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AERODYNAMIC  SYMBOLS.

mo mass

t time

V 7 resultant linear velocity

O . resulbant angular velocity

0 density, o relative density

v kinemalic coefficient of viscosity

R Reynolds number, R =1V (where 1 is &

suitable lincar dimension), to be expressed
as a numerical coefFicient x 10°

Norme terperature and pressure for aeronautical
work are 15° C. and 760 mm.
For air under these {o =0-002378 slug/cu. FE.
conditions {v = 1-59 x 107% 5q. Ft /sec.
The slug is baken to be 322 b~rmass.
' angle of incidence
angle of downwash
area
- chord
semi-spars
- aspect ratio, A=4s5YS
liFt, with coefficient %k, = L/SpV?
drag, with coefficient ko =D/SpV?
. gliding angle, ten y=0D/L
rolling moment, with coefficient J,=L/45pV?
pitch\ir\g moment, with coefficient  k,=M/~ES5oV
yawing moment, with coefficient k,,=N4SpV?

2. AUIRSBCREWS:

revolutions per secord

_ diameter
WD
power

_ Ehrust, with coefficient k, = TjprtD?
torque, with coefficient kg = Q/on? DF
efficiency, 77 =TV/P = Jk./27k,
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By adding and dividing by 4, we obtain,

ey oy
- §<W+W> e ®

where = (Y + Py + bo+p) + 4
So that whenyy Z%D =0

O

Thus, if we have approximate values of @A, Lf_JB, ete., from an
assumed field, we can calculate the central value from (3) and this
central value will be in general a better approximation than the
corner values. Then, we can gradually improve the solution.

Accordingly, the present method of solution is to divide the field
into squares and assume values of { for each corner. From these
calculate the central values and then, using these as the corners of a
new set of squares, find new values for the original corners. The
process is repeated until the values recur.

Judgment must be exercised in selecting the size of square. It
will be noticed that the method is correct to third order quantities
but not to fourth (as may be seen by writing the next terms in
Taylor’s Theorem). As the approximations get closer, the squares
should be reduced in size. They are easily halved by interpolating
values (using (3)) in the diamond squares, that is those squares
which are formed with their diagonals vertical as shown dotted in
the figure annexed.

& & In practice, a difficulty arises
, when the squares at the edge of
-+ the field cannot be arranged

with their outer corners on the
@ boundary; but this is easily
- overcome by interpolating the

ofe values (graphically or otherwise)
or by breaking up the region
© & into smaller squares.

As an illustartion of the method, the field chosen is that produced
by the solid whose trace is two infinite parallel straight lines joined
by a semicircle (see Fig. 1). The nearest approach to a theoretical
solution known to the author for these boundaries is that by W. M.
Page* the difference being that there the lines are joined by a cycloid.

Two cases were worked (—
(#) Fluid infinite,
(b) Fluid bounded by a plane at a distance of 8 radii.

% Some two dimensional problems in electrostatics and hydrodynamics .
Proc. Lon. Math. Soc. 1912-13, page 323,
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Case (2) was somewhat laborious to solve as it meant working
over and over an ever increasing number of squares of increasing
size until no change was produced in the neighbourhood of the
semicircle. Actually, the process was stopped at 80 radii. The
streamlines obtained are shown for the inner part of the field in Fig. 1.

The pressures round the semicircle or rather semicylinder are
easily obtained and are shown plotted in Fig. 2. The resemblance
to the experimental pressures on the front half of a cylinder at high
values of VD/vis obvious.

Case (b) was much easier, having a definite boundary above.
‘The streamlines differ but little from Fig. 1 and the pressures are
shown in Fig. 2. Further use will be made of these fields in the
appendix.

After the above work was completed Dr. Hague drew the writer’s
attention to a paper by A. O. Miiller* in which the above solution
of 7 2 = 0 is discussed and ascribed to Liebmannt.

PART II.

