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Summary.-A recent paper on the Vortex theory of screw propellers by
Dr. S. Goldstein in the Proceedings of the Royal Society. contains a solution
of the problem of the potential flow past a body consisting of a finite number
of coaxial helicoids of infinite length but finite radius moving through a
fluid with constant velocity. The results are applied to the case of an ideal
airscrew having a finite number of blades and a particular distribution of
circulation along the blade for small values of the thrust.

The present paper contains a summary of Goldstein's results, which are
then applied to the airscrew problem by a method which leads to formulae
differing from the standard formulae of the" Vortex theory" by the addition
of a factor to the formulae for the components of inflow; the value of this
factor may be obtained from a chart embodying the rcsults of Goldstein's
calculations. The formulae of the Vortex theory are developed simultaneously
from first principles by au analogous method which differs somewhat from
the method used by its originator and brings out clearly the close analogy
with the Prandtl theory of a monoplane wing; they also represent the limit
of the Goldstein formulae for the case of an infinite number of blades.

The first application of the results is to show that for a screw of constant
geometrical pitch (measured from the zero lift line of the section), a plan fonn
(variation of chord with radius) may be calculated which gives Goldstein's
value of the distribution of circulation with radius for all small values of the
thrust; the screw is then analogous to the untwisted monoplane wing of
elliptic plan fonn. For the two-bladed airscrew of experimental mean
pitch ratio 1·57 the plan form of the family of airscrews approximates
closely to the plan fonn required to satisfy Goldstein's conditions; as the
pitch is decreased or the number of blades increa<;ed, the required plan form
becomes progressively more blunt than that of the family, but the discrepancy
between the performance calculated by Goldstein's theory and by the Vortex
theory becomes smaller. The discrepancy for the 2 blader is 14 per cent.
for a screw of pitCh ratio 1·57 falling to 8 per cent. for pitch ratio 0,63, the
value of the thrust according to the Vortex theory being too high.

It is suggested that the Goldstein formulae, which strictly apply only where
there is a particular distribution of circulation along the blade, should be
applied without tlris restriction in place of the Vortex theory, at any rate to
airscrews of plan form similar to that of the family of airscrews, the extra
labour involved being negligible. The modification may also be considered
as being of the nature of an allowance for tip loss, since it may be shown that
for a blade of constant chord the thrust grading tends to zero at the tip,
whereas the Vortex theory gives a finite value of thrust grading at the tip.

It is proposed to compare calculations by the Goldstein fonnulae with the
results of the new programme of experiments which has recently been sanc­
tioned on airscrews of high pitch.

(9710)
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LIST OF SYMBOLS.

Goldstein's problem.

w Velocity of helicoid.
£ Angle of pitch at radius r.

E Angle of pitch at tip radius R.

1~, Axial component velocity IClose to surface of
1/.(] Circumferential component velocity he~icoid relative to
Il

f
Radial component velocity fluId at rest at co.

p. = cot e.
Po = cot E.

Airscrew.
r Circulation round a blade element at radius r.

V Forward} 1· f·n Angular ve OClty 0 airscrew.

x = rlR.
A~v/Rn.

B Nwnber of blades.
c Chord length} .
.3- Blade angle at radms T.

T Thrust.
Q Torque.
K Coefficient of circulation defined by §3, equation (7).
FAxial inflow coefficient defined by §3, equation (28).

Blade element.

\V Magnitude }Of res:ultant velocity of air
l' Angle with plane of airscrew relatIve to a blade ele-

A 'a! t ment at radius T (neg-
l' Xl componen lecting radial component) ;

(I-a,) r.o. Circumferential component (see Fig. 2).

L Lift.
ao Slope of lift curve (in §4).

kL Lift coefficient I
k
v

Drag coefficient o~ bla~e section at. radius r reduced to

I
·ct mfimte aspect rabo.

a nCI ence
p ~ col~, (~~ ,).

flo = value of fl at airscrew tip.
kr. Thrust coefficient.
kQ Torque coefficient.
kp Coefficient of power loss defined by §7, equation (1).
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Efficiency.

j - - 6 A.
h _ - 6 Vj6 w.

P = Power loss. PI Power loss due to inflow.
p! Power loss due to profile drag.

Pe = P,:t (] R' 03.

Qc = Qin e R' Qt.

WI W 2 Coefficients of power loss §5, equations (7), (8), (11).

ql q2 Coefficients of torque §5, equations (13), (14).

I. [1l{Todudion.-1t was shown in R. & M. ggz. and R. & M. 1040t
that there is good agreement between the results of calculations by
the" Vortex theory" and observations of overall thrust and torque
on the family of airscrews, except for the screws of the highest pitch
diameter ratio, for which the torque is calculated too high over the
whole working range, the thrust too high except ncar zero thrust,
and the efficiency too low near maximum efficiency. I t was suggested
in R. & M. 1040 that the discrep..1.ncies might be due in part to the
use in the Vortex theory of the assumption of an infinite number of
blades; the error of this assumption would be expected to be greater
for large values of J. i.e.• for airscrews of high pitch.

An exact solution has recently been obtained by Goldsteint of
the problem of an airscrew with a finite number of blades at small
thrust and for a particular class of airscrew. The solution applies
where the distribution of circulation along the blade is such that the
flow in the wake is identical with the potential flow produced by the
uniform axial motion of a set of equidistant coaxial helicoidal surfaces
of finite radius. The solution is closely analogous to that for a
monoplane aerofoil with elliptic distribution of circulation across the
span. for which the wake is identical with the potential flow round a
plane lamina of finite breadth (equal to the span of the aerofoil)

• Family of Airscrews, Part Ill.-Lock and Bateman.
t The accuracy of the Vortex Theory of Airscrews.-----Claucrt and Lock.
t On the Vortex Theory of Screw Propellers. S. Goldstein, Ph.D. Proc.

