
v, 2 ( v/l
erf 2 4+ w~=
i

since/



sincs from (25) and (29) a = 0, and B = -= ond the boundary

=
conditions are satisfaued. When X is large, B deoreases to smaller
values, and the minimum value of B is -1, |

[}

(iii) Case g

~1: Behaviour when X is very large:-
Trom (38), we have

erf ginh o + B

1 = e ————
v erf Z + B
- e A L ek Sl e ek T - P e g e T S ek ey B ’
Vo 1 = orf ginh a + B
1+ B
Y K
where Z = ==+ ginhc¢, cosha = ==
V2 ve '’
P ]
and B = w- o~ sioh’a erf(sinh a).
Vv
erf givth o + B
Putting, Cy = ’
1+ B

and using the asymptotic cxpansionfbr the error-function we get

v c (]
o]
—— = 1 - mm—— T bt "-E")"" TQ_ srs s e e e
Vs 1-cy 1-c,
-
1 e ? 1 3
Where T = T SmIm—_——— = ( 1 Rt ._.toaa---) [
Vr(14B)  Z 278 478
Also, using the expansion
K 1 1
sinh o = == {1 = —. o ——t evence |
V2 K* 2!

and neglecting quantities of 0 (1/K®) and higher orders, we get

V2 e e"Kg/2
erf sinh a = 1 = wemem , =

and B = ecomae—e e -1,

Then, replacing Z in terms of ¢ and making sumilar approximations,
the velocity ratio becomes

~Z
v - e 1
v, K2\ Xt

Again/
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Again, making calculations for displacement thuickness and momentum
thickuess, we geb

- 8¢ w 1

LA o 3,
v K?

- By W, 1 ( 1 )

d ——————— = - O —— ']
an v 2 K2

5

When, K =>¢, V/V0 -1 - e_z’, and Hy = == => 2, vwhich is the
- a
N N

asymptotic suction case for the spanwise {flow,

(¢) The Case of m = -1 (or B = -o0): In this casc

m+1
U = ¢/x, and F(Y) =J---— £(n) (Hartree's transformation) and there
2

is a failure of the equations (10) and (21). Thaitos'2 has suggested
another transformation, when dealing with the two-dimensional flow with
distributed suction, end has given an exact solution for this case, which
serves as the solution for chordwise flow over infinite yawed cylainder.

(i) Thwaites' Chordwise Solution: Using Thwaites'
trensformation

v = Vv U x [£(n) + K log x],
U 1 000(24-1)
n = (——v B z,
12
n Kr
we get u o= US(n), w = Vev |- -=|,
X X
*
and the chordwise flow equation reduces to
LK o= 1 - (£1)?, eas{42)
which was obtained and solved by Thwaites!?.
It is worth remsrking that with K = 0, and £'(0) = 1,

Pohlhausen's solutionl3 for convergent {low between solid walls is
obtained, which is one of the few known exact solutions,

In the solution of (42} Thwaites'? has made an analysis for

K and has found that for physical validity K rmust be greater than or
equal to V8, ,

(11) Tho Exact Solution for Spanwisc Flow: Using the

-
transformation (41), and taking g'(n) = --, +the equation of motion
Vo
for spanwise flow becomes
gm + K g!l = 0, ..,(1‘_3)

with/
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with the boundary conditions g'(0) = 0 and g'(® = 1. The solution
of (43) is given by

- = g'(n) = 1 ~ e s * ocn(lllf-)
the constents of integration being evaluated by the two boundary

conditions.

" Calculating other boundery layer quantities, we get,

oV v 4 v %_ !
\ Sy = /. —-(1 ——-)dz A .JC(-), 0-0(11-5)
Jdo VO VO K C
" 3 v 1 v _12—
6y = /m (1 e ) dz = - x( - > » o.c(’-{-é)
Jo Vo K ¢
6#
7
and Hy = eme 2, -no(h-?)
8y

The solution (44) can be written in the form
v 1
-7 er
= g'(n) = 1—8*(2/ ), ceo (48)

since #/8y, = 2K n.

The solution (48) is the well knowm asymptotic suction profile and is
independent of K,

L., INumerical Methods of Solutions and Computab.ons

Begides giving exact solubiongfor the spanwise flow over an
infinite yawed cylinder for the cases m = 0, m =-~%1/3 and
m = -1, a nuwber of results have boen obtained by numerical methods
and rather laborious computations. The numerical solution for each
velocity profile consisted of three integrations, and the calculations
involved the use of a large number of derivativos on the surface of the
boundary, and preparations of three charts of 'fimnte dafferences’;
one necessary for each integration, The 'finite differences' used
here are the 'eentral dlfferences'1h, and these have the' advantage that
they exast alternately end good accuracy is obtained by ineluding only
few orders. The method wes found to be convenient in one more respect,
that the deravatives at the edge of the boundary leyer vanished, and
made the calculations simpler. Momentum thickness and displacement
thickness wore also calculated by these numericsl methods. The
calculations are not pgiven here in detail, and only the important steps
are indicated.

