




THE STABILITY OF A BODY TOWED BY A LIGHT WIRE.
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Sumrnary.-Introductory (Purpose of Investigation.)-Owing to the practice
of towing instruments belovv an aeroplane, the conditions for the stability
of a towed body required investigation.

Range ofinvestigation.-The stability of a body towed by a light inexten­
sible wire has been investigated on certain simplifying assumptions regarding
the force experienced by the wire.

Conclusions.-:-In addition to the pitching and yawing oscillations of the
body there are three oscillations of the \vhole system. The most important
oscillation is associated with a bowing of the wire in the plane of symmetry,
and, even if the body has satisfactory statical stability, this oscillation may
become unstable if the body is too short or if the drag of the body is low
compared with that of the wire.

Further is necessary to examine the
dynamical effects on the '"'lire which are ignored in the present
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* R. & M. 554. "On the action of wind on flexible cables, \vith application
to cables towed below aeroplanes, and balloon cables." (1918).-A. R. McLeod.
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tend to produce instability of the bmving oscillation, when the
body has a reasonable amount of statical stability, are a short length
of the body and a low drag of the body compared with the drag per
unit length of the wire.

PAI~T I.

The vVire

1. Steady 'flwtion.-Consider a light inextensible wire, and let
R be the drag per unit length of the wire when at right angles to
a stream of velocity V. This drag will be of the fonn

R = kR d f! V2 (1)
where d is the dian1eter of the wire and kR is a non-dimensional
drag coefficient. vVhen the wire is inclined at an angle fJ to the
strean1, the force F per unit length of the wire will be assumed
to be at right angles to the length of the wire and of magnitude

F R sin2 fJ (2)
This assumption is a very close approximation* to the actual
experimental results unless the angle fJ is extremely small.

Since the aerodynamic force on any element ds of the wire is
normal to the element, the tension T of the wire will be constant
throughout its length and the shape of the wire will be governed
by the equation

T d({) = F
ds

where ({) is .. the angle of inclination to the vertical of the element ds
(see Fig. 1). \Vriting now

T l~ c .. (3)
where c is the length of vvire whose norn1al drag is equal to the
tension, the differential equation for the shape of the 'vvire becomes

ds
c sec2 rp (4)

* d. R. & M. 554.
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i\t anv Doint B of the wire the tension T has horizontal and
vertical ~on;ponents which would sufftce to support a of
U"".1fY~)+ vV and drag D, provided

VV = H. c cos rp 1
D l~ c sin rp I

Now consider a vvire BA of length s as shown in Fig. 2, supporting
a body of weight Wand drag D. The shape assumed by the vvire
can be detennined from the equations (5) by imagining the wire
to be extended to the point 0 at which it would be vertica1. Then,
denoting values corresponding to the points B and A by the
~uffices (1) and (2) respectively, the appropriate of equations
IS

(]1 sinh'71 tan rp

(]2 = sinh ''l2
;-1 = cosh'71 - 1 = sec rp - 1
;-2 cosh '72 - 1

and

~2 - ~1 = a
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The shape of the \vire is obtained by eliminating the coordinates
(~, 'Yj, 0-), and (~, 'Yj, 0-)2 from these equations. Thus

(J tan ep = (J2 = sinh ( f3 'Yjl)

= sinh f3 sec cp cosh f3 tan (p

and

~2 cosh ( f3 'til)

= cosh f3 sec ep sinh f3 tan (p

and hence the two equations which determine the shape of the
wire are

(J = sinh f3 sec ep
a = sinh /3 tan rp

(cosh f3 1) tan I
(cosh /1 -- 1) sec (p f (8)

forms of these equations which are useful in the
are

(J - a sm rp
a - (J sin (p

sinh {J cos q; )
(cosh f3 - 1) cos (p J

sin = cos2

1 a cos ep cosh
sin ep (J cos ep =

'\

t
J

functions fronl the

1)

(12)
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Since b is obtained for any wire system as a multiple of the funda­
mental length C, it is convenient to calculate

PL = 2nJ~ (13)

and the corresponding period is then derived by multiplying PL
byVcjg.

