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Summary — Introductory (Puvpose of Investigation.)—Owing to the practice
of towing instruments below an aeroplane, the conditions for the stability
of a towed body required investigation.

Range of investigation.—The stability of a body towed by a light inexten-
sible wire has been investigated on certain simplifying assumptions regarding
the force experienced by the wire.

Conclusions—In addition to the pitching and yawing oscillations of the
body there are three oscillations of the whole system. The most important
oscillation is associated with a bowing of the wire in the plane of symmetry,
and, even if the body has satisfactory statical stability, this oscillation may
become unstable if the body is too short or if the drag of the body is low
compared with that of the wire.

Further developments.—Further investigation is necessary to examine the
dynamical effects on the wire which are ignored in the present analysis.

Introduction.—The form assumed by a light wire, which is used
to tow a body behind an aeroplane at a constant speed, has been
known for many years, and in report R. & M. 554, A. R. McLeod*
has derived the corresponding form for a heavy wire. No attempt,
however, appears to have been made to determine the stability
of the body, and this problem is becoming important owing to the
practice of towing aerodynamic instruments below an aeroplane.

In the following pages an attempt is made to determine the con-
ditions for the stability of a body towed by a light inextensible wire
on the usual assumption that the aerodynamic force on any element
of the wire is normal to its length. The shape of the wire, when the
body is displaced from its equilibrium position, will depend on the
displacement and on the rate at which the displacement is changing.
In order to simplify the analysis, however, it is assumed that the
second factor may be ignored and that the characteristics of the wire
system during any disturbance may be expressed purely in terms
of the instantaneous displacement. This assumption requires
further investigation, since it introduces some uncertainty into the
validity of the conclusions, but the present analysis does, in fact,
appear to represent the actual conditions with reasonable accuracy

*R. & M. 554. “ On the action of wind on flexible cables, with application
to cables towed below aeroplanes, and balloon cables.” (1918).—A. R. McLeod.
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The report is divided into three parts. Part I deals with the
wire system and determines three fundamental periods of oscillation,
two in the plane of symmetry and one normal to it. Parts II and I1I
develop respectively the criteria for the longitudinal and lateral
stability of the system, and introduce two more periods of oscillation,
corresponding to the pitching and yawing of the body. If the body
has a reasonable amount of statical stability, it appears that insta-
bility arises only in the normal oscillation in the plane of symmetry
which is associated with bowing of the wire, but other forms of
instability may arise if the wire is unduly short. The factors which
tend to produce instability of the bowing oscillation, when the
body has a reasonable amount of statical stability, are a short length
of the body and a low drag of the body compared with the drag per
unit length of the wire.

PART I
The Wire System.

1. Sieady motion.—Consider a light inextensible wire, and let
R be the drag per unit length of the wire when at right angles to
a stream of velocity V. This drag will be of the form
R=rkpdoV? .. .. . . . (1)
where d is the diameter of the wire and kR is a non-dimensional
drag coefficient. When the wire is inclined at an angle 0 to the
stream, the force F per unit length of the wire will be assumed
to be at right angles to the length of the wire and of magnitude
F=Rsin?6 .. . .. .. (2)

This assumption is a very close dppromma‘uon* to the actual
experimental results unless the angle 0 is extremely small.

Since the aerodynamic force on any element ds of the wire is
normal to the element, the tension T of the wire will be constant
throughout its length and the shape of the wire will be governed
by the equation

o _
Too=F

where ¢ is the angle of inclination to the vertical of the element ds
(see Fig. 1). Writing now
T=Rc¢ .. .. .. .. (3)

where ¢ is the length of wire whose normdl drag is equal to the
tension, the differential equation for the shape of the wire becomes

ds 2 ;
@:::csecqﬁ - .. .. .. .. .. 4)

* cf. R. & M. 554.
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Take as origin O the bottom point where the wire is vertical and
would support a body of weight T and of zero drag. Then, on
integrating equation (4),

S=ctan ¢
Also the rectangular co-ordinates of any point of the wire, referred
to the origin O, can be derived from the differential equations.

dx .

