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FURTHER DEVELOPMENT OF AUTOGYRO THEORY.

By C. N. H. Lock, M.A.

Reports and Memoranda No. 1127.
(Ae. 299.)

March, 1927.

Summary. Intvoductory.—The general theory of the autogyro given by
Glauert in R. & M. 1111 is based on certain simplifying approximations and
assumptions. The object of the present paper is to develop the theory still
further by removing some of the approximations.

The approximations of R. & M. 1111 may be classified as follows :(—

(1) The coefficient of axial velocity through the disc is constant over
the disc and is a small quantity.

(2) The lift coefficient of a blade element is proportional to the incidence,
and the profile drag coefficient is constant.

(8) The flapping motion is expanded as a Fourier’s series and coefficients
of cos 2 v, sin 2 y etc. are neglected.

(4) Squares and higher powers of the ratio of the forward speed to the
tip speed (4 = V cos i/R £2) are neglected throughout.

Range of Investigations. Part I.—Assumption 4 is dispensed with, all
powers of u being retained. It had been remarked that it is theoretically
possible to eliminate the flapping motion of an autogyro by substituting a
suitable mechanical variation of the blade angle round the circle. According
to the formulae of R.'& M. 1111, the modified machine would have about
double the maximum lift/drag in a standard case. It was argued that the
modified machine is in fact equivalent to the normal machine if the motion
of the blades is referred to the plane in which the blades move, which is not
normal to the axle.

The present investigation verifies that the two machines are, in fact,
identical. Itappearsthat whereas the longitudinal force is correctly estimated
in R. & M. 1111 (to the first order), the possible error in the estimation of the
incidence due to neglect of terms of order u? is of such a magnitude as to
allow an error in the contribution of the lift to the drag for given lift, of the
same order of magnitude as the contribution to the drag of the whole of the
longitudinal force. This explains the fictitious discrepancy between the
values of maximum lift/drag for the two machines.

After working out the force components, thrust and longitudinal force
for both cases and verifying their identity, an alternative method of deter-
mining the drag is developed, based on considerations of energy loss; it
has been verified that the resulting formulae give results identical with those
already obtained, and, being more simple, take the place of the rather
complicated formulae for the longitudinal force.
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The ratio of the value of maximum lift/drag of the present investigations
(the true value for heavy blades subject to assumptions 1 and 2) to the value
given in R. & M. 1111 is as follows :—

Blade angle .. 0° 2° 4°

ratio . .. 1-025 1-44 2-1

On account of the errors introduced by assumptions 1, 2and 3 (especially 2),
the actual value of lift/drag is probably lower than that obtained here, and
may be in fact closer to the value obtained in R. & M. 1111.

Part I takes account of the general term in the flapping motion so as
to remove the restriction to infinitely heavy blades.

Fuvther development—It is proposed to replace the constant profile drag
coefticient and the lift curve of uniform slope (Assumption 2) by the actual
values obtained in aerofoil tests, so as to take account of the stalling of the
blade sections. It has been found possible (on certain approximations to
the flapping motion), to replace the double graphical integration over the
airscrew disc by a single graphical integration, in which the variable is a
simple function of the incidence of a section.

1. General Introduction.—The autogyro is essentially a windmill
of low pitch working in a sidewind, and. it is natural to apply to it
the modern methods of strip theory combined with the Prandtl
theory of interference, which have been so successful in the case of
the monoplane wing and the ordinary airscrew. The autogyro
problem presents special difficulties ; the sidewind velocity is com-
parable with the tip speed in an important part of the working range,
while the flapping motion of the blades is of primary importance.

In R. & M. 1111* Glauert has developed a comprehensive theory
of the autogyro based on certain simplifying approximations. The
present report is an attempt to carry the theory a stage further by
removing some of these approximations.

(1). The axial component velocity u is assumed to be constant over
the autogyro disc.t It differs from V sin i, the component of the
autogyro velocity in the same direction, by an amount calculable by the
Prandtl formula for the interference of a monoplane wing. The value
of u is, however, always small in comparison with the tip velocity
R Q, and squares of the ratio of u/R Q are neglected throughout. The
actual value of /R £ varies from 0-02 to 0-05 in practice and the
last assumption is therefore thoroughly justified. The first assump-
tion is more doubtful but it may be noticed that when the forward
speed of the machine is greatest and the percentage variation of the
interference velocity » over the disc is likely to be most important,
then v (= V sin ¢ — %) is least.

*R. & M. 1111. A general theory of the autogyro. By H. Glauert, M.A.

1 Actually the effect of a variation of # of special type is treated in section
10 of R. & M. 1111.
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the smallness of the blade angle 0, that the angle of incidence of
the blade section is in general small over the greater part of the
airscrew disc. This is the justification for the assumptions made as
to the nature of the aerodynamic forces. The resultant force is
assumed to lie in a plane normal to the blade and to depend only on
the component velocity in  this plane and not on the vadial velocity.
The lift coefficient is assumed to be proportional to the angle of incidence,
since the aerofoil sections are of symmetrical shape. Also, since
the profile drag contributes only a small correction to the force
components due to the lift, the actual drag coefficients are veplaced
by a mean value 3.

(2) It follows from the smallness of the ratio #/R () (= %) and

(3) The effect of the flapping motion is discussed by expanding
the flapping angle @, as a Fourier’s series in ¢, the angular displace-
ment of the autogyro at any instant. The first three terms (constant,
coefficient of cos ), coefficient of sin ) are retained, all other terms
being neglected.

(4) It is convenient to write :(—

component velocity parallel to axle = » = x RQ*,
(asin R. & M. 1111).

component velocity normal to axle = pRQ.

Actually the interference on the velocity component normal to the
axle is assumed to be negligible so that pRQ =V cos 5. In
obtaining the expressions (on page 564, R. & M. 1111) for the flow at
a biade element, squares and higher powers of y are neglected throughout.

The results of the present report are as follows.

Part I.—Assumption 4 is dispensed with, all terms in p. being
retained. The importance of this increases with the speed of the
autogyro. At the maximum flying speed of the existing machine
whas the value 0-4, and it is desirable to extend the theory to values
of w which are as large as possible. In R. & M. 1111 Glauert
considers that his approximations are valid for values of ynot
greater than 0-5.

In R. & M. 1111 the forces on the whole autogyro are obtained
in the form of the components :—Thrust T parallel to the axle and
longitudinal force H normal to the axle. The drag of the machine
is expressed in the form—

D = Tsin: + H cos 1.
It appears on examination of the results of R. & M. 1111 that while
H is correctly estimated to the first order in y, the neglect of terms

of order p? compared with those retained in the expression for zero
torque involves an error in the determination of 7 which affects the

* A list of symbols is given in Appendix I., p. 6186.
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drag to the same order as the whole contribution of the longitudinal
force. The importance of the longitudinal force rises with increase
of forward speed and of (. ; hence, the present extension of the theory
of R. & M. 1111 becomes important at the highest forward speeds
and in particular in determining the maximum value of lift/drag.
The error is also of the same order as the whole effect of the freedom
of the blades to flap. On the other hand, the error becomes small at
large angles of incidence and so does not affect the results of
R. & M. 1111 in the neighbourhood of maximum lift.

In Part I the assumptions 1, 2 and 3 are retained, the theory
being worked out for the case of infinitely heavy blades ; this is
equivalent to neglecting the ““ coning’’ angle, i.e., the constant term,
in addition to the terms mentioned in 3 as being neglected in
R. & M. 1111. It may be remarked that in practice the coning
angle might be modified to any extent by offsetting the blade hinges,
and could theoretically be reduced to zero whatever the weight of
the blades. The direct method is first of all pursued of working out
the force components (thrust and longitudinal force) as in R. & M.
1111. Afterwards it is found possible to determine the ratio of
drag to lift from a consideration of the energy account; this
method is found to be simpler than that of calculating the
longitudinal force and gives identical results.

