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Summary.—(a) Introductory.—An autogyro obtains remarkably high lift
forces from a system of freely rotating blades and it is important to develop
a theory which will explain the behaviour of an autogyro and will provide a
method of estimating the effect of changes in the fundamental parameters ol
the system.

() Range of Investigation.—A theorv is developed depending on the
assumptions that the angles of incidence of the blade elements are small, that
the interference flow is similar to that caused by an ordinary aerofcil, and
that only first order harmonics of periodic terms need be retained in the
equations. An alternative method of analysis by considering the energy
losses of an autogyro is developed in an appendix to the main report.

(¢) Conclusions.—The maximum lift coefficient of an autogyro, using the
disc area as fundamental area and the forward speed as fundamental speed,
lies between 0-5 and 0-6 in general, and the best lift-drag ratio is of the order
of 6 or 8 at most. Also, owing to the necessity of maintaining a sufficient
ratio of tip speed to forward speed, the stalling speed of an autogyro must
rise with the maximum speed of level flight, and so the principal merit of the
autogyro system, the low landing speed, would disappear in the case of high
speed aircraft.

(4} Further developmenis.—The analysis is confined to the case of blades
of constant chord and angle of pitch, but there would be no difficulty in
extending the theory to tapered and twisted blades, provided these variations
can be expressed in a simple mathematical form. It is not anticipated that
an improvement of more than a few per cent. could be achieved by any such
modifications,
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1. Introduction.—The lifting system of an autogyro or gyroplane
consists essentially of a windmill of large radius R with three or
more identical blades, whose angular rotation § is maintained by
the forward speed V of the aircraft. Tach blade is also free to rotate
about a hinge at its root which is normal to the shaft of the autogyro.
In the simplest case, the chord ¢ of the blades is constant from root
to tip, and the blade is attached to the shaft at a small positive
angle of pitch 8, while the shape of the blade is concave downwards
when viewed from front or rear. The shape of the biades will be
assumed to be of this simple form in the subsequent analysis,
although in practice the corners of the blades are rounded off at the
tips and the chord tapers to the dimensions of the spar at the root.
Variations of the chord and angle of pitch along the blade would not
necessitate any fundamental changes in the method of analysis, but
would involve greater complexity at all stages.

When the shaft of the autogyro is inclined backwards at angle i
(fig. 1) to the normal to the direction of motion, the autogyro will
be said to be at angle of incidence 7. The resultant force acting
on the autogyro can then be resolved conveniently into the following
components :—

T, the thrust along the shaft.

H, the longitudinal force at right angles to the shaft in the
plane of the shaft and of the direction of motion.

Y, the lateral force, normal to the previous components and
positive to the side on which the blades are advancing in the
direction of motion.

The lift Z and the drag X of the autogyro are expressed simply
in terms of the thrust and longitudinal force by the equations :—

Z =Tcost— Hsin¢ (
X =Tsin+ + Hcost T T )
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Owing to the method of attachment of the blades to the shaft,
" the only couple which can be transmitted to the autogyro is a
torque Q) about the shaft. The torque will be regarded as positive
when it opposes the rotation of the autogyro.

In order to express these force components in the form of non-
dimensional coefficients, it is convenient, when considering the
aerodynamics of the rotating system, to use the disc area 7 R? of
the windmill as the fundamental area and the tip speed 2 R as the
fundamental speed. Accordingly, non-dimensional coefficients are
defined by the equations

T = T,n R? p Q 2R?
H — H.n R?p QR? @
Y = V. nR? p Q*R? R )
Q= anRsz'st

On the other hand, when considering the motion of the aircraft as
a whole, it is necessary to use the forward speed V as fundamental
speed, and to define the non-dimensional coefficients of drag, lateral
force, and lift by the equations

X=FkKknR2pV?2
Y=%nR%p V?
Z=~FnmR2pV?
The relationships between the two sets of coefficients involves a

single parameter A, which is the ratio of the forward speed to the
tip speed

(3)

A%
7\=ﬁ—ﬁ .. - (4)

and in particular the equations (1} become

A2k, = T,cosi— Hgsin¢
A2k, = T,sins + Hocosi [ " ®)

It may be noted that the angle of incidence ¢+ and the speed
ratio A define the state of working of the windmill.

2. Motion of the blades.—Each blade is hinged at its root about
an axis normal to the shaft of the autogyro. The plan form of the
blades is approximately rectangular, but the blades are curved so
as to be concave downwards. Take the line joining the root to the
tip as base line (fig. 2), let % be the ordinate at radial distance 7, and
let ¥ be the slope of the tangent at this point, so that

_ dh
L= "1y
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In the subsequent analysis the values of the following integrals
are required, depending on the curvature of the blades ;(—

jR ydr =0

o

[ xrdr =— [ hdr=—qRe

-

[ arrar =~ 2jjhrdr= —24,R8

R
J y2rdr = ER?

and for the purposes of the analysis the curvature of the blades is
completely represented by the values of the three coefficients,

T, Yo, and E.
The flapping of the blades also depends on the following three

integrals, involving the line density s of the blade and the total
weight W, of one blade :—

y

Gl=ﬁmg1’d¢'=plW1R

II:[Rmr2d7=p2% R? > (7)

« O

R

Ji = [ mhrdr= el

The general analysis will be developed in terms of the six

coefficients defined by equations (6) and (7), but in numerical

applications it will be assumed that the blade has the shape of a

circular arc and that the line density m is constant along the blade.

In this special case € is the camber of the circular arc and the other
coefficients have the values

=3 ==}
T = 36 Ny = 3§
A typical numerical value for g£is 0-03 and then
7 = 0:02, My = 001, £ = 0-0024
The position of a blade at any moment can be defined by the
angle y through which it has rotated about the shaft from the

downwind position and by the angle 8 which is its upward inclination
above the plane normal to the shaft. Then, provided that the
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angles 3and y are small, the equation of motion for the flapping of
the blade is

R RdT R R
J' mﬂBdr:J d—rlrdw—J' mgrdr—-—J mQEy(r 8+ h) dr

o )
or

o o

I1 (B + 2 B) = (TM)l - Gl — Qz]l

where the suffix (1) denotes that the values refer to a single blade
and where {TM), is the moment of the thrust about the hinge of the
blade.

The angle 3 can be expressed quite generally in the form of the
Fourier series '

B=B— Brcos {$ — 1) — Bacos 2 (Y — ¢y)

where {3,, 3, etc, may be assumed to be positive. For the present
it is proposed to retain only the first harmonic term, so that the
flapping s equivalent to a tilt of the plane of rotation through an
angle (3, with the lowest point in the angular position ¢, combined
with a general upward tilt of all the blades through the coning
angle .. On this basis

B=Bo—Broos@—¢) .. .. ()

and, by virtue of equations (7), the equation of motion for the
flapping of the blades reduces to

™ QR
=t Bt 9

(10)

Hence, to this order of approximation, the moment of the thrust
on a blade about its hinge is independent of the angular position ),
and the evaluation of the angles ¢, 3o, and [3; follows from the
consideration of the aerodynamic expression for the thrust moment.