% = Sin @
ay

T = Cos g

and, after integration, the complete solution can be expressed
in the form

o = tan ¢ == sinh 7, -
&= coshy —1 } ) )
where
L .
CELS T ONT )

At any point B of the wire the tension T has horizontal and
vertical components which would suffice to support a body of
weight W and drag D, provided

W=TRccosg | ”
D=TResing | .. . .. . .. (7)

Now consider a wire BA of length s as shown in Fig. 2, supporting
a body of weight W and drag D. The shape assumed by the wire
can be determined from the equations (5) by imagining the wire
to be extended to the point O at which it would be vertical. Then,
denoting values corresponding to the points B and A by the
suffices (1) and (2) respectively, the appropriate system of equations
is

. D
o, == sinh #; == tan ¢ =7
0, == sinh 7,
& =coshn —1==secp—1
&y ==coshn, — 1
and
52 - 51 =u :ij
R b
e — = P= 7
s
Ty — O = 0 = —

(733) Wt 173/6004/2208 875 §/30 Harrow G.7/1 : A2
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The shape of the wire is obtained by eliminating the coordinates
(&, 1, 0), and (&, 7, 6), from these equations. Thus

o + tan ¢ = g, = sinh (§ + )
= sinh fsec ¢ <- cosh ftang

and

a-sec =14 & =cosh (B -+ n)

== cosh fsec ¢ 4 sinh frang¢

and hence the two equations which determine the shape of the
wire are

o = sinh Bsec ¢ + (cosh f— 1) tan ¢ |

a=sinh ftan ¢ + (cosh §— )secp | o ®)

Alternative forms of these equations which are useful in the
subsequent analysis are

o — a sin ¢ == sinh fcos ¢ | 9

a — osing= (cosh g — 1) cos g | ©)
and

1+ acos@=cosh f-+sinh fsing ) .

sin ¢ + gcos ¢ =sinh 4 cosh fsing | - - (10)

Finally, on eliminating the hyperbolic functions from the
equations (9), ’

a — osin ¢ 4+ cos )2 — (¢ — asin @) = cos? @
7 L T 7
or

(0% — a?) cos ¢ =2 (a0 — osin ¢) - .. .. (1D

2. Disturbed Motion—During the disturbance of the steady
motion the behaviour of the wire system will depend on the displace-
ment of the body B and on the rate at which the displacement is
increasing or decreasing. In order to simplify the analysis, however,
the effects of the velocity of displacement will be ignored, and the
modified form of the wire will be calculated on the assumption
that the body B is at rest, relative to the point A, in its displaced
position. On this assumption, a lateral displacement of the body B
corresponds to a rotation of the whole system about a horizontal
axis through the point A and parallel to the velocity V, and hence
the motion is essentially that of a pendulum of length 5. Ignoring
any aerodynamic restoring or damping forces on the body, the
system would perform an oscillation of period

PL:_—Qn\/~ e e (1

fd]

oa
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Since b is obtained for any wire system as a multiple of the funda-
mental length ¢, it is convenient to calculate

751':2”«/2 .. .. .. .. .. .. (13)
and the corresponding period is then derived by multiplying py,

by Velg.

The distortion of the wire due to a longitudinal or normal
displacement of the body in the plane of symmetry is more complex
in form. Consider a displacement of the body B relative to the
point of attachment A, choose the equilibrium position B, of the
body as origin of co-ordinates, and denote the horizontal and vertical
displacements of the body by x and y respectively. Owing to this
displacement there will be changes in the horizontal and vertical
components of the wire tension acting on the body, and in general
these forces will tend to restore the body to its equilibrium position.
The horizontal and vertical components of the wire tension in
the displaced position may therefore be expressed conveniently
as (T sin ¢ — Ty) and (T cos ¢ — T,). In general these forces will
depend not only on the displacement (x, ¥) but also on the velocity
of the body relative to the point A. Any effects due to this velocity
will be ignored in the present analysis, and the shape of the wire
in the displaced position of the body can therefore be derived from
the equations (7) and (8) by considering the effect of small increments
of the weight W and drag D of the body. Equations (7) determine
the corresponding increments of ¢ and ¢, and equations (8) then
determine the corresponding increments of ¢ and 4. During this
calculation R and s remain constant. Note also that

0 = —x,0b=—7y .. . .. . . {14
and
0D =T, W=-T, .. . .. .. (15)
From equations (7)
6D = R (sin ¢ oc +-ccos ¢ 0 ¢)
W =R(cosg dc—csing d¢)
and when the increments of ¢ and ¢ are expressed in terms of the
increments of @ and &, these equations assume the form
6D =R (a; 6a + a, 6b)
AW =R (b da-+0b,00b)
or
T = R (a2 + a9) |
x F .. . . .. (16
T, = R (b 5+ by) | o)
where (ay, by, a,, b,) are four non-dimensional coefficients depending
only on the initial shape of the wire and determined by the equations
a,0a-4ay,0b=sing dc-+ccosgp d¢ |

byda-+b,0b=cosgdc—csingdep| -~ (17)



