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Buckling of aThe
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C O M M UNI CAT ED 8 Y T HE DI RECTO R OF SC IENT I FIC R ESEA RCH, MINI STRY O f AIRCRAFT P RO D U CT ION

Repor ts and M emoranda 1\'0. 189 9
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Summary .- In modem aeroplane design a detailed knowledge of the behaviour of thin panels is very necessary.
The problem of flat panels may be regarded as largely solved. This is not t rue, however. of curved panels. and the
object of this repor t is to obtain fur ther in fonna tion on the behaviour of curved panels under axi al loading. Th e
problem falls naturally into two parts , acco rdi ng as the Invesngat lon is concerned with the initial buckling of th e panel
or with it s subsequent behaviou r. The second part of ti lt' problem will be treated later, and atten tion is here con fined
to obtaining an accurate expression for the initi al buckling stress of a slight ly curved and perfect ly fanned panel, the
two straight edges of which are eit her simply supported or fixed .

From the results obtained two main points stand out . Firstly. that for a perfectly formed panel the, stabilising
effect of curvature is very great , and for appreciable curvature it is almost immaterial whether the edges are simply
supported or fixed. Secondly, that for appreciable curvature S. C. Red shaw's approximate solutions I. "are sufficiently
close to the exact solutions for all practical purposes.

The method of solutlou de ..-d o pl't.! in this report is of Vf"I)" general application. and can be used to lind the stability
of slightly curved panels under combined shear and compression or tension . On the basis of this report and the work
referred to in reference 3, it should be possible to investigate the post buckling behaviour of an axially loaded curved
panel supported along its edges. .

I. I ntroduction.-The part played by thin sheets of met al in modem aeroplane construc tion
is now so important that a knowledge of their behaviour under various types of loading is very
necessary. For flat panels t he prob lem of det ermining the stress at which buckling occurs , and
th e st ress dist rib ution aft er bu ckling, may be regarded as solved. The same is not true, however,
of curved pan els, an d th e objec t of t his report is to t hrow further light on the behaviour of curved
panels under ax ial load ing". The problem falls naturally int o two parts, acco rd ing as th e
investigation is concerned with the initial buckling of t he pa nel or with it s subsequent behav iou r.
Attent ion is here confined to the matter of in itial buckling. .

In the course of the last few years many experiments have been carried out on curved panels
under axial loading, and they have all emphasised the importance of initial irreg ularities!' ... oS._.
Although the effect of these in lowering the buckling load can only be estimated after considering
the post buckling condit ion a. 7. t he stress at which a perfect ly formed pan el may be expected to
become unstable is still important for two reasons. In the first place it is of considera ble assistance
in carrying out the post buckling investigation for which only approxima te methods are at
present available, and in th e second place as indicating an ideal upper limit for perfectly formed
perfec tly load ed panels. .

Besides the experimental work referred to above, the problem has been treated t heoret ica lly
by S. C. Redshaw 1. 2 an d S. Timoshenko". As, however , their work is based on assuming forms
for t he displacemen ts which sa tisfy eit her the boundary conditions or the equa t ions of equilibrium
but not both together, t heir solut ions are only approximate. and t he ob ject of t his report is to
obtain an accurate expression for the buckling st ress in t he case of a slightly curved and perfectly

• R.A.E. Report, June, 1942.
(fil llU l •



2

fonned st rip whose st ra ight edges are eit her sim ply su ppor ted or fixed . Xo effort has been made
to sa tisfy t he boundary conditions over t he curved edges, but as the wave lengt h of the buckles
dec reases rapidly w ith curvature, this limitat ion is not important unless the length of t he panel is
less than it s wid th .

Attention is d rawn to t he method of solu tio n developed in the Appendix for the case in which
the edges are fixed, as it is ex tremely general and ca n be applied to find an accurate expression
for the critica l buckl ing st ress of a slightl y curved and perfect ly formed strip whose edges are
free, fixed or simply support ed, and which is acted on by any combination of shear and compress ion
or tension.

2. Statement of Problem.-The probl em conside red here is the st ress at which a slightly curved
and perfectly formed st rip firs t starts to buckl e under com press ion. The thickness and curvat ure
of the .st rip are assumed cons tan t. The loading is applied uniformly over the two curved edges,
and the two st raigh t edges are eit her sim ply supported or fixed .

