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ADDENDUM

From theoretical reascning, in connection with the load
on & wing with one cylindrical body at one end (Reference 7),
it has been suggested to replace cquation (48) Ffor the
cffective aspect ratio of the -rAng-body combination by the
followang relavioni-

With this relation, the theoretical estimates obtained from
the present method agree well with experimental resulvs, as
shovn in an unpublished report by Spence and Helford.
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A1

LIST OF SYMBOLS

X,V ,2 rectangular co-ordinates of the physical space;

X 1in free stream direction, y sideways, =z dowrnwards
Z =2z + 1y co-ordinate in the physical z-y plane
Zy = Zy + 1Yy co~ordinate in the transformed planes

where Vv = 1,2,3,4,5 or 6

D tank diameter

b wing span, excluding the tanks

c local cheord

c mean chord

A aspect ratio

Ae effective aspect ratio

@ mean sweepback angle of the half-chord line

Pe effective sweepback angle

t/c wing thickness-chord ratio

a geometric wing incidence

@ induced incidence due to the trailing vortex system

barp upwash incidence due to flow across the 1isolated tanks

R Reynolds number

Vo free stream velocity

v velocity

V 200 downwash velocity far downstream due to the trailing
vortices

w = 2a§zi? dowrwash factor

W potential function defined in Appendix (Eq.A2)

= ¢ + 1Y complex potential function

T circulation

Cy, local 1ift coefficient

EL mean total 1lift coefficient

ELW mean wing lift ccefficzent

ET_E mean 11ft coefficient on an elliptical wing alone



LIST OF SYMBOLS (contd)

a section lift-curve slope
n = %— coefficaent occwrring in the calculation of 'w' and 'al
J, Jy, Jp functions related to the total 1ift, wing 1ift and tank

1if'% respectavely

Suffices

us upper surface

LS lower surface

w wing (tanks present)
T tanks

E elliptical wing alone
e effective

J Junctaion

o0 infinity



1 Introduction

At the present time a considerable amount of attention 1s being given
to the problems associated with the carriage of external stores such as
fuel tanks and, amongst other aerodynamic effects, 1t has besn observed
that tip-tanks give rise to large increments in 1i1ft. The present paper
provides a method of estimating the magnitude and spanwise distribution of
such increments.

The calculations relate to wangs without camber or twist and fitted
with two equal, circular-cylindrical tip-tanks situated symmetrically with
respect to the plane of the wing.

Incompressible potential flow 1s assumed and only the case of minimum
induced drag (with the tip-tanks in position) 1s considered - that 18, the
calculations strictly refer to mne particular set of planforms,

The problem 1s attacked by the method developed by M.M. Munk1,
L. Prandtl? and E. Trefftz3 and adopted by W. Mengler®D in his work on
aerofoils with endplates.

It 1s assumed that the velocaty a, V, 1induced at the acrofoil by the
trailing vortices is constant, and that the vortex sheet far behind the
aerofoil moves downwards with a constant velocity wv,,,. The laft forces
are deduced in section L4 from the veloecity potential on the vortex sheet
far downstream in terms of wv,,, and the relationships between circulation,
induced incidence and lift-curve slope existing on the aerofoil serve to
determine vpe. Calcwlation of the potential function for downstream is
essentially the problem of finding the two-dimensional flow past a solid
boundary shaped like a cross-secction of the vortex shect. Conformal trans-
formations enabling this to be done 12 the present case were found (section
2) to be already existing an a report® by I.E, Garrick on the potential flow
about biplane aercfoils and in W. Mangler's work®:" on aerofoils with
endplates.,

A preoblem closely related to the present one - the loading coh a rear
fuselage and fin, which for small values of the ratio of fuselage diameter
to fin spvan may be looked upon as a wing with one tip-tank ~ has been solved
by J. Weber, concurrently with the present work. Here apgain the minimum
induced drag problem has been studied; there as lattle likelihond that non-
minimum solutions will be forthcoming for either problum. H. Multhopp's
general solution of the loading on a wing with a fuselage (extended® by
J. Weber to take sweepback into account) is a particular case in which a
transformation could be used leading to boundary conditions exactly the same
ag those for a wing alone; similar cases will obvicusly not occur
frequently.

The possibilities of applying the present solutions to wings of arba-
trary planform, including lew aspect ratio and sweep, are discussed in
section 6

A numerical procedure, suitable for practical applications of the
results, is outlined in section 7 and Table I,

2 Conformal Transformations

In the physical space, a rectangular co-ordinate system x,y,z 1s
taken; x is measured in the free stream direction, y te¢ starboard and
z vertically downwards,

A wing is considered which has a span b, mean chord ¢ and aspect
ratioc A , together with tip-tanks which are basieally eircular cylinders

-5 -



of diameter D, The wing 1s assumed thain, with no camber or twist and of
a planform such as to give minimm induced drag when in conjunction with
“the tanks. Fig.1 shows a wing with tip~tanks and a part of the downstream
vortex system., Fig.2 shows a cross-section of the vortex sheet far down-
stream, perpendicular to the stream direction, and it i1s desired to cal-
culate the potentials on this surface when 1t moves downwards with velocity
Voo« AS a step towards this goal, the flow must first be obtained for a
streaming motion past the stationary object. The state of affairs is shown
in Frg.3{(1). Since the potential function for this motion is not known,
conformal transformations must be made umtil a shape 1s obtained for whach
the potential function of the corresponding flow is available.