Part I1.—The restriction to infinitely heavy blades is removed
and the flapping motion is worked out in a general manner subject
to assumptions 1 and 2. The general solution is obtained in the
form of an infinite series of linear simultaneous equations for the
coefficients. These equations might be solved by successive approxi-
mation without restriction, but in practice the solution has been
obtained only (4) as an expansion in powers of pand () as an expan-
sion in power of a variable vy representing the ratio of the aerodynamic
force to the weight of the blades. (y == ¢ pa R%/I;, where a is the
slope of the lift curve and I, is the moment of inertia of one blade
about its hinge.) Since pis generally less than 0-5, while ¥ has a
value between 6-0 and 10-0 for the full scale machine it appears
that the expansion in powers of wpis of the greater practical
importance. Itis proposed to work out a few standard numerical
cases as far as terms in p? in the equation of zero torque which
includes terms in cos 2 ¢y and sin 2 ¢ .

2. Introduction to Part I.—The present investigation was
originally undertaken on account of a suggestion made independently
by Mr. McKinnon Wood and Mr. Townend with regard to a possible
mechanical alternative to the autogyro in which the blades, instead
of being free to flap about hinges normal to the axle, are rotated
about the blade axis by a suitable cam mechanism so as to change
the blade angle periodically round the circle. It was argued that
with a suitable design of cam the two machines are identical except
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that they will fly with their axles inclined at different angles to
the horizontal.* On the other hand, the formulae of R. & M. 1111,
if applied directly and independently to the two machines, gave the
result that the maximum lift/drag of the machine with variable blade
angles is roughly double that of the machine with flapping blades,
for the standard case of mean blade angle 0,= 2° while the
discrepancy increases with increasing blade angle. The results of
the present report show that this discrepancy is entirely fictitious.

The physical argument is as follows :—

For an autogyro, with infinitely heavy straight blades free to
flap, neglecting gravity (i.e., if the centrifugal is large compared with
the aerodynamic force), each blade will move in a plane through the
centre, but this plane will be inclined to the plane normal to the
axis in such a way as to equalise the thrust moments of opposite
blades about the centre. The inclination will be through an angle
B, in the plane of symmetry, the sideways inclination being zero for
heavy straight blades. If the plane of motion of the blades is chosen
as axis of reference they may be considered as not flapping but as
having a blade angle which varies periodically round the circle.
The machine is therefore mechanically equivalent to a machine with
non-flapping blades whose blade angles are varied in a particular
way by means of a cam and whose axle is inclined at an angle 8,
to the axle of the original machine. The condition of zero torque
must also be identical on the two machines as the mean torque is
zero about any axis through the centre.

2-1. Orders of Magnitude of the various terms.—On the assump-
tion that the discrepancy just mentioned is connected with the
nature of the approximations made in R. & M. 1111, the first step
is to define the order of magnitude of the various terms on some
definite basis. In order to arrive at preliminary ideas as to which
terms may be considered small, we start with the equaticns of
R. & M. 1111, as they stand for the special case of zero blade angle 0.

Equation 29 of R. & M. 1111 becomes, for 0 zero,
O = 2a x2,
where a (= 3) is the slope of the lift curve.
We shall consider \/Q% (= %) as the standard small quantity of
the first order. Its magnitude in the standard case of §= 0-006
is x4 == 0-032.
Equation (23) then gives—

Bi = 2 1 x,

* This is not exactly true unless the blades are considered to be infinitely
heavy and gravity is neglected.
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where p stands for V cos i/R ). Hence, 3, is of order not greater
than x,. Equation (25) becomes, for 0 zero—

T —beo QRS- % ax,,

while equation (31) becomes—

H—bcoQ Ra{ lsi 23, xOZ}“

2 2
=0bcp Q2R3 ; a x4y .
The equation for interference flow (13) may be written—
1
tan § =20 -+ —47—————
W w4 xg?

and the equation for X/Z may be written—

%{—_—tani—#?—
1 gar,
=Yy 4 5ux. .. (9

wooomVp® A x?
For this quantity to be a minimum for variations of it is necessary
that at least two of the termsshould be of the same order of magnitude,
consequently w must be considered as finite* in the neighbourhood
of minimum X/Z, while tan 7 is a small quantity of order x,. On the
other hand, when tan ¢ is finite, equation (1) shows that pis of the
order (x, cot 7)i.

But even when p is small, equations 1 and 2 show that since
terms of order u? have been neglected in obtaining the equation
8 = 2a %,? (the condition of zero torque), which determines x, as
a function of & (and ), there is a possibility of an error of order w
in the value of tan ¢ for given W, and this is of the same order as the
contribution to X/Z of the whole of the longitudinal force. Again,
if &, is the lift coefficient, equation 2 may be written—

X X 1
7:1(17'*2’/3:'1‘5!"«9‘0

to a sufficient approximation, and pmay be considered as a function
of &, given by the equation—

* Throughout the report any quantity is described as :—
small if it is of order x,?
finite if it is of order unity
large if it is of order x,—?
where p is positive.
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In other words, in evaluating the drag X for a given lift Z or thrust T
from the relation—

X=Tsin7z-+4 Hcos?

the approximation of R. & M. 1111 allows of errors in the evaluation
of ¢ for given T or Z, which are of the same order of importance as
the whole contribution of H to the drag X. This is the real cause
of the fictitious discrepancy between the results for the two
machines.

All the above conclusions as to orders of magnitude still hold
when the mean blade angle 0,* is not zero, provided that 6, is
assumed to be a small quantity of order %, For the standard
autogyro 6, = 2° = 0-035 radians, so that the assumption is
justified.

In the following analysis, therefore, x and . will be assumed pro-
visionally to be of order x0< =\/ §§> and all terms of higher order than
a

the principal terms will be neglected throughout asin R. & M. 1111.
This assumption will be justified in the course of the analysis. On
the other hand y, will be treated as finitet throughout. The early
portions of the analysis are identical with R. & M. 1111, but are
repeated here in order to verify the order of magnitude of the various
terms neglected or retained.

3. Velocity components—The fundamental assumption is that the
resultant air velocity affecting the blade elements is constant in
magnitude and direction over the airscrew disc, and may be resolved
into components, x R parallel to the axle, and R () normal to
the axle, where (Qis the angular velocity.

The spherical polar co-ordinates of the line of a blade at any
instant are () and 3 (see Fig. 1) where d ) /dt = Q.  The component
velocities of the air relative to a blade element at radius » are :—
xRQ— 7 (3 parallel to the axle, wR Qcos ¢ normal to the axle in a
plane through the blade (i.e., along the radius) and 7 Q + pRQsin ¢
normal to this plane, neglecting squares of 3. To the same approxi-
mation the air velocity relative to a blade element may be resolved
into—

(1) Along the blade :—pRQcos ¥

(2) Normal to the blade in a plane through the axle :—
U=2RQ—7B—pR QBcos¥

* 0, is written for the mean blade angle to distinguish it from the actual
blade angle 8 which may vary round the circle.

t See footnote on page 599.




601

(3) Normal to this plane :—
Uy=7 Q4+ uR Qsin ¥,

For a straight blade these are identical with the equations at the top
of page 564, R. & M. 1111.

Fic. 1.

If U is the resultant component velocity in a plane normal to
the blade, and ¢ the angle which it makes with the line mutually
perpendicular to the blade and the axle, it follows that—

Ucosdp =7 Q+ uR Qsin ¥ = U,, . (3)
Using =xRQ—7pf —pR QBcos ¥ ="U,. (4)
(see Fig. 1).

The two terms in U, are both finite and it follows, from the
assumption that x and (3 are of order x,, that the three terms in U,
are of order %, and that ¢is of order x, over that part of the airscrew
disc for which U, is finite and positive. ~When U, is finite and
negative, w— ¢ is of order x,, while ¢ varies between O and T in
the small area of the disc in which U, is of the order #,.

4. Aerodynamic forces—The assumptions are identical with
those of R. & M. 1111.

(1) The resultant aerodynamic force on an element lies in a plane
normal to the blade, and is a function of the component velocity
in that plane only.

134087)—11 M
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(2) The magnitude of the resultant force as expressed by lift
and drag coefficients is given by—

k. = a « (for a symmetrical section),

kD = 8)
where a and 8are constants,
a=¢ -+ 0,

where 0is the blade angle referred to a line mutually perpendlcular
to the blade and the axle. This assumption not only ignores the
effect of the stall, but gives a drag of the wrong sign over the area
of the disc for which U, is negative.