Viscous Flow.—The general equations of two-dimensional motion
of a viscous fluid are

0
;ai 5 ’V2M+%*+v%
(4)
_lep v 2 1 ov ov
Yoom T w VT Ty

If the motion is steady and no external forces are acting

ou_ 0 _x __yv_g
5% ol

An alternative form for these equations in which p has been
eliminated is

ot , , 98¢
AV, C_u +vay . . . (5)

We also have

B _ors
By @,vw.—zz; . .. (8

* “ Uber eine neue Methode zur Zeichnung der Feldbilder magnetischer
Kraftlinien . Archiv fiir Elektrotechnik, vol. XVII, p. 501, 1926.

t * Verfahren zur nummerischen Losung partieller Differentialgleichungen
zweiter Ordnung ”, Sitzungsberichte der Bayerischen Akademie der Wis-
senschaften, 1918.

{ In Lamb’s “ Hydrodynamics ”’ 2} == { but the form given above is
retained here.

(36008) Wt. 51/6007/1607 375 6/29 Harrow G.7/1.
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As in Part I, consider a square in the field. The relation deduced
there for { (Equation 2) is quite general so that we have for the
values of {and Cat the centre of the square.

¢=¢M—%n2vw,. R V6

Z:iM—%%Z‘VzC.G .. .. .. (8)

Neglecting third order quantities suitable combinations of
Equations 1 give.

oY/d x = (A+B — C — D) = 4u)
0Y/oy = (A-+D — B — C) + 4n ©)
o¢/ox = (a+db — ¢ — d) ~ 4n B
/oy =(a+d — b — ¢) + 4n

where A =1{,, a= 7, B =1, b=, etc.

Then from (5), (8) and (9) we get

1
= G 5] (e=) (B—D) + (b—d) (C—A)} (10)
and from (8) and (7)

§ =y — n% - .. . .o {1

These are the expressions to be used in improving an assumed
field in viscous flow as (3) was used tor the perfect fluid, the difference
being that we must now start with assumed values of  as well as
of .

q;n many cases the values of ¢ is known along the boundaries* but
this is not so with the vorticity and it is necessary to use some
additional method for obtaining the approximation to { on the surface
where the fluid flows over a solid. Consider a small portion of the
surface. For the moment take the axis of x along, and the axis of y
normal to the surface. As a first approximation write

C=0o+ Ry .. . . . o (12

If y is small the normal velocity v= 08 x will be small throughout
the region. Hence, approximately 82/0x? = 0 so that 2 = oHy/oy2
Hence l

o2
a}}%: 200 + 2ky

Integrating twice and assuming that ¢ is zero on the surface,
we get

Y=ty gkt L (1

* Care should be taken in applying the methed where the boundaries form a
definite angle as the continuity has been assumed in deducing these formulze.
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Let ¢ and {, be the values of Y when y is y,, and y, respectively.
Substituting these values in (13) and eliminating % leads to

43 — A3
gy =22t — It R 7
Y21y%(¥e — 1) :
This gives the required value of the surface vorticity in terms of
two values of { near the surface. If it is legitimate to put k2 = 0,

ie., to assume I constant throughout the neighbourhood, we have
the simpler expression

=dbh . . . as)

If on the other hand it is considered necessary to take into account
the variation of ¥ with % it can be done as follows —By Taylor’s
Theorem put

= ay -+ bx -+ cy? 4 ax?® L exy + fy3 + gx® 4 hxdy 4 1y2x

where @ = /9 y, etc., as in (1).

Ify = 0 we have by differentiation

0Yfo x = b + 2dx 4 3gu?
but 9/ ¥ = v and hence is zero for all values of «.
Sb=d=g=0
similarly by differentiating with respect to y we get
@ =¢e¢=h=10
So the approximate expression for Y near the boundary is
b=y 4 fy® iy

The coefficient ¢ is the value of % %;i: when y = 0, but we have
already seen that this is equal to C; So to determine 7 take three
points in the field (x,y,), (x,¥,), and (#5y5) and note the corresponding

values of the stream function {, J,and (i, This gives three equations
to solve for ¢ or ;. Algebraically the solution is found to be

—lg(yzxs—yaxz)+ —%(y3x1—y1x3)+ il% (Y1%a—a%y)
: ____yl y2 y3 (16)
0 Y1 (%5 — %g) - v, (25 — %1) -+ Vs (%, — %)

Every time a new set of values of Jand Chave been found through-
out the field (by 10 and 11) it is necessary to find new wvalues of
along the solid boundaries by 14, 15, and/or 16,

The whole process must be repeated until the values of ¢and ¢
recur to within what is considered a satisfactory margin throughout
the field. This margin must be only a fraction (say 1/10) of the
accuracy required in the solution as the quantities only approach
their limit slowly. The field can now be plotted and the velocities
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obtained, but if pressures are required a further step is necessary.
This step (which consists of integrating certain quantities along
chosen lines in the field) is desirable as it can be made to give a check
on the solution.