The transformations are in two main groups: the first group, which
15 taken from a report6 by I.E. Garraick, transibrms the shape of Fig.}(l)
in that corresponding to a wing with endplates (Fig.3(11)), and the second
group, transformations of W, Manglera:), converts the aerofoil-endplates
configuration into a straight line (Fig.3(11i)). A parallel stream at
infinity in the physaical plane becomes the flow due to a doublet on the
axis in the final stage of the transformations.

The complex co-ordinate &, 1s uscd in the transformed planes where

Sy

Zy + iy‘)

and v

"4,2,3,4,5 or 6 ;

"in the physical plane the corresponding co-erdinate is & where

L = z+.1y.

In the figures showing the various planes, corresponding points are denoted
by the same letter but with appropriate suffices., Geometrical proportions
have been maintained roughly between Figs. I and 7 and between Figs., 8, 9
and 10,

The transformations will now be described briefly, with some attention
being paid to points arising out of their particular application to the
present problem where the tank diameter 1s small compared with the wing
span, A list of the symbols is given at the begirning of the Report.

(i) By the transformation

El - &+ 1s - (1)

s Z —- 18

the whole of the Z-plane (Flg.#) external to the circles K and K' 18
transformed into the amnular region between two concemiric circles Ky
and K,' an the Zj-plane (Fig.5).

The deraivation of the transformation may be understood if, in the
Z-plane, the circles K and XK' are considered members of a coaxial
system of circles wath limiting points at @ and Q' and af Q@ and Q!
are taken as oragins for two peolar co-ordinate systems (9,5) and (Pl,Bi).
Q and Q' are the points + is, where

= g@+b> B (2)

and are close to the centres 0 and 0' of XK and X',
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Any point in the &Z-plane may then be written

1
L = z+1y = 1s+p916 = -:L,s+p'e:"6

and so from equation (1)

L gess _ g 4(5%-0)
s Z - 18 p

Using polar co-ordinates (ry, 6,1) with the origin at y; = 0

and r1=s-P—‘. o, = &' - &, (3)

H
Thus the coaxial carcles P /p = constant become the concentric circles
rqy = constant 1n the &, -plane and the orthogonal system of circles (such

as P P! P'" P") are transformed into the straight lincs 01 = constant
(e.g_ P1 P.‘"‘ P1" P_1'
In particular for the circles K and K'

B

I‘_.t = 3 €

where 6 = cosh™ (1 + %) (4)

and the points C and E, vertically above and below O, transform into
Cy and Ey on Ky at
. 3 otan (22
61 = + tan (D) .

(i1) By the transformation

- 2 aos (2) ®

the whole of the Z;-plane 1s mapped onte an infinite number of strips of
width 2% and parallel to the nnaglnary ax1s in the &,-plane (Fig.6). The
region external to the circles X in the Z-plane becomes a rec-
tangular region on each of these strlps ttention w1ll be comlned to the
strip of the 42—p1ane between the lines 2o = I,

Since

r, 16 r
Lg = 110g<—g—1-> = 1log]:1 e 1] = ilog—;l— 6
s s

r
Zy = = 0 ¥, = 1og<;> . (6)



Thus the concentric circles r4 = constant in the ¢ -plane become straight
lines parallel to the real axis in the Zy-plane and the straight lines
6y = constant remain straight lines parallel to the imaginary axis,

The point at infinity 1n the Z-plane, which corresponds to H (g =)
in the Zy-plane, is transformed into the origan Hy 1n the Z,-plane,

(211) By the transformation *

L = -2 [2(z,) + 2(g, + 2iB)] -1 (7)

the rectangular region in the Zp-plane which corresponds to the region
external to K and K' in the Z-plane is transformed into the whole of
the Zg-plane external to the figure A5B3C DzBzFsGz and 1ts reflection in
the ZB-axis (Fag.7). Thas is che end of %he first stage of the transfor-
mations corresponding to F1g.5(1i): the shape of a section through the
trailing vortex system of a wing with tip-tanks has been transformed into
the corresponding shape for an aerofoil with endplates.