Royal Soc. A. Vol. 123, 1929.
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moving normal to itself; the condition of minimum energy loss for
given thrust or lift is S<1.tisficd in the two cases of airscrew and
aerofoil. respectively.·

It appears that Goldstein's results represent a better approxima·
tion in certam directions than the Vortex theory of airscrcv,,-s, in
that the former takes account of the finiteness of the number of
blades. It is. however, in its rigorous form limited to the case of
small thrust and to a particular distribution of circulation with
radius. The object of the present report is to show how Goldstein's
results may be applied to improve the approximation of the Vortex
theory in the general caS('; at the same time it seemed worth while
to exhibit the results of his paper in a form more familiar to those
who are accustomed to tht" use of the Vortex theory in the practical
design of airscrews.

It was found that the alterations introduced in the '"ortcx theory
by this improved approximation, become of greatest importance near
the airscrew tip, for a small number of blades, and at high values of
J, i.e., for airscrews of high pitch. In the last respect, at any rate,
it might be hoped that the new theory would help to account for
the discrepancies between the Vortex theory and experiment. On
investigation, however, it was found that the existing experimental
data was not altogether sufficient or suitable for the purpose of
deciding the relative merits of the old and new theories, especially
on account of the uncertainties introduced by the large boss of the
family of airscrews. The Aeronautical Research Committee have
now sanctioned additional experiments on the airscrews of the family
of the highest pitch, by a method which will eliminate boss effect;
the range of pitch will be extended to still higher values and the
number of observations of thrust grading "ill be consid,~mbly

increa~d. It is, therefore, considered that a detailed comparison
of the results of the new theory \\;tb experiment should be postpon'__ d
.till the complt:tion of the new experimental programme; only a
brief summary of the present position in this respect is included at
the conclusion of the report. It is con!>idc:rcd that the theoretical
results are of sufficient practical importance to be put fonv,ud on
their own merits.

2. Summary of Goldstein's solution.-The essentially original part
of Goldstein's paper contains the solution of a particular problem in
the pure hydrodynamics of a non-viscous fluid, the application to
airscrew theory being to some extent secondary. The present paper
contains first of all a statement of this problem, together with the
nature of the solution obtained without going into details of the
method of solution; aften\"aHis the results are applied to airscrew

• Betz, ,. GOttingerNachr," pp. 193--213 (1919); reprinted in" Vier Abland­
lungen zur Hplrodynamik und Aerodynamik," L. Prandtl und A. Betz,
GOttingen, 19Z7.
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theory by a method which while the same in essentials as that used
by the author is somewhat different in fonn. At the same time the
ordinary formulae of the Vortex theory arc developed by a closely
analogous method up to a JX>int at which the fonnulae of the two
theories can be considered side by side.

The problem of pure hydrodynamics considered by Goldstein is
that of the potential flow of fluid past a rigid body of a certain form
moving with a uniform velocity. The form of this body is a helicoidal
surface, of infinite length but [mite radius, moving parallel to its axis
with uniform velocity w, or morc generally any finite nwnber of
such surfaces equally spaced on the same a.xis and of the same radius,
corresponding in number to the number of blades of the airscrew
(Fig. 1). The results which we shall require to use are as follows.

Let B be the angle of pitch of onc of the' helicoidal surfaces at
radius l' and let R be the outside radius of the helicoidal surface
(see Fig. 1). The pitch length of the surface is

It = 2-,: r tan e,

which is independent of radius, and we may therefore write

rtan e=RtanE
= constant, (1)

where E is the angle of the helicoid at its outer edge: if the number
of equally spaced surfaces is B, the axial distance between consecutive
surfaces is (2:"t r tan ~)/B.

The results of Goldstein's theory, which are of importance for
application to airscrews, relate to the velocity distribution in the
immediate neigh bourhood of the helicoids when they are moving
through the fluid with axial velocity U1. Let "., UB, u,. be component
fluid velocities at any point, being respectively axial, circumferential,
and radial components relative to cylindrical polar-co-ordinates co­
axial with the helicoid and at rest relative to the fluid at an infinite
distance in the radial direction.

The first of Goldstein's results is that the radial component u,.
alone changes discontinuously through a helicoid, the values on the
two sides being equal and opposite; it follows that the surfaces may
be replaced by a suitable distribution of helical vortex lines. Again,
the axial and circwnferential components fl., "0 close to a surface
are functions of l' only for a given helicoid, and their vectorial sum
is equal to the component velocity of the surface normal to itself,
which is of magnitude fD cos e and makes an angle e with the axis
of z. Hence

U. = llJ COSI e,

-UB=U"COS£SH~e,

where ~ may be considered as a function
equation ,I).

(2)
(3)

of r defined by
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On the extreme left is shown a fom-blatlt'd airscrew [rom onc blade of which spring helical vortices of radius, and R respectively
as shown by the dotted Iincs. After one complete tum, the complete helicoidal surface from 0110 blade is shown, and after a
further turn, the set of fouf helicoid... sprinRing from the four blades. Still further to the right is shown a scction of thi" set of
hclicoids by circular cylinders of radius , ~lnd Y + d, respectively. These illustrate the approximations appropriate to the Vortex
theory, in which the helices of radius, and r + d, are replaced by continuous cylindrical vortex sheets corresponding to the case
of an infinite number of blades.
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The essential result of Goldstein's calculations is the determination
of the strength of the equivalent helical vortex sheet as a fundion
of radius. Let r be the circulation round a closed circuit (C. Fig. I)
cutting a helicoid at radius T and enclosing the part of the surface
outside that radius. Then r is equal to the discontinuity of the
velocity potential ~ across the helicoidal surface at radius r;
- d rjdr is, therefore, equal to the strength of the equivalent vortex
sheet, or to the discontinuity in the radial component velocity U f ­

n is obvious that r is proportional to wand that it is also a function
of 'JR. e, and the number of surfaces B. Goldstein expresses r in
terms of the non-dimensional coefficient K defined by

r ~ (KwZ"'ian')/B. (4)
so that K is a function of riR, ~. and B only. For the case of two
surfaces (two blades), K is tabulated in Table II on page 450 of
Goldstein's paper for a series of values of the parameters P and "'.
defined by

p = cot e, .. (5)
", ~ cot E. .. (6)

In Fig. 5 of the prescnt report, values of K/cos! I; derived from this
table are plotted against tan I; for a series of values of

x = rlR

~ "I",·
For the case of four surfaces, Goldstein gives results in Table Ill,
page 456, for the single value (,uo = 5) and these are shown in Fig. 5
as isolated points. Results for other values of Po could, however,
be calculated without much laoour from his auxiliary data.