The distortion of the wire due to a longitudinal or normal
displacement of the body in the plane of symmetry is more complex
"in form. Consider a displacement of the body B relative to the
point of attachment A, choose the equilibrium position Bo of the
body as origin of co-ordinates, and denote the horizontal and vertical
displacements of the body by x and y respectively. Owing to this
displacement there will be changes in the horizontal and vertical
components of the wire tension acting on the body, and in general
these forces vvill tend to restore the body to its equilibrium position.
The horizontal and vertical components of th,e wire tension in
the displaced position may therefore be expressed conveniently
as (T sin rp - T x ) and (T cos rp - Ty ). In general these forces will
depend not only on the displacement (x, y) but also on the velocity
of the body relative to the point A. Any effects due to this velocity
will be ignored in the present analysis, and the shape of the wire
in the displaced position of the body can therefore be derived from
the equations (7) and (8) by considering the effect of small increll1ents
of the weight \\1 and drag D of the body. Equations (7) determine
the corresponding increments of c and rp, and equations (8) then
determine the corresponding increments of a and b. During this
calculation Rand s remain constant. Note also that

(14)

(15)

- x, 0 b = - Yoa
and

oD - Tx , 0 \\1

From equations (7)
oD = R (sin rp be c cos rp 0
o\\1 H. (cosrp 0 c - c sin rp

and \\Then the increlnents of c and rp are in tenns of the
increments of a and b, these equations assunle the form

o D = R (a1 0 a a2 ob)
OVV R(b1oa b2 ob)

or

where
only on

c cos b rp
o

(16)

(17)
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In order to determine the coefficients a2, frOlll equations
(17) it is necessary to express b c and ffJ in terms of 6 a and b b.
These expressions are derived from the equations and and
after SOllle reduction

Ll 6 c = a cos ffJ 6 a
Ll c b ffJ = a cos

bbl
cos ffJ bar

sin cos (p 6 bJ
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Now replace the time t by a non-dimensional time paranleter r defined
by the equation

t /·,n J.. c\V JZ-- (24·)
~ = ~ R =. = gcos qJ

and then the equations of motion become

d2 x
a l x azy = 0

(25)

b1x b2 y = 0

Assuming x and y to be proportional to an exponential factor ekc:,
the periods of the oscillations of the system are determined by the
equation

I A,2 a1 a2 I = 0
I bi },2 bz I

or
(26)

The coefficients of this equation are both positive and there are
always hvo negative roots. \\lriting the equation as

(}.2 A) p,2 B) = 0
where

(27)

A

B = -=----=

the periods of the two oscillations are

(29)

(28)
2n /-c
~B V g-COS qJ

It is convenient .. however, to calculate

= 2n ./ cos qJ I
I\j A ,

= 2n I
and the corresponding periods are then derived by multiplying

and V cig.
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In order to appreciate the significance of these two oscillations
in the plane of symmetry, consider the purely hypothetical case when
the cross-connecting term a2 b1 of equation (26) is zero. The two
roots A and B then degenerate to a 1 and b2 , and hence the longer
period (A) oscillation is a horizontal or longitudinal oscillation,
and the shorter period (B) oscillation is a vertical or normal oscilla­
tion. More generally the (A) oscillation appears to be a pendulum
oscillation of the whole system in the plane of syJ1lmetry, and the (B)
oscillation to be a transverse oscillation due to bowing of the wire.

There are three oscillations in all of the wire system when the
aerodynamic restoring and damping forces on the body are ignored,
and these fundamental oscillations of the system may be specified
as :-

(L) a lateral oscillation;

(A) a pendulum oscillation in the plane of symmetry;

(B) a bowing oscillation in the plane of syn1metry.

The periods of these three oscillations are determined by equations
(13) and (29), and numerical values are given in Table 4 at the end
of the report. All three periods increase with the length of the wire,
and decrease as ffJ increases. The periods of the pendulum and
bo\ving oscillations are shown in Fig. 4, and the period of the lateral
oscillation is slightly longer than that of the pendulum oscillation
Assuming a typical value of 65 ft. for the fundamental length c,
the periods of the lateral and pendulum oscillations are of the
order of 6 to 10 sec. in the range of considered, and the period
of the bowing oscillation is of the order of 1 to 4 sec.

PART II.

auauof~S of
\vire of length s,

the body and to an
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and

=-6D-

Hence the corresponding components of the resultant force
body are

F

F R

13
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The non-dimensional coefficients for the aerodynamic forces and
moments are now taken to be

(36)

Writing also

C= to
the equations of motion (33) become

dx
xUdr

dvZ _--=::-

wdr:

a1x a2y 0

b1 x b2y
dC

- kD ) C= (37)/u

o

and then, assuming (x, y, C) to be proportional to an exponential
factor elc', the fundamental equation for determining the stability
of the motion is

},2 Xu J. a1 a2 0 - 0 (38)
b1

},2 z·w· I. b2 }, - f.1 ltD)
0 1nw A '2 1nq A fl1nw).