Neglecting squares of x and 3, the resultant force on an element
of one blade may be resolved into—

(1) parallel to the axle :—
AdT,=cpdraal? L (5)
=cpdra(U,U, + 00,2 S o
(2) normal to the blade and the axle :—

.;ldglchdy(suz*amUZ) 6
=cpdr{dU,2—abU,U; — aU%
(3) Radial outwards normal to the axle :—
gd Ty .. ‘e e .. (7)
The force components (2) and (3) resolved parallel and perpendicular
to the direction of the velocity n.R Qin the plane of rotation, give—

element of longitudinal force dH, = ; dQ,sin¥' — BdT, cos ¥,

element of sideways forced Y. = % dQ,cos ¥ + BdT;sin'¥. ..(8)

For the case of ‘“heavy” straight blades, neglecting gravity, it
will be assumed that the blades move in a plane through the centre
inclined at an angle B, to the plane normal to the axle, so that :—

B= Q B, sin (V' — W,).
This will be verified in the next two sections where it will be shown

that ¥, = O (for “ heavy " straight blades). Hence equations (3)
and (4) for the velocity components may be written :(—

U=U,=7r Q4+ pR Qsin¥ .. .. (10)
q)U U, —-xRQ——rQ@lem‘P’—FuRQBlcOSZ‘F* (11)

* This term is neglected in R. & M. 1111,
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The mean value round the circle of any force component F is given
by—

o b 2n
dF-z?jo dF,d¥,

(where b is the number of blades) and the mean value for the whole

autogyro is then obtained by integrating along the blade from O
to R.

4.1. Equation of flapping motion.—The equation for the steady
flapping motion is obtained asin R. & M. 1111 (page 562) by taking
moments about the hinge in the form—

LB+ Q) = (TM),

since squares of [3are neglected, the blades are straight and gravity
is neglected. (T M), is the moment of the thrust on one blade
about the hinge considered as a function of ¥,

Expanding 3and (T M), as a Fourier’s series in the form—
B=1PLp— Bicos(V —¥) — Bycos2 (¥ — ) +...
(TM); = 75— 71008 (¥ — ©;) — 7508 2 (¥ — wy)+...

the equation becomes—
I, Q2{B8y+3pBycos2 (¥ — Wy) -8 Bgcos 3 (¥ — Wy )+...
=1 — 1108 (V' — ) +... .. oo (12)

It follows that if I,£)? is large compared with (T M), we have to
the first order—

Po= L= Bs . oo =0
and 7; cos (V' — ;) = 0. .. .. .. (13)
The expression 1, cos (W — ,), when evaluated by means of

equations (5), (10) and (11), will be found to contain B, and ¥,
whose value may therefore be determined from the last equation.

On substituting the values of B, and ¥, in 7, T, etc., equation
(12) would determine first approximations to B0 ., etc., in the form—

— _To
BO IIQZ
— __ T2 —
By = 02 ¥, = w,etc.
and the modified expression for f3 could then be substituted in the
force equations.

In the following discussion of the force components equations
are obtained for the two cases :—(A) a machine with flapping blades
and constant blade angle ; (B) a machine in which the blade angle 0
is caused to vary with W in such a way that the flapping motion

(34087)—11

M2
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disappears, for infinitely heavy blades. These two cases will be
treated at first as though they were absolutely distinct from one
another but subsequently it will appear that they are identical.

4-2 Thrust moment (A), case of constant blade angle 0= 0)—
Equation (5) gives—

) R
(TM), =| rdT,
S0
‘R
=mq(mm+%uww.
<0
Substituting from equations (10) and (11),
(TM); = ¢ pa| {( Q+pR Qsin¥) (xR Q— 7 Q B, sin ¥
<0
4+ uR QB cos?2Y) + Oy (r Q+ uR Qsin¥)2}rdr.
Expanding as a Fourier’s series in W' :—

Coefficient of cos W' (= 7, cos w,) =0

Coefficient of sin ¥ (= 7, sin «,) is derived from the following terms
of the integrand :—

wrr R2 Q2sin W'— B,7% Q2sin V' + 2 8,7 R? Q%sin W cos 2V
421072 R Q2sin ¥
and is therefore equal to :—

(;pa{R{p.xng Q2 4 2 10,72 RQ2 — §, (r* Q2
L0
—%g%RZQ%}*W

1 2 1 1 *
:cpaR4Q2{§px+gpﬂo~Bl ‘—lﬂ—gpﬁ)} .

Hence, equation (13) is satisfied provided this last expression
vanishes, leading to the relation—

(e i)
=TT,
— 5
Y, =0.
This verifies that if 0, is of order x,, and # is of order x,, then {3,
Band Pare of order x,.

(14A)

2

4.21. Thrust moment, B.—The blade angle is supposed to vary
with W'in such a way that—

* Terms in u? are neglected in R. & M. 1111.
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It will be shown that the value of 0, may be chosen so as to balance
the thrust moment with B, zero.

The extra terms in the coefficient of sin ¥ in the expansion of
the thrust moment are—

—cpaf 6,(m Q%%Herz Qz)dr

1,3
_ 4 ()2 29,2
— elcpaR Q <4_f’ 8‘-’-).
Hence, if we put 3, = O and

2&’-(*" + % 60)
0, =

(14B)

3 2
1+—QP~

the coefficient of sin ¥ vanishes and equation (13) is satisfied.

!

f 4-3. Equation for the torque (A).—The mean torque for the whole
\ autogyro can be obtained by integrating equation (6) in the form

{

!

S " aweof rard 502 —abU,U,—aU,
_.2;JO G CpJOT r{ SC—abU U, —al }
Substituting for U,, U,, from equations (10) and (11), it appears
that the only terms of the integrand which could contribute to the
i mean torque are—

cpd[ 1 Q2 s R2 Q2 sin? ¥ |
— ¢ pab, [er RQ? — pur2RQ2 B, sin?W
‘ + p7?R Q2 Blcosz‘l’"]
—cpa [x2 yR2 Q2 4 3 Q2 B2sin? ¥
+ 2 px rR2% Q2 Bcos?¥ + p27R2 Q2 3,2 cos? ‘P']-
Hence—
® 1 .
Q=0bc pJ {8[73 Q%4 — p2r R2 Q2:| — abyx 72 RQ2
0 2
—a [x2 rR2 Q2 + ;—73 Q2 3,2 4+ pnarR2 Q2 3,
3 9 2] P 2
+ g R Q2 31-]}517

:bCpR4 Qz{%g(l + {_LZ) ~;; axﬂo—(l[%x2+ép12

+%Mgl+i%“2312]}... .. (15A).

—
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The condition of zero torque becomes therefore (on substituting for
B, from equation 14A)—

o (112 = %2 (14 pd

l—i-gy,2 T 1+—1—(1.2
xl_l 2+3 01#_1(1'2 ‘Lxl—l Z
g ¥ 9! ”
3
291+§M2 (16A)*
+3 P (16A)
2

This is a quadratic equation to determine x for given values of
%o, Bpand . Its form shows that in general, if 0, is of the order x,
then x is of the order %, thus verifying the assumptions made above

that x, S and Qare all of the order xo( = \/ Q_S .
a

4-31. Equation for the torque (B).—The formulae become—

b 2= R 9
Q=g [T a¥ee[ rar {502~ agU.T,

+ a0, U, U,sin¥ —a Uyz}
with [3; zero in equation (11)—
:bcPRmz{_}Ia(wpﬁ) ~

1 /2. 1
—gax (20— o6+ x)} (15B)

Substituting for 6, from equation (14b), the condition of zero torque

becomes—
1
5 J T+ g
gz I+ p9)= %2 (1+p?)=x9 v —5—
Uit
2
_1 2
g 1= gu
+§60——T_ .. (163)0
1—{—-2—5,@

* In Appendix 2, p. 818, the equations of the present report are summarised
and compared with the corresponding equations of R. & M. 1111.
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4-4. Thrust, longitudinal force and cross wind force, Case A.—The
mean values of the thrust T, the longitudinal force H and the cross
wind force Y may be obtained in a similar manner from equations (5),
(8), (10) and (11).

The resulting formulae are—

1 2 3
2R3 . -t
T=0bcp QR -Z—a{x+390<1—} 2p>}, .. (174)
H———bcpﬂaRa{%LLS——%p.axﬁo

+ap [3x+ 20+ i—p@l]},.. (18A)

- Y=0.