The aoove results represent the whole of Goldstein's solution of
his problem in pure hydrodynamics so far as it is required for
application to airscrew theory.

3. ComparisoJ~ betu:een the Jormulae oj Goldstein's theory and oj
the Vortex theory.-lt is proposed to exhibit the" Vortex theory"
of aicscrews and Goldstein's theory on strictly para1le1lines. With
this object the fundamental basis of the Vortex theory on the one
hand will be exhibited in a form as closely analogous as possible to
Goldstein's theory; on tile other hand, the final formulae of
Goldstein's theory will be given in a fann closely analogous to the
standard fonnulae of the Vortex theory.

The fundamental conception in ooth theories is strictly analogous
to the Prandtl conception of a monoplane wing. TIle airscrew blades
are replaced by as many radial bound vortices of strength r (at
radius r, Fig. 1) varying in general with 1'; from a blade element of
length dr at radius l' there springs a trailing vortex of strength dr.
A5 in the theory of a monoplane wing, the effect of the induced.
velocities on the configuration of the vortices "..mat first be neglected;
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these second order effects will be considered later. The trailing
vortex, therefore, takes the form of a regular helix of radius r (Fig. 1)
which is to the first order at rest in the fluid, and which coincides
with the path of the blade element through the fluid; i.e., its angle
of pitch e is given to the first order by the relation

tan ,~Vlr n, (1)

where V is the velocity of advance of the airscrew. The pitch
length h of the helix is equal to 211: r tan e, and the spacing in an
axial direction between successive vortices is hiE where B is the
number of blades.

Vorlex theory.-Weilrst proceed to determine a relation between
P, r and tan E on the basis of the assumption of the" Vortex
theory" that the spacing between successive vortices is small or that
Bfr tan e is large (infinite number of blades) so that the set of helical
vortices of a particular radius from all the blades may be treated as
a continuous tubular vortex sheet. This assumption is analogous to
that commonly made in determining the field of an electric solenoid.

By analogy with the monoplane wing we adopt the artifice of
assuming that a vortex of strength - P leaves each blade at
radius r (Fig. 1, extreme right), and a second vortex of equal and
opposite strength r leaves each blade at radius r + dr, thus forming
two concentric vortex solenoids of equal and opposite strengtll,
enclosing a tubular element of fluid of thickness dr. Similarly, the
next element from radius r + dr to radius r + 2dr is bounde.d by
vortex solenoids of strengUl -(P + d r) and (r + d P) per blade.
Thus the whole system is equivalent to the original distribution of
strength - arldr at radius r (or r + dr); the negative sign is
consistent with the relation

JR dP
P=.-dr dr

= circulation round the contour C (Fig. 1).
It is well known that the velocity field outside the outer, or inside

the inner, member of a pair of vortex solenoids of equal and opposite
strength, is zero. Since each blade element gives rise to a similar
pair of solenoids, it follows that the velocity field between the
solenoids is uninfluenced by the field outside; the independence of
neighbouring elements is, therefore, established to the first order on
the assumption that BIT tan e is large. To the same approximation
the velocity (relative to air at infinity) between the solenoids at a
large distance behind the airscrew is normal to the direction of the
vortex lines and of magnitude equal to the strength of the vortex
sheet equivalent to either solenoid.

The" spacing" in a direction normal to the surfaces of vorticity is

(h cos e)[B = (2 ~ r sin e)[B,
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and the velocity, relative to the air at an infinite distance, is in a
direction making an angle e with the Z axis, and is of magnitude WI'
equal to the strength of the equivalent vortex sheet, which is equal
to I' divided by the spacing, so that

WI = PB/(2.-z;rsin E).

Thus if u., Uf), are the axial and circumferential component velocities
(according to Goldstein's notation) it follm,,"S that

u.=\V1COSE

= r B/(2.it.,. tan E),

"8 = - \V1 sin I!l

~ - I' B/(2 n ,l.

By an argument exactly similar to that used in the analogous case
of a monoplane wing, it may be shown that the addition of a fictitious
system of vortices, representing the reflection in the airscrew disc of
the complete system of bound and trailing vortices, would give a
system equivalent to a set of regular helical vortices extending to an
infinite distance in both directions. since the bound vortices with
their reflections would cancel each other. TIle same process would
double the magnitude of the induced velocities at the airscrew
disc, so that the actual induced velocities there would be one half
the corresponding velocities due to the doubly infinite helical
vortices and, therefore, equal to one half the actual induced velocities
at a large distance behind the airscrew. Hence the components of
" interference" velocity at the airscrew disc relative to air at rest
at infinity are :- .

t u.. t uo,
U., U8, being given by equations (2) and (3).

Goldstein's Theory.-We now proceed to consider Goldstein's
assumptions, making use of the results of Section 2. He dispenses
with the assumption that the sp.1.cing between successive helices is
small. In place of this he makes the assumption that the velocity
field of the whole of the vortex system at a large distance behind the
airscrcw is equivalent to the potential field of a series of rigid
helicoidal surfaces of radius H.; these occupy the position of
the helicoidal vortex sheets fonned by trailing vortices shed by
the several blades, and move oo.ckv."ards \\-;th a velocity w small
compared \\;th Rn.· It will be noticed that this does not conflict
with the assumption previously made that the trailing vortices are
at rest to the first order.

• It is helpful to notice that a precisely analogous assumption applies
to a monoplane wing with elliptic loading. (See Introduction.)
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Goldstein proceeds to detennine the velocity field of the system
of helicoidal surfaces completely by means of infinite series; we
repeat the summary of his results given in the last section.

