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SUMMARY
A numerical method has been developed to calculate the pressure distribution on
the surface of steady and oscillating aerofoils in incompressible inviscid flow.
In this method singularities are placed on the mean camber line of the aercfoil
and the boundary condition of tangency of flow is satisfied on the surface of
the aerofoil. Problems considered include steady single aerofoils with and
without control surfaces, a cascade of aerofoils, aerofoils oscillating in
pitch, aerofoils oscillating in heave, aerofoils in harmonic travelling gusts
and control surface oscillations. Comparison with analytic solutions, and
other numerical methods, where available, are good. The main advantages of

this method are the relatively fast computing times and the fact that the

method converges satisfactorily in the limit of zero aerofeil thickness.
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(Queen Mary College, London)



NOTATION

Xy Z coordinates measured along and normal to the chord
line of the aerofoil

o chord length

X, 2 nondimensional coordinates relative to chord

A element length of the mean camberline

Zo(x) steady aerofoil contour

u, free stream velocity

U, w perturbation velocity components along x and z axes

a aerofoil incidence

$ control surface deflection

o density

T circulation

o} strength of the distributed source

Y strength of the distributed vorticity

Q strength of the point source

K strength of the point vortex

W frequency of oscillation

v(:wc/um) frequency parameter

6 angle of pitch
h ordinate of the heaving motion
cp pressure coefficient
CL - Lift
$pU2c
C _ Moment
Moo= LLCULSUAS
1pU2c?
C - Hinge Moment

H olzc?



VARSI
Cji’

Jiz i
E., H,

J N
Ci, Si
Subscripts
S
0
W
u
'3

J1 } influence coefficients

tabulated functions

steady state
unsteady condition
wake

upper surface
Tower surface

gust



1. INTRODUCTION

There are a number of well established 'exact' methods for
calculating the inviscid incompressible flow around steady aerofoil
sections. Some of these methods are analytic while others are
numeric. Analytical methods are based on the conformal transformation
technique and are restricted primarily to special aerofoil profiles.
Numerical methods are based on singularity distributions and are
generally applicable to both the single and multiple aerofoil problems.

A surface singularity method is one in which singularities are
distributed over the aerofoil surface and the strength of the distribution
is then adjusted to satisfy the boundary condition of no flow normal to
the surface. The method which uses the source as the fundamental
singularity is generally referred to as the A.M.0. Smith method(]). The
method which uses vorticity as the singularity was developed in Germany
by Praeger(z), Martensen(3), Jacob and Riege]s(4). A further vortex
singularity method has been developed more recently by Maskew(S).

6) the

In the version of the A.M.0. Smith method used at Q.M.C.(
aerofoil contour is represented by a series of straight line elements,
on each of which is placed a uniform source distribution, the strength
of which varies from element to element, and a uniform vorticity
distribution which is the same for all elements. To satisfy the
boundary condition of zero flow through the aerofoil contour a control
point is selected at the mid-point of each element and the normal
component of the total velocity (due to the free stream and source
and vorticity distributions) at each control point is set to zero.

The Kutta condition is satisfied by equating the downstream tangential

velocities at the mid-points of the straight Tine elements adjacent to

the trailing edge on the upper and Tower surfaces. A set of linear
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simultaneous equations results from which the source and vorticity
distribution can be calculated.

Experience has shown that the A.M.0. Smith method gives good
results except for

i) thin aerofoils (i.e. less than 5% t/c ratio)
ii) aerofoils with cusped trailing edges (e.g. all Joukowski aerofoils)
iii) highly cambered aerofoils at Jarge CL (refs. 7, 8)

In the numerical solution of the surface vortex distribution
method, due to Jacob and Riege]s(4), isolated yprtices are placed at
points on the aerofoil surface. The boundary condition, that the
aerofoil profile be a streamline of the flow, is achieved by setting
the total tangential velocity on the inside of the contour to zero at
pivotal points located at the isolated vortex positions. The total
velocity is the sum of the velocities induced by the surfaces vortices,
plus the free stream. This inner surface tangential boundary condition,
used in conjunction with a vorticity distribution, automatically satisfies
the condition of zero flow through the surface for a closed body. The
Kutta condition is achieved by selecting the trailing edge as one of the
pivotal points and setting the vortex strength there to zero.