4-41. Case B.—The resulting formulae are—

3 1 2 3 N\
T—bco QRS -z-a{x+§60<l+—2-p,2> p.el}(ms)

szchZR?’{%p,S—— %p.ax@o—i—%aelx}, .. (18B)

Y =0.

5. Identity of the Two Cases A and B.—It will now be verified that
the formulae of type A and B are connected by relations which
correspond to a simple change of axes and are therefore equivalent.

Consider the result of resolving the air velocities relative to the
screw parallel and perpendicular to the plane in which the blades
move instead of to the axle. Quantities referred to the old and
new axes are distinguished by suffixes A and B respectively. The
new axes make an angle (3, with the old and hence, neglecting squares
and products of 3; and ¥, we have—

M = ta .. . .. (19
xBZxA"{*P-Bl} ()

Relative to the new plane of reference the flapping angle is always
zero and the blade angle varies round the circle according to the

formula—

e: eo_—‘ Blsinlp.

It may be verified that if in equation (11)—
U (=U,) =5, RQ—7 QpB;sin ¥+ pR QB cos* ¥

we substitute—

Xy =% — (1B
da = dp— By sin ¥,
the equation reduces to—

¢BU:xBR Q
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and we have o= 0, + ¢,

Thus, the velocity components in systems A and B are consistent
if we write—

tha = s (= ()
Xa = X3 — ({3
elzﬁ])

and these are consistent with the equations—

Zp.(xA —}—%00)
Br= )

.ﬁl g
§P~
4
:61: 3 .
1+ 5 ut
2

For the total force components we have—
Ty =Tscos B; + Hysin B,
HB = HA COS :Bl - TA Sin B],

or

to our approximation.

. The torque requires closer consideration as the torque axes”A
and B are inclined at the angle 3;.

The formula for case A may be written—

(dQn), =cprdr{3U%2 —aad, U}
=cprdr{3U2—aadsU?+ aaU2B;sin¥}
= (dQp); +7d T, B;sin V.

Now {3, has been chosen to make the coefficient of sin ¥ in the

expansion of [R rd T, zero, and consequently the termrd T, sin ¥
Jo

contributes nothing to Q. Hence—

QA = QB-

All these results may be verified algebraically from the formulae
already obtained.
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6. Interference flow.—We have so far obtained formulae which
determine the force system corresponding to given values of pand # ;
if we add the condition that the torque must be zero, the number of
independent variables is reduced from two to one, and the value of »
for given p can be obtained by solving the quadratic equation (16)
(A or B). (Equation B is the simpler to use in practice.)

It remains to connect the results with the velocity of the autogyro
relative to the air at a distance from it, as defined by the velocity V
and the incidence 7. The assumption of R. & M. 1111 is adopted,
that the induced velocity v is parallel to the axle and is given by
: formula 11 of R. & M. 1111, Section (3) :—

T
v——Z—n_R?b_V" .. .. o (200

where V' is the resultant velocity at the autogyro relative toit. Hence
uR Q= Vcos*, .. .. .. (21
V'2 = (x2 4 p?) R2 Q2
and

xR Q= Vsint — .

Eliminating v and V’,

1.
51
nR2pR2 Q2 p Vi? + £2

which is identical with equation (13) of R. & M. 1111, Section 3.

tani—f—l—
R

i T .
Writing ¢ for m the equation becomes—
1

1
tan t = 'f' + 2_————‘: .
B uvp? 4 a2

It is now necessary to compare the formulae for the two cases

represented by the equations with suffixes A and B respectively.

Logically, the interference flow must be assumed to be normal to the

plane of reference in each case so that the directions of v, and vy
are inclined at an angle {3;, while—

iy =15 — B (29

Va=Vs .. .. .. (29

(22)

and

* Up to this point R  has been defined as the component velocity in
- the plane of reference affecting the blade elements and has not been assumed
/ to be equal to V cos 1.
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These results should be consistent (neglecting squares and products
of ¥ and {3;) with the equations—

HR Q=VACOS'I:A, .. . . (21A)
¥ :(lz-ct
tani,=—"4 2 .. .. .. (22A)

B pVul 4 x,?
and the corresponding equations with suffix A replaced by suffix B.
Rationalising equation (22) :—
(ptans — x)% (u2 + x2) = — 6242 = K %,2,
where K is a finite quantity, or—
wttan?s — 2x ydtan 7 + 22 p2 (1 + tan2s) — 2 padtani 4 a4
=%&ﬁ:K%? .. (25) |

Hence, it follows from the first term that 2 tan 7 is of order %, : from
the third term, that p tan i is finite or small (when tan ¢ is large) :
and the last two terms on the left-hand side are negligible.

We can write— j
P1=Cypxs,
where C, is a finite quantity and hence from equation (19)—
%y = x5 (1 — p2Cy),
and from equation (23)—
: tanig — B
tang, = —— B _ Pl
AT F B, tan i
=tanizg {1 — C; (n - tanig) x5 } — C; @ x5.
Hence, equations (21A) and (23) give—
Vacost, = Vgcosiy
== VB COS 7’-A (1 - Bl tan 'iA)
= Vzcosiy {1 —Cy (- tans,) x5}
= Vycosi, (1 — term of order xy).
Again, in transforming equation (25A)—
wtani, —x, = ptaniy (1 — C, ptan iy « xp) — Ciplag
— x5+ Cy p?xp
= ptan iy (1 — Cyptan 15 xp) — %5,
and

w4 a2 = w2+ 2 (1 —C,ud)?,
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and it may be verified that equation (25A) becomes—
wtan 21y — 2xp pdtan ip + xp2 u? (1 + tan?i4p) = 1/4 o242
+ terms of order %3,

and is therefore identical with equation (25B) to our order of approxi-
mation.

In the neighbourhood of maximum lift/drag the above discussion *
may be simplified. From equation (22) it follows that pis not small
but finite* and therefore tan 7, is of order x, and equation (22A)
may be written—

5 ot
tand, =244+ 2 . . .. .. (26A)
® 2
Hence
V,cosiy =Vycosiy + B, Vgsin iy
= Vg cos ip 4 terms order x,2

and equation (26A) may be written—

1
. 0ol
. 20
t _ B %
or
%ct

. X
tan iy = 22+ = - terms of order x,?,
n R

so that equations with suffixes A and B are consistent as before.

7. Lift and Drag.—The lift Z and drag X are given by the

formulae—

Z —=Tcos?— Hsinz,

X =Tsin?+ Hcoszs.
Since H is of order w #%,% and T is of order x,, it follows that

Z = Tcos 1 (1 — H tan 4/T).
= T cos® (1 — terms of order x,)

and

tani—%—TH—

1—-¥tani

H
Z

:(tani + % > (1 + terms of order #,).

* See footnote on page 599.
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Substituting from formula (22)—

X . ., H
AR
1
— ot
x H 2
Su T T e #7)

It may be verified by direct algebra that equations (27A) and (27B)
give identical values of X/Z.

8. Energy Account.—The following argument was given originally
in T.2144a, Section 3.* The rate at which work is done on the
autogyro is VX. Since the torque is zero and the flapping motion
of the blades requires no power, there are only two channels in which
the autogyro wastes energy :—

(1) In the work done by each element of thrust 4 T in producing
the component velocity of downwash v ; since v is assumed
to be constant over the disc the total lossis v T.

(2) The work wasted by each element in proﬁle drag. The
value of this for an element is ¢ p U3 %, d » and the mean
value of the total is therefore—

b 27 R 3
o] d\lffo ocUshydr.
Hence, we have the equations—
VX =2["aw[ ccUhydr+oT 28
_z_ﬂfo L pC pdr +vT, .. (28)
b aw [ ecUskydr
}_(__ZTT 0 /0 P D 2
Z VT cost TVeosit - @

Substituting for U from equation (10)—
U=7 Q+ pR Qsin ¥,

the value of the profile drag integral on the assumptions of the
present paper is—

f’_f”d‘F(R

1 ]
3 = 408, = 2
o~], Js pcU38dr =bcpR*Q 48(1+3p),

* T.2144a. By C. N. H. Lock. Notes on T.2144, The lift and drag of
an autogyro at small angles of incidence. By H. Glauert. Unpublished.




and equation (28) becomes—

1
2\ % 5 O
X_o(l43ph*, 2 . (30
Z 4 pt wVp? - x?