3. Descript ion of Results .-The method of solution is set out and explained in the Appendix,
and the results a re shown gra phically in Figs. I and 2. Fig. I shows how the buckling stress
varies with the ratio of bulge to t hickness, and Fig. 2 gives the corresponding wave length of t he
buckles. In Fig. 1 the full lines indica te the exac t solut ions, and t he broken Jines show Redshaw's
approxim~te solut ions . . .
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F IG. 2.

The results obtained in t his report show that Redshaw's- approx imate solutions are in genera l
sa tis factory. For t he percen tage error becomes appreciable only when t he curvature is very
small, and steadily dec reases as the curvat ure is increased .

It is interesting to note that of Redshaw's two approximate solut ions for the simply support ed
case, t he one t hat satisfies the eq uat ions of eq uilibrium, but not t he boun dary condit ions, gives
too Iowa buckl ing st ress, whi le the one that sa t isfies the boun dary cond itio ns, bu t not the
equat ions of equilibrium, gives too high a value. Both t hese results a re to be expected. For in
t he latter case failure to sat isfy t he eq ua tions of equilibrium presupposes t he exist ence of con
st raints which are here such as to increase t he buckling st ress. Whereas in the former case the
bu ckling stress is for edge conditions which are less restrictive t han those in the actua l problem
considered.

4. Conclusions and further development.- From t he above results t wo main points stand out.
Firstly, that for a slight ly curved and per fectly formed panel whic h is subjected to uni form
axial loading the stabilising effect of curvature is very great, and for appreciable curvat ure it is
almost immaterial whether the edges are simply supported or fixed . Secondly, that for appre
ciable curvature Redshaw's approximate solutions are sufficiently close to the exact solutions for
all practical purposes.

• In Redshaw's second paper! there is a slight error in the analysis for the particu lar case when the axial edges are
fixed. It has entered through a slip in evaluating the strain energy functi on, and its effect is to replace the factor (1 - 0')
in his equation (53) by 1. As a result of this the value of K"'ID for Case (bl on p. 537 should now read

and it is this corrected expression which is plotted in Fig. 1. It should, however, be emphasised that the effect of
this correct ion decreases with curvature, and for appreciable curvature is unimportant. .

For a flat st rip with fixed edges, Redshaw's corrected value for K"'ID is 7 '29, which agrees with H. L. Cox's" .result ,
while the value obtained by the precise method is 6·94.
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Notation.-
E = Young's modulus

• J' _ Poisson's ratio- assumed to be 0 ·25
2h = thickness of strip
p - radius of curvature of str ip
D - flexural rigidity. i.e. 2£1I' {3(1 - ,')
a - length of st r ip
b - width of str ip, measured along curved edge
p - axi al compressive st ress
Po buckling st ress of fiat strip, edges simply supported

b'
,3 - 8p ~ bulge

• T his contains a very comprehensive list of re ferences to theore ti ca l and experimen tal work done on the buckling of
curved panels.
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Derivation of Fundamental Equatioft s.- The edges of the st rip are taken to be two genera tors
and two lines of curvature, a nd attention is con fined to the middle surface. Choosing the generat or
a nd line of curvature through t he centre of the st rip as axes of co-ordinates ~ , '1; the edges of
the st ri p are give n by

" b,~ ± 2' " = ± 2'

and the inward drawn normal t o the middle sur face in it s unstrained cond it ion is introduced as
a third a xis z. With reference to these a xes the displacements of an y point in the middle surface
are u, v, w. The external load ing consists of an axia l comp ress ive stress p applied uniformly
over the two curved edges, so that in Timoshenko's not ation the eq uilibriu m state of st ress in
the st rip is give n by

n = 0" '
TE'l = 0 ,

Assuming that the edges of the strip are free to move, the corresponding di splacements are

U = - p~ v = 0 , 10 = _ vpp
E ' E '

an d these displacem ent s clearly sat isfy the shell equat ions obtained by \V. R . Dean" for stability
problems of th is nature. ' If the above configuration "is one of neutral equilibrium, t he shell
equat ions must also be sat isfied by the d isplacemen ts -