The relationships between points in the Zp and Zs—planes are ag foliows:

%

11}

-2[z(z2) +z(;2+2le)] -1

where Z(éz) =

=
Q
9
o+
TN
mhg*
N
+
N
9]
§
T~
™
g
n
=
Vit
3
S
o
PN
w
L

Splitting this into real and imaginary parts,

2‘3 = -2 {M(Z27 Y2) + M(Zzs YZ'ZB)]
(9)
V5 = -2 [N(zz, Tp) + M(zy, ¥,-26)]
where * ¥
fu:oo m=oeo (—}8
s1n 2 -L.Bém
M(ZZ:YQ) = 2 + 2 }Z: e b sin(mzz) cosh(myé)
2(cosh Yo = cos 22)
£=1 m=1
Eﬂ)\o M=o0 )
sinh Y ~4BAm
N(zz,yz) = - 22 + 2 EL; e cos(mzz) sinh(myé)
2{cosh Yo - cos z2) Pyer Bl

* Z 1is an elliptic function of the first kind, the zeta-function of Jacobi
and Hermite, and 1ts expansion is given later in section (iii).

**It woula appear that in Ref,6 algebraic errors have arisen in the expres-
sions for M and N in passing from equation (23) to equation (25). The expres—
sions quoted above differ from those of equation (25) of Ref.6 in having the
factor 2 in front of the infinite series terms and in having a positive sign
1in front of the first term in the expression for M(zz,yé).
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In particular along B3 03 IB E% EB

(10)

1
-

23 = - M(zzsﬁ) ] ¥

and the point Hp, the origin of the &,-plane, becomes the point at
infanmity in the 25-p1ane.

As the tank size tends to zero (zp/b + 0, B o) the ratio of the
infimte series terms to the other terms in the expressions for zz and

also tend to zero, the semi-neight of the endplate tends to /s and
tge extreme points 03 and E3 correspond exactly to the points C and E,

For tanks of finite size we may write

sin =z - -8B +2
N(z?,yz) = 2 + 2a74P gip z, cosh y, + O (e yg)
: 2(cosh y, -cos z,) <
(11)
sinh z - -8B +2y,
N(Zz,YQ) = - 2 + 267%P oog z, cosh y, + O (e 2)

2(cosh Yp —cos z2)

where the third term will always be negligible but where the second term
may need to be considered.

For the moxamum size of tank taken in the numerical work of this report,
¢he First terms of the seraes (the second terms in cquation (11)) contribute
0.4% and -0.9% to the endplate height and wing semi-span respectively, For
tanks equal in diameter to the somi-span, the values would stzll be only
2.9% and -5, %,. Conditions are not very dafferent therefore from the lami-
ting case 20/b > 0 and in Figs. & and 7 the points C and Cz arc shom
in positions which strictly only corrcspond to each other an the lamaiting
case,

(iv)¥ The transformation

5 = 1«@ (12)

transforms one half of the Z;-plane (ng 8) into the whole of the 4, -plane
(Fig.9) 1n such a way that éﬁe points at wnfanaty on the zz-axis become
the point H;, at minus-infinity on the ¥, maxas and the endplate 1s {trans-
formed into a parabolic arc,

Saince .. l\fﬁt

55 _'L
2 2
then ¥, = V3 = %3, z), = 2yy3 . (13)
Thug the leongth Aﬁ remains equal te the length Az By whilst the

vertical distance () By, 1is 2K, where Ky 1s the length Cz Bz,

*The transformations (iv), (v) and (vi) differ in form from W, Mangler's
transformations & 2 owing to a negative rotation of all axes through 7/2,
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Before the next transformation is mads, the parabolic arc Cy E, 1is
approximated by an arc of a circle passing through Cy, D, and B with

its centre at [0, - i{4 +K€52/ 2}}. The error in this approximation is
small for the size of tanks taken in the calculataons of this report, but
for larger tanks, say 2D/b > 4 , ¥ further consideration must be given to

it,
(v) The transformation
2
y - (3 + KO ) ?:;5
% L + KD2 + 1&g
5

transforms the carcle in the Z’i—plane into a straight lane, of which
C5D5E5 is a part, in the f;j—-p ane (Fig.10).

By separating equation (ik) anto real and imaginary parts,

(345,2) (4+K,2) 25

z*'-l— =

(448, 2-y5)2 + 257
. (3+K,%) [y5(1»+K02-y5) - 25 ] (15)
* (148 2-y5)? + 2.2

In particular B5 = 1
5
- 4 - -0 2
(35 = i-5 (3+K0)

and the point HI,L at ~ioo 1in the §l+~plane becomes the point H5 at

1(4+K,%) in the L-plane.

(vi) By the transformations

2 - 1—<1 +Z}6—> <g1 “%Xéi{'%
i (1 +-gj;> (g, - go)<§1—- g0>

for yg <g;, 2.8 along A3B

for y6 >-—1-- , 1l.e, along FG&

&4

* such cases may arise in the application o.' the method to the problem of
wings with nacelles (see section 8).

- 10 -
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‘]+.!“_ E’é_g _1._—3
: %6 i T)\E 4

(1+85)] G -2 (& - ‘) (16)

for V¢ > g , 1.c. along ECDEF
g

the Z--plane 1s transformed into the upper half of the Lg-plane (Fag.11)
whilst the figure AgBsCsDsEsFsGg becomes a part of the Vgraxis.