On comparing with equation (27) it appears that the last terms on
the R.H.S. are identical and it may be verified algebraically that—

3(1+3p)_ xm  Hy_m  H
4t R O
on using the values of the quantities on the R.H.S. already obtained.{

Hence, this expression for the energy loss makes unnecessary the
somewhat complicated formulae for the longitudinal force.

If the torque were not zero it is interesting to notice that it
would be necessary to add to the right-hand side of equation (30) the
term Q /VT cos 7 and this equation would become—

1

~ ot
X_3d(1+3p), ¢, 2
7 Y +y.t+p.\/p.2—m .. .. (31

where g is written for Q/bc p R* (2.

This equation may also be identified algebraically with equations
(15), (17), (18) and (27), A or B.

An example of the application of this equation would be the
case of a helicopter flying horizontally under its own power for which
the drag X would be zero in equation (31). On substituting values
of ¢ and ¢ this equation becomes a quadratic for x, or x;, but of
rather more restricted application than the condition of zero torque
since it involves a term containing the solidity.

9. Effect of Stalling.—It is probable that the true value of X/Z is
necessarily greater than the value calculated by formulae (29)
and (30) based on a value of 3 which is a suitable mean value of kp
below the stall. For not only does the true value of k% increase
very rapidly above the stall, but according to formula (10) U (=TU,)
is negative and so the integrand U2 &, is negative over a part of
the range of integration, whereas the true value of the integrand U3 &,
is always positive. On the other hand, for moderate values of y the
error of the approximation is probably fairly small, both because
angles of incidence above the stall occur only over a moderate propor-
tion of the disc and also (in view of the fact that the third power of U

* This expression is equivalent to equation (c) in Appendix 1 of R. & M.
1111, which also contains a further approximation to take account of the
component velocity along the blades.

t This explains the discrepancy mentioned in the last paragraphs of
R. & M. 1111, Appendix 1.
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appears in the integrand) because the values of U corresponding to
large angles of incidence are relatively small. The order of magnitude
of the effect of “stalling”’ could be determined in any particular
case by evaluating graphically the integral appearing in equation (29)
on the basis of the performance data of the aerofoil section.

10. Numerical results—Calculations have been made by the
formulae of the present report for the standard case of §, = 2°,
3 =0-006, 6 = 0-2and also for 8, = 0°and 0, = 4° for the same
values of dand 6. The results can easily be extended to any value
of o, while those for a given value of §and 6, can be applied at once
to any other values for which the ratio of 3%*to 0, is unaltered ;
e.g., the results for § = 0-006, 0, = 4° can be applied to the case of
3= 0-0015, 0, = 2°.

For the standard case (6, = 2°) the Table at the end of Part I
contains values of all the relevant quantities, calculated for a
series of even values of w2 compared with the corresponding
quantities calculated by the formulae of R. & M. 1111 for the case
of infinitely heavy straight blades. In Fig. 2 curves are plotted
of X/Zagainst at/u2, which isapproximately equal to £, for the three
blade angles 0, = 0°, 0, = 2°, §,= 4° together with the corresponding
curves evaluated by the formulae of R. & M. 1111 for case A and

case B. Case A corresponds to the numerical results given in R. & M.
1111, Fig. 8.

In the neighbourhood of minimum X/Z equation (30) may be
written to a good approximation A

1
= ol

X 3(143w) 2 °

Z 4wt + n2

and it is obvious that for given values of y, 8, and o this expression
has a definite minimum value if the value of ¢ for given (.is supposed
to be adjusted by varying the blade angle. Numerical results are
given in the following table for 8§ = 0-006, 6 = 0-2.

u=0-15 02 03 04 05 06
Minimum X/Z=0-436 0-290 0-168 0-117 0-091 0-076
For given p, the minimum value of X/Z varies as 8¢ ot.

The minimum value is attained for (= 0+2 when 0, = 2° and
for . = 0-3 for O = 4° approximately, and the improvement
obtained up to g = 0-5 by increasing 6, above 4° is small and is
almost certainly swamped by the effect of stalling. On the other
hand the value of X/Z for given k, (Fig. 2) decreases indefinitely
towards the limit X/Z = }&, as the blade angle is increased.

. ¢ . .
* Approxlmatelyia = k, sec’, so that the difference between the two
1%

quantities increases very rapidly for large values of 4, but in the range which
is chiefly of interest here, the difference is negligible.
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Conclusions.—The curves of Fig. 2 show that the discrepancy
between the results of the present report and those of R. & M. 1111
for flapping blades increases rapidly with the blade angle. For the
standard case of §, = 2° at k, = 0-07 (corresponding to pu = 0-4
which is roughly the case of the full scale autogyro at its maximum
flying speed of 67 miles per hour) the present theory gives Z/X = 7-5
against the value 5-8 given by R. & M. 1111 while for larger values
| of %, the discrepancy is less.

It is claimed that the formulae of the present report give a
sufficiently accurate solution of the problem for an autogyro with
heavy blades on the basis of assumptions 1 and 2 of the introduction,
and according to the discussion in the last section the value of Z/X
obtained should represent an upper limit to the true value on account
of the effects of stalling. Consequently, it is quite likely that the
true values of Z/X may be as near to the results of R. & M. 1111 as to i
' those of the present report. It seems likely that the value ;

Z/X = 10-0 represents an extreme upper limit for § = 0-006,
o = 0-2. This value of Z/X corresponds to 0, = 4°, u = 0-54,
or 6= 6° pu=0-47.
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APPENDIX I.
NOTATION.

All symbols are used in the same sense as in R. & M. 1111 except those
marked with a (*).

Dimensions of Blades—

number of blades.
angle of pitch.

mean angle of pitch.
extreme radius.

radius to blade element.
chord of blade element.

CrEeeg
*

44 (the solidity).

_ b
" aR

Motion of Blades—

2 angular velocity of autogyro about its shaft.

b4 angular position of blade.

p angular displacement of blade about its hinge.

B,y If the blades are infinitely heavy they move in a plane inclined

at an angle §, to the plane normal to the axle.

General Motion—

Velocity of air at blade e'ements relative to centre of autogyro has com-
ponents :—
x RQ parallel to axle.
u*R 2 normal to axle.
angle of incidence.
v forward speed.

v axial induced velocity.

V’  resultant velocity of air at blade element relative to centre of
autogyro.

U component in a plane normal to the blade of the resultant
velocity of air at blade element relative to blade element.

¢ inclination of U to the plane normal to the axle.

Forces—On autogyro :—

= thrust.
longitudinal force.
drag.
lateral force.
lift.
torque.

ON KT

On blade elements :(—

é is mean profile drag coefficient of the blade element.
a* is slope of lift curve of blade element.
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Force Coefficients—
#* =T/bc pR® Q2
g* = Qfbc pR* Q2
W* = H/bc o R3 Q2
Miscellaneous—Suffix A refers to the normal autogyro with (infinitely
heavy straight) flapping blades.

Suffix B refers to a machine in which the blade angle is varied round the
axle in such a manner as to eliminate the flapping motion.

Alternatively suffix B refers to the normal autogyro with the motion
referred to the normal to the plane in which the blades move instead of to
the axle.

The quantities which are different when referred to the two systems of
axes are :—x%, 1, v, ¢, H.

(34087)—I1 N
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APPENDIX 2—continued.

Present report. R. & M. 1111.
Cross wind Force .. ..A & B. Y =0 Y=0
1 tan 7, = tan ¢y =
7 o 1
. | = — ot
Interference flow .. AL tan 1, = " T H»‘/HZ—FXA‘ &_”C_ I _%_j;
1 T
— ol ,
2 T I
B tantg= "4+ —= Wt = =
i noopvVp? 4+ g ( be p ()2 R3> be PQ2 R®
Drag/Lift .. .. ..A. rtaniA—k}Lq l(;t <X>
X T (=31 +3p? 2 Z
B. tan £, + T (from energy account) < ) an +

The above equations are sufficient to determine all the variables in terms of g, %o and 6, and if x, and 6, are considered as small

quantities of the same order then all the above equations are consistent with one another and with the relations

= Vcosi, =Vcosip 1, =iz — Py, ¥a = %z — @ By,

H, = Hy + T B,.

029
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PART II.

A GENERAL TREATMENT OF THE FLAPPING MOTION.

May, 1927.