The subsequent analysis is based entirely on the assumption
that it is sufficiently accurate to retain only the principal oscillation
of the flapping, and to neglect all higher harmonics involving cos 2 ¢),
cos 3 ¢, ete.

3. Interference flow.—An autogyro at angle of incidence 7 is
essentially a windmill descending with the axial velocity V sin ¢ and
with the velocity of sideslip V cos ¢, but owing to the fact that the
velocity of sideslip is considerably greater than the axial velocity,
the induced velocity due to the system of trailing vortices will
correspond more closely to the induced velocity of an aerofoil than
to that usually associated with an airscrew and its slipstream. The
principal force component is the thrust T and so the induced velocity
v will be assumed to be parallel to the shaft of the autogyro (fig. 3).
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In the first place also, this induced velocity will be assumed to have
a constant value over the whole disc of the autogyro, and the con-
sideration of the effect of variation of the induced velocity will be
postponed to a later stage (Para. 10).

The resultant velocity V' experienced by the autogyro is the
resultant of the forward speed V and the axial induced velocity v,
) and may be written in the alternative forms

V2 = (V — vsin 1) 4 v2cos?i
= (Vsini — v)2 4+ V2 cos? s
The formula proposed for the axial induced velocity is

l T

f v = ‘e 11

' 27eR2pV’ (1)
which is a logical generalisation of the ordinary aerofoil formula.
When 4 and T are small the formula gives approximately

— ————T.__
- 2mR2pV
which is the standard formula for the normal induced velocity of an

aerofoil of semi-span R giving the lift T, and when ¢ is nearly 90° it
gives

T=2nR2p (V-9

which is the ordinary momentum formula for an airscrew. It is
anticipated therefore that the formula (11) will be valid over a wide
range of angle of incidence.

The axial velocity through the disc of the autogyro 1s
#=Vsini —v

and it is convenient to write

Vsint —v=u=0QRx .. .. (12}
The equation (11) for the induced velocity may then be expressed
in the form
.. T,
Asint = x 4+ ¥ (13)

V% cos? ¢ 4 x?

and for small angles of incidence a good approximation can be
obtained by neglecting ¥ in comparison with Acos 4.

4. Flow at blade element.—Consider the element dr at radial
distance 7 on the blade which is at angular position ¢ to the down-
wind position. Due to the flapping of the blade and to its curvature
the blade element is inclined at the small angle (f§ 4 y) to the
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normal to the shaft. Now the velocity of the air relative to the
autogyro has the components # along the shaft and V cos ¢ normal
to the shaft, while the blade element is moving whith the angular
velocities () about the shaft of the autogyro and f about the hinge
of the blade. The velocity of the air relative to the blade element has
therefore the following components (see fig. 4) :—

(1) normal to the shaft and to the element dr
Ucos ¢ = Qr + Vcostsin

(2) normal to this first component and to the element dr

Usind=u—78— (84 5 Vcosicos{
(3) radial along the element d7
w (B4 %) + V cosicos

The radial velocity component will be ignored. Retaining only

first harmonics of the angle § and regarding the angle ¢ as small,
the other two components become

U=Qr 4 Vcostsin{
dU=QRx — Qr & sin (y — ¢,) } (14)

— By + ) V cos ¢ cos v

and to this same order of approximation

U2 = Q%% 4 207 V cos ¢ sin
¢U2= QRrx -+ 2Q R ¥V cos ¢ sin ¢
— Q%2 By sin ($ — ¢y) — Q7
(Bo 4 ) V cos 1 cos ¢
$2U3= Q%2x2 — 2Q% Ryx B, sin ( — )
—2QRx By 4+ ) V cos i cos ¢

The assumptions on which these formulae are based clearly
break down towards the root of all of the blades and over a wider
range of the retreating blades, since the angle ¢ ceases to be small,
while on the inner portion of the retreating blade the air flow will
actually strike the rear of the aerofoil section. The failure of the
approximation towards the root of the blade is not of any practical
importance, but the method of analysis will cease to be valid when
the approximations break down over a large part of the retreating
blades. It is not possible to assign an exact limit to the validity of
the approximations but it is proposed to take the condition that the
velocity component U cos ¢ must be positive over the outer half of
the retreating blade. On this basis the limit of validity is that

(15)

Vcose
R < } . .. e (16)
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The lift and drag coefficients of the aerofoil section correspond
to two dimensional motion at the angle of incidence

x=0-+4+ ¢

For small angles of incidence the lift coefficient is simply pro-
portional to the angle of incidence, since the aerofoil sections are of
symmetrical shape. Also, the drag contributesonly a small correction
to the force components due to the lift, and it is therefore legitimate
to replace the actual drag coefficients by a mean value 3. This value
will, however, be greater than the profile drag coefficient of the
aerofoil section at small angles of incidence, since it must take
account of the increased drag coefficients which occur on the re-
treating blade where the angle of incidence is large. The analysis
will be developed on the assumption that

i;z%w%-@ } oo 1)

The assumption that the lift coefficient is simply proportional
to the angle of incidence will cease to be valid if the angle of in-
cidence rises to the neighbourhood of the critical angle. Now the
symmetrical aerofoil sections Gottingen 429 and R.ALF. 30 stall at
an angle of incidence of 9° or 0~ 16 radian in two dimensional motion,
and hence the limit of validity may be taken to be

6+ ¢ <0-15
Ignoring periodic terms, equations (14) give ¢ = xR/fr and if the
blade elements are to operate below the critical angle over the
outer halves of the blades, it is necessary that

6+ 2% < 0-15 .. (18

This condition imposes an upper limit to the angle of pitch 0 for
which the method of analysis is valid, and on inserting the values
of x determined at a larger stage (Para. 7), the following limits are
obtained.

5 =0-004 0-006 0-008 0:010
6 =78 7:4 7-0 6-6 degrees.
5. Thrust—For one blade of the autogyro
aT,

?;—=3(9+¢)CPU2

and by virtue of equations (15)
304+ ¢ U2 =32 (022 + xR7)
31207+ xR)QVcoss
—3Q27r% 0, cos
3Q22 0, sinlnlal o (19)
—3Q7 (By+x) Veost

+ sin ¢
+ cos ¢
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The periodic terms disappear on summing over the B blades of
the autogyro and hence the total thrust is

T=BchzR3(6+gx)
Now B ¢ R is the total blade area and it is convenient to write ¢
for the solidity or the ratio of the blade to the disc area :—

_ Be
G = R (20)
and then the thrust coefficient is
T.— o (6 + g ¥ .. ...

The periodic part of the thrust on one blade is obtained by
integration as

¢ p Q2R3 [sin 4){3 (6 + x) Vé—oﬁi — B, cos lIJl}
+ cos ¢4 Busin i— (5 o= 3 ) it b ]

and on inserting the values from equations (23} below, thls expression
becomes

¢ p Q)2 Ra{(% 0 - x) sin ¢
Vcost

1
so that the thrust on one blade is

ﬁ=(6+gx)+{(%a+x)sm¢

1 Vecost
— (5 B — 8 my + 89, ) cos 22
Inserting typical numerical values* this expression gives

T, —0- . 009 - Vcost
m—0068+{003451n¢ 0-039 cos - ¥ =2

and when V cos 1 = } R, its largest legitimate value, the thrust

on one blade oscillates 38 per cent. on each side of its mean value.