The first equation (8) is

L. bh b
Scos g = sinh -+ sin ¢ (cosh o i3]
¢ :

and hence
é<S> Seing o
CoS ¢ : Jsing oy
b by /by / b\
= sh— -~ sin ¢ sinh— | — | - cos @ | cosh—— Z
- <coz>hc -+ sin ¢ sinh =) é< ;) Cos ¢ Kcosh . }/l (3({
or by virtue of equations (9) and (10)

1 (2 cosg o (S —asg

(14 acosq) o - ) =cosg b C/) adq
which gives finally

(1 -—acosg) db= {(1 -+ & COS @) i — o cos qz:.} d¢

—acdp .. . . . . .o {18)

The second equation (8) is

a b . b

—cos g = cosh o 1 -+ sin ¢ sinh .

and hence

L a \ a .
cos g ol - ) —— sing o ¢
! e/ c

O b AN L b
= { sinh— -k singcosh— | & (\ L cospsinh —d ¢
\ ¢ ¢ e, e

or by virtue of equations (9) and (10}

/A . b
cosq Ol — = {(sing-- gcosg) o (~\ o dp
pof . =bing 7)o ) p
or again
Cos @ oa =

(sin @+ ocos ) 6b 4 {acos g — (sinp + acosg) f} d¢
+ocde

Substituting for ¢ 4 from equation (18)

(1 -+ acosg) da=
{la — osing) — (6% — @) cosp}dc -+ (0 — asing)secge d g

and then simplifying the coefficient of § ¢ by means of equation (11)
(I 4 acosg)da=

—(a—osing) 0c -+ (0— asing)secopc dg .. (19)
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In order to determine the coefficients (a4, §;, a5, b,) from equations
(17) it is necessary to express 0 ¢ and ¢ ¢ in terms of 6 @ and 0 b.
These expressions are derived from the equations (18) and (19), and
after some reduction

Adc=uacospda-+ (6 —asing) 60 )
Acdgp=1{(1+acosg) f—occosg}cosg da - (20)
-+ (a — osin @) cos @ éb{

where
A= (oc—asing) f—2(a— osin ¢)
= {fsinh § —2(cosh § — 1)} cos¢ .. oo @2n
and then from equations (17)
Aa, = asingcosg -+ {(1 + acos ¢) f — ocos @} cos? ¢)
Aby = acos® ¢ —{(1 + acos¢) f— ocosg}singcosy
Ady == (0 — asing)sin ¢ + (« — osin ¢) cos? ¢
Aby == (g — asin ¢) cos p — (e — osin @) sin g cos ¢ ]

i

In order to obtain numerical solutions it is most convenient
to start with any suitable values of ¢ and f. Equations (8) then
determine the corresponding values of ¢ and «, and equations (21)
and (22) determine the four cocfficients (aq, &y, a5, by). The necessary
numerical work is rather lengthv and it is difficult to obtain high
accuracy when o is less than unity because the value of A is then
very small. The results of these calculations are given in Table 3
at the end of the report for three values of the angle ¢ {0, 5, 107).
For convenience in the later work the table also includes the
numerical values of

5=a, + b )
P:Cllzizwazblj . . . .. s

The coetficients (ay, b, a,, ,) all decrease as ¢ increases, and when
@ is zero by isequal to a,. TFor moderate values of ¢ all four coefficients
are of the same order of magnitude, but for small values of ¢ the
coefficient b, becomes very large and the coefficient a; falls below
by or a,.

3. Ware oscillations.—Consider the motion of a body of weight W
and drag D, ignoring any aerodynamic restoring or damping forces
due to the displacement. The appropriate equations of motion for a
displacement in the plane of symmetry are

Mo = Te= — Ria, x +ayy)

" ;5: = — Ty = — R (b x+ b,
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Now replace the time ¢ by a non-dimensional time parameter 7 defined
by the equation

13 m cW

;:-:N \/ cos ¢ . . (249
and then the equations of mot1on become

azx

d 1,2 ! al “zy - O }& (25)

azy
6—{_}%~;’—blx~f~62y:05

Assuming x and ¥ to be proportional to an exponential factor 7,
the periods of the oscillations of the system are determined by the
equation