Summary — Introductory—In Part I the theory of the autogyro given by
Mr. Glauert in R. & M. 1111 was extended by taking account of squares and
higher powers of the variable u (the ratio of the component velocity in the
plane of rotation to the tip speed). This analysis applied to the case of
infinitely heavy straight blades, neglecting gravity. In Part II the case
of curved blades of finite weight is treated in a general manner.

Range of Investigation.—The coefficients in the Fourier’s expansion of the
flapping angle appear as the variables in a set of linear simultaneous equations
which can be solved in succession. The effect of the flapping on the lift
and drag is obtained by substituting the coefficients (which are linear functions
of ¥ and §,) in the equation of zero torque, which has the form of a quadratic
equation in x in the general case. The effect of the flapping angle on the
equation for mean thrust is confined to a single term of the second order,
while the equation of energy loss is unaltered. The equations are solved
in detail by expanding in powers of u as far as u* in the equation of zero
torque for straight blades and as far as terms of order u? in the curvature.
This includes the effect of the coefficients of cos 2 ¥ and sin 2 ¥ in the expansion
of the flapping angle.

Conclusions—The effect of the coning angle and the curvature of a blade
is worked out for the full scale machine and is found to be by no means
negligible. For blades having the form of a circular arc, it is found that if
the coning angle is measured from the tangent line to the blade at the root,
the additional effect of curvature is negligible. It follows that the effect of
coning and curvature could be reduced to a small quantity by giving the blade
a suitable curvature in the opposite sense to that of existing machines. The
effect of a curvature of the airstream of the kind postulated in R. & M. 1111,
Section 10, is similar to the effect of a curvature of the blades in the form of
a circular arc referred to the tangent at the root as zero line, and has by the
same argument a negligible effect on the lift and drag in agreement with the
conclusion of R. & M. 1111. The second order terms (coefficients of cos 2 ¥
and sin 2 ¥ in the flapping angle) produce an effect on the lift and drag which
is negligible throughout the working range of the full scale machine and is
a fortiori negligible for models, since the blades are heavier.

1. Introduction.—The object of the following analysis is to remove
the restriction to infinitely heavy blades (which was imposed on the
results of Part I) by treating the flapping motion in a general manner.
This is the more necessary as it appears on examination that the
coefficient defining the ratio of the inertia to the aerodynamic forces
is by no means a small quantity in practice. The problem of treating
the flapping motion in a general manner on the basis of the assump-
tions (1) and (2) of Part I is purely a matter of somewhat complicated
algebra, but before proceeding with the analysis the following
considerations are of interest.

On page 612 of Part I, in obtaining an expression for the energy
loss (equation 30}, it is stated that the flapping motion of the blades
requires no power ; this must be true in general and not only in
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the case where the blades are infinitely heavy. In the equation of
energy loss equation (30) Part I, in the neighbourhood of maximum
lift/drag, x? is negligible in comparison with p? and the equation
may be written—

1

1

X_8(+3py, 2

Z 4 ut T
Using the approximate relation lift coefficient &, = of/p?, it
follows that for a given lift coefficient (since 8 and o are constants)
this expression for X/Z can only be affected by the flapping motion
through the thrust coefficient #. Turning to equation (17A), which
may be written—

tzéa{x—f—%ﬂo(l—}—gp.z)}, @

it appears on examination that this equation has the same form (for
infinitely heavy blades) whether the blades are fixed, or are free to
flap. It follows that the whole effect of flapping (for heavy blades)
is due to the effect on the variable x of the additional terms in the
equation of zero torque (15a). The terms involving {3, in equation
(15a) all involve positive coefficients of x and %2, and in general it
follows that x and ¢ are smaller for the case of blades free to flap
than for fixed blades, and so from equation (1) the value of X/Z for
given k,is in general greater for blades free to flap.

Turning to the general case of flapping, it will be found that the
general equation for ¢ (equation 14 below) contains only one addi-
tional term (involving the coefficient of sin 2 Win f3). Apart from
this term the entire effect of flapping is still given by the equation
of zero torque. It will be shown further that all coefficients in the
Fourier’s expansion of (3 are linear functions of x and 6, (homogeneous
if the blades are straight) of which the coefficients are functions of

4
the variables rand vy only (for straight blades) where y = C_P_IiR_’
1

I, being the moment of inertia of one blade about its hinge.

The corresponding terms in the equation of zero torque are all
quadratic functions of x and €, (homogeneous for straight blades).
Thus, all the terms due to flapping are of the same order in %, as
the terms which are independent of flapping (see Part I, page 599).
The value of #, and the complete solution for given . can therefore
be obtained by solving this quadratic equation.

The coefficients of the Fourier’s expansion of {3 are obtained by
expanding all terms in the general equation for the thrust moment
as Fourier’s series and equating coefficients. The result is a set
of simultaneous equations which are linear in the coefficients and
which could be solved by successive approximation. The values
of the coefficients could then be substituted in the general equation
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for zero torque. Actually the labour of computation increases very
rapidly with increase in the order of the terms included, and it has
been found necessary to expand the coefficients in powers of w. A
few numerical cases have been worked out as far as terms in p¢

in the equation of zero torque ; this includes coefficients as far as
those of cos 2, sin 2 .

2. General analysis of the flapping motion—The whole of the
present analysis is referred to the axle of the autogyro as axis of
reference so that the axes correspond to axes A of Part 1.

The method of obtaining the velocity components at a blade
element and the components of force on the element, is identical
with that of Part I. The equations for the velocity components are
~ identical with equations 1, 3 and 4, except for the addition of a term
for the curvature of the blade in equation 4, represented by the
slope y of the tangent to the blade at radial distance 7 referred to
some definite zero line. Equation 4 is then identical in form with
equation (2) on page 7 of R. & M. 1111 :—

U,=7Q+ R Qsin ¥, L
Uy=2RQ—78—uRQ(B+ ) cos ¥,
The elements of thrust and torque on one blade are :—

AT =cpadr(U, U, + 6,U8), .. .. .. (5
;.dgl_—.cpdr{SUxLanUny—aUﬁ}, .. ®

(3)

which are identical with the equations 5 and 6 of Part I.
Write—

B=a,—a;cos ¥ —b,;sin¥

—a,cosnV —b,sinn¥*; .. .. .. (7)
then— ‘
B=a, Qsin ¥ — b, Qcos ¥ + 2a, Qsin 2V +...
+tna, Qsinn ¥ — nb, Qcosn V. .. .. (8)

Of the two velocity componenté, U, is independent of 3; write—

U =2RQ+ ¢+ e,cos ¥+ fisinW+..+ e, cosn ¥

4+ fosinn ¥, (9)

* The notation of R. & M. 1111 and of Part I has been altered as it was
not convenient for the general case.
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where the coefficients ¢, ¢;, etc., may be determined by substituting
from (7) and (8) in (4), in the form —

. 60: %alp.RQ )
er=—(a+ ) pR Q46,70+ J a,pRO

.” fi= ‘“17Q+%52(~LRQ

i 1 s - 1a.,u.RQ

[@ e= 5 a pRQ +26,7Q 5 L (10) i

| fzzébluRQ—~zaer+éwaQ *

1 b o] ]

enxéan_]p.RQ—i-nbnr “+§an+lgRQ | :
fnz_lz-bn_lp,RQ*nanrQ—{—%bnﬂp.RQ ]

The thrust moment on one blade may be determined by substituting
for U, and U, in equation (5) :—
“ r‘%cha(rU,Uy+790Ux2)
=c pa{xrﬂR Q% + 60<r3 Q2 4 -é- pir R? Q2> + 72 Qe
1
—}—[72 Qe, + % nr R Qf2] cos¥

+[xWR2 Q24+ 26,ur’R Q2+ urR Qe, + 72 Q,

— % ur R Qez]sin‘P‘
+ _—% 0g27R2QZ~—%wRQfI+729e2
+%WR Qf, Jeos2 W
r% wrR Qe +72Qf, — ;—p.rR Qea]sin2\lf+

— % wr R Qf, 1 +72Qe, + % wr R Qf,,ﬂ]cosn‘l’

1
[ 2

70 11

urR Qe +72Qf, — % ur R Qenﬂ]sinn‘l"
(11)

+ + 4+
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The equation representing the condition of zero thrust moment
about the hinge may be obtained as in Part I; it is identical with
the equation of R. & M. 1111 (page 562, line 4), and will be written
in the form :—

X _
Qz B+ B= mfrd’f C, .. .. (12
where :—y =c pa R¥/I1,,C = G,/I, Q2 + J,/I,.