The general solution for the velocity profile as given by

Y
v o /¥ gy
o - Gr(Y) = L , cos (45)
34
0 f IR
do

and/
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and its evaluation is carried out in four parts, viz.,

(a) calculation of F f{rom chordwise solution
Y

, Fay,

[Ye“f(y)dx = f‘x(x)ax,

and (d) calculation of the constant j X ay,
o

The formula used for the step~by-step integration is

(b) celculation of ¢(Y¥)

(¢) calculation of E(Y)

51 ® 2 12

Yé 6Y ! 241 At

t —_ LI * - e te ta .. - - . L -
l; ‘cd‘.c-.tg % 1 = tg-s-té 1 <6tg+6tg 1)
g

14
oo [ Ere 4 Sp1e o 1) , vee (50)
720 ( & €

maintaining 'central differences' only up to the fourth order. The
tcentral differences' on the surface are calculated by the formulas

(&r)* 1

v vt
8268 = (BY)? |41 & mmmmm v == (BT)0%
° ° 12 % 360 ° ’
a 5! = (&%) t"+1 (57)2 t‘”’- (51)
an! o = otz o |’ oo

negleoting quantities of order greater than ogaﬂ_’)s. With the aid of
formulas {50) and (51), the calculations (a), (b) and (¢) can be made,

The constant (&) is evaluated by the formula

o2} aY ] |
/; X4day’ = E; XO + Xn 4+ 2(X1 + Xa + esewe + Xn_i)
5Y (61)3 (51)% (sY)8
- dm XD 4 e XM o e X & mmem XZ” ,eee(52)
6 ( 60 2520  ° 10080 J

where higher powers of §Y are neglected, the boundary conditions at
the edge of the boundary layer are usced, and n is taken to be anfinite
by the condition when G'(Y) = w/V, = 1. The derivatives of X'%
on the surface are obtained by differentiations of

X'+ P X = 0, eee{53)

The derivatives of P on the surface are obiained by successive
differentiations of the main equation (10),

Thus the velocity is caleculated by the relation
G'é(Y) = ! Eé aio(Bll-)

y
vhere ¢' = f5°e—IFﬁY = , &nd the relation (54) provides a definite

) check/
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check on the whole calculation, since E = V/e' and G'() = 1,

The momentum thickness and displacement thickness are
calculated by using formulas lake (52) in the forms given by

U % m+1 [&J 2
<_H> -— 8 G'(1 ~G') ay = ,fMdY,

]

vx 2 J JO ‘0
e e (55)
U '}2' m+1 Lk (e rCJ
and <--> — O = f (1 -Gr) &y =j S ay.
v 2 ¥ o] (o]
H%
H& 15 calculated using the relation Hy = -~-, and the
)
velocity gradient on the surface is calculated by the fd%mula
e'(c) = c'. 0ss(56)

The values of F,, [, and &Y are given from the chordwise
solutions, and only the corresponding spamsise solutions have been
obtained from computations. The method 1s believed to give good accuracy
for all practical purposes, because (1) the coefficients of the series
used are rapidly decreasing, (ii) a large number of derivatives caleculated
Trom the differentrations of the main diffcrential equations are used
for the surfsce conditions, and (iii) the fimitoc 'central difference’
are used up to the fourth order.

Yet, there are two possible sources of crrors, which the
author has experienced in tho process of computation. The firsl arises
from the Tact that the interval &Y = 0.5 as used by Thwaites'O is
rather large, and better results cen be expeched with a smaller interval.
Secondly, with the increasing suction, the derivatives at the boundary
increasc, and they may also cause some errors for large suctirons, but
the errors are confined to the fourth deceimal place,

5. Digecussion of the Results

(a) Zero-suction Casc: No thecory 1s developed for this case
as it has already been given by Cooke3, end the author has cxamlged
the property of the spanwise profiles noted vy Rott and Crabtres’, As
mentioned before, they discovercd that all the spanwise velocity profiles,
1f plotted against z/8,, lic very closc together and they all
approximate to the exact Blasius' profile. The present author further
obtained the graphs of the spanwisc velocaty ratio againct two other
boundary-layer quantities, viz., (1) n and (2) against z/ﬁy.

In the former casc, the profiles were of the samc shape but
did not ceoineide. A graphical transformation for 7 was attompted with
a view to branging the profiles ncarer to coinecidence with the exact
Blasius' profile, and after Anding suitable factors for n with the
help of Blasius' preofile, all the spunwisc profiles lay very close
together and approximated to the exact Blasius' profile. (The profiles
arc not shovm hore, )

For the latter case, eight spanwise profiles arec plotted,
and thesc arc very ncarly coincident (Fag.1).

Explanat ion/
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Explanation.- The questiog arises why it is that the profiles,
when plotted against z/0y and /8, lie close together and approximate
to the Blasius' solution; vhereas, when plotted againﬁt T, they.do ngt
lie together, All the quantities n, e, end z/6, are nontdlmens1onal
boundary-layer quantities, sand the only %i¥ference 18 that nn is a
funetion of m, whereas z/6, and 2z/8, are independent of M.
Moreover, by neutrelizing the” contribution of m %o n by chogs;ng
suitable factors, the profiles behaved approximately in the Gesired vay.
This led the author to show that spanwise profiles plotted agoinst any
boundary-layer guantity which is independent of m, will lie very nearly
on one curve. ’

An explanation of the above behaviour ol the spanwise prof-les
is also apparent from the governming equation (equation (13))

gm +FG" = 0,
which bears a ¢ertain similaraty to the Blasius' flow equation

fﬂl + ffll = O.

A rethod of solving this given by Watson and Preston? was to write 1t as

£t +f, £} = 0,

an equation 'similar' %o equation (13), where f1 is & rough
approximation to f3, It turns out that quile different and crde
guesses for f; yield £} - curves satisfying the momentum equation,
whiich are very close to the Blasius' profile. It 18 seen that, since

the 7 1n cquatzon (13) 1s obtained from the chordwise velocity profiles
(F'), G' must be close to the Blasius' profile.