224 ay a,| = 0
5 by by
or
MESELP=0 .. .. .. .. .. (26

The coefficients of this equation are both positive and there are
always two negative roots. Writing the equation as

(74 A) (2 +B)=0

by + a, by — a;\* |
A== 5 ——-\/(J__(T,_._l -f-‘Hle‘

where

B:bJMal *%b‘/ (27)
2 , 1
the periods of the two oscillations are |
P, = '":Z;: 2 cos 99\]
VAN g
2z [o 1 29
\/B \/ —C0s (p)
It is convenient, however, to calculate
by = 2 /cosqa‘
— 7 (29)
pp = 2n ‘

and the corresponding periods are then derived by multiplying

psand py by \/_07?
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In order to appreciate the significance of these two oscillations
in the plane of symmetry, consider the purely hypothetical case when
the cross-connecting term a, b, of equation (26) is zero. The two
roots A and B then degenerate to a, and b,, and hence the longer
period (A) oscillation is a horizontal or longitudinal oscillation,
and the shorter period (B) oscillation is a vertical or normal oscilla-
tion. More generally the (A) oscillation appears to be a pendulum
oscillation of the whole system in the plane of symmetry, and the (B)
oscillation to be a transverse oscillation due to bowing of the wire.

There are three oscillations in all of the wire system when the
aerodynamic restoring and damping forces on the body are ignored,
and these fundamental oscillations of the system may be specified
as —

(L) a lateral oscillation ;
(A) a pendulum oscillation in the plane of symmetry ;
(B) a bowing oscillation in the plane of symmetry.

The periods of these three oscillations are determined by equations
(13) and (29), and numerical values are given in Table 4 at the end
of the report. All three periods increase with the length of the wire,
and decrease as ¢ increases. The periods of the pendulum and
bowing oscillations are shown in Fig. 4, and the period of the lateral
oscillation is slightly longer than that of the pendulum oscillation
Assuming a typical value of 65 ft. for the fundamental length ¢,
the periods of the lateral and pendulum oscillations are of the
order of 6 to 10 sec. in the range of s/c considered, and the period
of the bowing oscillation is of the order of 1 to 4 sec.

PART IL

Longitudinal Stability of the Body.

4. Lquations of Motion.—Consider a body towed by a light in-
extensible wire of length s, attached to the centre of gravity B3 of
the body and to an aeroplane A which is flying horizontally with the
uniform velocity V. In equilibrium (Fig. 2) the body will hang at
a distance @ behind and at a depth 4 below the aeroplane. Take
this point B, as origin and consider a displacement (v, ¥) of the
body relative to the aeroplane and a rotation 6 as shown in Fig. 3.
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The change in shape and tension of the wire due to the displace-
ment of the body causes a change in the force applied to the
body, and if F; and F,, are respectively the horizontal and vertical
components of the force the analysis of para. 2 gives

Fyy=D-—R (515195 4;‘ ay) ) (30)
Fyy = mg — R (b —+ byy)) g
The numerical values of the coefficients (a;, 0y, a5, by) are given in
Table 3.

Turning to the body itself and using axes (B X, Z) which are
consistent with the axes generally used in developing the stability
of an aeroplane, the velocity of the body relative to its own axes
has the components. '

o dx

2 == V I

! dl
dy

w= Vi — 5

‘ di

and hence the aerodynamic forces and moments are of the form

dx / Ay ao

7 I s e 17 i H T 3 - 7 o o

X = X@ -+ it >§*1z e ‘\“ 6 — di ) }Xw -+ di :\u(

Now Xy=—D

and, assuming a symmetrical shape for the body, it can easily be
seen that (X, X, Z,, Zy, My, M) ave all zero. Hence the forces and
pitching moment affecting the longitudinal motion of the body
are

. Lo dx ‘

X=-D+ X, |

7 _(vo_ ayy . al .

z2=(V0—~2)Z, + 5, Z, oo . (31
i dy a6 |

W= VH — -V e N |

M= V0= )Mt g Mo

and, provided that the body has weathercock stability, the five
derivatives which occur in these expressions are all negative.

The horizontal and vertical components of the aerodynamic
force are respectively

Fo=X-+ 027
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and
Fepo=0X—-27

o dy a6
w_<91>—<‘v@—ﬂ>zw—(ﬁzq

Hence the corresponding components of the resultant force on the
body are

Foe=—rrZy — 72y — 0D+ VZy) — R0y % + byy)

and the equations of motion of the body are

d‘aag

Vif (53

where B is the moment of inertia of the body about its lateral axis.