I, is the moment of inertia of one blade about its hinge, J, is the
product of inertia of the blade referrred to the zero line of 3, and G,
is the moment of gravity about the hinge. (See R. & M. 1111,
page 561, et seq.).

Substitute for ¢4 ¢4, etc., in terms of a4 a,, etc., in equation (11)
and reduce to a Fourier’s expansion ; 1ntegrate with respect to 7 to

determine j 7 d T,y ; substitute for (3 and Bfmm equation (7) ;
0

then both sides of (12) are expressed as Fourier’s expansions in V.
Equating coefficients the following set of equations is obtained :—

From constant term :— \

t+C=v{ o+ 0 (1+u3+ Luby )

from coefficient of cos ¥':—
1 1
0= — P~(“ Ay — 2712T>+ y b1<1 + 5 (~’~z>
1

1 \
~ 8 ®ag + g8 2 by* (13)

from coefficient of sin ¥ :—-

1 2 1 1
O=gur+gub—ga(l—3u)
1 1
-8B wbg — 3 w2 “:«.»"'}
* It will be shown later that the terms underlined...................... are of a

higher order in u than the remaining terms.
+ Definitions—

—ORSm, = [ 2y dy
Na Jo X

R
—R2y, =j0 rydr
asin R. & M., 1111.
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from coefficient of cos 2 ¥ :—
(22— 1) a, = L jeg, 4 2 25 )
- 2= "ZH o‘*‘g(’«%*‘zz

2 1
Zuad )

..........................................

from coefficient ot sin 2 ¥":—
1 1 2
2 —_ — 2 = J -
(2 l)bz‘—Y{ P*<4ao 2")1)’}‘6“(71

2 2 1
—zaz~guba-'§u2a4}

(13)

from coefficient of cos n ¥ :—
1 n n
2 __ — — - y2 _ —
(ﬂ 1) an Y{ 8 “‘ bn—z + 6 !‘Lan——-l + 4 b

n 1
T gPhe1t g P-zbn+2}T

from coefficient of sin # ¥ —

(n*—1) b, —Y{su“n—er Wbay —;;f

The only practicable method of solving this system of equations
is to expand either in powers of ¥ or in powers of w; the latter
method is preferred since ¥ is always much larger than pin practice.
It can be easily verified by induction that a,, b, are of the order w, ;
it follows that the terms underlined............ inany equation are of higher
order in p.than the remainder. Neglecting these terms, the nth pair
of equations determine 4, and b, in terms of coefficients of lower
order and the equations can be solved in succession. It is obvious
that the coefficients a,, b,, are homogeneous linear functions of #, 0,
and the terms C, v, ), derived from the curvatures.

* It will be shown later that the terms underlined........................... are of a
higher order in 4 than the remaining terms.

+ The equations from cos 3 ¥ and sin 3 ¥ are of the general form.

¢ contd.
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It is interesting to notice that if the coefficients are expanded
in powers of y the order of the various terms is according to the
following scheme :—

a, is of order unity,
do, by, ay, byare of order v,
by, 3, by, agare of order 2,
aq, by, ag, byare of order 3,
etc.

3. Equations for the thrust and torque—To obtain the effect of
the flapping on the performance of an autogyro it is only necessary to
work out the expressions for the thrust and torque by substituting
for U,, U, in equations (5) and (6).

Thrust.—The only terms which contribute to the mean thrust
are :—

%:Cpa{r QxR Q4 ¢)) + R Qf, sin2 ¥
48, (2 Q2 4+ p2R® Q2 sin2‘if)}

and give

T:bch3Q2t:bcPuR3Q2<(% %+ i u2 b,

+ 2 0(1+3 m)}g (14)

Torque.—The only terms which contribu'te to the mean torque
are (—

i, 9{8(73‘ Qf 4 p2r R2 Q2 sin® W)
- ae(,[rz QxR Q+e) + prR Qf, sinzqf]
—a [7 (*R Q+ey)2 + 7e,2cos2 ¥ + 7 f,2sin2 ¥

+ 76200822V 7 £,2sin22W 4 ... ]}
and give
b= Rd Q)
Q=gnl, 4% [ Grar
—be R4Q2{13<1+ D —aby[ La+ b [rregdr
° i 5 °L3* T RIQ),

1
Lol o]

(contd. on next page)
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~R R
—a[— x2+R3Q reodr—l—fo r(eoz—{—%ef
+§fﬁ+«%%%+%hlh.”>m]}_

Hence the equation of zero torque becomes
7(1+M)—x<x+ 7 90>+ wxa;+ - g 0o 0g

R&PJ 7 (2eg2 + e + fi2 4e2+ fo,2 +. )dr..  (15) |
4. Solution of the equation of zero torque by expanding in powers !
of was far as pd.

Case of straight blades neglecting gravity—On examining the
equation of zero torque it appears that in order to include all terms ;
of order ptin that equation it is necessary to evaluate the coefficients ;
to the following order :— ’

agas far as p?,

a; and b, as far as p3,

a, and b, as far as p?,
Hence the following simplified forms of equations (13) are sufficient
for the present purpose

{—x+101+@},

+

where
4
20 (% + 5 6) 16
1 ’
1— 1 T )
so that a, is identical with B of Part I,
4 wa
3" 2
b, = "-‘—1—"}' 3 ® a2y,
1 = w2 ‘
+2@ |
and a, b, are given by the equations

~

1 1 1
3a, — 5 Yby = Y<_ i u? B, + 3 P-“l),

1 1 1
3 Ya, + 3b, = Y(“ 'y w? a, + 3 P-bx)

.
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In the last two equations it is sufficiently accurate to substitute
1 1
4

4
by, = 3 K-

The result of performing the substitutions and solving for a, and b,
is 1—

<9+ i Y2>“ = Pvz{“%‘(60+ Y“1/9+.7'7QY2“0}

= ot 224 g (G + gy v}
(9+ZY)bzzﬂ{—§Y290_§Y2“1/£L+1—2Ta0}

5
— _ ,22d 2
“Y{:ss 144} )

It is now necessary to substitute these values of the coefficients
in the equations of zero torque and it will be found possible and
convenient to analyse the equation in the following form :—

2%“ + u) =F, (1) + u2F, (%) + u2Fy () + ptF (x)

+ut Fy(x), .. .. .. (19

~

where :
F, (%) contains x and 0, only,
F, (%) contains a, as a factor and does not contain ay or b,,
F, () contains a, as a factor and does not contain a, or b,,
F, (x) contains b, as a factor,
F; (%) contains a, as a factor.
It will be found that

F, () :x(x ~+- g 6 )

F, () +F4(x):p,xa1—l— H O by + (2¢,°

oy’

+ f12 + €?) dr

By =& { px + 5 & (1+29~>} (

Fy(x :bz{—§9x+3‘—@ 60—}—1)2};

so that
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similarly
1
Fy(5) + Fs () = s [ 7 e42 4 fa2) dr
so that
9
(‘ (1+zw) (20)
F =_u2a ’ (contd.
2
17
Fy (x) ==“2{ gt “0+“2}

Substituting for ag, @y, s, b, from equations (16) and (18)
" <x+ 8o >{3x<1 e (1+ " )}

\ 2<1 2“‘>{3

2“)

(21)

1

B +u)}2

F, (x)

Writing equation (17) in the form

1
3a, — 5 vby=1yp?C,
%Yaz—{—3b2=y2p.2D,
where
2 23
C—§x+%%
7 /1 1
D= 1(_ il
w(3%+t 18)

it may be verified that
(@2 48,9 (9+ 4 ¥?) =1 (C*+ 42 DY,

Using this relation to simplify equatwn (20) it can be shown that
37

f }_ Y2 {. Ny,
Fy(x) 4+ Fs( 5:19 - ¥ty 0+ 6
+ Y
7 /1 1.\
+EY2<§x+?eo) } (22).
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This verifies that the right hand side of the equation of zero
torque is a homogeneous quadratic in x and 6 for the case of straight
blades neglecting gravity. To determine the effect on the perform-
ance it is necessary to solve this quadratic for x and substitute in
equation (14) for the thrust coefficient . The resulting value of ¢ is
then substituted in equation (1) to determine X/Z for given values
of 6¢/u? = approximate lift coefficient &,.