(b) Case of Suchion:

(1) 8 = 0 (or m = 0): In this case the solutions
for the chordwise and spanwise flows coincide, as is evident from (15)
and (17). The solutions for chordwise flow for different suction
velocities have been given by Thwaltesg, and sparwise profiles based
on those solutions are given in Table I,

(2i) Positive Pressurc-gradients (£ or m negative):
For positive pressure-gradionts, solubions for chordwise flow have been
given by Thwaites10, and the corresponding solutions for spanwise flow
are given in Tables 2 - 6 except for m = - 1/3 and m = - 1.
(These two casos will be considered sevarately.) Taive suction values
(K = 0,2, 0.4, 0.6, 0.8, 1.0) have been considered and solutions for
four values of /[ have been given for each value of K, Veloecity
profiles for each value of K have beon plotted against z/0,, and
are shown in Figs., 2 - 6. Other boundary-layer quantities aré
calculated, and the following conclusions arc obtained:-

(a) Por each suction value, the profiles for different values

of B coincide, and give approxumately oaly one curve when plotted

on a/ﬁy scele,

(b) The velocily gradient on the surface increases vith increasing
suction, and also for incrcasing values off O for each suction.

(c) The displacement thiclmess decreases with 1ncreasing suclion;
and it also diminishes with incrcasing valuss of £ fo a particular
suction.

@)/
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(d) The momentum thickness goes down when the suction quantity
goes up, and it also decreases with increasing f for a particular
suction. '

() The values of H, are nearly the same for a given suction,
and the effect of a change of S 1is negligible.

(f) Examining the values of H, in the Tables 2 - 8, it is found
that H, decreases with increasing Suction, but for large suctions the
variation is very small. Thas led the author to suggest that for very
large suctions, Hy cen be taken as independent of any suction parameter,

(iii) The Special Cases, m = ~1/3 and m's - 1:

(a) The solutions for the cacea m = -1/3 or f = -1 are
given in Table 7, and v/V, is plotted against My 1n Fig.7, for
d:fferent suction parameters (K = 1.4, 1.421, 1437, 1.50, 1.554).
It 1s found thot all the profiles coincide, and i1t is suggested that
they are nearly independent of suction‘yhpn plotted on a 2z/0 scale
but the suction must be such that K» v2 for physical validity.

The values of displacement thickness and momentum thickness

decrease with increasing suction, which i1s as usual. The values of
H, vary so little with suction (Table 7, Fig.9), they can be taken as
constant. This observation supports the statement in 5.(dia) (f) that
with very large suctions the variation of Hy 1s negligible.

(b) The cage of m = -1 (or B = =-oc9) is the limiting .case
and 18 only of theoretical interest., The profile is presented in
Tablc 8 and Fig, 8, It is analytically found tc be the well known
asymptotic suction profile, and vhen E/Vo is expressed in terms of
/0y, it 1s independent of K as given in (k8). The expressions for
displacement thickness and momentum thickness are obtained in (45) and
(A6§ in terms of the suction parameter K, It is interesting to observe
that the momentum thickness is half the displaccment thickneoss, i.e., the
velue of H, is exactly 2,0. This 1s the minamum value of for
the case ofyspanw1se flow, whereas Thweites'C has obtained a shaller
value of H in the case of chordwisc flow, and the explanation of which
is not clear.

(1v) Negative Pressure—graodionts (8 or m positive):
The lack of encugh solutions for the chordwise flow prevents the author
from discussing this domaan Tully. The only solution available for
this domain 1s of the stagnation flow (f 3 1) in the chordwise
direction given by Schlichting and Bussmamm®., The corresponding
sparwise solution has been obtained, and profiles are given in Table 9
for suction corresponding to K = 0, 0.5, 1.095, 1.9265 and 2.66l.
Other bourdary-layer quantitics (5;, Oy Hy) have been calculated and
are given in ihe same table.

The velocity rotios are plottod against z/8, in Fig. 10,
and 1t i1s oboerved that as the suction increases the profiles become
nearer and nearer to each other., This fact suoports the previous
statement that for large suctions the variation in H, with suction
is small, and that for very large suctions the change in the profiles
with suection is negligibie. .

The values of H,, are plotted and in this case also the
points lie on the ~curve obtained from other solutions for the
pressure-rise domain as in F1g.9. Thas fact indairectly supports the
observation, that the profiles based on z/0y, for a parbiculer

suctron~valug/
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suction-value and different pressure-gradients are roughly coincident.
A direct proof would have been beiter, but no solution is available for
these values of suction-paremeter (K 0,5, 1.095, 1.,9265 and 2,66h.)
end other values of S (except B8 = 1).

As nsual, the displacement thickness and the momentum thickness
decrease with increasing suction, as will be evident from Table 9.

The value of H, decreases with increasing suction and tends
to 2 = the minimum velue of Iy, as is evident from Fig.9 and Table 9,

(v) Universality of Profiles: As has been diccussed
before, (5.(a)}, the spanwise profiles for zero suction form an
approximately universal system on a scale which is independent of m,
end the representative profile of that system is the one for m = O,
which coincides with the exact Blasius' profile,

In case of suction also, a samlar idea of a universal system
of profiles 1s contemplated. In the suction case it is clear from the
previous discussions, that therc cannot be only one universal system of
profiles for all suction distributions, but there wrll be a series of
systems of profiles, cne for each distribution of suction. The
representative profile for each system will be given by the profile for
# = 0 for the corresponding suction. For the verification of this
statement, soluticns for £ = 0O are requarcd for suctions given by
K = 0.2, 0.4, 0,5, 0.6, 0.8, 1,0, 1.095, 1434, 1.421, 1.437, 1.5,
1.55k, 1.9265 and 2,66, but from Table I, only the solution for
B = 0 and K = 1,014 1is available for this purposc, and this
profile has been platted in Fig.7 ageanst z/9,. It 1s found from
F1g.7 that the profile for B = 0 coincides with all other profiles
for £ = -1, thus verifying the statenent made above., It would
have beon interesting to obtein further verifications, but the solutions
are lacking for this purpose.

{v1) Comparison of the Chordwise and Spanwase Flows with
Suction: It is not intended here to give a detarled discussion of the
sumilarities and dissimilarities of the chordwise and spanwise flows,
but only to point out certain striking features of the two flows
connected with this Bager. The solutions of the two-dimensional flow
given by Thwaites8s10:12 and Schiichting and Bussiann® have been taken
for the results of the chordwisc flow, and the results for the spanwise
flow have been obtained by the author.