Taking the second equation of (4), we have

7 0w |, 00
By vy v—{—uax—f—vay
o3y | 93 8¢
but 2y = ¢ == 2
v 8x3+8x8y2 zax
hence — Lap — 2 V?—g +v—a-3+%%+2%1
o oy 0x oy oy
Integrating between A and B (two points on the line x = const)
we get
B B
, 1 2 1 o (o¢ [ o 17
Pat 5 P 9s"= P +TZ 0qs°—2 Pvujé;dy‘{‘z Pvlwsdy . (19)
A A
where g% = u? -+ v?

Similarly from the first equation of (4) we get for two points on
y = const.

B B
1 . 1 2C [
pat 500t =hnt 5 prZ-{—vaj@dx—ﬁpngdx .. (18)
A A

The last two terms of these expressions therefore give the change
of total head between A and B. So that knowing the total head at a
point C it can be found at any other point D by joining C and D by
a path consisting of straight lines parallel to the x or y axis and
integrating the above expressions graphically along the lines. 1f
the path is closed a severe check is obviously obtained on the part of
the field traversed by the path.

PART III.

Viscous Flow past a Circular Cylinder at R = 10.—The method
developed in Part IT hasbeen used to form the solution of the equations
of steady viscous flow past a cylinder between parallel walls 8 dia-
metres apart. To simplify the arithmetic as far as possible the follow-
ing values were adopted.

Velocity of undisturbed flow = V = 6-25 units/sec.
Coefficient of kinematic viscosity = v= 625

Radius of Cylinder = 5 units
Distance between walls = 80 units
Reynolds Number = R = VD/v = 10

Since the vorticity was assumed to be zero along the straight
boundary walls the solution developed is really that past a series of
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cylinders at distance apart 80 units or 8 diameters. The circle of

radius 5 passes through the corners of 12 squares of side unity, thus

simplifying the work. With the above values we get from 10 and 11

=1y — 00102 {(a — ) (B —D) + (b —4d) (C—A)
b= gy — #¢

To begin the solution a field was assumed by calculating values
from the expressions for the flow of an infinite inviscid fluid past a
cylinder of radius 20 per cent. greater than the actual cylinder to
allow for the retardation over the surface. This was corrected to
suit the straight boundary by the method given in Part I. The inner
part was then ““ faired ”’ to the cylinder, the surface values of Zon
the front portion being estimated from the boundary layer solution
in R. & M. 1178. The assumed field was symmetrical in front and
behind (i.e., about the y axis).

The expressions given above were then applied to the fleld over
and over again in conjunction with 14, 15 and 16. The field soon lost
its symmetry. The process was laborious, the more so as it had to
extend from about 5 diameters up stream to 8 down stream. In all
about 1,600 numerical substitutions were made in 10 and 11. As the
work proceeded short cuts suggested themselves, such as extrapolating
the next values from the run of the figures. The solution obtained
could certainly be improved, but some regions would then require
the use of smaller squares which would add enormously to the work.

A portion of the work near the cylinder is shown in Fig. 3. At
greater distances larger squares were of course permissible. The key
given explains the figures which show the degree of approximation
obtained. Near the cylinder surface the squares were afterwards
reduced as in Part I and in places again reduced, but this work is
not shown. The outer parts of the field are given in skeleton in
Table 1. Figs. 4 and 5 show the streamlines and vorticity contours
near the cylinder. Along the line » = 10 the vorticity is practically
zero so that at this section the total head is that in the undisturbed
stream. Hence, integrating 18 alongy =0,y =8,y =4andy =5
from this section to the surface gives pressures on the surface. The
pressures behind the cylinder were got by integrating alongy = 6
and thenalongx = 0,5 = — 3,y = — 4, v = — 5 from theline y = 8
to the surface. Several points were checked by integrating right
through the vorticity region from above. The results are

a }b1=§ 0 (‘7?;0
0° 1-43
37 +0-67
53 w=(} -4
S0 -=]+5
127 —1:8
143 =14
180 —1-3
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From these the coefficient of normal pressure drag is easily
deduced and found to be 0-95.