5. The effect of curvature of the blades.—For straight blades the
zero of the flapping angle {3 has tacitly been taken as the line of the
blade, but for curved blades the zero of $has not so far been defined.
If thc blade is assumed to have the form of a circular arc as in
R. & M. 1111, it will be found convenient to take the zero of { to
be the tangent line to the arc at the root, not the chord line as in
R. & M. 1111.  Since y is defined as the inclination of the tangent
to the arc, at radius #, to the zero line it follows that—

y = — 8e7/R,
where gis the camber of the arc, so that 7y is proportional to the
radius.

The only term in the equation of zero torque which involves the
curvature to the order u? (apart from the dynamical cffect of the
term J, on the value of ay) is ¢;. Equation (10) gives—-

€= — (“0 + X) P*R Q -+ bl" () -+ terms of order w3,
and equation (13) gives—
b, = L_i,p,a + inX]/zdr +
T3 TR

terms of order p3.

Hence, the part of ¢, depending on yis—

. dur Q% _,
rieR Q4 e fo yr2ar

and this vanishes identically when y is proportional to 7.

It is considered sufficient in the present analysis to neglect terms
beyond p? involving the curvature ; to this order it appears that
the entire effect of the curvature on the performance is included by
taking the tangent to the circular arc at the origin as the zero of f3,
and by taking account of the effect of the term C in equation (13)
for a,, so that equation (16} is replaced by—

w=y{ 3x+ 0 +up—C,
where

C = Jl/Il + G1/11 Q3.
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For a circular arc referred to the tangent at the origin as zero line—

where €is the camber ; this replaces the relation J; = €l; which
holds when the chord of thearc is takenas zero line, asin R. & M. 1111,
The only change in the equation of zero torque to the order con-
sidered is to replace equation (21) for Fy (x) by the equation—

9
1 1+§p'2 1 1 2
Fy (o) = gVt —— 4 g%+ g (L0 —Clvp.
< 174_-2_“2

8. Effect of a periodic induced velocity due to curvature of the
streamlines.—A periodic induced velocity of the type contemplated
in section (10) of R. & M. 1111 contributes to x an additional term
which is proportional to » cos W. Comparison with equation (4)
shows that this is equivalent to an additional curvature y propor-
tional to 7 ; the argument of the last section shows that this has zero
effect on the lift and drag as far as terms of order p?in the equation
of zero torque. This is in agreement with the conclusion of
R. & M. 1111, section (10).

7. Actual Calculation.—Calculations of the flapping angle and of
the lift and drag have been carried through in detail on the basis of
the above analysis, for the particular case of the standard full scale
autogyro for which § = 0-006, ¢ = 0-2, 0, = 2°, as follows :—

(1) Including the terms F, () only in the equation of zero
torque ; this gives the case of fixed blades.

(2) Including F, (x) and F, (x) ; this applies to infinitely heavy
blades freec to flap and is identical with the case treated
in Part I.

(3) Including F, (x), F, (x), and F4 (x) for the case of straight
blades with vy = 10; this includes the effect of the
“ coning "’ angle for a machine with straight blades having
the same moment of inertia as the present full scale
machine, The value Y = 10 is in agreement with the
value assumed by Glauert in R. & M. 1111. (The
values :—W,/W = 0-03, W/rR2 =2, 6=:0-2, R = 175,
assumed on page 9 of R. & M. 1111, give v = 10:0). Itis
more likely that this value of <y is an overestimate than an
underestimate, since the value of W,/W for the full scale
autogyro described in T. 2155* is 0-0455 and the value
of v derivable from the figures of that report is roughly
6-5. This value should be increased if there is a con-
centration of the weight of the blade near the hinge,
since the moment of inertia I, is calculated by putting

* Unpublished.
(34087)—11 0
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We == } in equation (7) of R. & M. 1111, which assumes
a constant distribution of weight along the blade. There
is evidently some uncertainty as to the true value of ¥,

and since the effect of the ¢ nnp}ng ’’ angle is nroportional

[5G S-38 8104 LLC L1000 O Uil i5aC s prOpOItiOlias

to 2, it would be of interest to determine I, for an actual
full scale autogyro by swinging a blade as a pendulum
about its hinge, as has been done for the models.

I's

(4) Includes the same terms as (3), but with the addition of a
curvature of the blade in the same direction as in the full
SCa}.e nlachine 5 LIIC Uld(l(;‘ lb a.SSllIlltiU. to lldVC IIIC lUfIIl Ol
a circular arc of camber 0:03 as in R. & M. 1111, and the
effect is treated by the approximate method of Section 5.
The effect of gravity as estimated in R. & M. 1111 1is

also included.

(5) The second order terms F, (x) and F; (x) are included, for
the case of straight blades with y = 10-0.

In all the above cases the values of ¥ have been worke
out by solving the quadratlc equation of zero torque for a
series of even values of p2.  Equations (14) and (1) then give
the values of ¢, o-t/p, (approx.=*k,) and X/Z = (X/Z)y+ }4,.
The Table also gives the values of a,, a4, b, a5, b, for the
case of straight blades with y = 10.

Curves of (X/Z), are plotted against of/u? in Fig. 3
for the five cases just mentioned. Three curves derivable
from R. & M. 1111 are added for comparison :—

(6) Calculating the value of (X/Z), from formula 1 of the
present report or formula (c) of R. & M. 1111, Appendix I,
but using the values of T, and Acalculated as in R. & M.
1111. This method takes no account of the effect of
flapping or of coning.

(7) Standard results of R. & M. 1111. These apply to infinitely
heavy blades.

(8) Including the effect of curvature and coning by the methods
of R. & M. 1111.

8. Discussion of results—The main conclusions from the curves
of Fig. 3 are as follows :(—(1) The effect of the coning angle is to
decrease x, i.e., to reduce the rotational speed for given values
of wand V and therefore to reduce the efficiency. (2) The additional
effect of the existing curvature is in the same direction and is even
more important. (3) The effect of the second order terms is in the
opposite direction, i.e., to increase the efficiency, but is absolutely
negligible for y = 10, w = 0-5, and a fortiori negligible for heavier
blades.

It appears from the analysis that the effect of curvature and
coning could be reduced practically to zero by giving the blades a
suitable curvature in the opposite direction, and the results suggest

(=N

—
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that this would improve the efficiency. Before accepting this con-
clusion as final it is necessary to notice that the reduction of efficiency
due to coning is produced by the increase of terms in the equation
of zero torque which represent a torque tending to increase rotation.
It is possible for example that the existing curvatures of the blades
may allow the use of a larger blade angle with safety from risk of
the windmill coming to rest, and the results of Part I suggest that
this will be an advantage.

In this connection it may be remarked that the freedom of the
blades to cone is an additional safeguard against any sudden
accidental increase of load, which will have the effect of first increas-
ing the coning angle and will give additional assistance in increasing
the rotational speed. An occurrence of this kind was actually
observed on one occasion when the machine was taking off, when the
coning angle suddenly increased and then immediately recovered.

Finally, it may be worth while to attempt to meet the criticism
that in the analysis of Part II a structure is erected on the basis of
assumption (2) of Part I which is too heavy for it to bear. In this
connection is it worth while to remark that for given values of
x and w the whole of the present analysis of the flapping motion
depends only on the lift of the elements, and that the lift is likely
to be much less affected than the drag by the stalling of the blade
sections. In a future paper an attempt will be made to allow for the
effect of stalling on the mean profile drag coefficient in the equation
of zero torque and in the equation of energy loss; this further
correction will leave the main analysis of Part I unaltered, and will
only affect the numerical results by substituting for the constant &
in equations (1) and (15) a quantity which may be expected to be
a function of pand x.

(34087)—11 02
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RaM.I127
’ Fie.2,
Lift and drag_of an ideal autogyro with heavy blades.

Curves of ¥ plotted against %g(which is approximately
equal to k,)for 6= 0006, 6-0-20, §~0%2°,4".

————— ReM.ilt, Flapping blawdes.
————— ReMIii1, Blade angle varied.

Formulae of present repoert.

%,’" = 2pprox.X,
Q-2
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Fig3. !

EFFECT or FLAPPING on THE
STANDARD AUTOGYRO.
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