The whole discussion is divided into the following sections

(a) B = 0, (zero-pressure gradient): In the case of zero
suction and zero~pressure gradient it has becn shown analytically by
Sears? that the two flows (chordwise and sponwise) have the same Blasius’
profile. In the suction case with zcro pressurc-gradient, the author
has shown in 3.2 (a) that the two flows have the same profile for eny
value of suction-parsmeter and the solutigns have been alresdy given
by Thwaites® and Schlichting and Bussmann® for a nurber of suction~
distributions, Typical chordwise profiles based on z/8, have been
plotted together with the spanwise profiles in Fags. 2, 3, 4, 5 and 6,
and it can be seen that as £ tends to zero, the chordwise profile
approaches the spanwise profile for £ = 0. It is evident thei .n

this case all othor houndary-layer charactoristics for the two flows
rust be the same,

(b)/
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{(b) £ > 0 (negative pressure-gradients):

(1) In this case the value of F"(0) (wall velocity-gradient
for the chcrdwise flow) 1s greater than G"(0) (wall velccity-gradient
for the spanwise flow), for given values of the suction-parameter and
pressure gradient, (i.e., given #8)(Fig.13).

(2) It is also found that the momentum thickness and
displacement thickness of the chordwise flow are smaller than those of
the spanwise flow for given suction and pressure-gradient (Pig.16).

(3) H, is less than H, for given suction and pressure-
gradient., The value of Hy ranges from 2,218 to 2,077 and T changes
from 2.5405 to 2,0806 as the suction-parameter K increases from zero
to 2.66L4 (F1g.18) for the case of # = 1, whach is the only solution
avarlable for this domain.

These observatiors suggest that for negative pressure-
gradients, the chordwise boundary-layer is thimmer than the spanwise
one -

(c) B < O (positive pressurc—gradients):

(1) In this case G"(0) (the wall velocity-gradient of the
spanwise flcw) is much greater than F"(0)(the same quantity fer
chordwise flow), for any given K and g (Pigs. 11 and 12),

(2) It is also observed that the momontum thickness and
displace-thickness of the spanwise flow are smaller than those of the
chordwise flow for the same conditions of suction and pressure-gradient
(Figs, 12, 14 end 15).

(3) Agein, the value of is always less than H, in
this domain for a given £ and ¥. “Moreover the variatron of I
with B is very marked, bub that of [ with £ is negligible.
Also, the effect of suction on the vaeriation of Hy, is more important
for all suctions, but the variation of with increasing suction is
always small, and for large suctions it is negligable, The maximm
value of Iy becomes even greater than 3.8, whereas the maxrmum value

of H, 1is nover greater tnhan 2,6, Similarly, the minimm value of
Hy goes even below 2, but the minimmm value of H,, is obtained
analytically as 2,0 (Fag.,17). For /A = =1, w%ere large suctions

are obtained, the value of H, changes from 3.42 to 2,56, but the
variation of Hy is between 2.12 and 2.13, as the suction-parameter
increagcs from X.h1& to 1.554 (Fig.19).

Even for very large suctions with p = ==, the value of
Hy wvaries from 4,905 to 2,025 as K increases from 2.828 to 3,6.
Thie increase of I wath K is a unique behaviour. But for the
spanwise flow the value of is 2,0, and the profile is the asymptotic
suction profile which 1s independont of K when based on Z/eyn

It 18 clear {rom above illustrations that the variation of
Hy with f 1s marked, but the effcect of £ on is negligible.
Also, the variation of H, vath suction is important even for large
suctions and for the asymptotic suction case, but the voriat.cn of H#
with K 18 small and i3 negligible for large suctions (Figs. 17 and 419).

(4) Separation Phenomenon:-~ The case of separation arises
only in the presence of a positive pressurs-gradient, where # is
negative. TFor the purpose of investigating this case the profiles of
the spanwire flow have been plotted for values of (- g) wup to anfinity

but/
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but they never show any tendency to separation. This can also be seen

. a%v W, /v
from the condition (—---) = -- (--) s Wwhere the raighthand
3z® /z=0 v \dz/2=0
side is cither negative or zero, since w, 1is negative. Moreover, the
chordwise profiles plotted in Figs. 2, 3, &, 5, 6 for large posative
pressure-gradients (F = = 0,28, -0.371, ~0.474k, ~0.592, and -0,721)
are concave near the wall, and show a wendency to separation. Also,
from the arguments of (c¢) (1), (2} and (3), it 1s clear that in this
case tho chordwise boundary-layer is thicker then the spanwise one, and
these facts show that separation 1s purcely a phonomenon of the chordwise
flow. The same remark was made by R. T, Jones 2.

(5) Asymptotic Suction Profiles:- In the casec of g8 = =1,
both the profiles tend to the asymptotic suction profile az K tends
to infinity. The chordwise case was considered by Thwaites'2 and tho
suthor has proved the result for +the spanwise flow,

For B = -«o9, Thwaites O has obtained the profiles for
certain values of K ranging from 2.828 to 3.6, The corresponding
solution for the spanwise flow has been obtained an this rcport, and it
is the simple asymptotic suction profile and is indepondent of K when based

on xq/Qy. This profilec is shown in Fig.8 together with chordw: se
profiles for XK 2.828,3, and 3.6 based on 6. It is important to
observe that the chordwise profile for K = 2,828 does not lie on the

spanwise asymptotrc suction profile, bubt goes ocbove 1t. As K aincreases to
3, the chordwise profile nearly coincides with the asymptotic suctica profile,
while for K = 3,6, the chordwise profile goes to the right of the
asymptotic suction profile as is evident from Fig,10. This behaviour is
explained by the fact that for XK = 2,828, Hy, is 1.905, which is less
than 2; while for K = 3, H, is 1.992, very near to 2, ond for

K = 3.6, H, is 2,025, grester thon 2 (the value of Hy for the
asymptotic suction profile).