In order to obtain a non-dimensional system similar to that used
in developing the stability of an aeroplane, let [ be some typical
length of the system and let

w
o=
i Q L'f'j
122 Z{

= o T
‘v

where t is now the non-dimensional time parameter. The length /
may be chosen as some tvpical length either of the body or of the
wire, but the second alternative appears to be the more convenient
and the unit of time will therefore be chosen according to the previous
definition {24). Thus

t [m
S s . .. .. .. .. 34
T AR (54
and then
n_m R
o= VN m |
(35)

. 73 o f
uzmgl /fy_i\
- R’\R/ﬁ
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The non-dimensional coefficients for the aerodynamic forces and
moments are now taken to be

XX [fm
YT T RVT T mANR ;
P e [
T TRV T T mANR ; (36)
P 7y 22 |
T BV mV |
o omM, V\I m
ST TBIVT T 4B R
‘i
|

o mM, VI \/m
Ma = T BEgV T —

Writing also
=10

the equations of motion (33) become

d2x dx )
ﬁ+x11d_r+alx+agy20 g
d2 dy ac !
SE R b byx by —a o — e — o) £ =0, (37)
2 de d |
d?g f Ma - + umg & — g Zij%/ =0 /f

and then, assuming (x, y, {) to be proportional to an exponential

factor ¢/7, the fundamental equation for determining the stability
of the motion is

2 xy Aty ay 0 =0 (38)
| by A2z, A by -z}—,u IzD)’
| 0 — Wiy A A% A my Z*‘-,Lt%’b ;

On expanding this determinant it appears that z, enters into the
equation only in the form (z — z,), and in general z, is only a small
fraction of z. In the subsequent work z, will be neglected and then,
after a small adjustment, the fundamental stability equation becomes

[ A2 x, A+ ay 0 :
j by P2y A by Ly — kD |
| 0 - f A2y A pam }

=0 (39)
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This is an equation of the sixth degree and in general there are three
oscillations of the system, the pendulum and bowing oscillations
of the wire system and a pitching oscillation of the body. The
constant term of the equation is

My (@1 by — a3 by)

which is positive if the body has statical stability. If this condition
is satisfied, instability of the system must arise first in the form of an
increasing oscillation.

5. The stability equation.—If m, is zero, as would occur with a
spherical body, or if 2, is equal to &y, the general stability equation
(89) splits up into the factors

Atmg A+ umy =0
and

R N ] -; =

Ay
by AAzy A by
The first factor represents a stable or neutral motion. The second
factor is

At (g + 2y) A (g 4 by - w2y A2
4 (ay 2y F by xy) A+ (a3 by — ay by) = . Lo (40)
All the coefficients are positive and the discriminant of the equation is
A = (xy + 2y) (ag by + %y 2y) (@) 2y - by )
— (g 2y + by )% — (%, + 2y)% (@1 by — ay by)
== Xy Ay (g 2) (@1 2w A bs %)+ (b — aq)? 2y 2y
-y by (5 + 2)?
which is essentially positive. Hence the whole motion is stable,

and it follows that instability of the general equation (39) can arise
only owing to the cross-connecting terms u i, (2, — &p).

Consider next the purely hypothetical condition that the cross-
connecting term a, by are zero. The general stability equation again
splits up into factors

)&2“:‘xu Z*%(llzo
and
A2z, A by 2y — kp = 0
- A2y A4 umg
The first factor represents a stable motion, since x, and @, are positive,
and the second factor is

pr + (2 b mg) A E (by 4+ oy 2y ) A2
4 (bymy + pmg kp) A+ by pmy, =0 .. 4D
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whose coefficients are all positive if the body has statical stability.
Neglecting the small term z, m, in the coefficient of 2, the dis-
criminant of this equation is
A= (2, -+ my) (by — smy) (by ey -+ p oy, Ry)
— (by g - pong kp)? — (g )% 0y pong
== (1o By — by 2) Qi (2 — Ry 1) — Dy iy}
and instability occurs if pm, lies within the range defined by the
inequality
z 1 Mg "
Sw M M > ; Q@
N by Ly = Ry - iy

(42)

In general kj is a small fraction of z,, and z, is less than m,; the
upper limit of this inequality is of the order 5 to 10, and the lower
limit is slightly less than unity. The value of b, increases rapidly
as the length of the wire is reduced, and in practical applications
probably lies between 10 and 30. Finally, the value of u m, depends
on the statical stability of the body, but is usually high and of the
order of 100. From this discussion it would appear that the value
of umy/b, will hardly ever lie below the lower limit of the inequality
(42), but that there is a real danger that it may fail to excede the
upper limit. Effectively therefore the condition for stability is
that

wmky > byzg .. .. . .. . o (43
and the factors which tend towards instability may be specified
as follows :—

(1) insufficient statical stability, u m,, small ;

(2) short body, which increases z, for a given value of u .
(8) short wire, which increases b, ;

(4) low drag, &y, small.