* The typical values inserted throughout thé report refer to an antogyro
defined by the values

=4, 0=2, ¢ = 02 & = 0006 ¢ = 003, "L = 003,

W/n R% = 2, R = 175.

w
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6. Thrust moment and flapping—For one blade of the autogyro
'%1= (64 ¢)cpU2r |

and according to the analysis of Para. 2 the thrust moment must be
independent of the angle ¢ and have the value given by equation
(10).  On integration, the coefficients of sin ¢ and cos ¢ give re-
spectively

(20 - g 2) QR3V cos i — %QzR4@1cos¢1=0

% Q2R4B,sin §, — (B, — 67y) QR3Veosi =0
or
. 4 A% )
Bysin g = % (Bg — 6 ) Tt
3 QR 23)
Breosy=S(0+ 30 VI [
. ! 173 4 QR
and hence
_3Bo—3mn
tan ¢, = Sris .. - (24)
The thrust moment on each blade is

l (TM), = cp Q2R (2 6+ )

and by means of equation (10} it is possible to determine the value
of the coning angle f3,. The thrast T is sensibly equal to the total
weight W of the aircraft and hence the angular velocity is given by
the equation

W=T=BcpQR(H + g % .. .. (25)
Equation (10} now gives
gpanR3[(}0+ ) ;Ll(9+§x)
— 2 .+ (26)
U2 BW, - W
or which typical numerical values are

Be+0:030 = 0-160 — 0-014 = 0-146
o = 0:116, or 6} degrees.

Bo+ e=

[ Also
tan $, = 054, ¢, = 28} degrees.

and

——

8 _0.157Vcosi or 9°-0 V cost
L= Yost

QR QR
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It should be noted that the values of Y1 Bo and By are very
sensitive to the weight and curvature of the blades. The values are

-also modified considerably if the axial flow is regarded as periodic
(see para. 10 below),

7. Torque.~TFor one blade of the autogyro
d
Lh— hy— k) cpUts
= (5—384—3¢Y)cpUls
and by virtue of equations (15)
(3—366—361)U2=0Q2(8/2—308xRr—3x2RY

. 2837y —30xR)QVcose

- sin ¢ (+392(9r2—}-2?GR?’)91C05"I’1 }27

N 3(67+2xR) (Bo+- ) QVcosi &)
COSYN T 30202 1 2 X R7) By sin §y)

The periodic terms disappear on summing over the B blades of
the autogyro and hence the total torque is

Q:—BchZR%% d— 0x— g:ﬁ)

and the torque coefficient is

3
Qc=ia{8——-4x(6—|— 3 x)}
=163 —xT, . . .. (28)

In steady motion the torque must be zero and hence the state
of operation of the autogyro is determined by the equation

8=4x(0—|—gx) e (@

This equation determines the parameter % in terms of the angle
of pitch 0 and of the mean profile drag coefficient §. Now x is the
ratio of the axial velocity # to the tip speed (2R, and equations (25)
and (29) taken in combination show that a given autogyro operates
with definite values of the angular velocity and of the axial velocity
u, which are independent of the angle of incidence.

The value of x is determined in any particular case by rewriting
equation (29) in the form

L Vet




o,

© —

A e LT e

PR

569

and the following table gives the value of x for a suitable range of
values of 6 and 9,

Values of x.
f = 0° 2° 4° 6°

3=0 0 0 0 0
0-003 0-0224 0-0136 0-0080 0-0065
0-006 (-0316 0-0220 0-0160 0-0121
0-010 0-0408 0-0308 0-0237 0-0188
0-015 G-0500 0-0397 0-0318 0-0260

The torque on the individual blades is due solely to the periodic
terms which give

+4ge+2@gﬂmmh}_+ms¢{wpo+3xpo

— 6071, —6x7,) VS)ISJ— ($9+2x)p;sin ‘Pl}]

and on substituting from equations (23)

_Ql____{g_ 2 16 P
TR T (3 3+269 -{—-g-ﬂx—{—ﬂlx)smv.[;

i :
—!—x(g Bo—64n,+ 16 ‘Y)z)COS 4»} Vgcﬁz .. (80)

for which typical numerical values are

0, o ) . Vcosi
Fo e = (0°0125sin ¢ + 0:0017 cos §) ~55

Thus, to a close approximation, the torque is retarding on the
advancing blades and accelerating on the retreating blades,

8. Longitudinal force—The longitudinal force on one blade is
calculated from the equation

aH, 1 dQl i __d_ll
7= 4 sin ¢ pm B+ x)cos ¢
where 8 = fi,— f3, cos (= o)

To obtain the sum over all the blades it is sufficient to neglect odd
powers of sin ¢ and cos ¢ in the expansion of this expression and to
(34087)—11

K
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replace sin? ¢ or cos? ¢ by 4 B. Proceeding by this method and
using the expansions given in equations (19) and (27), the longitudinal
force is obtained in the form

2 4dH _ _ :
—Cp_d-;——(ZSr 30 xR)QVcos¢
+ 302 (6724 2xR7) By cos Y,
— 30272 (B, + ) Bysin &,
+3Q 7 (By+ 1)2 Vcost
+3Q2 (672 + xR 7)B, cos ¢

On integrating
2H 5 3,2 V cos s
m‘Qz—Rg—“(s 387‘”"230 650")1+3E)W

9 .
+ {20+ 5 %) Bycos §; — (Bo— 61g) By sin ¢y
and then substituting from equations (23)

H 8 no , 13 9 o, 1 g2
BchZR3_{%8+§B+7ex+_2x+l2 Bo
Veoss 31)

+ (B, —3n) Bo— 242+ £E OR-

Inserting typical numerical values

E — 0-264 V cos 7

T QR

and if only the first four terms of the expression for H are retained,
the numerical factor falls to 0+198. The difference is 25 per cent. of
the full value, but the longitudinal force usually contributes less
than the thrust to the drag, and there is therefore some justification
in retaining only the first four terms as an approximate expression
for the longitudinal force. Moreover, the later terms depend on the
weight and curvature of the blades, so that it is not possible to assess
their value until the full details of the blades are known, whereas
the earlier terms depend only on the angle of pitch and on the mean
profile drag coefficient. It is therefore proposed to adopt the
approximate expression

71 8 o, 13 9 ,\ Vcoss
Ho=o(y 8+ 3 0+ 505+ 5 %) gx-
8 1 15 vV )
— o5 0+ 03 +5 ) gR (32)

In any case of special importance, however, it would be desirable to
use the full expression (31), particularly at small angles of incidence.
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9. Lateral force.—The lateral force on one blade is calculated
from the equation

dY, 1 dQ, 4T, .
& T T 7 T st g Btysing
and proceeding as in the case of the longitudinal force
2 4dY .
Bop dr 3020724 2xR %) B, sin ¢,

—3(0r+2xR) (By+ ) QVcost
—3207r+2R) (Bot+ ) QVecosi
+ 3272 (By 4 x) By cos ¢y
+ 3Q2(672+ xR#) B, sin ¢,
On integrating
2Y

Vv
m =900 — —eﬁo % Bqg) cosz

+ (Bo— 677 ﬁ;cos¢1+(2e+gx) By sin ¢,
and then substituting from equations (23)

Y 5 9
BchRé_{e(ﬁB“i”l 16 1,)
— % (8o 240 p U0

(33)
Inserting typical numerical values
Y Vcosi
— = — 0108
T QR

indicating a lateral force to port, where the blades are retreating,
and a magnitude proportional to the forward speed of the autogyro.