From the above discussion, it appears that wiilh still gresnter
suction (K > 3.6), a change in the chordwise flow could be obtained,
but the spanwise flow would remcin unchanged as the asymptotic suction
case with Hy = 2,0,

6. Conclusions

It is shown that all the spanwite profiles for a particular
suction epproximately coincide when basedi on & 7/ scale, and form a
universal system of which the profile for # = 0 is the reprcsentative
one, It bears an analogy to the case of zero-guction where the exact
Blasius' profile is the representative of all the spanwise profiles on
the same scale,

Secondly, exact solutions of the spanwise flow for the ceses
B = -1 and £ = - oo have beer. obtained; and in the latter case
the solution i1s the asymptotic suction profile.

Thirdly, 1t is found that for a particular value of suctron-
parameters, Hy is very nearly indcependent of O,

Fourthly, it is shown that H, decreases with ancrcasing

suction, but is never less than 2,0. Also the variation of with
suction for very lerge suctions, i1s so small, that it can be ignored,

Fifthly,/
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F1fthly, it 1s observed that for zero pressure-gradient, the
two boundary-layers are similar; for negative pressure-gradients, the
chordwise boundary-layer is thinner than the spanwise one; and for the
positive pressure gradients the chorawise boundory-layer 1s much thicker
than the spanwise layer.

Lastly, it 1s also found that separation is purely a
phenomenon of the chordwise flow, and the spanwise profiles never show
any lendency to separation.
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APPENDIX

Notes on Table I

8

This Table I has beecn prepared from Thwaites' solutions~ for
two-dimensional flow with suction for the case [ = 0, His equation
was

fﬂf + ff“ = O,
with the boundery conditions: £'(0) = 0, f£'() = 2, £(0) = 2o,
u 1 17 U NE
where = = 4 £'(n), v = (W), ad o = -(-—)z.
U 2N Uy
Here =z heas been used instead of y as used by Thwaitess.
But in the present paper, the equation is
£he +,“2_ £ = O,
with the boundary conditions: €'(0) = 0, f£'(ed = 41 and £(0) = 2K,
u v
vhere - = f'(n) = g'(npn = ==,
U o}
U 5 4 -
n = ("“>'2 and P = (WUx)? £(p),
3

The difference is that in the present paper n has twice that
in Thwaites' case®.

The following modificalions have been made in preparing
Table I from Thwaites' table:-

(1) 7 is mede twice that given in Rof,8

(1i) - = -= = ££'(n), £'(n) supplied by ThwaltGSB.
U Vo
(111) £(0) = 2oy,
(iv)

TABLE I/



TABLE T
I 0O or m = O
£o-> 1,0 2.0 5.0 10.0 20.0
n VAN v/, n /v, 7 v/ 7 v/
0 0 0 0 0 0 0 0 0
0.1 0.0705 0.1155 0.05 0,125 0.0425 - 0,0125 * 0,170
0.2 0.1430  0.2115! 0,10  0,2345 0.0250 04230 0,0250  0.2215
Ouk | 0.2685 0.3895 0.15: 0.3250 0.0375 ' 0.0375 0,3185
0.6 ’ 0.3755. 0.5250  0,20' 0,4065 0,0500 - 0,2285 0,0500  0.3995
0.8 © 0.4765 0.6400 0.30 0,550  0,0750 ' 0.3155 0.0750 0,5300
1.0 0.5660 0.7300 0,40 0,6550  0.,1000  0,3975  0,1000 0.6350
1.2 0.6450 0,8000 0,50 0.7350 0.1250 0.1250 00,7150 |
1.4 0.7150 0.8550 0.60 0,8000 0,1500 0,5350 0,1500 ©,7800
1.6 . 0,7700 0,8950 | 0,80 0.8850 0.1750 0.1750  0.8250
1.8 0.8200 0,9250 1,0 0.9350 00,2000 GC.6400 0.2000 0.6650
2.0 0.8600 0.9500 1.2 0,9650 ' 0,2500 0,2500  0.9200
2,2 0.8950 0.9650 1.k  0,9800 ' 0.3000 0.7850 0.3000 0,9500 |
2.4 0.9200 0.9750 1.6  0,9900 | 0.400C  0,8700 0.4000  0©,9800
2.6 0.9400 0,9850 1,8  0.,9950 0,5000 0,9250 0,5000  0.9900
2.8 0.9550 0,9900 2.0 0,9950 0,6000 0.9550 0.6000 €.9950
3,0 0.9700 0,9950 2,2  0.9950 0,8000 0.9850 0.8000 1,0000
3.2 0,9800 0.9950 2.4  1,0000 1,0000 ©,9950
3.4 0.9850  1,0000 1,2000  1,0000
3.6 0.9500
3.8 0,9950
4.0 0.9950
4,2 0,9950
Lo 1.0000

e aman .