The relationships (16) are sampler than those glVenhv5 by W Mangler
owing to the symmetry of our 'endplates' with regard to the imaginary axis
and since thc endplates are always at the taps of the wings.

The coefficients gq and g, are related to each other by

1. - 2 a4 ;
1+g2+-§2*~2<g1+g1) (i7)

and to the endplate height by

The constant g, 18 then obitarnable from

K 2 2 * _1)@—_1) : (19)

) (1 + ig-;) (g, - 8,) (E:T - go>

In any particular calculation, X, is known {rom the first three
transformations, so equations (17) and (18) must be =zolved by trial and
error for g and gp and similarly with equation (19) for g1 -

Prom the relationships (16) 1t may be showm that corresponding points
on the wpper and lower surface of the figure A5B5C5D5E5EBG5 are related
in the Zg-plane by

(e)ys = (;—6>L . (20)

The point at infanity in the Z-plane 1s transformed into the point lig
on the imaginary axis at yg = 1.

The Zs-plane is the last stage of the transformations since it is
possible to write down the potential function for the flow which is obtained

in this plane.

- 11 -



3 The Potential

The potential function € 1= required for the trailing vortex system
(Fig.2) far behind the aercfcil movaing dowrnwards waith velocity vy, in a
stream which i1s undisturbed at infinity. It will be calculated as the sum
of two parts:

(1) ®. The potential function of a flow of velocity -vg at
wnfinity, streaming past the stationary form of the vortex sheet.

(11) @,. The potential function due to a uvniform stresm of velocity
Voo €verywhere. This second part 1s simply the superpesition of a constont
velocity onto the flow field (i) so that the vortex sheet 1s gaiven its ver-
tical velocaiiy and the stream at infainity 1s brought to rest.

&, 1s calculable from the transformations of section 2, % may be
written down immediately.

Calculation of @2

The potential function for a strcam of velocity v parallel to the

Zoo
real axis in the Z-plane is

B, = dyr1dy, = V.4 (21)

Calculation of @1

In section 2 it 1s shown that in going from the & +to the Zs—plane
the original boundary transforms into a straight line which is part of the
Yg-axis whilst the point at infinity transforms into the point Hg on the
Yg-axis.

In the Z-plane, the flow to be considered is a parallel one at infinity
in the direction of the negative real oxis and 1t will be shown that this
transforms solely into the flow due to a doublet at Hg with 1ts axis
coincident with the 1maginary axis.

Consider the flow in the Z-plane near & = oc; 1%ts potential function

is
@1 = _VZDOZ’. - .(22)
In transforming to the Zz-plane via equations (1), (5) and (7)
l.@é_ = 5
d;3 o
g0 that
& = —vz‘m.s.?:,3 (23)
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From equations (12), (14) and (16), near % =1 (a.e. He),

- B
L = 7% N (24)
(3-)
1
2
where H = 4(&.+Kb )
- (3]
1 -3
g1“1
and hence
. Vooor 5. i .
e = ¢ +1 ¥ (25)

This represents the flow due to a doublet situated at Zg = 1 and darected
along the yg-axis,

In the Z-plane the conditions to be satisfied were that there should
be a parallel filow at infinity and that the shape of the cross-section of the
trailing vortex system should be a streamiine., The equation for thais flow
could not be written down immediately except for the region at infinity
(equacion (22)) and thus transformetions were necessary. The state of
affairs reached in the {g-plane 1s a satasfactory one since the transformed
boundary (part of the yg—aX1s) is part of a streamline of the doublet fliow.
Thus 1t engenders no dasturbances of the purc doublet flow and equation (25)
which was derived for the region close to Z6 = 1 as valid for the whole
of the Zg-plane.

The complete potential function is thus

r s.H
d = b + & = - 4 é (26)
1 2 ZoG I\iz'f 1 )

and the velocity potential ¢ for points on the vortex surface =zg =0 uis

b = v, _ __._yz -_H1 * z:]. (27)

- 13 -



L The Laft

L.1 Relationships between potentzal, 1ift and circulation

At any spanwise position on the wing-tank arrangement, the 1ift load®
1s grven by

+o0
C c = C - C
L e@ = [ e - o0
and since
C = E = g......a..é
P v, V, &
then

2 oly) = 2 - )
oW o) = &1 s (ﬁi)J

and the circulation is

My) = o, (y) :(y) Vo 5 4

(x 0w (xor0)

(28)

Thus the load dastrabution and circulation are related directly to the
dafference in potential between corresponding points on the upper and lower
surfaces of the vortex system far downstream.

From equations {20), (27) and (28)

Ny) _ 2sH/Y6Y\ 2

,_b_ - b <y6_1 * b (ZUS = ZLS) (29)
VZOO_ o
so that the spanwise load distribution i1s calculable from the transforma-

tions in terms of wv,_, the rate of vertical descent of the vortex sheet,
far downstream.