Maskew(S) surveyed several surface singularity models for practical
aerofoil sections and concluded that the model with a Tinear variation of
continuous vorticity along each element is the most accurate. The Kutta
condition in this model is satisfied exactly at the trailing edge by
setting the resultant vorticity there to zero. The method offers high
accuracy in the prediction of potential flow pressure distributions over
a greater range of cambers and 1ift coefficients than other surface
singularity methods. Again the method has difficulty in handling an

aerofoil with a cusped trailing edge.
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One feature which is common to all surface singularity methods
is the division of the aerofoil surface into a large number of elements
in order to achieve the desired numerical accuracy. The number depends
on the shape of the aerofoil section under consideration; for a
conventional symmetrical aerofoil section of moderate thickness the
number is of the order of 50 but for highly cambered aerofoils or for
aerofoils with control surfaces the number needs to be as high as 200.
To extend these methods directly to three dimensional problems implies
extremely large numbers of elements which will lead to Tong computer times.
A singularity method is presented here for two dimensional aerofoils,
both steady and oscillating, in an attempt to improve the efficiency of the
existing surface singularity methods by reducing computer running time
while maintaining the numerical accuracy over a wide range of practical
problems, including the 1imiting case of zero thickness. The method
essentially consists of distributing singularities, both source and
vorticity, on the mean camber line of the aerofoil; the boundary condition
of zero normal velocity is satisfied on the surface of the aerofoil.
For the steady problem the present method involves the division
of the mean camber line of an aerofoil into N-straight line elements,
the numbering starts from the trailing edge (Fig. 1). A small gap is
left between the end of the Nth element and the leading edge of the
aerofoil., On each element is placed a uniform source distribution
which varies from element to element and a vorticity distribution,
the strength of which varies linearly across each element. Two point
sources are placed on the ends of the Nth element (closest element to
the leading edge) and a point vortex on the mid-point of the Nth element.
Thus, for N elements on the camber line, there are N unknown distributed
source strengths, (N+1) unknown distributed vorticity strengths, two

unknown point source strengths and one unknown point vortex strength, a
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total of (2N+4) unknowns. These (2N+4) unknowns are determined by
satisfying the boundary condition of tangency of flow at (2N+3) points
on the aerofoil surface together with the appropriate Kutta condition
at the trailing edge. Corresponding to the mid point of each element

on the camber line two points can be defined on the upper and lower
aerofoil surfaces from the intersection of normals drawn from the camber
line with the aerofoil profile (see Fig. 1). This identifies 2N points
on the aerofoil surface where the tangency boundary conditions are to
be satisfied. Again as shown in Fig. 1 the two mid~points on the
aerofoil profile in the 'gap' between the mean camber line and the
leading edge, plus the leading edge point itself,give the other three
points when the tangency boundary conditions are satisfied. The Kutta
condition for the steady aerofoil problem is satisfied by making the
strength of the vorticity at the trailing edge zero.

The above singularity model has been applied to 4% and 9.3%
thick symmetrical Joukowski aerofoils at 0° and 10° incidences and to
a 17.8% cambered Karman-Trefftz aerofoil at 10° incidence. The results
have been compared with the exact analytic solution and the agreement
is found to be excellent. The method has been applied to NACA 0012 and
NLR aerofoils at incidences of 0° and 10° and to a Garabadian-Korn
aerofoil at 0° and 5° incidences. The results of the present numerical
method have been compared with the standard AMO Smith solution.
Numerical results have also been obtained for a 4% thick symmetrical
Joukowski aerofoil and 1541 section fitted with a control surface of
30% and 20% chord respectively.
The present method has also been applied to a cascade of aerofoils.

A cascade of aerofoils is defined as a set of identical aerofoils equally
spaced and identically oriented along an axis. Since the aerofoils are
all identical, the flow and thus the source and vorticity distributions

are identical. The influence coefficients are now due to a row of
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of sources and vortices equally spaced along the axis. The cascade
programme is capable of handling any problem in which the flow pattern
repeats indefinitely along an axis. Numerical results have been
obtained for NACA 0012 aerofoils in a cascade for 0° and 30° stagger
angles.

The present numerical technique is extended to a two dimensional
aerofoil performing harmonic variations of small amplitudes of perturbation.
In the extension of the model incremental oscillatory source and vorticity
distributions are situated on elements distributed over the mean steady
camberline of the aerofoil super imposed on the steady source and
vorticity distributions, incremental oscillatory point sources are

placed at the ends of the Nth

element and an incremental oscillatory point
vortex is placed at the mid-point of the Nth element superimposed on the
steady point sources and point vortex. An oscillatory vorticity
distribution, representing the shed vorticity due to the rate of change

of circulation, is placed on the mean streamline from the trailing edge.

The unsteady boundary condition is satisfied on the mean steady profile.

It is also assumed that the shed trailing vortex sheet is carried of

with the flow at the freestream velocity. The Kutta condition is specified
that the vorticity is continuous at the trailing edge.

The above mathematical model has been applied to the particular
symmetrical aerofoil studied by de Vooren and de Vel(g) undergoing pitching
oscillations. The numerical results for the in-phase and out-of-phase
pressure distributions agree well with the results from the analytic
solution.