It remains to find the viscous or skin friction drag. From
Lamb’s Hydrodynamics we have

ov | ou
by = (555 -+ —5})
Taking for the moment x along the surface, this reduces to p,, = p,%
where p., is now the tangential force,
but ZCO:Q—%:_%Since a_vz(}
ox oy oy ox
=2l

This can be integrated to give the viscous drag and expressed as a
coefficient is found to be for the present example 0-74. Hence, the
total drag coefficient found for a cylinder at R = 10is 0-95 + 0-74
== say 1-7. The experimental value as found by E. F. Relf (R. & M.
102) is about 1-68 which is certainly a closer agreement than was to
be expected considering that the solution above has hardly been
carried far enough.

PART 1V,

Experimental Determination of the Pressures round a Stationary
Cylinder in an Air Current throughout a large Range of Reynolds
Number,

Many determinations of the pressure distribution round a circular
cylinder have been made in various laboratories but these have mostly
been at relatively high values of Reynolds Number.

The theory of the subject has only been developed for very low
scale values (R < 10) if we except those theories which seek to re-
produce the actual conditions by placing eddies behind the cylinder
in positions partly determined by theory and partly by experiment
(Kdrmén, Levy, etc.). Presumably, the theory will gradually be
completed for higher values of R so that it seems desirable to find
experimentally the pressure distribution for as large a range as
possible.

The present set of experiments cover the range between R = 28
and R = 17,000 the lower values being of less accuracy than the
others. For each experiment the drag due to the normal pressure
has been obtained by integration. At the lower values of R the
viscous surface drag becomes relatively large as is shown by com-
parison of these results with the total drag determined by E. F. Relf.
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A bye-product of these experiments has been a determination of
the effect of the size of the hole pierced in the surface. Three sizes
of cylinder were used, namely, 7/8”, 1/8” and 1/40” diameter. The
first two stretched right across the channel and the last was long,
compared with its diameter, so that the flow was assumed two-
dimensional in all cases.

At the lower velocities 2-5 ft./sec., a close mesh wire gauze was
placed over the mouth of the channel. While this certainly helps
to produce an even flow its primary object was to increase the
sensitiveness of the pressure gauge to velocity changes, one side of
this gauge being connected to a flush plate inside the channel and the
other open to the atmosphere. The head lost in the gauze is thus
included in the gauge reading so that even at 2 ft./sec. a reasonable
movement is obtained. This gauge was used to enable the channel
speed to be adjusted to the same value during each position of the
hole in the cylinder. The actual channel speed was deduced from
the observations themselves.

Special attention was directed to ensuring that the results could
be referred to the true static pressure. This problem is bound up
with the question of the interference of the channel walls which is
discussed in Appendix 1. A long brass tube 1/8” diameter was
suspended along the channel centre line. A group of small holes
was drilled in this tube at the section to be afterwards cccupied by
the cylinder. The pressure in these holes was then compared with
that in two static plates A and B. Plate A was flush with the channel
floor, the hole being directly under the cylinder position. Plate B
was about 3 ft. up channel where the pressure would be unaffected
by the presence of the cylinder. These comparisons were made at
all speeds with the gauze on and off. The static tube was then re-
moved and a comparison made between plate A and plate B. This
was repeated with two different cylinders in position. It was found
that the presence of the cylinder caused a fall of static pressure at
plate A, This is due to two causes.

(a) If there were no channel walls restricting the flow there would
still be an increase of speed past the cylinder and hence a drop of
pressure.

(6) The presence of the channel walls by ‘ compressing ” the
streamlines causes a further increase of velocity. In order to reduce
the results approximately to the condition of free flow, it is necessary
to separate these two effects. For the 7/8” diameter cylinder the
correction is small and the consideration of it is given in Appendix 1.
For the smaller cylinders it is obviously quite negligible.