L,2 Determination of vy,

In order to obtain the magnitude of the loads the value of Vges must
be found, Nothing can be said about Vg L1rom consideration of the flow

*In this report the tanks are assumed to be very long and attention is
restricted to that part of their 1ift in the neighbourhood of the wing, In
practice there are forces on the noses and tails of the tanks owing to the
flow components across them; because of the downwash behind the wing and
the presence of boundary layers the downloads on the tails, which exactly
balance the uploads on the noses for isoclated tanks in potential flow, are
reduced, so that a net 1ift load results, This cffect 1s discussed in
connection with fuselages in Ref.f and equations (34) and (35) of that
report may be used to estimate it. It must be remembered that those
equations apply to one fuselage whilst in the present instance there are
two tanks.

-1 -



far downstream but it can be related to the induced incadence at the wing
which may be determined from the boundary conditions on the waing.

v and the induced incidence a; are related to each other by

e

o - 2
§;_ = = (30)

where w is a 'downwash factor' varying from one for wings of very large
aspect ratio to two for wings of very small aspect ratio, *

At the wing the effective ancidence ae(y) is composed of the geo-
metrical incidence «, the anduced incidence @3, and an additional upwash
incidence AaT(y) due to the tanks. This last additional incadence 1s pro-
duced by the flow component aV, of the mainstream perpendicular to the
axes of the tanks (see Fig.12) ~nd 1s quite distanct from the influence
which the tanks have on the trailing vortex system. Estimation of AaT(y)

is dealt with in the Appendix.

The effectave incidence is gaven by the relationship
a (y) = o+ dag(y) - o (31)
and the local 1lif't coefficlent is

G, (¥) a(y) a,(y)

1]

It

a(y) [o+ dag(y) - a ] (52)

where a(y) is the sectional lift-curve slope, However, the circulation
15 already known from equation (29) and the local 1if't may also be cxpressed
in terms of this:-

_ _2n(y)
oly) = 7o)
. TG b Ve (33)
vzoo_lg_ oly) ¥,
or, by equation (30)
T b 2
- I 2. €

v, .. " ely)

Mo

Eliminating Cp, from equations (32) and (3&) gilves an expression fer the
local chord

* Some discussion of @ will be found in section 6,1,
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) .
) 1
ofy) = 2. B, =3 (35)
© - aly) [ + dap(y) - 3]

from whaich the particular minimus planforms implied by the method are cal-
culable when @, is known,

Integration of equation (35) leads to an amplacit relationship for a4
in terms of known gquantities; for by defin:ition

b/2
1 2
_ o a:
bz f C(Y) Y

0

whence from eguation (35)

) cg.a(%)

f "m-g (36)

o aly) o+ dag(y) - o]

Lo bl
0
gl

In general this equation can be golved numerically for A in terms of o
but since, in practice, A is known and @y 1s required a process of
successive approximation will be necessary and will involve considerable
numerical computation. However for straight waings a(y) is constant along

the span and _Iy)_ and ban(y) are both functions of D/b so that a
-

set of integrations can be made for %? in terms of ai/a and /b only.

From this a chart may be prepared relating al/a to Q/b and E&&;

A
this has been done and appears as Fig.13,

The possibility of applying this chart generally is discussed in
section 6.

L,3 Expressions for local and overall loads

Once a3 has been fixed in value, Yoo 35 given by % a; and the
Vo
local and overall loads are éasily determined from equation (33) and 1ts
integrated forms. By equation (33), )

- Voo T
CL c = b. ol - (37)
Vzpc.g

and integrations over the wing semispan, the tank and the whole semi-gpan
lead respectively to
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5! = A . __29_-0 J-
OLy 7, Lij I
- A sz)
— _ VZOO
Cr, = A, Vo J »
where
1 r »
Jg = a &y
W /O . b (b ) ]
Zoc " D
14+ 2D
b
T
I =f -4 (21> ¢ (39)
1 Voo ¢ b b
0t o
1+-22
b
J = f T . a <§Z>
o v .2 b J
Zoo " 2

For an isolated elliptical wing the value of J is Jp = /2.

Combining equation (37) with the first equation (38) gaves the shape
of the load distribution on the wing and tanks:

T
1?_ .
vZoo'Q

CLC

CLWC

(40)

1
W

Some examples of wing loads are gaven in Figs, 16 and 17, and of
tank loads in Figs, 18 and 19.