Experimentally the lateral force appears to be to port at high
speed and to starboard at low speed. Thus the sense of the variation
of the lateral force with speed has been obtained correctly, but there
is a discrepancy in the value at low speeds. To explain this diver-
gence it is necessary to abandon the assumption that the axial
velocity # is constant over the whole disc and to consider the effect
of a varying induced velocity.

10. Pertodic induced velocity —Hitherto the normal induced
velocity has been assumed to have a constant value » over the whole
disc of the autogyro, but it is evident on physical grounds that the
induced velocity will in fact be greater to the rear and less to the

(34087)—II Kz
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front of the disc. If the increment of the induced velocity is pro-
portional to the distance behind the centre of the disc, then at small
angles of incidence it will be of the form

v—l—le’icosq;

It is not possible to assign an exact value for v,, but it is probably

of the same order as v, and in numerical estimates it is perhaps
legitimate to assume that v, = v.

Now from equation {I1) the mean induced velocity at small
angles of incidence is

S S
2nR2pV
or
v T,
QR ~ 2%

and, when allowance is made for the varying induced velocity, the
flow through the disc becomes

QR (x — xqcos )

where

x, =L L
'"QR'R

The following corrections are then necessary to the expressions
(19) and (27)
A {3(e+ ¥) U2} . —3Q*Ryx,cos

= —39272":}1—;1@3 P

A {(8—3 0¢—3¢2)U2}2Q2(36Rr—t—6xR2)xlcosu[;
302 (02 7 T,
3Q%(0r*42xRv) - 2)\005&[)

The total thrust and torque of the autogyro are unaltered, though
there will be some modification to their periodic parts. There is a
correction to the coefficient of cos { in the expression for the thrust
moment, which gives

. T,
A(Bysin ¢;) = z;‘f 3
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and so the phase angle ), must be determined from the equation

3 v T,
tan %30“3712"'?3;1'? a4
an =
which has the typical numerical value
tan ¢; = 0-54 + 0)?250
The increment of the longitudinal force H is obtained as
2 dH .
A drN _ 2 42
(Bes 4 3081 (By+ ) A(Bysin )

+3QPR7x; (B + )

which vanishes identically, so that the lift and drag of the autogyro
are not altered.

The increment of the lateral force Y is obtained as

A(E%ﬁ_ %X)=3Q2(2 072+ 32 R 7) A (B, sin §,)
co ar — 302(0R 7+ 2xRY «,
_ 2042 ) vy T,
=320 2+ xR~ Y

and hence
AMporry) =1 (02 )35

AY 1 T (g5

T 4 v A

This increment indicates a force to starboard, where the blades are
advancing, and a magnitude increasing as the forward speed
decreases. The correction is therefore of the type required to
explain the discrepancy mentioned in the previous paragraph.
Numerically, however, the correction is not sufficiently large, for
with typical values the lateral force becomes

Y _ 0-0034 0-108 X

or

T A
which vanishes when A == 0-178. This value corresponds to an
angle of incidence in the neighbourhood of 30°, and the evidence
available from full scale flight appears to indicate that the lateral
force should be to starboard at a moderate angle such as 15°. The
source of this residual discrepancy may possibly lie in the numerical
values which have been used to illustrate the general results.
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11. Lift and dvag—The aerodynamic characteristics of an
autogyro depend on the values of three fundamental parameters :—
f) == the angle of pitch of the blades,
o = the solidity of the blades,
8 = the mean profile drag coefficient,

and when these values are known, the lift and drag of the autogyro
are calculated by means of the following equations :—

x(B—l—_gx) )
To=0a(6+ §x) Gj
_s 17 15
(=g Ot g Ort g L .. (38)

H,= cZ)\cosz
Asin 1 =x -+ 3 T
+/ 2% cos? 1 + x2
Ak, =T,cost— H,sin¢
AR, _Tsmz—l—H cos1

-

The method of using these equations is to calculate, from the
known values of the three fundamental parameters, the values of x,
T,, and {. Then, starting with a suitable series of values of Acos i,

it is possible to calculate in turn the values of Asini, 4, A H,, &, and
k..

No ambiguity exists as to the value of 0, but if the aerofoil
sections are not of symmetrical shape this angle should be measured
{rom the no lift line of the section and not from the chord.

The solidity ¢ has been defined as the ratio of the total blade
area to the disc area, but the analysis has been developed on the
assumption of blades of constant chord. Thus in the application of
the equations to the case of blades which are rounded at the tips
and tapered slightly at the root, the value of should be taken to be

Bc

R

where ¢ is the chord length over the greater part of the blade, rather
than the actual ratio of blade area to disc area.

g =

The value of § is less certain, since it represents the effective
mean value of the profile drag coefficient. As an aid to the choice
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of a suitgble value of §, it is useful to calculate the mean lift co-
efficient kg, given by the aerofoil sections. Approximately

T=| hBepQtrids

<

= 15 Booms
1 _
or Tc= éGkL
so that
- 3 . 3%

Numerical values are given in the following table.

Mean lift coefficient.

= 0° 20 4 6°

5=0 0 0-105 0-210 0-315
0-003 0-101 0-166 0-250 0-345
0-006 0-142 0-204 0-282 0-370
0-010 0-184 0-244 0-317 0-400
0-015 0-225 0-284 0-353 0-432

The mean lift coefficient increases with the angle of pitch and the
corresponding value of § may also be expected to increase also. As
a rough guide to a suitable value of § it is suggested to take the
profile drag coefficient of the aerofoil section at the mean lift co-
efficient and to increase it 50 per cent. Thus, in the case of a good
symmetrical section the profile drag coefficient at small lift co-
efficients is of the order of 0-004, and so a typical value of §is 0-006.
The question is complicated by the scale effect on the profile drag,
both at small angles and near the critical angle, which is attained
on the retreating blade, and a final decision as to suitable values
for § can be attained only by comparison with experimental resulls.
It is also probable that the value of § which occursin equations (31)
and (32) for the longitudinal force should be greater than the value
in equations (28) and (29) for the torque, since the roots of the blades,
where the drag coefficient is high, exert a relatively greater influence
on the longitudinal force than on the torque.

12. The ideal autogyro —Before discussing the fundamental
equations (36) in general, it is of interest to examine the limiting
condition when & tends to zero, which is the case of the ideal autogyro.
It appears that x also tends to zero, indicating that there is no axial
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flow through the disc, and so the ideal autogyro cannot be regarded
as a physical reality but only as a limit towards which a good
autogyro may tend.