For the actual pressure determinations a tilting gauge was con-
nected between plate A and the hole in the cylinder. To eliminate
the effects of creep in the velocity and pressure gauges the pressure
on the front generator (which, after correction is assumed to be
$pV?) was read after every fourth or fifth reading and the individual
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readings in each group were as far as possible distributed round the
circumference. As the readings are carried right round the cylinder
any constant error in 0 is eliminated when means are taken.

The small eylinder (diameter 1/40”) presented a set of difficulties
on its own. The greatest of these was the throttling effect of the
necessarily small hole and passage. This was partly got over by
drilling three holes in line along a generator, but even then there
remained the constricted passage through the cylinder itself and slight
changes of temperature caused large fluctuations in the gauge pres-
sures. A hand held near the cup of the gauge caused a rise in pressure
due to the fact that the expanded air did not get away freely. It
was quite impossible to work on windy days, a flat calm being
necessary. Every gust of wind outside the building caused fluctua-
tions in pressure of the order of the total difference being measured

‘at the lower speeds. Opening or closing of doors in other parts of the

building was particularly objectionable. When it is recalled that at
2 ft.[sec. 3pV? is equivalent to a head of water of about 0-001 inch,
the difficulties will be apparent. In fact the style of manometer
used is no longer suitable. Nevertheless, the results obtained at this
speed are given for what they are worth. A further complication
arises from the fact that the pressure on the front generator of the
small cylinder at low speeds is no longer $pV% For this reason
a small pitot tube was placed in the channel about 10 cm. above the
small cylinder and the pressure in this tube measured after each
group in the same way as the front generator pressure was measured
for the larger cylinders.

In addition the pressure on the front generator of the small
cylinder was compared with this pitot for a range of wind-speeds
between 2 and 10 ft./sec. These results are given in Table 2, 2’
being the observed pressure difference between the cylinder and the
pitot.

Table 3 gives the results of the pressure determination for all
three cylinders. These pressures have been corrected where necessary
as already indicated so that they refer to the static pressure in un-
disturbed free flow.

Size of Hole—Four different sizes of hole were used in the 7/8"
diameter cylinder and two in the 1/8”. An analysis of these results
showed that for each cylinder, they can be brought into substantial
agreement if it is assumed that the pressure inside the cylinder is,
not the pressure at the centre of the hole in the surface, but that at
a point half way along the hole radius towards the front of the cylinder.
In other words, if 8, is the angle between the front generator and the
centre of the hole, then the measured pressure corresponds to
0 = 0, — + d/D where d = hole diameter, and D = cylinder dia-
meter. This correction has been applied to all the results in Table 3.
The plotted results for the 7/8” cylinder (Fig. 6) seems to be sufficient
justification for this proceeding. It is rather surprising to note how
even the results obtained with a 1" hole are brought into agreement
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with those from a 1/64” hole. These remarks apply to the front
portion of the cylinder. Behind, where the pressure gradient is
small, the correction naturally makes little difference. For the short
region where the pressure is rising rapidly the evidence is inconclusive.

The above results have been brought together in Figs. 7 and 8
along with others from various sources. The pressure coefficient
$, is a function of 6 and R and so is shown by contours in Fig. 8.
The sources of information for the various parts of the diagram are
given by the reference letters down the right side and are as follows :—

Present report (Part IV) Experimental.

Present report (Part IT1I) Theoretical.

R. & M. No. 1176. Corrected.

Fage, Communicated. (See R. & M. No. 1179).
Fage, Communicated. (Unpublished).

Fage, R. & M. No. 106.

Taylor, R. & M. No. 191.

Parkin, R.A.S. Journal, No. 204, Vol. XXXI.
Lamb, Hydrodynamics.

P

Fmessgow

In dealing with published experiments it has been assumed (in
the absence of a statement to the contrary) that the pressures have
not been previously corrected for the *‘ compression ” introduced
by the channel walls. This correction has been applied assuming
the velocity increment to be v,/V = 13 =+ (30 7 + »* where 7 is the
ratio of channel depth to cylinder diameter. (See Appendix.) The
resultant correction to the individual values of p; is 2 v,/V (1 — 24)
approximately.