Davadaing the first two equations (38) gives the ratio of the loads
on the tanks and on the wang

o, 7
:_2 = 3"']"2' (41)
CL, W

which 15 a function of D/b only and is shown in Fig.15,

The function JW is shovm in Fag.1h; JT and J are derivable from
Figs., 14 and 15,

5 The Induced Drag

It is necessary only to consader the changes in vertical momentum and
energy of the stream in passing from far upstream to far downstrcam of the
wing. Assume that a cross sectional area S' of air i1s given a constant
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vertical velocity v,, far downsiream (see p.190, reference 9 ) j A 1mass
of air poVyS' is influenced by the wing-tank arrangement every second and
the equations of momentum and energy are

— 1
L = Po Vo St Y 200
] )
DiVg = p, Vg 8' . 3V,
so that
Cp. v
A B Ve (42)
L L 2V,

In terms of 1ift coefficaent O, by equation (38)
=2
G L

>, T AT (3)

Since J for a wing with tanks i1s always greater than for the isolated
wing, its induced drag at a gaven total 1if%t is always smaller. For an iso-
lated elliptic wang {(which is not exsctly the same as the 1solated wang to give
minimum induced drag in conjunction with tanks) Jg = /2 and the cxpression
—-zftJ—— may be looked upon in some respects as an effective aspect ratio (this

concept will be used later, see section 7).

6 The effects of low aspect ratio, non-minimum planforms and sweepback

6.1 low aspect ratio

Theoretical work on wing lcading has in the past been mostly confaned
to wings of large or very small aspect ratios, the dowrwash at the wing being
taken in the one case equal to a half of that at infinity and in the other
equal to the whole of it, The two bave now been linked!'C by the cenecept of
an induced incidence factor w, varying from one to two, by D, Kichemann,
In this way the usual equations relating lift, effective incidence, induced
drag et cetera, which are derived under the assumptions of large aspect ratio,
are enabled to retain the same form for the whole range of aspect ratic from
zero to infinity. The expressions for w and a will be found in section 7.

In connection with the present problem it will usually be true that the
aspect ratio of' the boumd-vortex system on the tanks is much smaller than
that on the wing, implying different values of w, However, since equation
(36) refers only to conditions on the wing, v, will not depend on the valuc
of w for the tanks; furthermore, the loads on the wing and tank are depen-
dent on Vg, but not on w (equation (38)) so that the aspect ratioc of the
tank does not enter into the minimum-induced-drag problem. This happy state
of affairs is somewhat 1llusory, since some of the 1ift on the tanks is occur-
ring further forwards than that on the wing so that its induced dowrmwash has
almost reached the full value at the wing; thus the assumption of constant
induced velocity far downstream 1s incompatible with the assumption of constant
induced velocity at the wing. In other words the shape of the vortex sheet
(even neglecting any rolling up of the sheet) will change as it moves down-
stream. This effect would not be expected to cause large errors in the present
application, and no attempt is made to take it into account.
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6.2 Non-minimum planforms

If comparisons are made between the local 1ift coefficients and the
load distributions of isolated plain vings, it is found that the former
vary widely between wings of differing planforms whilst the latter are
never far from being elliptical - the load distribution for mainimum induced
drag. Hence in applying the present results to non-minimum planf'orms, it
might be expected that the additional loads due to the tanks will apply
with fair accuracy, but not so the addational 1ift coefficients,

The particular planforms to which the calculations apply are given by

Cr, ° )
s (1)

A o
o o

which is another form of equation (35). The loads on these wings without
tanks may be obtained by the normal methods (e.g. by Ref.11), or if less
accuracy may be tolerated the load distribution on an elliptic wing may be
assumed., Some light on such an approximation will be shed by the worked
example in the next section.

oo
]

6.3 Sweepback

The dominant effect of sweepback is? to cause increases in the sec-
tional 1ift curve slope near to the tips and decreases in it over the rest
of the wing, especially near to the centre.

Local values of a could be introduced into equation (36) - values
appropriate to the real wing being considered - and the eguation solved by
an iteration process for each particular example, Such a procedure is
tedious and should be avoided if possible so it 1s proposcd that a mean
value of a be uscd* {for large aspect ratio this is taken as 2o COS ¢),
in which case the results in Fig.13 st111l apply., 7This approximation implies
a change in a; and hence in the level of the loads on the wing-tank
arrangement, but no change in the shape of the load distribution {equation
(40) 1s independent of a ). Since, however, a different basic wing is
implied (equation (44)) these statements do not necessarily apply to the
additional loads,

To obkain some idea of the magnitudes involved in the approximation
some calculations have been made relevant to a straight tapered wing of 59°
sweepback and aspect ratio 3.61 {this is the wing of the worked example in
reference 11) with tip-tanks of diameter 0.15x semi-span.

Span leadings have been calculated for minimum wing—tank confagurations
[22/p = 0,15, A = 3.61] under the assumptions of (i) a mean value of a
and (ii) local values of a as for the real wing. They have also been
obtained ror the isolated wings implied by the minimum induced-drag condition.

Fig.20 shows the results for constant a. The planform assumed is
not far from being elliptical, nor 1s ats loading.

¥The same approximation in comnection with swept wings with endplates12

gives satisfactory agreement with expcrimental results,
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Fig.21 shows the results with varying a . The planform is almost
elliptical except over the inboard L0k of the semi-span and the load
distribution on this wing alone 1s close to that on the real wing (i.e.
the straight tapered wing). The value of «; obtained from equation (36)
using local a ’‘values 1s 10% less-than when a is kept constant. However,
the same is roughly true for the implied 1solated wings and from Fig,22 it
is seen that the differences betwgen the additional loads calculated by the
two nethods are very small.