On expanding this determinant it appears that Zq enters into the
equation only in the fonn and in general is only a small
fraction of Il. In the subsequent work will be and then,
after a sn1all adjustrnent, the stability equation hO"An..,oC'

J.2 Zw b2
Il tnw I, ),2

o
Zw - kD

-rnq A

= 0 (39)
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This is an equation of the sixth degree and in general there are three
oscillations of the system, the pendulum and bowing oscillations
of the wire system and a pitching oscillation of the body. The
constant term of the equation is

mw (al b2 - a2 bl)

which is positive if the body has statical stability. If this condition
is satisfied, instability of the system must arise first in the form of an
increasing oscillation.

5. The stability equation.-If 1'nw is zero, as would occur with a
spherical body, or if Zw is equal to kD , the general stability equation
(39) splits up into the factors

).2 + m q ). /h mw = 0
and

).2 Xu ;, a l a9 0
bI ).2 i b2

The first factor represents a stable or neutral Illation. The second
factor is

(40)o
and the discriminant of the equation is

b2 xu)
b2 - a 2

).4 ).3

b2

All the coefficients are

;,2 Xu). a l 0
and

I
, ;,2 zw ;' b2 Zw - kD

mw ).2 m q ). ltmw

The first factor represents a stable nlotion, since Xu and a l are
and the second factor is

o

(b2 f-t mw Zw

/h tfZw kD ))' b2 /1" mw (41)
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occurs if II lies \vithin the the

> > (42)

In general kD is a slTIall fraction ofzw, andzw is less than the
upper limit of this inequality is of the order 5 to 10, and the
limit is slightly less than unity. The value of b2 increases rapidly
as the length of the wire is reduced, and in practical applications
probably lies between 10 and 30. Finally, the value of It 'N1w depends
on the statical stability of the body, but is usually high and of the
order of 100. From this discussion it would appear that the value
of fl will hardly ever lie below the lower limit of the inequality
(42), but that there is a real danger that it may fail to excede the
upper limit. Effectively therefore the condition for stability is
that

flrn kD > b2 Zw (43)

and the factors which tend to\vards instability may be specified
as follows :-

(1) insufficient statical stability, It11'lw sn1a11 ;

(2) short body, \vhich increases Zw for a given value of /l 11.1,'1'

(3) short \'lire, which increases b2 ;

(4) low drag, kJ) small.

Any instability which occurs in practice can be cured by suitable
modifications to any or all of these factors.

P) = 0
J

}, P}
),2

The stability criterion (43) is based on the impossible condition
that a2b1 is zero, but an examination of some typical numerical
examples has shown that it is a fairly accurate approximation to the
true condition. To examine the validitv of the condition luore
closely it is necessary to revert to the gene~al stability equation (39).
On expansion this equation is

(),2 'mq ),) {},4
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in accordance with the previous definitions

S = a l b2

P = a l h2 - a2 hI

Neglecting now Xu and Xu

stability equation becomes
in comparison with S, the

},6 (xu Zw 'Hlq ) A5 {S 1'1lq fl mw } A4

{ (a l Zw b2 mqS Jt 11~w (xu kD)} .P

{P 'lnq (a l Zw b2 xu) It1'lZw S} A2

{mqP It 1'1lw (a1 kD b2 xu)} A ,umwP 0 (44)

Any attempt to obtain general expressions for the discriminants
of this equation ends in hopeless cOlnplexity, but another method
of attack is available for determining the conditions under which
an undamped oscillation occurs. If such an oscillation occurs, two
roots of the sextic equation (44) must be of the form

},iV~

where ~ is essentially positive, and, on separating the real and
imaginary parts of the equation, \ve then require sinlultaneonsly

(45)

and

Zw mq) ~2 {(al Z·w b2 xu) mqS ft tnw (xu

{mqP It 11lw (a l kD b2
t 0J

kD)} ~

(46)

Equation (45) determines the periods of three oscillations and on
substituting the appropriate value of .~ in equation (46) the necessary
relationship between the various coefficients is derived.