After a little reduction the lift and drag coefficients of the ideal
autogyro can be obtained in the form

k,:sin2i(005i—%6 v ¢ 8 sin 2 1)

k,—-—-sin2isini+§6(l +cos2i) VaBsin214) .. (37)

and the maximum lift coefficient is practically independent of the
values of Qand ¢. Approximately

k., (max) = 0-77, ati = 35} degrees.
Also at small angles of incidence
kR, =2¢
=204 0VTols
X _ ., 8 ¢
= t 4 3 6 \/—2—;

and the minimum value of the drag-lift ratio is 26 (3 6} at the
angle § 6 (3 6)'®.  Numerically, when § = 2° and ¢ = 0-2 the
maximum lift-drag ratio is 17 and occurs where s — 1°- 12, k,==0-039.
Full numerical values in this case are given in Table 3.

(38)

It is of interest to note that an ideal aerofoil of semi span R and
aspect ratio A with elliptic loading gives the values

k=q_§_ﬂii
' wRZpVE 21 A
X 1

b= 2 1o
T ZREpvVE T gk

Thus, as regards lift, the ideal autogyro is equivalent to an aerofoil

of zero aspect ratio or infinite chord. Also the drag coefficient of
the autogyro can be written in the form

kxz%k32+ g 9\/0‘6kz

and so the drag of the ideal autogyro is higher than that of the
ideal aerofail.
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13. Maxmumum Iift coefficieni—A good approximation to the
maximum lift coefficient of any autogyro can be derived from the
following approximations to the fundamental equations (36) :—

-

§=4x(0+ g-x)

_o38 |
Te=1% .. (39) '
. T r
Asin e =%+ ——¢
2 Acos 1

W k="T cost

Hence

Q
o7

sinicost—x ACos? =

ep — 998 (ogi
AR, 4xc051

oo
=

and by differentiation with respect to A and ¢, the maximum litt
coefficient is found to occur when

2A(3sin?7 — 1) =3 xsini
Substituting back in the previous equations

B, (max) = 2 @ —3 zjgii) cos? i

where .. 40y
{8 sin%s — 1} _ 6«3
(2— 8sin%d)sinzcost 68

which give the following numerical results :—

i 351 36 37 38 39 40
3 .
i’é 0 003 | 017 | -045 | -089 | -153

E,(max) | -770 | 715 | -645 | .580 | -520 | -463

By means of this table the maximum lift coefficient of any
autogyro, defined by the values of 0, gand §, can be determined,
and Table 1 gives the values for a suitable range of values of the three
fundamental parameters. The maximum lift coefficient increases
as Qor gincreases and as § decreases.
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14. Maximum Lift drag ratio.—At small angles of incidence the
fundamental equations (36) can be replaced by the approximations
=

8=4x(e+gx)
T, = 22
z;x%e2+1229x+1_25x2 . @)
H = ol
Aud—ﬂ=§§
z=it R

-

By differentiation with respect to A and ¢, the minimum value
of the drag-lift ratio is found to occur where

2 Ni— % — 4”8“2
and then writing _
N =2 M/%

the results can be expressed in the form
7S -
N(NE—]) =0V ES
( ) 552

eV

%(min.=m/_§(3 % +1T) J

The general numerical solution of these equations is as follows :—

(42)

——

613 05 1-0 1-5 2 | 3 l 4
2 x2 :

X 14192 | 1.325 | 1.432 | 1-522 | 1-672 | 1-797
i\/.g_ 2-03 | 2-08 | 213 | 2-18 ‘ 2.27 | 235
X

X\1,/8
(7:)2“/? 441 | 473 | 4.9 2 | 561 | 595
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The maximum lift-drag ratio can be determined from this table
for any autogyro when the values of the three fundamental para-
meters, 8, gand § are known. Typical values are given in Table 2.
and it appears that the lift-drag ratio increases as 9, 6, or § decreases.

15: General discussion.—Within the limits of validity of the
preceding analysis, as discussed in para. 4, the characteristics of
an autogyro depend essentially on the values of the three funda-
mental parameters §), o, and §, but the flapping of the blades and the
lateral force Y depend also on the curvature, weight, and size of the

. blades. The longitadinal force and drag are also influenced to a
smaller extent by these lattcr characteristics.

The analysis of the torque led to the equation (29) which shows
that the axial velocity # bears a constant ratio to the tip velocity QR
for a given autogyro. Also, according to equation (21), the thrust
coefficient T, has a constant value, and since in level flight the thrust
is sensibly equal to the weight of the aircraft, it appears that the tip
velocity must have the constant value

ReA__ W _oafxw
Q T R 2 3 (43)

and if § = 2°, § = 0:006. L
OR =78-8¢ ¥
J

The maximum lift coefficient of an autogyro is of the order

of 0-5 to 0-6, occurring at an angle of incidence in the neighbourhood

‘ of 38°, and if the autogyro is loaded 2 Ib. per sq. ft. of disc area, the
stalling speed will be of the order of 25 to 28 m.p.h.

The maximum lift-drag ratio of the rotating wings is poor
compared with that of ordinary fixed wings: its ordinary value is
approximately 6, and it is unlikely to exceed 8 in any practical case.
It occurs at a small value of the lift coefficient, in the neighbourhood
of 0-05, and so at a speed approximately three times the stalling
speed.

The lateral force on an autogyro whose starboard blades are
advancing, is to port at high speeds and to starboard at low speeds.
If the shaft of the autogyro is inclined sideways so as to maintain
the aircraft on a level keel at a mean angle of incidence, it is to be
anticipated that the aircraft will fly inclined downwards to port at
high speed and downwards to starboard at low speeds.

i Numerical solutions, illustrating the general equations (36), are
‘ given in Tables 4 to 7. Table 4 gives the solution in the typical
case 0= 2° ¢ =0-2, § = 0-008, and this solution is also shown
in fig. 5. It is of interest to notice the curved shape of the lift curve,
which first increases very slowly with incidence, then at uniform
rate, and finally falls off to a very gradual stall. Figs. 6 to 8 show

: |
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respectively the effect of variation of the profile drag, solidity and
angle of pitch. It is desirable that the profile drag should be as low
as possible, a solidity of 02 represents a good mean condition but
a lower solidity is advantageous for high speed, and an angle of
pitch of 2°is probably the best for the ordinary range of flying speeds.

A discussion of the best conditions for maximum speed and of
the possiblity of vertical descent is given in the appendices. The
important conclusion is reached that as the maximum speed of
a gyroplane is increased, the loading must also be increased in order
to maintain a sufficient ratio of tip speed to forward speed, and there
is a corresponding increase of the stalling speed. In the typical case
0= 2° ¢=0-02, § = 0-008, the values are :—

Maximum speed 85 150 200 m.p.h.
Loading (W/mR? e 240 6-2 -0 1b./sq. ft.
Stalling speed ... .. 261 263 62 m.p.h.

Thus the principal merit of a gyroplane, its low landing speed,
inevitably disappears when high speed of level flight is required,
and there remains only the absence of a sudden stall to counter-
balance the very poor efficiency as compared with an aeroplane.
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APPENDIX I.
THE ENERGY LOSSES OF AN AUTOGYRO.