It = - Pi + It' , v = v ' , w = - vpp + w'
E '

where u', v', -e' are arbitrarily small h ilt not all zero. The thTf'P. funda men t al stability equations
are now obtained by subtracting the shell eq uat ions for these two configurations and ignoring
terms of orde r above t he firs t in «', v', w'. T he equations are very long, however, and as they
can be easily simplified by making cert ain assumpt ions, it is not proposed to set them down in
full. The assumptions referred to are that b/p is small, and t hat w' is of a larger order of
magnit ude than w' or v'. The former is implicit in t he fact t hat the st rip is on ly slightly bent ,
while t he latter follows from considering t he special case in which p is infi nite. After carrying
out the simplification just mentioned , t he three equations reduce t o

(1)

(I - v) ~ (~' +~') + ~ {(av' __W')+ ,a_u'}
2 0' a, a" a~ 0'1 p a,

I~' v'w ' + (1 _ v~) t: 1'w' _ 1 {(av' _ W')+ v au'}
3 E oe p (hi P 0$

= 0,

= 0,

(2)

(3)

Introducing x and y defined by x' ~;, y = 'I;, these equations t ake t he form

~. [au' + v (av' _ bW')J + ( I - v)~ (av' +~)= 0,
ox ax oy p" 2 ay ox ay

(1 -:; v) ~ (OV' + au' ) +~ [(~V ' _ bW' ) + v au' J=0 ,
• oX oX oy oy oy pn ae

h' v 'w' + (I _ v')(~)' p a'w' _~[(CV' _ bW')+ v ~xu 'J ~ 0,
3 n E or n 3p oy p."7 u

• On the Theor y of Elastic Stability. Proc. Roy. Soc. A. Vol. 107, page 734, 1925 .

(4)

(5)

(6)
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and it remains to find the relat ion between P, p, "and the dimen sions of the st rip in order that
equations (4) to (6) may have a non-zero solution sat isfying the appropriate boundary cond itions .

Introducing a st ress function " defined by

(7)

( I - ,,)(211 ' + cv' ) = :r .?2f'
2 cy ex ?xoy'

(8)

(
(lV ' _ &1£/ ') + J' ou' = :r az.,.
oy p.1: eX (lx'l '

eq uations (4) and (5) are sa tisfied identically, and then
(7). (8) and (9). the equat ions fur _ and w' are

(9)

by eliminating u ' and v' between (6),

(10)

(11)

(12)where R = ( I - ,') (!!. )'. p ~ 3~ (!!. )'. Q ~ '2hp (!!'-)'.
hp:r ph:r D:r

Two methods of development are now a vailable. The first is to solve directly for x', V', to'
from equat ions (4) to (6) : t he second is. to solve for w' and T from (10) a nd (11). and then for
u ' a nd v' from (7) to (9). To decide on which is the better method depends on the boundary
conditions to be satisfied in the particular case conside red. Both types of solution are illustrated
in what follovvs. as the case in which the edges arc simply supported is dealt with by the first
method, and the case in which the edges are fixed by the second . .

Case in which Edges are S imply Supported.-\Vhen the st rip buckl es it is assumed in this case
that any displacement of the ed ges is prevented, but that edges are free from couples. Expressed
analytically, the boundary cond itions are accordingly

r:

(l2w ' (;'Z.w I •

r ox2 + 0)" = 0 u-I ~ 0,

u ' = 0, u - 0 ,

(13)

when y is ±;.
Aft er observ ing that (4), (-') and (6) possess particular solut ions of t he form

11 ~ Ae Ysin mx,

v I Bet')'cos mx,

ur ' _ CeTYcosmx,

where T and 111 are related by the equation

(r 2 _ m2) 4 _ Qm2 (r 2 _ m2)2 + PRm~ = 0 , (I~)
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we try for a complete solut ion in the form

, f ~ , h }.
14 = l "': ~'""l. mr cos TMY SIn niX,

r _l _

V' ={ ~ Hnu sin h Tmr Y}COS 11IX ,
U_ l •

w· =,{ ~ c., cosh TmrY}COS J1tx.,-,

(15)

Here t he relations between the A's, B's and C's are foun d by d irect subs titu tion in any two of the
equations (-t) to (6), and the T 'S are the roots of ( l-t). .

Substitut ing- for « ', v' and w' in (1 :~) , the boundary conditions take t he form

\ , 7t
L Cme cosh T mr2- = 0,,-,

(16)

0, •

•
~ Bm t sin h T Olr ~ = O.

r _ 1 2

Then on subs titu ting for sc', u' and w', in (-1) and (5) it follows that

where
bm 2

t> (1 - . ) (T., + ,.m'),
A ~ 2 7tp _

•

(17)

bTn IT

2 r. p
(1 - ,.) k:,- m') - (1 + .j m'},

t> , - (1 - 1') (T' ')'2 mr- m .