Any instability which occurs in practice can be cured by suitable
modifications to any or all of these factors.

The stability criterion (43) is based on the impossible condition
that a,b; is zero, but an examination of some typical numerical
examples has shown that it is a fairly accurate approximation to the
true condition. To examine the validity of the condition more
closely it is necessary to revert to the general stability equation (39).
On expansion this equation is

(22 g 2) {24 - (x4 2y) 23 = (S 4 a0y 2y) 22
T (ayzy by xy) A+ P
g {28+ g+ kp) B4 (S - xg k) A2
+ {ay ky - by xy) A+ P} = 0
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where, in accordance with the previous definitions (23)

S=a, + b
P=a b, — a0,
Neglecting now «, 2, and x, &, in comparison with S, the general
stability equation becomes
28 (g 2y mg) 25 {S 4y (x, - 2y) o my ) A
+ {(ay 2y - byxy) + my S 4 gy (%, + Ep) b A3
AP A my (ay 2, + byx) + pmg S} A2
+ {my P+ wmg (ayky + by )} A um, P=0 (44

Any attempt to obtain general expressions for the discriminants
of this equation ends in hopeless complexity, but another method
of attack is available for determining the conditions under which
an undamped oscillation occurs. 1f such an oscillation occurs, two
roots of the sextic equation (44) must be of the form

A= 4+1\/¢

where & is essentially positive, and, on separating the real and
imaginary parts of the equation, we then require simultaneously

& — {S+mQ(xu+Zw> + ‘M‘WLW} &
AP 4y (ag 2y -+ by xy) + pomy, S}¢

P ) L @)

and

(a2 1) 8 — { (@ 2+ by ) + 11, S+ oo (5 = )} &
4 Amg P+ oy (agkp 4 byx) } =0 .. . (46)

Equation (45) determines the periods of three oscillations and on
substituting the appropriate value of & in equation {46) the necessary
relationship between the various coefficients is derived.

If the damping derivatives are ignored, the equation (45) becomes
(6 — umy) (8 —=SE+P)=0

and the three roots are u m,, A and B, where the last two values are
given by the formule (27). A second approximation to the equation
(45), including now the damping derivatives, leads to corrections
to these three roots which are negligibly small when p #1, is reasonably
large.
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The longest oscillation is usually represented by A and on sub-
stituting this value for & in equation (46) the coefficient of m, vanishes
and we obtain

(xu+zw)A2N{(alzw+b2x) W(xu‘WLkD)}A
+ g (aykp + by %) :O

or
g (g ag) A — (@ 2y + by xy)
AT (wy HRp) A — (a3 kp + byxy)
Now let
N RS
| )
Fhy — ay \* by — @ |
q:«/('ﬁ’z‘*) tab = Py =B b,
and note that

xu:2kD

Then, with these substitutions, the condition for zero damping of the
pendulum (A) oscillation becomes

=l TR @

This value of u 1t is of the order of A and is much smaller than usually
occurs in practice.

A similar analysis for the shorter bowing (B) oscillation leads to the
condition

e f.).(f_“',:;k”) Q
B *IT(?TZQ)/’%D .. .. .. .. (49

and this represents a more critical condition, since B is larger than A
and p is iarger than ¢. This condition is in fact a more accurate
expression of the approximate condition (43) and reduces to the same
form if a, 0, is zero, since ¢ is then zero and B is equal to b,. Thus the
danger of mstabihfy arises in the bowing oscillation, v»hmh is the
shorter of the two wire oscillations.

Finally susbtituting u m,, for & in equation (46) the condition that
the pitching oscillation of the body shall have zero damping is

(umy)? (2 — k- my) — pmy {ag (2 — Ry -+ my) + bymy }
+m, P=0 . .o (30)
and the insertion of typical numerical values for the coefficients

shows that instability will not arise unless u ., is unusually small or
unless the wire is unduly short.
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In order to illustrate these results numerically, calculations
have been made using the following values of the aerodynamic
coefficients :—

Ep = 0-05, z, = 0-50, m, = 1-50.