If the dmnping derivatives are ignored, the equation becollles

and the three roots are ,u A and B, where the last two values are
given by the formulce (27). second to the
(45), including nmv the damping leads to corrections

these three roots vvhich are negligibly small ..vhen /vi is
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The longest oscillation is usually represented by A and on sub­
stituting this value for ~ in equation (46) the coefficient of mq vanishes
and we obtain

(xuzw ) A2 - { (al Zw b2 xu) If, mw (xu kD ) } A
fl 1'11" (al kD b2 xu) 0

or

NO\vlet

p

q=

(47)

and note that
xu = 2

Then, with these substitutions, the condition for zero danlping of the
pendulmn (A) oscillation becomes

1 (48)

This value of ,ufltw is of the order of A
occurs in practice.

is much sInaller than usually

A sinlilar
condition

oscillation leads to the

a IllOre critical since 13 is than
than q. This condition is in fact a Inore accurate

the condition and reduces to the saIne
q is then zero is to Thus the

arises in the vilhich is the
oscillations.

Finally susbtituting /l J1tw ror ~ in equation (46) the condition that
the pitching oscillation of the body shall have zero damping is

Cu - kD ,U J1tw {al - kD b2 1nq }

nZq P = 0 (50)

and the insertion of typical numerical values for the coefficients
shows that instability will not arise unless Il mw is unusually small or
unless the wire is unduly short.



In order to illustrate these results
have been nlade using the following values
coefficients .:-

0·05, Zw = 0,50, m q 1·50.

( ~ = 1· 18 ), and this accurate

frOln 15 to 122, which is
contained in Table 1 if the
from the higher value of the

TABLE 1.

Critical

Pendulum.

0·52
0·82
1·18
1·60

2·5
2·2
2·2
2·2

935
274
1

bowing oscillation. The upper liInit the
corresponds to the condition The
therefore be taken to be

B ~ 1
(

B, P and q are wire coefficients denfied
and as a rough this
simpler form

(52)
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general, for a body with statical ,:l'-U"I-]J,J.J.'-

and Yr and 'ltv are Also if the
its longitudinal these lateral derivatives can be
corrseponding derivatives according to

o
d SI

Transfonning to the non-dinlensional C,{TC'f-olrn and writing

1 b
S = E Y

the equations of motion (54) becOIne

d2 d
Yr

where

y yy-
},2 llr)'

the

1=0 ..

c
Y b

derived from Table 3. Now
for the S;:lme reason

and after

l2 AYy
pn y J,

or in ternlS of the r-r.,-rn,vnrn.



the rhc'"r'lrnn-WcLlL of this IS

'::'Vll'11"t:ICC1IAn is of the form

(62)

and \vill be for a positive range of values of Illn"n if

B12 - 4 Al (1 > 0

these coefficients from. the equation (62) this inequality
~U.\,l'-.~·U. to the forn1

2 Y kD Zw mel

o
and is satisfied if y lies outside the range defined by the two critical
values

2

lnq \/ln~} (63)

This determines a range of length of wire within which
the yn,'\"r,T< is stable for all values of /u whilst outside these
Ihnits is a of values of p ntw which the motion
becomes unstable.

values

0,50, lnq 1·50,

the critical values of or are 0·005 and 1 ·27, and hence instability
of the can arise only if is less than 0·79 or greater
than 200. The upper limit is absurdly high and effectively insta-

can only if is unduly small.

\\1hen instability does arise, the dangerous range of values of
mw can be derived from equation (62), and Table 2 gives the

appropriate numerical values. Even when the wire is short
instability arises only if the statical stability is rather poor, and
instability with a reasonable degree of statical stability arises only
when is of the order of O· 1. vVhen p, rfb w is reasonably large the

of wire at which lateral instability does arise may be
deduced from the approximate condition (42) as

b
c

(64)



ABLE





v-

x.0;--------

5TE.A:DY MOTION.

DISTURBE.D MOnON.,



F"lG.4.

W\RE. OSCI LLJ:>-TION~.

I
f-----I-'-------~f___------_!:~---_'......=+--"--J--------J

I '

I i
I

BOWING OSCILLATION. C§) I

I I I--_ _--_._-1----"1--1
I I I

Ol..-----:='.l::---~~--__:_..l.;:.__-__:~Io::::__--~~--~
05 1'0 1"5 2'0

%