The theory of the autogyro, as given in the main body of the report is
developed by considering the aerodynamic forces on the rotating blades. The’
theory necessarily involves certain assumptions and approximations, which
unfortunately become less accurate at small angles of incidence and introduce
some uncertainty in the determination of the maximum lift-drag ratio. An
attempt has, therefore, been made to analyse the energy account of an auto-
gyro in order to provide an independent check on the previous results. This
analysis gives an upper limit only to the possible lift-drag ratio since it is
not possible to evaluate fully every possible source of loss of energy. For
simplicity also the analysis has been confined to small angles of incidence,
i.e. to the region where the results of the previcus theory are most likely to
be in error.

Two main sources of loss of energy are considered, due respectively to the
induced velocity caused by the thrust and to the profile drag of the blades.
An additional source of loss of energy is the periodic distribution of thrust
over the disc of the windmill but no simple method has been found of estimat-
ing its magnitude.

The analysis assumes the angle of incidence i to be small, and hence it is
legitimate to replace cos i by unity and to regard the lift Z as identical
with the thrust T. If E is the loss of energy in unit time, the drag X of the
windmill is determined by the equation

XV=E

and the drag-lift ratio of the windmill is obtained as
X _E
Z VT

The thrust of the windmill causes an induced velocity v and a correspond-
ing loss of energy Tv. The induced velocity will be assutned to have a constant
value over the disc of the windmill and to be given by the equation

_ T
V"m—' .. . (a.)

as in the previous analysis. The velocity V' in this equation is the resultant
of V and », and for small angles of incidence it is sufficiently accurate to

take V' =V. The element of drag corresponding to the induced velocity v is
then calculated simply as

v T _ T (b)
Z v ZrR2pVE 27
The energy loss due to the drag of the blades will be calculated on the
assumption of a mean profile drag coefficient & for the whole of the blades.
As a first approximation also, the velocity of the air relative to a typical

element of the blade at angle {IJ from the downwind position is
{({}¥ 4 Vsin LI)) and the corresponding loss of energy is

E= X[ 8co@r+ Vsing)rdr




582
_where the summation extends over ajl the blades. Thus

E=Bszc Q%3 + 3 ve04
e ( r—|—2 r) dr

- 71 5BcpQ3R4(1 -+ 32
and the corresponding element of drag is
X _E °% 1433 .. (g

Z VT 42T,

This first estimate of the energy absorbed by the drag of the blades ignores
the axial velocity # and the radial velocity V cos (. At small angles of incidence
the axial velocity » is small compared with V ahd may be neglected, but the
effect of the radial velocity is quite important. It is necessary therefore to
calculate the energy absorbed by a blade evaluating the integral

[R Scp {(Qr <+ V sin §)2 - V2 ¢os? \p}gdr

v o

and the mean energy loss is then the mean value of this integral for all values
of !.IJ multiplied by the number of blades. In the absence of & simple alge-
braic evaluation of the mean value of this integral, the method has been
adopted of evaluating the integral for four suitable values of (and of accept-
ing the sum of the four values so obtained as the value of E. 1tis convenient,
by comparison with equation (¢), to express the result in the form

— _ a3 2
—Z—~_V—T—4————ATC(1+M7&) . (d)

where # is now a function of }, determined by the equation

L4nn=X[ (B +28rsin ¢+ a¥ag :

where I
-
and v
= gr <!

The integral has been evaluated for the angles Y = 0, 90, 180, and 270
degrees in the first place.

With () = 90°, the integral is
1

190) = [[(E+n2dE=F(+nt— 1

With ) = 270°, the integrand must be taken to be {(A— E)‘ or { i— A3
according as £ is less than or greater than A, and hence

170 = [[(E—ned g+ [*(a—tpag
1 1

— — - 34
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With LP = 0 or 180°, the integral is
1(0)=1(80)=[ (E2+ W)Yz dE

@+50 vVIF+ R

Q0| ==

3 V14241
+ o Atlog Y AT -
16 VIF e—1

Finally, by adding the values of the four integrals, we obtain

14 n2e = % (148 2% -+ %) + % 2453 v+ R

: 3 V142241
| | + A+
| +81 Ogv’m?_—“l .. (e) _

The numerical vaiues of (1 -- 2 A% and # are given below in Table A, It
appears that » increases with A instead of having the constant value 3 as
given by the approximate equation (c). Moreover, its value is of the order
of 5 in the region where the maximum lift-drag ratio is likely to occur, and
hence it is important to retain the radial velocity in the calculation of the
energy losses.

As a check on the accuracy of the method of calculating », the integrals
have also been evaluated for the angles Y = 45, 135, 225, and 315 degrees
for the special case A = 1. The value derived for n was 609, instead of
6-13, so the agreement is satisfactory.

TABLE A.
Values of n.
ry 14+ 1 )t n
1-00 7-13 6-13
0-75 4-11 5:53
0-60 2-88 . 522
0-50 2:26 5-03
0-40 1-78 4-87
0-30 1-43 4-73
0 1-00 4-50
By considering the loss of energy of an autogyro the drag-lift ratio has

been obtained in the form

X T. +-°'8

Z 2w I n 2

40T,
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whereas the result given in the main body of the report may be expressed
in the form

X _ T, GO oAl
Z 2 +47\Tc+ T,

where 8:49;(64—395)

8 17 15
(=204 L fx+ 20g
3 2 T 2
The comparison of the two results therefore depends on the terms
9_2\ ,@ and 9._): 4
T, 4 T,

The first point to notice is that # depends only on ), while Z depends on
0 and & so that there is an essential difference between the two results,
depending on the fact that the earlier analysis assumes A to be small and the
present analysis neglects the effect of the periodic distribution of thrust over the
disc of the windmill. The earlier analysis gives the higher drag, the difference

being AX 3
7 =55

Now at high speed J is of the order 05 and so we can take approximately
#=5. Then

1 /8 17 15 3
¢ — i MS—(S,- 92+~2~9x—l—§x2)~—5x(0+ -2-x)

— 8¢ 7
=3 62 |- 3 0x
which lies between '
7 3 8 3
3 66+ 5 x) and 3 004 3 x).
Hence we have approximately

AX s[5 3.7 5
T_Tc{z_e(wréx)}_éex

It appears therefore that the two theories agree approximately when the
blade angle is zero, but that there is an increasing divergence as the blade
angle increases. A crucial test of the two alternative results would therefore
be the experimental determination of the effect of varying the blade angle
of an autogyro.

With the usual blade angle of 2° the difference in the values of X/Z is
0087 A. According to the earlier analysis an autogyro defined by the values
g = 0:20 and § = 0-006 had the minimum drag-lift ratio of 0170 when A
was approximately (-5. According to the present analysis this value wouid be
reduced to 0-126, and the lift-drag ratio would rise from 5:9 to 7-9. The




earlier analysis possibly underestimates the merit of the auto-gyro and the
present theory certainly overestimates it. The truth must lie somewhere
between the two values given.