This correction becomes considerable in the case of experiments
such as those of A. Fage with a cylinder 8-9” diameter in a 4 {t.
channel which of course were not intended for the present purpose
but reached a higher value of R than any other known to the writer.

Coming to the other end of the scale we have Lamb’s solation for
low values of R. Adopting the notation and convention of this report
the expression for the pressure at the cylinder surface is found to be :—

i— Zsinzﬁ-—%sm H

by =

1 R
5 ~ Y lgg

1t has been assumed that this solution is valid up to R = 0-4.
From here to R = 25 Bairstow’s solution would be appropriate but
it does not seem to be possible to get the pressure distribution from
it without additional mathematical investigation as the authors state
that they neglect a constant term* which does not affect the total

# ¢ The resistance of a cylinder moving in a viscous fluid ”. L. Bairstow,
Cave and Lang. Phil. Tr. A. Vol. 223, p. 402. s
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resistance but would presumably affect the individual pressures. As
no information is available in this region the contours on Fig. 8 have
been dotted in by inspection and of course cannot be relied on.

Drag—The drag produced by the normal pressure has been
calculated from the experimental pressures given in Table 8. The
results are given in the form of a coefficient K';, = Drag -~ o DLV2in
Table 4. Fig. 9 shows the values plotted on log;y R. The total drag
coefficient as determined by E. F. Relf by force measurements is
also shown. The difference between the two is the skin friction drag
and is shown chain dotted.

In R. & M. No. 1178 it is estimated that the skin friction drag is
equal to 2/4/R and this value is also plotted in Fig. 9 showing a
reasonable agreement with the above. The values obtained by the
arithmetical solution of the fundamental equations in Part III are
also shown and used to produce the curves,
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APPENDIX.

Effect of the Channel Walls on the Flow past a Cylinder.

The presence of parallel channel walls above and below a horizontal
cylinder by preventing the expansion or bulge of the streamlines increases
the mean velocity past the cylinder. An estimate of this increase has been
made in R. & M. No. 1018 by considering the flow of an inviscid fluid past a
rotating cylinder. If # is the ratio of channel height to cylinder diameter then
the mean increase in velocity is there estimated to be about 100/#2 per cent.
This value seems to be too low for a stationary cylinder. This is probably
due to the eddying region behind the cylinder preventing the streamlines from
closing for some distance. Itisevident that thiswill produce a larger ““ bulge ”
at the cylinder. This is shown by the field obtained in Part I for the flow past
the solid shown in Fig, 1. The *bulge” of the streamlines at various
distances across the section of this field through the centre of the semi-
circular arc is shown in Fig. 10. When two parallel boundaries were placed
at distances of 8 radii from the axis and the solution repeated the increment
in velocity at various points across this section was found to be about 7 per
cent. agreeing with that given in Fig. 10. This figure also shows the “ bulge ”’
given by the expression obtained by Levy for the flow past a cylinder with a
vortex pair behind it.*

To obtain further experimental information the decrement in pressure on
the channel wall exactly below the centre of the cylinder due to the presence
of the latter was measured with the following results.

From Field in Fig. 1.
; Ap[EoV? g/ V.
gyhndter Pressure Velocity v v
1arirrlle er 4 decrement increment v;é N vﬁé N v/V=_(vy1+v3)/V
per cent. per cent. cent. | cent. per cent.
[
0-875 30 3 i-5 0-7 i-1 1-8
3-15 82 16 8 1-6 ‘ 6-0 7-0

This velocity increment may be divided into two parts v; and v, arising
from different causes. The first v, is the increase in velocity which would
have existed at this point had there been no channel walls at all and the
second v, is that produced by the compression of the flow produced by the
walls. The last three columns give the values computed from the field which
is shown in Fig. 1. In plotting these values in Fig. 10 it has been assumed that
v, = v, 50 that the plotted value is §v,/V.