The discontinuity of velocity across the helicoidal surface is purely
radial, thus verifying that the system is equivalent to a certain
system of helical vortices. It follows that the axial and circum­
ferential components close to the surface are definite (the same on
both sides of the surface). The resultant velocity close to the surface
is equal to the velocity of the surface normal to itself the value of
which is

giving
". sec £. = - uO cosec £ = W cos e,

U .. =. cos! E.,

uo=-wcosEsine.

(4)

(5)
(6)

The velocities in the wake are now no longer independent of axial or
circumferential position, but the interference velocities close to the
airscrew blades are still one half the corresponding components close
to the helicoidal surface in the wake.

The circulation r defined in the previous section is (by Stokes'
theorem) identical with the circulation round a blade of the airscrew
at radius r. The strength - d r fdr of the trailing vortex sheet
from a blade element at radius r is equal to the discontinuity of
radial component velocity across the helicoidal surface at the same
radius; the circulation r round the blade is, therefore, equal to the
corresponding discontinuity in the velocity potential ¢l. This is
obviously a function of ,/R, E, and number of blades B, and is a
linear function of the velocity tit of the helicoidal surfaces_

In Goldstein's tables it is expressed in the form of a coefficient K
defined by the equation

r = K . w . 2 n r tan efB, (7)
where K is a non-dimensional function of e, ,fR, and B only.
Substituting for w from this equation in (5) and (6) we obtain

cos2 e rB
u.='I{' 2nrtane' (8)

cos2 e rB
-140=~ 21tr (9)

which differ from the fonnulae- (2) and (3) of the Vortex theory by
the factor cos' elK only, but with the proviso that the distribution
of r along the blade must be such as to make w independent of r
in accordance with equation (7). It foUows from the previous
argument that K must tend to the value cos' e as a limit when the
number of blades becomes infinite, but that it is then wmecessa.ry
to assume that w is independent of radius.
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To the first order it is now a simple matter to apply either of the
above fonnulae for interference velocities to strip theory calculations.
At low rates of advance, however, second order effects become large
and the exact method of applying the results becomes important.

FIG. 2.

We adopt the usual notation of the Vortex theory (see Fig. 2).
W is the total component in a plane normal to the blade of the
effective velocity relative to a blade element and makes an angle <p
with the plane of rotation. The axial and circumIerential components
of \V arc

so that

\V sin r/J = _. ..
W cos '" = (1 - a!) , n,

(10)
(11)

.. ~ (l-aJ ,a tan ". (12)

and (u - V), (- ¥ 0:), are the corresponding components of inter­
ference velocity relative to air at rest at infinity, and sati:>fy the
relations

.. -v=t~. (l~

Q2"Q=-t'UO. (14)

The following argument applies more especially to the results of
Goldstein's assumptions. but should also apply to the Vortex theory
as a limiting case.

Where account is taken of the velocity field of the vortices them­
selves, it is no longer true that the trailing vortices form regular
helices, but both the pitch and radius will vary on proceeding
backwards from the airscrew. It may still be assumed, however,
that the fluid motion is steady relative to axes moving and rotating
with the airscrew, and under these conditions it may be proved that
the vortex lines coincide "ith the relative streamlines. In particular,
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the trailing vortex immediately it has left the blade coincides with
the relative streamline at the same point, which (ignoring the angle
of contraction of the slipstream) makes an angle .p with the
airscrew disc.

In establishing equations (8) and (9) (or (2) and (3) ) to the first
order. the argument dealt with the trailing vortices at a large
distance behind the screw, but the final result refers to conditions
at the airscrew itSelf. The most accurate simple assumption, where
second order effects are to be included. is that the trailing vortices
form regular helices whose pitch angle e is equal to the actual
pitch angle rp close to the airscrew, because that part of the
trailing vortex has the greatest influence on the velocities at the
blade elements. It docs not imply that the angle r/> is the best
approximation to the angle of pitch in the actual wake at a large
distance behind the airscrew. We shall, therefore, make use of the
equation

(15)

in the furtber development of both theories, an equation which is to
supersede equation (I).

As in the analogous case of the monoplane wing, the individual
velocities are normal to the direction of the trailing vortices, and it
follows that a small change in direction of the trailing vortices (of
the order of the ratios of u. and U6 to V and" 0:) gives rise to changes
in the components of induced velocity whose ratios to V and ,,0:
are of the second order in tile above ratios.·

It \\-ill appear that the subsequent development of the Vortex
theory equations leads to results identical with those commonly
developed on the basis of considerations of energy and momentum,
but it was an object of the present exposition to obtain all results
on the basis of arguments strictly analogous to those used in the
development of the Prandtl theory, of the monoplane wing. In the
case of Goldstein's theory, considerations of energy and momentum
could not be used since the velocity distribution, etc., is not
independent of the angular co-ordinate.

We proceed to develop strip theory formulae on the basis of the
Goldstein equations (8) and (9); the corresponding results for the
Vortex theory may be obtained by putting K = cos2 e (= cos2 t/J)
whenever it occurs; it is to be remembered that U1 constant along
the blade is a necessary condition in the former case but not in
the latter.

• The effect of substituting equation (I) for (15) is to substitute II as
defined by (I) for ~ in (8), but to leave +unaltered in (20). Thus (in the case
of the Vortex theory) • - V as given by (22) is multiplied by the factor
(tan +/tan II) = ,,{VO - asl. which changes the value of ,,{v by a quantity
of the gecond order in (u - V)f\'.
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We notice first that equations (13), (12), (14), (5), (6) and (15)
lead to the relation

v = , Q tan 4> - i w,

so that our assumption is identical with that which
attributes to Prandtl on page 460 of his paper.

Ignoring profile drag in the first instance. as in the theory of a
monoplane wing. the lift on a blade element satisfies a relation
identical in form to the Kutta ]oukowski relation

dL_.wr6 (I~

Using the strip theory relations for thrust and torque (ignoring profile
drag) we have

tIT,ld" = B (dVdr) cos 4>.
dQ/d, ~ B, (dLjd,) sin ~.