TABLE 2
FO = +0.2
B = ~0,28 ; -0.26 ~0,20 ~0,12
Y vo, W, Lo W, o W ofe W
0 0 0 0 0 0 0 0 0

005 0,914 0,220 0.997 0.2450 1,089 0.2671  1.141  0.2805
1.0 1,828 0.4201 1,994 0.4636 2,178 0.5028 2,282 0,5258
1.5 2742 0.5957 2,992  0.6498 3,267 0.6971  3.423  0.7230
2.0 3,656  0.7429 3.989 0.7952 4,356  0.8395 L.,564 0,864
2.5 4.570  0.8554 4,986 0.8963  5..45 0.9283 ¢ 5,705  0.9422
3.0 S48k  0,9303  5.983  0.9559  6.53% 0.9737 6.846  0.9803
3.5 6,398 0.9720 6,980 0,9835  7.62% 0.9922  7.987 0.9946
4.0 7.313 © 0.9910  7.978 0,9948 - 8.713 0,9981 . 9.128 0.9987
4.5 8.227 0.9977  8.975 0,9990 9,802 0.9995 = 10.269  0.9995
5.0 9.11 0,9996  9.972 0,9998 10.891 0.9998 11.410  0,9998
5.5 10,055 1.0 10,969 1,0 11,980 1.0 12,551 1.0

G¢"(0) Oelbl6 0.5157 0.5625 0.5910

[»0]
f (1-G*)ax 1.3775 102478 1.1396 1.0847
JO
2]

f o (1ct)ay 0.5470 0.501L, 0.:591 0.4382

o]

Hy 2,518 2,.89 2.4.82 2.475

U PR,

Cma i me aa G —
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TAPIE 3
Fo = 0.4
g - 0,371 0,350 0,300 0,200
Y Wey W, &, W, L oaa. A, we, WA
0 0 0] 0 0 0 0 0] 0
0.5 1,025  0.2784 1,119 0,3009 -+ 1,195 10.3187 ' 1.260 0.3338
1,0 2.050 0.5051 ° 2,239 0,5439 ' 2,389 0,5733 2,519 0,598
1,5 3.076 0.6851  3.359 0.7303 - 3.58. 0.7616  3.779 0.,7876
2,0 4,401 0.8195 - L.478  0.8595  L.779 C.8857 5,039  0.0045
/2,5 5,126 0.9099  5.598 0.9381 . 5.97h 0.9542  6.299  0.9652
3.0 6.151  0,9621 1 6,717 0.9774 7.168  0.9852 7.559 + 00,9896
3.5 7,176 0.9870 ©  7.837 0.9933  8.363 0.9557 8,818 0.9978
4.0 8,202 0,996k 3,956 0,9980  9.558 0,9993 10,078 0,9993
hob 9.227 0.9993 . 10,076 0,993 10.753 . 1.0 11,338 1.0
5.0 10,252  0.9999 ' 11.196 1.0
5.5 11.277 1.0
a"{0) 0,644k 0.6658 0.7052 0.7402
N .
f(‘l-G‘)dY 1.1658 1,0658 0.9985 0.94.66
Q
/ﬁg'(143')ay 0.4877 04466 0.4185 0.,3969
[
H, 2,390 2,386 2,386 2,385
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TABLE L,
Fo = 40,6
B > 0,47k, ~0.450 0,400 ~0,350
Y z/8 ¥ v/ z/0 - V/V0 2/0 - v/, z/0 y v/V0
0 0 0 o 0 o 0 0 0
0.5 1,152 0.3356  1.259 0.3588 1,317 0.3715 1,353  0.3793
1,0 2,304  0,5826 2.518 0,6195 2,63,  0,6390 2,707 0.6508
1.5 3.455  0.7590 3,777  0.7979  3.950 0.8172 4,061 0.828h
2,0 4,607 0,8764 5,036 0,9073 5,267 0.9212 5.41% 0,9289
2,5 5.759 0.9456 6.296 0.90644 6.58%  0.,9719 6,768 0.9758
3.0 6,911  0.9800  7.555 ©0.9889  7.901 0,9919 8,121 0,993k
3,5 8,063 0.9940 8,81k 0.,9972  9.248 0,998% ' 9,475 0,9986
4.0 9.214 0.9985 10,073 0,999% 10.535 0.9996 10.828 0,9998
L5 10,366 0.,9997 11.332 0,9999 11.851 0,9999 12,182 1.0
5,0 11.518  0,9999 12.591 1,0 13,168 1,0
545 12,670 1,0
G"(0) 0.7771 0.8317 0.8617 0.,8801
&
j’(1~G‘)&Y 0,9982 0,9160 0.8769 0.854.2
s}
[v.a]
j'G'(1-G')&Y 0el.341 0.3971 0.3797 0,369
[a]
Hy 2,299 2,307 2,309 2,312

— it 1 T Pkt o ol e o ke

TABLE 5
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TABLE 5
FO = 40,8
ﬁ -> "0.592 "'00570 ‘0-550 -0.500
Y sy, vV, z/0 v/V, L AN L A
0 0 o 0 0 0 0 o . 0
0.5 1,290  0,3905 1,378  0.4080  4.4L06  0.4L436  1.460 0,422
1.0 2.579 0.6503 2,756 0,6763 2,812  0,6843 2,920 0,6995
1.5 3.869 0.8173 L.133  0,8423 4,218  0.8497 4,381 . 0.8633
2.0 © 5.159  0,9162 5,511 0.9341  5.62% 0,9391 5.8  0,9477
2.5 | 6.4B 0.967% 6,889 0.9771 . 7,030 0.9796 7,301  0,9837
3.0 7,738  0.9896 8,267 0.,9935 8,436  0,9945 8.762  0.9960
3.5 . 9.028  0.9973 9.644  0,9985 9,842 00,9989 10,222 0,9993
4.0 10,347 0,999k 11,022 G,9997 11.249  0.9998 11,682 1.0
! L5 11,607  0,9999 12,4 1,0 12.655 1.0
5.0 12,896 1,0
5.5 ) L
G"(0) 0.9480 0.9912 1,0050 1,0312
i -
| foo
; j (1-G')ay 0.8663 0.8146 04799 ' 0.7717
N
| oo , .
5 /‘G'(1—G')dY 0.3877 0.3629" 0.3556 0.342%
! 0
i Hy 2,23} 2,245 - 2.248 2,255