"o comparison, there i1s included in Pig,22 the difference in load
petwesn the minimum arrangement for constant a and the corresponding
1s0lated elliptical wing., The order of accuracy given by this very swaift
aprroxumate method may be sufficient for most applications; the errors
involved will of course decrease with tank size.

Fig.23 shows the local loads and 1ift coefficients on the real wring
and on the real wing with tanks  The addational loads have been ftaken from
the a = constant calculation.

The conclusions to be drawn from the example are:-

(a) 1%t w1ll be sufficiently accurate in practice to use a mean value
of the sectional lift-curve slope, and

(b) 21t may be necessary, where large tanks are concerned, to work out
the loading on the wing alone implied by the calculations in order- to obtain
accurate estimates of the distribution of the addational load.

Some of the numerical work involved in the example will be found in
fable I.

7 Calculation Procedure

The method of calculation will be outlined for examples in vhich it is
assunmed to be sufficicntly accurate to take an elliptical wing alone as
datun. (see section 6 for a discussion of the accuracy in doing this); some
numerical results for such an cxample are given in Table I,

In any particular applicaticn the lmown quantities are wang aspect
ratio A, the mean sweepback of the half-chord line ¢, the thickness-

Slﬁ%d ratio %/c and the tank dismeter as a fraction of the wing semi~span

In order to determine - “%/a from Fig,13, the parameter ‘E”.E‘K must be
P

calculated, for which purposes the following expressions® of D. Kichemann
may be used:

H = Z2n = 2 - 3 (45)
Pe
{1 ag 008 Pg\2
< 7 Ag )

bt +-ﬁ7§
.2a__.n cos g
a = =2 = (46)

1 - mncot xn

*These will appear shortly in Ref,10.

- 20 -



where

¢, = hd . (47)

© 2
n Ag

In these expressions &, 18 a sectlonal 1ift curve slope gaven by

a = K.2ﬁ[1 + 0.8 /e (48)

0 cos o

where X 1is a factor depending on Reynolds number, equal to about 0,92 for
R=2x10% and equal %o 1,00 for non-viscous flow, The equations also
include an effective aspect ratio A, which 1s introduced from the phsyical
reasoning that ® and a are dependent on the distribution of vorticity
over the wing and tanks rather than the geomctrical aspeet ratio of the wing.
A, 15 taken arbitrarily the same as the effective agpect ratio to gaive the
correct irduced drag (sce section 5), that is

A, J 2Tg CLip
e g = 1 + %'i: . (14-9)

Owing to the dafferent effective aspect ralios of the wing with tanks
and the isolated elliptical wings, it 1s necessary to deraive valucs of

w 2
——— b .
Ty for both of them (see Table I)

<

Values of “i/a are read from Fag.13 and 1»v5§ calculated from
o
)
equation (30),.

Overall 1ift coefficients on the wing with tanks and the wing alone
are given by equations (38).
The mean 1ift coefficient on the tanks is obtained from that on the
CLm —
wing and the value of :Ei read from Fig.15. [N.B. OLT and all mean

e

1ift coefficients are made non-dimensional with the wing area, ]

The distributions of the loads on the wing and tanks are obtainable in
the form oL S and oL ¢
C © (or,e),,
W
may be compared with the values for the isolated elliptic wing after con-
Cy e

o C

from Fags. 17 and 19 roespectively and these

version into ceceffacients of the form by appropriate multiplications,

Thus the additional loads due to tanks are given by

o X - CL'C-(OLC)E

acC ac

(49)

®e
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which may be added vo the load distribution on the actual vwang alocne,
estimated by one of the usual methods (e.g. by Ref.10). Local lift
coefficlents are finally derived by dividing the load coefficients by
the ¢/t wvalues of the real wang.

8 Further “ork

The first three transformations of seccilon 2 vogether with V. langler's
transformations® for wings wnth inboard endplates could be used vo obvaln
span loadaings on iings with nacelles.
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APPENDTX

Estimaticn of AaT

The tank upwash incaidence ap can only be conveniently calculated
for circular cylindrical tanks which extend a long way ahead and behand
of the wing and this is the only case which will be considered, Since in
practice these conditions will not generally be fulfilied, the =stimated
loads may be too large. At the same time, there are reasons to believe
that a very short length of cylinder 1s sufficient to give local two-
dzmensional conditions close to the surface, where the effects are most
wntense, and so the errors involved may not be great.