When the pressure distribution has been measured on a large cylinder in
a small channel and the true drag coefficient for the cylinder at this Ris known,
we can deduce a value for the correction to the mean velocity. Such a case is
that givenin R. & M. 1176. J.H. Parkin in Toronto has also carried out a series
of experiments on channel wall interference for cylinders of various lengths,
etc. Hisresults for the cylinder spanning the channel are also shown in Fig. 10.

After considering the somewhat inconsistent evidence available it was
decided to adopt the following provisional value for the correction.

U 5
V 30y + #? or 7 <

Vol. XXIIL., p. 326.

* Aéronautical Journal.
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For a cylindrical body of any cross section provided the dimension in the
direction of the flow is small compared to the height of the channel v, is nearly
equal to v,. This can be seen by replacing the channel walls by images of the
body. The effect of the nearest image on one side will be to give an additional
velocity increment v, and at the same time a similar increment is being
produced on the other side. Sothat the average increment given by the channel
walls is of the same magnitude as that existing at the position of the channel
walls if these were removed. Thus, either of these increments is half the total
as obtained in the channel by the above method of measuring the pressure
increment on the wall opposite the section. For a body like an aerofoil which
has a small wake, this should give a fairly reliable method of measuring the
compression correction provided the body spans the channel. For a body
with a section long in the direction of flow (such as that in Fig. 1) v, will be
greater than v,.

TABLE 1.

Skeleton Solution for Viscous Flow Past a Cylinder.

Upper figures are values of £,

Lower figures are values of {.

4,8

—41| =33 =25 | 17| = 9| — 1| 4+ 7| 15| +28| +31| + «
Yy

40 0 0 0 0 0 0 0 0 0 0 0
250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250

32 6-017 0O 0 0 0 0 0 0 0 0 0
184 | 183 | 183 | 184 | 187 |189-9/193-1{194-8{198-0/199-0] 200

24 0-06| 0-08| 0-03| 0-03] © 0 0 0 0 G 0
120 | 117 | 116 | 117 | 122 |129-6{136-1|142-0{146-3/148-3] 150

18 0-12} 0-14] 0-16] 0-19| 0-15| 0-02| © 0 0 6 0
65 60 56 |54-6 158-4 167+5 |79-7 189-6 (95-4 {98-0 | 100

8 0-13| 0-14| 0-18] 0-27| 0-38| 0-78| 0-08] © 0 0 0
26 21-5 11646 12:7 | 96 | 9-1 128-0 41-2 146.8 {48-7 50
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TABLE 2.

Pressure on Front Generator of Small Cylinder,

A% P’ o
ft /sec. Ib./ft.2 toVv?

1-9 0-021 1-5

3-1 0-020 1-18

4-4 0-028 1-12

5-6 0027 1-07

8.4 0-017 1-02
10-6 0-021 1-016

$p = pressure on front generator.

$, = pressure in pitot.

P’ =P — Py (observed).

b, = static pressure in the undisturbed flow.
Cylinder diameter == §-66mm,
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TABLE 4.
Normal pressure
Cylinder diameter. Wind speed. VD/» Drag
Coefficient.
mm, ft./sec.
0-66 21 28 §-51
0-66 5.2 70 0-44
0-66 18:8 250 050
0-66 35-7 484 0-47
3.2 2:2 144 0-52
3-2 5-5 360 0-48
32 18-85 1,240 0-438
32 39-2 2,500 0-456
22-2 6-3 2,900 048
22-2 18:6 8,500 0-561
222 37:8 17,000 0-600
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VARIATION oF PRESSURE witk R, a7 © =80 & 8-160
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Percentage Correction to \/eiocitaj.
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EFFECT OF CHANNEL WALLS.

o----- Wall Pressure Experiments.
Parkin. .

e Pregsure Disbribution R.aM.N2 (I

|
|
bey) § “ i R F id sh . Fia'l.
e i/Bugcz in n,e’ shown in Fig
Bulge with Vortex wair behind
9 P ;
Cgi!&‘\,desﬁ(i,@vg‘h
VY EOQX
'\a Adopted correction m( i %
N Cglmder— iry perfoect Fluid.
\ \Ej\ ~ Bulge” = 100/r% %.
s\”\‘.‘w“ = 5
s U b s
© 25

5 10 5. . 20 30
7=(Charnnel Height) < (Cylinder Diameter).
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