(18)

(19)

Hence r may be expressed in terms of either the element of thrust
or of torque by the equations

r _ (tan <l>/B.u) (dT/d,) (20)

~ (IIB.'u) (dQ/d,). (21)

By substituting for r from these equations in (tS) and (8), and
(19) and (9), we can express the inflow factors in terms of either
thrust or torque grading. When profile drag is included, equations
(20) and (21) are, of course, no longer exactly consistent with the
ordinary strip theory equations for the thrust and torque, viz.,
equations (26) and (27) below. The wake will now include thin
regions of turbulence in the form of helicoidal surfaces representing
the profile drag loss, in addition to the helical vortices corresponding
to the lift; any application of the previous theory must, therefore,
be only approximate at best. It is, therefore, legitimate to make a
choice among equations (20), (21), (26) and (Z7J, (18), (19), (23) and
(24), and it seems reasonable to use equation (20), expressing r in
terms of thrust, when calculating the axial component of interference
velocity, and equation (21), expressing r in terms of torque, when
calculating the rotational interference component. TIle results in
the limiting case of an infinite number of blades will then be exactly
consistcnt with the condition of conservation of angular momentum,
and (less definitely) with the results deduced from considerations of
axial momentum and energy. Substituting, therefore, from (20) in
(13) and (8) and uom (21) in (14) and (9) we have

cost ep I dT
u - V = i u~ = --y 4;1f fl "U . dr' (22)

as" n=_tuo=co;;.tI> dQ
d,' . . (23)
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and (using (7) and (20) ).
1 dT

!W=4<ttp'uK dr'" (24)

The ordinary strip theory considerations similar to those for a mono­
plane wing decide that aerofait data for infinite aspect ratio must be
used. If k., kD are the two-dimensional lift and drag coefficients of
the section at incidence a we have

a - If - ~•..
dT
dr Bee WI (kt. cos l' - kD sin rp)

(25).

(28)

(29)

(26).= Bee (1 - aJ! r t QI (kL cos+- kD sin,p) secl,p,

using equation (11), and

dQ .
dr ~ Be. r W' (k" cos ~+ kL Sill ~)

= Bee r (1 - a,)' ,.' ilt (ko cos'" + kL sin +) sect cP· (27).

Substituting in (22) and (23) and using (12) we have

F
_1_~_cosz4> Be kLcosq,-kDsinq,
- u - K . 4:n: r . sina q, ,

a. cos' '" B c ko cos q, +~ sin +
l-at=~'4aT' sintpcosrp

Finally. using the definition of F in (28), equation (12) gives

V'R Q ~ • (I - aJ (I - F) tan ~ (30)

On putting K = cos·,p, equations 25 to 30 become identical with
the standard Cannulae of the Vortex theory as given, e.g., in
R. & :\1. 892. page 6.

It is interesting to notice that although, when profile drag is
included, the value of w obtained from «7), (15), (20), (26)) differs
from the value obtained from ((It), (15), (21), (Z7)), the following
exact equation takes the place of (16),

VIR Q ~. tan ~ - (BcI4" r) { • (1 - aJjK } (kJsm ~). .. (31)

This equation, which may be used in place of (30), does not involve
kD except through the factor as"

4. Plan form of an airscrew which gi1:es rise to a wake satisfying
Goldstein's conditUms.-It has already been pointed out that
Goldstein's solution requires that w should be independent of the
radius of a blade element. Still bearing in mind the analogy of Ule
monoplane wing with elliptic distribution of lift, it is obvious that
for any given working condition it is possible to choose an infinite
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variety of distributions of chord length and blade angle which make
ttl independent of radius. With the same analogy in view we shall
endeavour to solve the following problem. Neglecting profile drag,
to find the (? unique) distribution of chord length and blade angle
which makes U1 constant for all smaU values of the thrust for given
solidity and experimental pitch ratio. The resulting blade will be
analogous to the non-twisted monoplane wing with elliptic trod
distribution (having an elliptica.l plan form).

Neglecting profile drag. and assuming the same constant slope ao
of the k,. curve for all sections and that the blade angle-O- is measured
from the zero lift line of the section, equation §3 (26) for thrust
grading may be written

[ dT
= 41ter"K' dr .

dTld,. = Bee ur n (1 - aJ ao a/slll..p.

Again, equation (7) of §3 gives

B r
t W =4:1tt'tan..p K

Equation (16) of §3 may be written

A ",V/Rn ~ xtan~ - twlR n,

(I)

(2)

(3)

and equations (1) and (2) give

111 Be x(l-al)aoa
t R n ~ 4"r' K sin ~ (4)

Equations (I), (3), (4) and §3, (12),and (25) are sufficient for the present
problem; in (I), (4) and §3 (25),& and a are supposed to be measured
from the no lift line of the section. It follows from equation (3)
that in order that w may be constant along a blade for a particular
working condition, it is necessary that x tan tP should be constant
along the blade. To detennine the condition that w should be
constant along the blade for all small values of thrust (or a), we
differentiate equations (3), (4) and §3 (25) and put a = 0 after
differentiation.

We use the symbol 6 for ~ a and other quantities proportional to
it to distinguish from differentiation with respect to 7'. The result
after eliminating 6 ~ is given by the two equations

-bA ~ xscc'& ba + t b w/R n, (5)

t b wlR n ~ (B c/4" R) a, balK sin &, (6)

where K is now a function of.& and x, with

x tan .& = constant along the blade. (7).
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Eliminating 6 a between (5) and (6) gives

_6A=.l !..!!{l 4:tTKsin3-1 (8)
Y' R n -r B C 4 0 COSI.a- J .