The appropriate wire coefficients have been taken from Table 38
(¢ = 0), and Table 1 gives the critical values of um,, derived from the
equations (48), (49) and (50). Since the approximations on which
these formulae were derived cease to be valid when wm,, is very small,
too much importance must not be placed on the critical value of um
for the pendulum oscillation or on the lower critical value for the
pitching oscillation. It does appear, however, that there is an
unstable region of mm,, and that when this region is entered by
reducing the value of wm,, instability arises first in the bowing
oscillation. As a check on these approximate estimates, the complete
series of discriminants has been examined for the one condition

<~C =1-18 > and this accurate analysis showed a range of instability
from 15 to 122, which is reasonably consistent with the rough estimates

contained in Table 1 if the range of instability is assumed to extend
from the higher value of the pitching oscillation to the value of the

TABLE 1.

Critical values of pin.

Pendulum. Bowing. Pitching Oscillation.

i

<

0-52 25 935 2-1and 82
0-82 2-2 274 1-3and 27
1-18 2.2 1138 1-0 13
1-60 2-2 37 0-8 8

bowing oscillation. The upper limit is the more important and
corresponds to the condition (49). The criterion of stability may
therefore be taken to be

' Zy — kp) )

SR I o . N (3

= BT B S hy ) ol

where B, p and ¢ are wire coefficients denfied by the equations (47),
and as a rough approximation this criterion may be taken in the

simpler form

amgs A Y
i kD

{733) B
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PART IIL

Lateral Siabnlity of the Body.

6. Egquations of motion.—With the assumptions of the preceding
analysis the lateral displacement of the system is simply a rotation
¢ about the horizontal fore-and-aft axis through the point of attach-
ment A. The lateral displacement of the bodjy is therefore & ¢ and
the restoring sideforce due to the constraint of the wire is T e. If
the body also yaws through an angle y, the velocity of the body
referred to its own axes will have the components

=V
de

vﬂbdi Vg

and the aerodynamic sideforce and yawing moment will be

v E'dngep>Y z““”‘y ’

dt 53,

L de dy ( )
N o \ o N
N = gb” ‘wf\’\vf”x

/
The resultant restoring sideforce at right angles to the original
direction of motion is then
Te—Y — Xy
or

R.C{sw()?fjAV WY ;~"~i—1rz)D

and hence the eqmtmns of motion governing the lateral disturbanee
are

d2e N de - v dw Y
mb TE by, T FRee— Y, il HD4+VY, )?Pif()g 54
(5
&2y  de dy L
“«’y J -1 VN ==
Cap =N g Negy #VNop =0 !

where C is the moment of inertia of the body about its normal axis.

Passing to the non-dimensional system, defined by the previous
equations (%4) and (35), the appropriate expressions for the aero-
dynamic coefficients are

, RS AT
5 PoV W R
5 - ‘{vr’ . y22 \Yr
PE TRV T Ty

m N, VN, - (58)
e YA Anlron 1

MmN, N, ’\/‘m
" CiogV  CANR
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In general, for a body with statical stability, v, and », are positive,
and y, and #, are negative. Also if the body is symmetrical about
its longitudinal axis, these lateral derivatives can be replaced by
corrseponding longitudinal derivatives according to equations

f:ZWJ Vr:”""’z\ o p iy
‘4 - <l (56)
Hy == — Wy, Wy == Ny )
Transforming to the non-dimensional system and writing
, b
&=y
the equations of motion (54) become
azé de ¢ dy . 7
a2 Yy dz + p £ + Y dr ® (yy—Rp)yp= G\ -
a2y dy ‘ de [
T T e T Y Ty = 0 j

and if ¢ and ¢ are proportional to an exponential factor e*Ts the
stability equation for the lateral motion becomes

By hby vk (o —hy) |
", A PRy A— un, =0 - 08
wlere
¢
y=75 0 - .. .. .. .. .. (859)

and may be derived {from Table 3. Now v, may be omitted from
this stability equation for the same reason that z, was omitted from
the longitudinal equation, and then after a slight adjustment the
stability equation becomes