E lim inating t he A's, B's and C's from the equat ions (16) by means of (17); t he condit ion t hat
t he boundary con di tion s should be consisten t is

l a, b,c, d.I= O, (18)

where a, - (r~T- 111
2) ,

b, - (T~r- m2
) 2(T~- vm2

) ,

c, - (T~l<+ l ' m
2

) ,

s; [(T~,- m') _ (1+ v) m'l t anh T lllI "= "f mc 2 '
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Equation (18) is the fundamental relation connect ing up the buckling stress p. the \YaYC length
of the buckles 2b/m, and the dimensions of the strip, and after simplifica tion it can be written in
t he form

, [ S ! "I ' , S ' ! "I' ' ](I- f'); '.'l(1 +f') -- ,,~.(1 +,,)) tallh '.' ~ -'.' l (1 + f') + ", . (1+ . )) ta~llT.;2

,[ \ ! (' , ( ! "I ' ' ]= (1+ ,,)' '~ t(1 -f') - ", . (1+ ")) tanh'~'Z -'~ l(1 -f') + ", . (1+.)) tanh,_ 'Z (19)

where x and Ii are d efined by the equations

p _ 2.-rW1

E - 3 (1 - .') b'.'
(1 - f'') :1 (1- . ')b',

... 4 - 70 4 P,%h2

an d t he a's are expressed in terms of x and. I-'- by the relat ions

T ~l= ".2 + In (1 + !-L)!'
•

'

2 _ 11/ 2 _ 111 ( I + )Im2- - I-t . '
•

•
T

2 = IU
t + '" (1 ) !-.3 - - fA. -'

>

It is immat erial if any of the T 'S -are purely imaginary, since in t he above equat ion t hey on ly
occur to even poevers. For any gi ven curvature, equation (19) gives P in terms of m . For some
value of Ill , pwill, however, be a minimum, and it is this pand the corresponding III which are the
values reqmred .and which are plotted in Figs. I and ~.

Case in which Edges are Fixed. *- In t his case it is assumed that , when the strip buckles, t he
edges are completely fixed. Aft er t ransferring t he origin to the midd le ef one of t he sides, the
boundary conditions, when expressed analytically, are

cw '
~ U, w · = '0,oy

u ' = 0, v ' = 0 ,

when y is 0 or a ; and the procedure is nowto solve for w ' and /I' from (JO) and (JJ).

\ Ve start by expressing 10 ' in the fonn

w' = l~~ sin ry + Ey + Fy:Z + GYIcos 11JX, '

as this is the simplest fonn which is general and which at the same t ime can be differentiated
term by term four times. The A's are arbitrary, and E , F and G, which are expressed in terms of
the A's by means of the boundary conditions (20) , are accordingly given by

co I co { } -1 ro( 1E =- :E rA F = -:E 2 + (-) ' rA" G ~ -. :E 1 + (- )' jrA"
r' :r :r__I r_1 __ I

• For a detailed investigation of a somewhat similar method, see the author's paper The Elastic Stability of a Long
and Slightly Bent Rectangular Plate under Uniform Shear. Proc . Roy. Soc. A. VoL 162, page 62,1937.
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After subst itu ting for w' in (10). we get an ord inary differential equation for f' which has for its
genera l solut ion

" = cos mx [tA cosh my+B sinh my} +yfC cosh my +D sinh my}

The constants A, B, C, D are arbitrary, and are determined from the boundary condit ions for u '
and v ', after these have been expressed in .t erms of w' and ' 9'. from the equations (7) to (9).