From (7) it follows that the screw must be of constant geometrical
pitch (measured from the zero lift line); eqlL.'ltions (8) and (7) show
that the variation of chord with radius must be chosen so as to make

(10)

~dQ,d, _ d.nif ~ (dTd,)

~ (VI il) ~ (arid,)

KJc cos.s- = constant. . (9)

along the blade. The constant value of {) w/lJA may be adjusted so
as to give any chosen value to the chord length c at a standard
radius. Next lJa is determined as a function of radius so as to
satisfy equation (6), the chord having been alrendy detennined. It
is to be noticed that by equation (5),

lJa varies as cost fJjx,

so that the prescnt design of blade is open to the objection that the
central sections would stall earlier than the outer sections. To the
present approximation, equation (26) of §3 may be written

lJ aT/dT = Bee " 0 1 Q o daicos &, ..

and eliminating da bctwt:en this equation and (6) gives

lJ tIT:dr - 2:t e r' n K tan a- lJu. •. (11)

Finally, the value of - (c c.\) (tIT/dr), (the initial slope of the thrust
grading against A at small thrust) is given by eliminating 6u; between
this equation and (8). A similar result for the torque (still neglecting
profile drag) is given by eliminating !lUI between (8) and the following
equation

- 2;1t er' Y K tan.3- "to. (12)

The stope of the thrust curve against A is then determined by
graphical integration from equation (11).

Calculations by the above method were made for three of the
C<'1ses worked out by Goldstein :-2 blades !-to (5 R O/V) = 2'Oand
5·0, and 4 blades,!-to = 5·0.

The constant value of lJw/6A was determined from (8) to make
c equal to the chord of a blade of the family of airscrews at radius
0·7R. Since values of K for 4 blades, #0 = 2, by Goldstein's
method were not available it was decided to work out the 4 cases :­
2 and 4 blades, Po = 2 and 5, by the approximate formula for K
given by Prandtl and quoted by Goldstein on pages 451 and 457
of his paper. This formula may be written in the form

K = (2 'n) cos' ¢' arc cos e-B.l..
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where

.l - sin (~ - ~')fsin ~ sin 2 ~'1 (13)
tan~.-VfRO. ,

For the same blade and the same values of.&and c. the calculations
were then repeated on the basis of the assumption of the Vortex
theory (i.e., by replacing K by cost -3-); "U1 is then no longer
constant along the blade.

Fig. 3 shows thrust grading curves in the form of the coefficient
t, _ - (If". R' 0) (afa V) (a Tfa,), for small thrust (0 constant),
plotted against x for the particular case :-2 blades, 1'0 = 2 (J = 1·57
at zero thrust) calculated by the Goldstein formulae and also with
the same plan form by the Vortex theory for comparison. By
integrating these and similar thrust grading curves, values at small
thrust of the slope of the thrust coefficient curves were obtained in
the form - (lin R3 n) (a T/a V). (n constant). and are given in the
following table :-

TABLE I.
4

Values of - { If". R' O)(d Tfd V) (n constant) ~ - ... (d k.,fd J).
"

for small thrust ei = 0-I55o.t x = 0'7).

J. B
(J at zero (Kumber Goldstein Vortex Ratio Prandtl Vortex Ratio
thrust.) of blades.) .. b. bla. • b. bla.

1·57 2 0·0653 0·0745 1·14 0·0672 0·0733 1·08.

t·57 4 - - - O' 121 0·129 ',06

0·628 2 0·0765 0·0822 ,... 0·0783 0·0825 1·05.

0·628 4 0·126 0·132 1·05 O·t21 0·133 1·05

The largest discrepancy between the Goldstein and Vortex
theories is 14 per cent. for the two blader (Jo = 1,57), and decreases
with increase of the number of blades or decrease of pitch. The
Prandtl approximation considerably underestimates the discrepancy
in the extreme case. The true value of the discrepancy for a 4~blader

Jo= 1·57 probably lies between 7 and 9 per cent.
The plan forms for the three cases of the Goldstein calculations

are shown in Fig. 4 with the plan form of a blade of the family for
comparison. The tip of the blade becomes more blunt as the number
of blades increases or as the pitch decreases; for both 2-bladers the
shapes are in fair agreement with a blade of the family. Since the
blades of large pitch ratio of the family of airscrev.'S (R. & M. 829)
are of approximately constant geometrical pitch. (the blade angle
being measured from the zero lift line of the section) it follows that
~I~ B
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they also satisfy approximately the condition of minimum energy
loss. A conclusion from Goldstein's theory would be that an airscrew
blade should be made morc blunt as the pitch decreases or as the
number of blades increases. Flom the result, previously established,
that for a blade designed as above, the incidence varies approximately
inversely as the radius, it seems probable that a more efficient blade
over a range of conditions would be obtained by reducing the twist
and increasing the taper, in such a way as to maintain Goldstein's
conditions for a single working condition at a fairly large thrust.
whilst delaying the stalling of the blade sections of small radius.

5. Method of calculating efficiency.-The appearance of the
velocity w in the fundamental equation of the prescnt method, lends
itself to the construction. on a definite physical basis. of simple
fonnulae for the power wastage of an airscrew. It is easy to show
that when profile drag is neglected, the total power wastage
corresponding to an annular element dr of the airscrew disc is given by

lldQ-VdT=twdT,

which, by use of §3 (24), may be written

4]1e~uK (m· tiT .

(1 )

(2)

In the special case in which w is constant along the blade the total
power wastage is, therefore, equal to

(3)

These results have the advantage of combining into a single
expression the components of power loss associated with both axial
and rotational component velocities in the wake. as used in e.g.,
R. & M. 1034\ and 1238.)

When profile drag is included, the definition of w is no longer
exactly unique, but if it is assumed as

w Bc kL(l-aJ
t ,. n = 4 ]I ,.. K sin tP.

§3 (31) may be written

VIR II ~.tan~ -! wlR ll,

(4)

(5)

• This practically amounts to a proof that Goldstein's distribution
corresponds to minim\lffi energy loss.

t The efficiency of an airscrew.-H. Glauert.
t The effect of body interference on the efficiency of an airscrew.· -Lock.
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and the following equation for the total power loss may be shown to
be exactly consistent with equations §(3). (26-31) :-

n ~ I·n [- - - = i w. Be e (I - aJI r2 Ot k secl '; Idr h L

(6)

The first term on the right-hand side here includes the whole of the
power wasted in imp..'lrting non-turbulent motion to the air stream,
while the second term represents the wastage associated with the
profile drag of the blade elements.