+
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The profile drag coefficient of the aerofoil section used on the autogyro is
determined by model experiments as

kp = 0-0040 + 0-025 k.2

This value will be reduced by a factor 08 to allow for scale effect, and the mean
profile drag coefficient § will be assumed to be 50 per cent. greater than the
simple aerofoil value. Then

3 = 0-0048 + 0-030 %,2 55

| which gives the value § == 0-0060 at &, = 0-2 as used in the earlier work.
‘ Now

8=4x(9—|—%x)

and the mean lift coefficient is it

h=3T,=30+ 2
42 2 :
! and hence we derive the equations
x = 0-0225 &, 4 00036 -
kL ‘
6 — 0-209 &, — 2-0054
ky

. The relationship between €, ky, #, and §is shown in the following table.

TABLE B. j
9 kl. X 8
0° 0-134 0-0299 00054
2° 0-205 0-0222 0-0061
4° 0-299 0-0188 0-0074
§¢ 0-397 0-0180 00095

The lift-drag ratio can now be expressed in the form

X T, cd 2

| z =z ety K
: _ 0k g 2 : i
g3 T 3 1K) |

.and Table C shows the variation of the lift-drag ratio with the parameter )
! and the blade angle ) for an autogyro of solidity ¢ = 0-20.

{34087)—I1 L
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TABLE C.
Lift-drag ratio {G = 0-20),
G=D e 4° g°
A= 1-00 4-61 6-07 6-95 690
0-75 5-84 7-46 8:15 R:19
0-60 6-44 7-96 847 812
0-50 6-56 7-84 8.00 745
0 -40 §-24 7-07 6-85 6-15
0-30 5-24 550 5-00 430

According to these calculations the best blade angle for high speed would
be approximately 4°, but unless the ratio of forward speed to tip speed exceeds
1/2 there is little advantage over the blade angle 2°, and the latter is superior
at lower forward speeds.

The analysis of the energy losses of an autogyro has led to a rather more
favourable estimate of the efficiency of an autogyro than was suggested by the
previous analysis, the maximum lift-drag ratic for a typical autogyro rising
from 6 to 8. It must be remembered, however, that the energy calculations
represent an optimum condition which will not be realised, since some sources
of loss of energy have been neglected.

The chief difference [rom the previous results is the effect of the blade
angle. According to the earlier analysis the blade angle should be reduced
below 2° for high speed, while according to the present calculations it should
be increased to 4° or even higher. A useful check on the two alternative
methods of calculation would be provided by the test of a model autogyro
with blade angles 0°, 2°, and 4°.

APPENDIX 2.

Conditions for maximum speed.

The aerodynamuc characteristics of an autogyro are determined by the
analysis of the main report, and in particular, equations (41) represent the
conditions at small angles of incidence. It is possible therefore to determine
the thrust horse pawer '? P which is required to overcome the drag of the
rotating blades, and it is found that for any speed of horizontal flight therc is
an optimum loading @ which requires minimum power 7)P/W, or alternatively
the curve of power against speed can be drawn for any given loading.

In horizontal flight the tip velocity of the windmill is, from equation (43),

QR =2¢/ %@

sl )
and the forward speed is
V=2QR
Also by virtue of equations (41), the power taken by the windmill is
5507 P = VX
or
P VX 4x C A
50 1 =X X =v L
W Z Ty
_o N E® W QZVM/.%EE . (a)
w

tayt

09

po
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The loading w which requires minimum power at a given torward speed, ot
which gives the maximum speed for given power, is determined by the equation

X w W 2,\/po'x
“/pchrsz VY e
w=~Fk,pV?

this condition is equivalent to
ko 25V

In this case also

and since

X x
Gsk,mzm/_a_ . (b

nP 3 xk,
w01 s asV )

QR xR,
R =2Vi

Equation (a) can be used to determine the power taken by the windmill
at any speed V with any loading w, while equations (b) and (¢} determine the
best conditions for horizontal flight. The numerical solution for an autogyro

= 2° & = 0-006 is given in the following table, which represents the
optimum conditions :—

G 010 0-15 0-20 0-25 0-30
ks 0-036 0-046 0-054 0-061 0068
QV_R ; 2-28 2.12 200 1-90 1-82
104 % J 0-84 1-09 1-28 1-45 1-61
P
100 0 2-79 2:95 | 308 3.19 3-30
wv ! |

It has been suggested in the main report that, for efficient working, the
ratio {} R/V must not fall below the value 2. The cptimum conditions for
solidities equal to or less than (-2 satisfy this condition, but in the case of the

Ligher solidities it would be necessary to use a slightly heavier loading than the
optimum value.

For the solidity (-2 the optimum loading is the lightest that can be used
and this loading varies with the speed as follows :—

Vv 85 150 200 m.p.h.
w 2:0 6-2 11-0 lb./sq. ft.

A reduction of the solidity leads to improved speed of horizontal flight
since the power taken by the windmill is reduced. Also the best loading falls
more rapidly than the maximum lift coefficient and hence the higher top
speed is accompanied by a lower stalling speed, The limiting condition for
this method of improvement is clearly the impossibility of making very thin
blades of large radius and is a matter of structural strength. In any case,

however, it appears to be inevitable that the Ioading and stalling speed must
rise with the top speed of the gyroplane.

(34087 }—11 L2
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APPENDIX 3.

Vertical descent.

The problem of the vertical descent of a gyroplane is essentially that of
determining the drag of a windmill subject to an axial velocity V. The
equations of the main report remain valid with the exception of those which
define or involve the axial induced velocity. The velocity of flow through the
disc #is unaltered and the tip speed of the windmill is given by the equation :——

QR =24 22
pcd

In order to determine the velocity of descent it is necessary to turn to the
ordinary airscrtew theory. It is customary to write

T=2nR3*pV2f
=2nR2pu2F

and in the régime in which the windmill is operating the coefficients f and F
are connected by a purely empirical relationship. The value of F is obtained

at once as
T. o8

2% 8x®

and if the corresponding empirical value of f is known, the speed V is obtained
finally from the equation

Ve
V=Naer

If the windmill behaved as a parachute of the same disc area, f would have
the value 0 -3, but experimental evidence appears to indicate that the value of
f may be rather higher and may possibly, as an extreme limit, attain the value
0+5. There is no evidence to indicate a value higher than 0-5.

Taking f = 0-5 as thec highest possible value, the speed of descent becomes

V=20-5vw
which is of the order of 30 {.p.s. or more for ordinary loadings.

A typical value of F, when 0= 2° g=0-2, and = 0-006 is 14 and for
values of ¥ in this neighbourhood the empirical value of f is given by the

equation
1 3
- =24 =
f F
In this case, therefore, f == 0-4, and the velocity of descent becomes

It is possible that there may be some cushioning effect on approaching
the ground, but in free descent with a loading of 2 it is improbable that the
velocity is less than 30 f.p.s. and 35 f.p.s, is a more probable figure. It is
doubtful, however, whether the controls of a gyroplane are adequate to hold
the aircraft in a steady wvertical descent.
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APPENDIX 4,

Notation.
Dimensions of blades.

o

B = number of blades.
0 = angle of pitch.
R = extreme radius.
r = radius to blade element.
¢ = chord of blade element.
) h = ordinate from base line (Fig. 2).
A = slope of blade element.
W, = weight of one blade.
G, = weight moment about hinge.
I, J; = moment and product of inertia.