Assumng the tanks have no incidence relative to the wing, which is
inclined at an angle a to the mainstream, there will be a velocity com-
ponent aV, perpendicular to the axes of the tanks, grving rise to increased
vertical velocities in the plane containing the wing, especially near to the
tank~wing junctions (Fig.12). The distribution of this velocity may be esta-
mated from the two-dimensional flow of z parallel stream at infinity past
two circles, the undisturbed stream direction being perpendicular to the
line of centrez of the circles. The problem is that of fanding the velocity
distribution along AB in Fig.lL when AB is no longer a solid boundary.
Transformations as far as the Z.-plane only need be considered, where the
circles have become straight lihes coincident with streamlines,

Along, AB, z =0, 2z, =7 and in transforming to the &i-plane a
velocity aVy al infinity an the physical plance becomes a velocity s.a.V,.
Hence 1t may be shown that the velocity along AB is gaven by

O T
- (HEE.):_@_E.__‘TQ__‘?_ (a1)
Z o @ dzg dzs dg
wnere
W = -~ s.aVO Z:’j (A-Q)
dZ, - 28 (43)
axz 2 - 42
and
déj = 1 + -1
aZ, 1 + cosh Yo 1 + cosh (y2 + 2B)

-1 Bfm
- L }:: m(—1)m e LB [oosh ¥y, + cosh (yg + 26)} . (an)
£=1 m=1

Altermatavely, since the tanks are far apart compared with their
diameters, an approximate estimate may be made by sinply adding the velo-
cities at any gaven point due to esch cylinder separately. The expression
for ap is then
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@

bap (2)2 1 + ! ]‘ (45)

and for tanks of the size considered in th-s report, the approximation is
extremely good (Fig.12).
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Specamen calculation

TABLE I

¢ =55°, s = 0,15
/e = 0.1, R =2 %105

Elliptic wing alone

Data: A= 3,61,

Calculations:

g .14 JE

Fig.15

Eqn. (49)

Eqn., (48) a0

Eqn, (47) P

Eqn. (45) w

Eqn. (46) a

Fag.1 e

1g.13 ok

e
«

Overall loads _
L

Eans. (30),(38) —EE

1]

1.571

21 % 1,15

53,3°
1,021

4.19

0.189

0.275

3.05

Lift on wing and tanks

Lift on wing alone

Extra 1if't due to tanks

LIS

Wing with tanks

Jﬁjl Qléﬁﬂ

4

e el o

ngpl
|

1l

2,16

0.067

5.30
2% x 1.15

54,19
1,011

L.y

0.186

0,222

= 3.2

]

it

0.23

#*
3.65

o
1.195

= 0,60

X

*% Correct to nearest 0,005,

1ift due to nose and tail effects is not included, see section 4.1



PABLE I {Contd)

Distribution of Extra Load due to Tanks

Elliptical Wing Wing with tanks
25 /o 0(1) (2) (3) (&) éi)
C C c
L CL__ =305 (1) | Lo 1T o500 (3)] a-
EL c ac OLw‘c ac ac
(%) - (2)
o} 1.273 3.88 1.137 3.89 0.
0.2 1.247 3.80 1.119 3.83 0.03
0.4 1,167 3.56 1,072 3,66 0.10
0.6 1.018 3,07 0.9 3.39 0.32
0.8 0.764 2,33 0,875 2.99 0,66
0.9 0.555 1.69 0.798 2.73 1.0L
0.95 0.398 1,22 0. 768 2.63 1,41
1.00 0 0 0. 741 2,53 2.53
y -P/2
0.100 - - 0.669 2.29 2.29
0.233 - - 0.597 2,04 2.0,
0.367 - - 0.534L 1.83 1.83
0.500 - - Q.475 1.62 1.62
0.667 - - 0. 380 1,30 1,
0.833 - - 0.267 Q.91 041
0.900 - - 0,203 0.69 0.69
1.00 - - 0 0 0

Columns (1) and (3) are
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FIG.1,2&3

FIG.I WING WITH TIP-TANKS AND THE
DOWNSTREAM VORTEX SURFACE.
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59° SWEPT WING, A=3-61,WITH TANKS
2D/ O-15, BY AN APPROXIMATE METHOD
UTILISING A CONSTANT VALUE ALONG
SPAN OF THE SECTION LIFT-CURVE

SLOPE,'a"
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FIG.2l. PLANFORMS AND WING LOADINGS FOR A
59° SWEPT WING, A=3.61, WITH TANKS 2D/g= 0I5,
BY A MORE PRECISE CALCULATION UTILISING
VALUES OF THE SECTION LIFT-CURVE SLOPE,
'a’, APPROPRIATE TO THE REAL WING (STRAIGHT

TAPER; TIP CHORD :025)
¢ CHORD
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FIG.22. INCREMENTS IN WING LOAD DUE TO

TANKS 2D/p=0:15 ON A 59° SWEPT WING,

A=3-61, BY THE APPROXIMATE AND MORE
PRECISE CALCULATIONS.
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FIG.23. DISTRIBUTIONS OF WING LOAD AND
LIFT-COEFFICIENTS ON A STRAIGHT -
TAPERED 59° SWEPT WING, A= 3-61, WITH
AND WITHOUT TIP-TANKS, 2D /g = O-I5.
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