Vortex theory ullderestimates power loss.-H may be shown
general1y that the power loss calculated by Goldstein's method will
always be greater than that calculated by the Vortex theory. Using
suffixes g and v to distinguish the two cases we have in general

K .. < K ...

(K. ~ cos' ~).
and so from equation (24) of §3

and so

for given tIT/dr.

Value of maximl4m efficiency correspollding to the approximation
of §4.-We proceed to apply the formulae for smaU thrust of §4 to
the calculation of power loss and efficiency. Write i for - lJA where
as before

A~V/Rn;

j and oA vanish with On and with thrust. For the coefficient of
power loss, defined by

Pe iii Pin e R6 Q3,

it follows from equation (I) that when proflle drag is neglected and
P is expanded in powers of j, aU terms after the first in the expansion
being neglected as in §4,

~ WI~ ~),

where WI is a non-dimensional quantity which is finite (i.e., inde­
pendent of j or 6A) and which can be expressed as an integral along
the blade by means of the results of §4 in the fonn :-

WI = I: (tJ2h) dx
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where
I 6 d T

i1 = - n e R2 n . 6 V . dr'
filld

h~ - 6V/6w

~ j R fl/6 w.

On Goldstein's theory w is constant along the blade and so w t
may be written

W t = (1/2 h) f: t1 dx. .. (8)

In order to calculate maximum efficiency it is essential to take
account of the effect of profile drag on the blade elements. It will
be aSSllmed that thrust and incidence may be treated as small
quantities up to maximum efficiency (sec footnote on next page)
so that the profile drag coefficient kD at a given radius can be treated
as independent of j. Write P t for the pO\ver expended in producing
the motion of the wake as given by formula (7) above and P2 for
the power lost in profile drag at the blade elements given by

dPJdr ~ Q B c (r fl sec &)'!<n. (9)

The whole power loss coefficient is then given by

P, ~ (P, + Pd/n eR' fl'

(10)

where W l , w2 , are considered as constants, WI being given by the
equation

J' B C
Wt = on H. (x sec it)3 kD dx. .. (II)

Similarly, taking account to the same degree of approximation of
the effect of profile drag on the torque we have

Q/n e R' fl' ~ q,-j + q" (12)
where

and

qz = J: (B cln R) x3kD sec it dx.

Hence the efficiency is given by

1- =P/Q=WIJ~+WZ.
1] 0 0 ql J + qa

(13)

(14)

(15)
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The maximum value of '7 for variations of j may be determined in
the usual way;· it occurs when j is the ~tive root of the equation

l' -r 2q, j - w, ~ 0 • • . (16)
qt W t

giving
j = - q,jq, + {(q,}q,)' + w,}w,}" • (17)

and
2 2 It 11 'J' "i1 WI . WI W t l 1 qi WI q, WI

-'7=-)= +-.--"ql qt qj Wz ql 00 2 )

The calculation of maximum efficiency was carried out by this
method for the case of the airscrew with plan form satisfying Gold­
stein's conditions :-2 blades, R Q/V = 2 -0. The values of kD wen"
taken from R. & 1\1. 892. Table 3, to correspond to a = 0 (measured
from the chord) as corresponding to a suitable mcan value of ko
over the range of a between zero thrust and maximum efficiency.
The results of the calculatien arc given in the following Table.

TABLE.

,.
~.

~,,.
\'fR D (~lax. eft.)

7J Max.

Goldstein.

0·065
0-0162
0·00036
0·0326
0·36
0·86

Vortex.

0·0745 (as in Table I).
0-0108
0-00036
0-0372
0·32
0·90

Thus the calculation on Goldstein's theory gives a maximum
efficiency 4 per cent. lower than the calculation by the Vortex
theory. In support of the accuracy of the method, the value of
maximum efficiency on the Vortex theory is in agreement wi.th the
value (0'897) calculated for 2vblader No.5 of the family with zero
allowance for boss drag.

6. General method of applying Goldstein's Tt'stllts.-It has been
observed that the plan form appropriate to Goldstein's method
for a high pitched two-blader agrees approximately with the plan
form of the family. For lower pitch and larger number of blades
the plan fonn becomes progressively more blunt (Fig. 4), but at
the same time the discrepancies between Goldstein and Vortex

• The justification for assuming that; may be treated as small up to
maximum efficiency is that lUI and 91 contain AD as a factor, and are therefore
small in comparison with (UI and 91'
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theory become smaller. It seems reasonable. therefore, to apply
Goldstein's method to airscrews of plan form similar to that of the
family of airscrews by substituting equations §3 (28) and (29) for
the standard equations of the Vortex theory without regard to the
condition of 111 constant along the blade. For this purpose a chart
has been prepared (Fig. 5) in which K/cos~ is plotted against tanfj..
for two-bladed airscre.."''S, for a series of standard values of the
radius x; the values of K being obtained by cross plotting from
Goldstein's Table 11.

It is now possible to explain in what sense the method constitutes
an allowance for tip effect. It appears from the chart (Fig. 5) or
from Goldstein's analysis that K or K/cost~ considered as a function
of rjR tends to zero on approaching the airscrew tip (i.e., as rjR
tends to unity). It follows from §3 equation (22) for u - V, in
which u - V is equated to an expression containing (IJK)·(dTJdr)
as a factor, that for any finite value of V or J, dT/dr must tend to
zero at the airscrew tip. This would still be true even in the extreme
case of a square tipped blade in which the chord is c()nstant up to the
tip, whereas according to the Vortex theory, the thrust grading
would tend to a finite value at the tip.

The method of performing an actual design calculation is now
identical with that commonly used in the Vortex theory (see
R. & M. 892). Calculations are made in the first instance for a
series of values of a and a series of radii. The lift and drag co­
efficients being known as functions of a, values of at and Fare
detennined from §3 equations (28) and (29), K being obtained from
the chart. tfT-'dr and dQidr are then obtained by the formulae §3
(26, Z7) and V/nD from §3 (30) or the equivalent (31). If desired
the efficiency maybe determined directly by means of formula §5
(6) for the power wastage.