Having now obtained express ions for w ' and " ,v-hich sat isfy all the fundamental equations and
boundary condit ions except th e equation (11). it remains to substitu te (or w' and f' in th at
equation . Doing t his gives

~, 1\, (1" + m')' sin ry + Im'(Ey + Fy' + Gy') - 2m' (2F ;I- 6Gy ) j

+ pm21A cosh my + B sinh my + y (C cosh my ~ D sinh l!ly ) j

+ PR \4F + ( (E + 12G) + F ' + Gy' j ~ 0(m1 Y m2 Y , (21)

which must be valid for all y in (0, :f). On express ing the entire left-hand side of (21) in t erms
of sines of multiples of y, it follov..-s that the coefficient of sin ry (r = 1,2, - 00 ,) must vanish , since
(21) can be regarded as an identity in y . After considera ble algebraic reduction we accordingly
deduce that

(22)
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where

r' + (2+ ,) rm' o (I + 2)\2 ( )I r
(Xr = (r2 + m2)2 > ~r = - ... v ( + - \'lm3'

y. = - (2 + ,,) -; - 6 (3 + 2, ) \ 1 + (_ ).L.;_. '
m ( ) :t 1n

.em~ - ~ t; ~ - n~ 1 1 - (- )'lI2+ (- +-(-).n~ II+ (- +.
L. ~ (_) . M. ~ 4moc, X - Y cos rn

n( l +') Z

2nr Z [~mJl (l + v) cos m sinh J1m

n (I+,) (r' +m')
II + m' (I + ')}
( (r' +m')

+ (3 - ,) (I - ,) sinh'm., - m'-rt'(l + ')'. _ 2m' (1 + ,) ( ~J - , ) sinh 'mJ< ] (23)
(r2 + m'l) . (r2+ m'l)2 '

an d X , Y, Z are give n by

X - (3 - p) cosh 11/71 sinh Inn + 1n:r (1 + Jl) ,

Y - (3 - v) sin h mn + mit (1 + v) cosh In,,"l ,

Z _ (3 - V)2 sinh 2,n.;: _ m'lJt'l (1 + V)2 .

The equa t ions (22) rep resen t an in finite system of eq uations linear in the A's whose only solu tio n
is in general that -in which all t he A's are zero. If, however, t he infinite det erminan t formed
by eliminat ing the A's vanishes, the position is altered and there exists an infinit e set of non-zero
solutions. Since these involve non-zero values for w', they are positions of neutral-equilibrium,
and we have accordingly found an equation from wh ich to de d uce the crit ical values of Q, and
hence of p. Expressing t he fact that the in fi nit e det erminant vanishes, t his equatio n is

0 , 0 N IS 0 N l 5 0

0 0 , 0 N 24 0 N 26

Ns, 0 0 , 0 N", 0

0 N42 0 0 , 0 N 46

= 0 , (24)

N" 0 N~ 0 n, 0

0 N 62 0 N 64 0 0 ,

where

.
N1j = m4c;j - 4m:f';j - m2Qe;j



(27)

II

A proof will now be given that the determinant in (2,,(,) is conve rgen t, as ot herwise t he solut ion
given by that equat ion is merely a formal one. From (Z-{) we deduce that t he orders of magnitude
of the various quantities involved are

«, = 0 C) ,y, - 0 (r) ,

L, 0 C ) , IJ., =O (r) ,

)1, = 0 (~ ) . e: ~ 0 (~) .

D, - 0 (~) .i: ~ °m.
V, ~ °C) ,

Now divide the (2, - l )th and 2rth rows by T . and t he (2, - l )t h and 2rth columns by r. then
from (25) to (27) it follows that the product of the diagonal t erms , and the sum of the non-diagonal
terms are each absolutely convergent . and h~nce t hat the determ inant it self converges."

Since equation (24) is of indefinitely large degree in Q. it will have an infinite number of roots ,
but it is, of course, only with the smallest of these roots that we are concerned in pract ice. Owing
to the form of the determinant in (2-1), t he approximate de terminant formed by taking it s first
211 rows and columns can be expressed as t he product of two determinan ts each of order 1t. The
equation (24) can hence he written in the form

fl . X l3 Xu Hz X,. :\21;

X,. 0 3 NM X 4:l !l4 X 46 = 0 • (28)

X 51 X S3 n, X 62 :S &f o,
and it remains to obtain successive approximat ions to eac h of these two infinite determinants.
A very little calcula t ion is sufficient to show that the smallest value of Q, and hence of p, is given
hy the det erm inant on the left in equat ion (28), and hence the vanishing of this determinant is
t he fundamental equation connecting up t he bucklin g st ress p, the wave length of the buckles
2bJm. and the dimensions of the st rip. The convergence of the det erminant is ext remely rapid,
and over the range of va lues considered, the second order det erminant formed from the first two
rows and columns gives results which are accura te to I per cen t.

• Whittaker and Watson, :Modem Analysis (4th 00.) Chap . 2, § 2, R
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