Z2+yv‘l+7" yv—'kD
— Ay A A2y A — uny

|:o L (8)

or in terms of the corresponding longitudinal derivatives

P2, Aty 2o — Ry
oy A AR —fmg AR g,

=0 .. (6]

This stability equation is identical in form with the previous
equation (41), the only difference being that the wire coefficient
is y instead of b,. The previous approximate method of treatment
is however no longer possible since y is much smaller than b,, and the
application of the condition (42) would lead to values of w #t, so small
that the term z, m, in the coefficient of 42 is no longer negligible.
On expansion the equation (61) becomes

I (2 mg) B (y g 2 my) ¥R
+ (ymq 4 pong kp) A 4y ey, = 0
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and the discriminant of this equation is

A= (zy -k my) (y 4 pmg + 24 mig) (v mg + wmg kp)
— (ymg - pigkp)? —yumg (2 +m)t .. (62)

This expression is of the form
A=Ay (umy)? — By (umy) -+ C
and will be negative for a positive range of values of um,, if
B2—4A,C >0

By deriving these coefficients from the equation (62) this inequality
can be reduced to the form

2 (o P ~
v (g — Rp)? — 2y kya, my (2, -+ 2my — Rp)
R 22 mE > 0

and is satisfied if p lies outside the range defined by the two critical
values

by g My VL e

This inequality determines a range of length of wire within which
the lateral motion is stable for all values of u m,., whilst outside these
limits there is always a range of values of u m,, for which the motion
becomes unstable.

Assuming the typical values
kp = 0-05, 2, = 0-50, m, = 1-50,

the critical values of y or ¢/b are 0-005 and 1-27, and hence instability
of the lateral oscillation can arise only if b/c is less than 0-79 or greater
than 200. The upper limit is absurdly high and effectively insta-
bility can arise only if b/c is unduly small.

When instability does arise, the dangerous range of values of
w m, can be derived from equation (62), and Table 2 gives the
appropriate numerical values. Even when the wire is short
instability arises only if the statical stability is rather poor, and
instability with a reasonable degree of statical stability arises only
when b/c is of the order of 0-1. When wm, is reasonably large the
critical length of wire at which lateral instability does arise may be
deduced from the approximate condition (42) as

b e

¢ 1y Ry
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TABLE 2.

Critical values of .

ble ! Lateral oscillations.

0-75

0-25
010 | 1

TABLE 3.

Wire coefficients.

S = a4y + by
Pe=a b, —a,b
4 b A - @, 78 a, | b T
. C : 2 2 ! |
% 1 = ! |
0 050 0-128 | 0-521 8-06  24-1 | 24-1 | 983 1064 2128
0-75 0295 | 0-822  5-45 | 10-8  10-8  30-1 | 356 474
100 0-343 | 1-175 | 4-13 810 | 6-101 13.2  17-3 173
1-25 1 0-888 | 1-602 3-27 3-94 3-94 710 10-47  &-37
L 1esD 0 1-832 4 2-129 0 2-8 % 277 2277 | 4-35  7-21 481
1-75 0 1-984 | 2-791 0 2-32 0 206 2:06 293 545 311
[ 200 2:762 | 3627 2:25 160 160 210  4-35 2:18
“0-50 | 0-174  0-534 130 317 32:¢ 95-3 1085 2176
L 07 . 0851 7-68 128 | 133 . 29-1  36-8 53-8
S 48 1-227 © 5-40 0 6-82 . 7-20 1260 180 189
L1 | 1-686  4-17 0 4-22  4-53  6-75 | 10-92 80l
C 1.5 12255 0 3:46 . 2:86  3-13 . 4-10  7-36  5-24
Pl . 2:974 0 2:97 . 2068 230 273 570 337
L2 | 3-883 2-63  1-36  1:77  1-95 4-58 2:37
PR i ! L —
10° 0-50 | 0-222 0 0-352 196  39-2 | 40-6  93-0 1126 2313
L 075 0-444 ) 00887 0.2 147 156 27-8 380 335
1-00 0-759  1-289  6-78 | 7-46 | 8-22 11-95 187 197
| 1-25  1-185 | 1-783 508 4-44 | 5.06 6-32  11-40 9-64
D150 1-749 1 2400 4-08  2-91  3-44  3-81 789 5-54
| 1-75. 2-486 | 3-180 | 3-44  2-04  2:50 2:53 597 360
L2 4-170  3.01, 14-9 191 1-79 0 4-80 | 2-54

00| 3-445
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WIRE OSCILLATIONS.
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