- —— [——— i ——— i b i mp——— b —_—




B =

Y

0.5
1.0
1.5
2,0
2.5
3.0
3.5
4.0
4.5
5.0

5¢5

G“(O)

[0?143‘)63

o

j:a'(14}'

fy

)ay

-0,721
2o, W/,

0 0
1433 0.44.25
2,866 00,7087
4,299 0,862
50752 009436 !
7.165  0,9805
8.598 0,994

10,031  0,9985
11,465 0,9995
12,898 0,9997
14.331 0.9998
15,764 1.0
1,1256
0,7619
0.3489
2.184.
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TABTE 6
FO = +1.0
0,70 : -0.65 ~0.60
78, W, oy W #e, v, |
0 0 0 0 0 0
1.513  0.4563 1577 04677 1.621  0.4L752
3,026 00,7278 34153 00,7430 2241 0.7529
L.,539 0,8793 L.730 0,8920 L,862 0,8999
6,051  0.95L4. 6.307 00,3620 6.483 0,9665
7.564  0,9858 7.884  0,9892 8.s10L  0,9912
9,077 0.9965 9,461  0,9976 9.724 0.9983
10,590  0.9993 11,037 0.9996 11.345 1.0
12,103  0,9999 12,614 1.0
13.616 1,0
1,1613 1.1907 1,2102
0.7262 0,7002 0.6829
043305 0.3171 0.3085
2.197 24208 2,214



N -

TADLE 7
g.=

Fo -> 1010 1,421 1,37 1.560 } 1,554
Y goy, WV, al, WV, #hy /Y, zﬁay BR7A PRI A
0 0 0 0 0 0 0 0 0 0 0
0.25 0,880 0-3169 0,903 0,3218 0,925 0,3270 0,980 0,3420, 1,015 0.3527
0.50 1.760 0,5396 1,806 0,5469 1.850 0.5548 4.95G 0.57611 2,030 0.5907
0.75 2,640 0,697 2,709 0,7035 2,776 0.7120 2,939 0,7342] 3.0L5 0.7485
1,0 3,520 0.8025 3.613 0.8109 3.701 C.8190 3.948 0.8388! 4.060 0.8510
1,75 4400 0.8757 4.516 0.8832 L.626 0.8901 L4.898 0,9060! 5,075 0.9153
1.50 5.280 0.92:5 5.419 0.9305 5.551 0.9359 5.878 0,94.76] 6,090 0.9540
1.75 6,160 0,9559 6.322 0,960k 6,477 0,9642 6,857 0.9721| 7.105 0.9763
2.0 7.040:039754 7.225 0,978  7.402 0.9810 7.837 0.9859! 8.120 0.9884
2,25 7.920 0,9869 8,129 0.9889 8.327 0,990k 8.817 0.9933; 9.135 0.9946
2450 8.800 0.993% 9,032 0.9945 9,252 0,995L 9.796 0,9970 10,150 0.9977
2:75 9,680 0,9968 9.935 0.9975 10.178 0,9979 i0.776 0.,9587 11,165 0.9990
3,0 10,560 0,9986 10,838 0,9989 11,103 0.99391 11,755 0,9995 12.180 0.9996
2.25 11440 00,9994 11,741 0.9995 12,028 0,9996 12,735 0,9998 13,195 0,9999
3.50 12,320 0,9997 12.641 0.9998 12,953 0.9999 13.715 0.9999 14,210 1.0
3.75 13,200 0.9999 13.548 0.9999 13.879 1.0 1469 1,0
5.0 1,079 1.0 1..451 1,0

G"(0) 1.5049 1,529 11,5574 1,643 1,7030

=g ’ .0 ) ’
/,(1-c*)ar 0,6023 0,588 0.3753 0.5437 0«53
o)
cQ

].G‘(1—G')dY 0.2841 0,2768 0,2702 0.2552 0,2463

Q

Hy 2.120 2.126 1,129 2.130 2,129




TABTE §
= ~00 or m = =l
/%y v/,
0 0
0,2 0.,0952
0.4  0,1813
0.6  0,2592
0.8 0.3207
1,0 043935
1ol 0.5034
1.8 0.5934
2,0 0.6321
2.4 0,6988
2.8 047534
3.2 0.7981
3.6 0.834L7
40 0,8647
Lol 0.8892
L.8 0.9093
5.2 0.9257
566 0.9392
5.0 0.9502
8.0 0.9817
10.0 0.9933
12.0 0,9959
12..0 0.9991
0o 1.0