Motion of blades
angular velocity about shait.

angular position of blade.
angular rotation of blade about its hinge

B= B — Buoos (Y—

angle of incidence of antogyro.
forward speed.

axial induced velocity.
resultant of V and v. )
axial velocity through disc. l
resultant velocity relative to blade element. '

inclination of velocity U (Fig. 4). ‘r

I

- e
I

Generval motion.

grynn

Forces.
total weight.
W

f

T R®

thrust.
longitudinal force. |
drag. |
lateral force. |
lift. i
torque.

ONKKIEH £ 9O ga <
I

|

Coefficients.

i
I

T/mRe p L2 R, eic.
Ry X/mR? p Ve etc.
kL, kp = liftand drag coefficients of biade element.
= mean profile drag coefficient.
Be

(the solidity).

<%
<=

ag
y -

. &
=

X =

R

8 ot 17 15
= 3 0 + 5 Ox 4 = ¥
£, " Tp = coefficients of the blade curvature, equations (6).
&ty tha = coefficients of the blade density, equations (7).

o
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TABLE 1.

Maximum lift coefficient.

0 G ) i (degrees). ke (max.).
2° 0-2 0 35:25 0-77
— — 0-003 37-4 0-62
— — 0-006 38-3 0-56
— — 0-010 39-0 0-52
— — 0-015 396 0-485
— — 0-020 40-1 0-46
2° 0-1 0-006 39-3 0-50
— 0-2 —_— 38-3 0-56
— 0-3 — 37-7 0-595
0° 0-2 0-006 40-1 0-46
2° — — 38-3 0-56
4° — — 37-2 0-63
6° — — 36-5 0-68
TABLE 2.
Maximum lift-drag ratio.
. Z

6 o 3 i (degrees). % (max).
2° 0-2 0 1-1 17-0
— — 0-003 3-0 7-8
— — 0-006 4-1 5-9
— — 0-010 5:2 4-7
— — 0-015 6-4 3-8
— —_ 0-020 7-4 3-4
2° 0-1 0-006 3-9 6-5
— 0-2 — 4-1 5-9
— 0-3 — 4-2 55
0° 0-2 0-006 441 6-2
2° — — 4-1 59
4° —_ — 4-5 50
6° — — 5-0 4-2




TABLE 3.
Ideal autogyro.

0=12°, ¢=0-20.

i (degrees). ks Ry kx/k,
0-5 0-0175 0-00118 0-068
1 0-0349 000207 0-059
2 0-0696 0-00450 0:065
5 0-173 0-0183 0-106

10 0-336 00637 0-:190
15 0-482 01346 0279
20 ; 0-602 0-226 0-375
25 | 0-691 0-330 0-478
30 1 0-747 0-438 0-587
35 | 0-766 0-544 0-710
40 i 0-751 0-638 0850
TABLE 4.
Standard autogyro.
0=2° 6=0-20, §=0-006.

1 (degrees). ks ! ky k”/k,
1-65 0-0135 0-00308 0-228
3-2 0:0373 0-00654 0-175
4-7 0-0658 0-0114 0:173
8-3 0-145 0-0302 0-208

11-1 0-203 00502 0-247
15-6 0-300 0-0967 0-322
20-0 0-385 0-154 0-400
24-0 0-456 0-220 0-483
29-5 0-524 0-316 0-604
37-0 0-561 0-442 0-788
415 0-560 0-519 0-928
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TABLE 5.

Effect of profile drag.

0 = 2° G = 0-20.
S = 0003 3 = 0-010. d=0-015.
i i i
degrees. ke Bafks degrees.| ¥ Rk degrees.| s B/,
1-1 |0-011 |0-177 | 2-2|0-016 | 0-282 | 2-8|0-019 | 0-339
2-2 | 0-030 |0-133 | 4-2|0-044 | 0-221 | 5-3|0-051 | 0-268
3-3 [0-054 [ 0-129 | 6-20-078 | 0-218| 7-7 | 0-089 | 0-266
6-1 | 0-120 | 0-154 | 10-9 | 0-168 | 0-267 | 13-3 | 0-190 | 0-328
81 |0-171 | 0-182 | 14-1 [ 0-232 | 0-316 | 17-1 | 0-257 | 0-389
11-6 | 0-257 | 0-238 | 19-5 | 0-334 | 0-408 | 23-3 | 0-355 | 0-505
16-6 | 0-375 | 0-327 | 24-5 | 0-412 | 0-508 | 28-9 | 0-428 | 0-618
26-2 | 0-544 | 0-515 | 29-1 | 0-468 | 0-603 | 33-8 | 0-471 | 0-733
34:3 | 0-613 | 0-708 | 35-1 | 0-510 | 0-753 | 40-0 | 0-484 | 0-908
39-5 |0-613 | 0-847 | 387 | 0-520 | 0-849 | 437 | 0-479 | 1-025
42-8 | 0-516 | 0-973
TABLE 6.
Effect of solidity.
6=2° &= 0-006.
6 = 0-10 6 = 0-30.
1 k ‘i
degrees. ks *[hs degrees. ks R/,
1-5 | 0-007 0-222 1-9 0-020 0-231
2.7 0-019 0-166 3.7 0-056 0-185
3-8 0-033 0-155 5.7 0-099 0-190
6-3 0-074 0-171 10-5 0-214 0-246
8-1 0-104 0-194 14-1 0-293 0-306
11-0 0-160 0-235 20-0 0-416 0-411
16-5 0-265 0-329 25-6 0-509 0-519
22-5 0-368 0-443 30-7 0-562 0-638
28-9 0-454 0-577 37-4 0-590 0-805
38-2 0-507 0-813 45-8 0-556 1-074
44-3 0-499 1-004
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TABLE 7.
Effect of angle of pitch.

o = 0-20, g = 0-006.

| 6 = 0 6 — 4° 6 = §°

degrees. # [k, degrees.| s [ degrees.| "* ks
2-1 0-010 | 0-195 1-50:019 | 0-287 1-4 10-025 | 0-362
3-8 | 0-026 | 0-161 3:0 | 0-051 | 0-212 3:1(0-068 | 0-258
5:3 0:046 | 0-165 4-7 1 0-091 | 0-201 5:0 10-119 | 0-242
9:0 0-100 | 0-206 9:0 |1 0-199 | 0-238 10-1 | 0-258 | 0-284
11-4 0-143 | 0-241 12-1 | 0-277 | 0-283 13-9 | 0-355 | 0-337
15-4 0-209 | 0-310 17-5 | 0-399 | 0-373 20-3 | 0-498 | 0-450
22-6 0:327 | 0-444 27-6 | 0-569 | 0-575 29-2 1 0-629 | 0-628
30-2 0:420 | 0-610 32-3 | 0-606 | 0-682 35:7 | 0-648 | 0-795
37-6 0-469 | 0-793 38-0 | 0-624 | 0-834 43-8 | 0-625 | 1-034
42-2 0-474 | 0-936 42-5 | 0-608 | 0-970

47-3 0-454 | 1-115