The values of non-dimensional coefficients of ar,dr and dQ/dr
are then plotted against V/1ID, cross plotted against r,R and
graphically integrated in the usual way to give the thrust and
torque coefficients for the whole airscrew.

7. Calculations and comparison with experimwt.-The method
has so far been applied only to a single airscrew, the 2-blader of
PfD 1·5 of the family of airscrews. The original calculations by
the formulae of the Vortex theory were used as a basis, and to save
labour only the axial inflow factor F was corrected by multiplying
F by cos~/K in accordance with §3 equation (28). The results
were then cross plotted against J( = V/nD), cross plotted against
x and integrated in the usual manner.

In order to increase the accuracy of the determination of efficiency
a power loss coefficient defined by

dkp dk. J dk.,
dx """ dx - 2-.: dx (1)
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was plotted in addition to the torque grading, and in place of the
thrust grading. 1£ the curve of dkpfdx is made to tend to zero as
" tends to zero (as in Fig. 7) the results may be considered as a.
standard representing zero allowance for boss drag. In order to
increase the accuracy of the comparison beh...·ecn the results of
Goldstein's theory and the Vortex theory, the differences

dkdk dk.
d d: = d: (Vortex) - dxQ

(Goldstem), (2)

dkp dk p dkp .
15 dx = dx (Vortex) - dx (Goldstem), (3)

were plotted and integrated.

The thrust coefficient k.r (with zero allowance for boss) is then
obtained from the inverse of equation (I)

kr ~ (2 "J) . (k. - kp ).

Values of kQ and kT obtained in this way are given m the
following table, together with the ratio (Vortex/Goldstein).

TABLE 2'
2-Bladed Airscrew P/D 1·5.

, A>r (ttro boss I Efficiency (zero boss'•. effect). effect).,
J ,

GoJd-
Vortex Ratio

Gold-
Vortex Ratio Gold- DiHer-stein stein Vortex.

Q.
b. bfa.

Q.
b. bfa . stein. ence.

-
0·8 0·0230 0·0226 0·98 0·132 0·136 1·03 0·73 0'76. 0·03.
0·. 0-0228 0-0231 1·01 o 123 0·130 \-05. 0·77 0·80. 0-03.
1·0 0·0222 0'0228 1·03 0-112. Q·121 J '07. 0'80. 0·84 0'03,
I·) 0-0212 0-0221 1·04 Q. lOt 0.10"1 1·08. 0·83. 0·86. 0-03
1·20·0198 0-0208 1-05 0·089 0-096. 1-08. 0·86 0-88. 0-02
1·30·0179 0-0189 1·05. a 076 0082 1·08 0·87 0·89. 0'02.
I·" 0·0154 0·0164 1·06. 0·060 0·066 1-10 0·87. 0·89. 0·02
1·5 0·0126 0-013-\ 1-06. 0-045 0-0-\9 1·09 0·85 0-87. 0·02.

1~00090 0'0096 1·06. 0-027 0·030 \·11 0·77 0'79. 0-02.
"70-0053 0·0054 1·02 0·010 0·010 1. ()() 0·51 0·50. 0·00.

The ratio of values of Ivr 15 roughly constant over a considerable
range (J = 1·1 to 1-6) in which its mean value is 1·09: this may
be compared with the result of the calculation by the method of
§4 given in Table 1 as 1·14 for a two-blader .....ith 10 = 1·57. The
discrepancy is probably due to the neglect of the effect on rotational
inflow in the latter calculations so that the value 1·14 is probably
more nearly accurate than 1·09 for the two blader No.5.

• The above results are based on Mrofoil data reduced to infinite aspect
ratio by formulae for the elliptic wing, and are therefore not exactly com­
parable with those of R. cl M. 892 (see footnote p. 5, R. & ~f. 892).
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The corresponding ratio for the torque will be somewhat smaller
as indicated in the above table. For comparison the value of the
ratio (calculated kcJobserved kQ ) from R. & M. 829 and 892 is
recorded below.

TABLE 3.

k•. (Vortex theory).

Observed Calculated Ratio
J. a. b. bfa.

O·S 0·0221 0-0234 1·06
0·. 0·0221 0-0235 1·06.
1·0 0·0216 0·0233 1·08
I . 1 0-0205 0-0227 1·11
'·2 0·0187 0·0214 1·14.
'·3 0·0165 0·0195 I· 18
,·S 0-0108 0;0137 1·27,., 0·0024 0·0055 2·29

It appears that the effect of Goldstein's theory is in the right
direction to explain the discrepancy but is not of sufficient magni­
tude·; a fmal decision on this point may well be reserved until the
additional experiments on high pitch airscrews have been completed.
The same may be said still more strongly of the thrust coefficient;
an attempt was made to estimate the possible uncertainties due to
boss correction, but the results were too indefinite to be worth
recording in view of the prospect of further experiments.

The maximum efficiency calculated by the present method
according to Goldstein is 0·02 smaller than that calculated by the
Vortex theory; the difference calculated by the somewhat uncertain
approximate method given in §5 is 0'04, the two values being 0·86
and 0·90 respectively. The latter value is in agreement with the
value in Table 2 and the true value of the difference allowing for
effect of the correction on rotational inflow is probably about 0·03.
This difference is in the wrong direction to account for the observed
discrepancy, but here again it appeared probable on investigation
that errors in estimation of boss effect may account for the whole of
the observed discrepancy.

Finally it is worth while pointing out that the differences between
the two thrust grading curves of Fig. 3 are qualitatively in agreement
with the difference between observed and calculated thrust grading
curves, in e.g., R. & M. 892, Fig. 2. Here again the absence of
observations of thrust grading on the 2-blader P/D 1·5 makes it
necessary to await the new programme of experiments for a quan­
titative comparison.

• The discrepancy of kQ at zero thrust evidently represents a disagreement
between the drag coefficient of the blade elements and the drag coefficient
of a rectangular aerofoil at zero lift.
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