° 0.5 1.095 1.9265 2,661,

] d% vV, #% W% n M% W% n ﬂ% W% n y% ﬂ%

0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.1 0.2477 0.0570 0.3040 0,090 0.049 0,1872 0.,0670 0,022 0,112t  0.,0462 0,026 0.1650 02,0711
0,2 0.4954 0,1141  0.6081 0.1755 0.149 0,5693 0.,1931 0,122 0.,6218 0.2331 0,126 0.7595  0.3031
0.3 0.7431 0.,1709 0.9121  0,2566 0.249 0.9515 0.3059 0.222 1.131 0.%3869 0,266 1434 0.4804 |
C.h £.9908 0,2275 1.216 0.3333 0,349 1.334 04065 0,322 1.6 0.5131  0.326 2,058 0.615%
0.5 1.238 0.2836 1.520 0.,4055 0.459 1.716 0.4957 0.422 2.151 0.6161 0,426 2,703 0.7175
0.6  1.486  0,3389 1.82h  0.4731 0,549 2,098 | 0.57hh  0.522 2,660  0.6996 0,526  3.337  0.79.2
0.7 1.73% 0.3332 2.128 0.5360 0,649 2.480 0.643h 0.622 3.170 0.7668 0,626 3.972 0.8513
0.8 1.982 0.4462 2,432 0.5941 0,749 2.862 0,703L 0,722 3.680 0.8205 0.726 L ,607 0.8936
0.9 2,229 0.4976 2,736 0.6474 0.849 3.24% 0.7552 0.822 L..189 0,8630 0,826 5.241 0.9245
1.0 2477 0.5470 3,040  0.6960 0,949 3.626 ' 0.7996 0.922  L4.699  0.6963 0.926 5,875 0,959
1el 2,725 0.5942  3.34L 0.7398 1.049 14.008 0.8373 1.022 5,209 0.9223 1,026 6.150 0.9630
1.2 2,972 0.6389 3,648 07797  1.149 1,390 0.8690 1.122 5.719 0.9422 1.126 7e1L5 0.9745
1.3 3,220 0.6810  3.953 02,8139 1.249 4,773 - 0.,8955 1.222 64228 0.9575 1.226 7.779 0.9827
1.4 3.468 0,7201  L.257 0.8445 1.349 5.155 0.9173 1.3%22 6.738 0.9550 1,326 8414 0,9883
1.5 3.716 0.,7563  L.561 0.8712 1.449  5.537 0.9351  1.422 7.2L.8 0.9776 1.L26 9,048 0.0922
1.6 3.963  0.789%4  L4.865  0.89%2 1.549 5,919  0.9%%96 1.522 7,757  0.984,0 1.526 . 9.683  0,9948
1.7 Lo2M 0.819%.  5.169 0,9139 1.64L9 6,301 0.9612 1,622 8.267 0.9886 1.626 10,317 0.9966
1.8 L.:59 0,863 5,473 0.9305 1.749 6.683 00,9704 1.722 8.777 0.9920 1.726  10.952 0.5979
1.9 4. 706 0.8703 5.777  0.9445 1.849  7.065 0.9777 1.822 9,286 0,9945 1.826 11.586 €.9989
2.0 4954 0,8915 6,081 0.9561  1.949  7.47 0.9833 1.922 9.796 0.9962 1.926 12,221 0.9992
2.1 5,202  0.9099 - 6.385  0.9656 2,049 7.830  0,5876 2,022 10.306  0.9975 2,026 12,855  0.9995
2.2 54450 0,9258 6,689 0.9733 2,149 8,212 0.9910 2,122 10,815 0.5983 2,126 13,490 0,9997

TABLE 9 (contd.)/
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TAELE 9 (Contd.)

0 0.5 1.095 1.9265 2,66l

v/

2oy WV, #o, W 7 2o, 7 sy VTV, 7 7/ 5, .

y

a 9o [] * * = ] L] .

W A 0OWE~NOAUEWN = OW 0~ W E=

I b e AN AH AW AN AN AN AW WA N N NN NN N

[ iy i | kg g o i ok bt

5.697 0.9395 6.993 0.9796 2,249 8,59  0.9935 2.222  11.325 049939 2,226 1Ll.12h 00,9999
5.945 0.9511 7.297 0.,9846 2,349 8.976 0.9953 2,322 11,835 0.9993 2.326 44,759 1.0
6.193 0.9608  7.601 00,9885 2,149 9.358 0.9967 2,422 12,34  0,9996 2.426
6.040 0.9688 7.905 0.9916  2,5,9 9,740 0.9978 2.522 12.85L 0.9998 : 2,526
6.688 0.9755 8.209 0.9940 2.649 10,122 0.9985 2,622 13,364 0.9999

6.936 0.9809 8.513 0,9958 2,749 10,504 0.9990 2.722 13.874% 1.0

7.183 0.9852 8.817 0.9972 2.849 10,886 0,999

7.431  0.9887 9.121  0.9982 2,949 11,269 0.9997

7.679  0.991% 9.425 0.9990 3.049 11.651  0.9999

7.927  0.9936 9.729 0.9996 3,149 12,033 1.0

8,174  0.9952 10.033 1.00

8.h22 0.9965

8.670 0.9975

8.917 0.9982

9,465 0.9988

9.413 0.9992

9.661 0.999%L

9.908  0.9997

10.156  0.9998

10.40 0.9999

10,651 1.0

...'frg..

— — - - [ e RSN UV VU 0 P et A e ———— ——

TABIE 9 (contd.)/
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TABLE 9 (Contd, )

Fg = > 0 0.5 1.095 1,9265 2,664
G"(0) - ”“‘;.“5";;5““ | 0.9226 | 1.2052 2, 141 2.8329
fDF1—G')dx 1.0256 0.77300 0.5797 0.4162 043279
o

foc?'(*l-(;')ay 0.4037 0.3289 0.2617 0,1962 0,1576
o

Hy 2.5405 2.3502 2,2151 2.,1213 2,0806




Addendum

8. The Application of These Solutions to a Particular Class of Heat-
transfer Problem

Neglecting the heat generated by dissipation and assuming a
Prandtl number of unity, the temperature distrabution in the laminar
boundary layer on a porous cylinder, uniformly heated to a faxed
temperature T4 and held in a stream at temperature Ty, is given in
the present notation by

T oT 87T
U =+ W - — ---(57)
ox 9z oz ?

1}

The boundery conditions are

T =T, at z = 0,
and 000(58)
T = Ip at z2 = a,
P, =T
Then, putting 6(n) = ===—w=—, equation (57) reduces to
T, = T
"+t (m+1) £t = 0, e o(59)

with the boundary conditions

D
il

0 at 7

H
o
-

8 =1 at 7. = a,

and when continuous suction is applied on the cylinder f£(0) is a non=
zero positive quantity.

Equation (59) is identical with equation (12), with the same
boundary conditions. Henoce solutions for g'(m) (the spanwise velocity)
in equation (12) will provide solutions for 6(n) in equation (59), for
those cases of two-dimensional laminar boundary-layer flow which have been
used for the calculations of spanwise veloocity.
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