Numerical results have been obtained for an 8.4% thick symmetrical
Von Mises aerofoil and a 4% thick symmetrical Joukowski aerofoil undergoing
heaving oscillations about 0° mean incidence. Comparison with the

numerical solutions using an AMO Smith approach(]o) is found to be good
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for the Von Mises aerofoil. The results of the Joukowski aerofoil
indicate that the present method converges to the Tinearised theory
solution for vanishingly small thickness. The method has also been
applied to an aerofoil in a sinusoidal vertical gust field.

The aerodynamic characteristics induced by a contro] surface
oscillating about its hinge Tine have been calculated for a 4% thick
symmetrical Joukowski aerofoil and a 13% thick symmetrical Karman-Trefftz
aerofoil both fitted with a control surface of 30% chord. A comparison
with the numerical solution of reference 10 shows reasonably good
agreement for the Karman-Trefftz aerofoil. The results of the thin
Joukowski aerofoil show the tendency of the present method to converge

satisfactorily to the linearised theory for small thickness.

2. STEADY TWO DIMENSIONAL AEROFOIL

As shown in Fig. 2 cartesian coordinates Oxz are taken with the
origin at the nose. The aerofoil chord is taken to be unity. The
freestream at infinity is U_, inclined at an angle of incidence o to the
Ox~axes.

The equation of the steady aerofoil] profile relative to the axis

system is denoted by
z. = g (x) (1)

If GS and WS denote the perturbation velocity components on the aerofoil
surface normalised with respect to UR the boundary condition of tangency
of flow can be written

sina +w, = ¢ /(x) (cosa + U) (2)

where the dash denotes differentiation with respect to x.
The mean camberline of the aerofoil is divided into N straight
line elements as shown in Fig. 1; numbering of the elements starts at

the trailing edge and proceeds towards the Jeading edge. There is a
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small gap between the end of the Nth

element and the aerofoil leading
edge. A uniform source distribution of strength Osi and a vorticity
distribution of strength varying Tinearly from Ys . to Yg. . across the
element is placed on the ith element. Two point1$ource;+lf strengths

th element and a point vortex

QS R Qs are placed at the ends of the N
1 2
th

of strength KS is placed at the mid-point of the N element, Taking

N
Si’ Si, S,
normalised perturbation velocities at the j

, Qs s Rs all normalised with respect to c and U_, the
2

th collocation points on the

aerofoil surface due to the singularities can be expressed in the form

_ N _ N+1 _ 2 . .
u = I A,,o + I C..y. + I R..Q +E.XK
Sj 3=1 91 54 j=1 I Si j=1 91 S J s
(3)
- N _ N+1 _ 2 _
w = L B.,o. + I D,,v. + I S,.Q +H.K
Si d=1 91 35 4= IV Sy 4o 3T Sy J s

i 9

Ajis Bygs G50 Dygs Rygs Syy

coefficients. These coefficients are given in the Appendix. The

s Ej, Hj are the appropriate influence

Kutta condition for the steady two dimensional flow is satisfied by

making the strength of the vorticity at the trailing edge (i.e. ?s ) zero.
1

The solution for the unknown variables BS., Qs.’ Qs , Gs , and Rs
is obtained by satisfying the boundary condition ;qn. }2) at the collocation
points on the aerofoil surface as indicated in Fig. 1, along with the
Kutte condition of zero vorticity at the trailing edge. From the solution,

T W _can be reobtained using eqn. (3); the total velocity is given by

q, *=u W P, (4)

c, =1-g %, (5)

Total force and moment coefficients are obtained by numerical integration

of the pressure coefficients.
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2.1 Steady Cascade

The method described for the single aerofoil can be generalised
to a cascade of identical aerofoils all with the same flow characteristics.
Since each aerofoil of a cascade has the same singularity distribution
the basic program for the single aerofoil only needs modification in the
expression for the influence coefficients; the velocities at point in the

th

flow due to say o . the source strength on the i~ element can be obtained

by a simple summat}on of the appropriate influence coefficients for the
contribution from each aerofoil in the cascade. In the results presented
later it is assumed that the effective cascade characteristics about a
typical reference aerofoil can be found by assuming 30 aerofoils above

and 30 aerofoils below the reference aerofoil.

3. AEROFOILS IN SMALL AMPLITUDE SIMPLE HARMONIC MOTION

3.1 Pitching Oscillations

To extend the method described for the steady problem in
Section 2 to oscillatory flow problems consider the simple harmonic
pitching motion of an aerofoil,which can be superimposed on the steady
profile, by

=06 e (6)

where w is the frequency and % is the amplitude of oscillation. The
point (x,z) on the aerofoil at any instant t, defined in terms of fixed
axes (Fig. 3) may be expressed as

_ int
X =X, + (;S(xs)e0 e
- (7)
_ _ 1w

z = ;s(xs) X6, ©

where eo is assumed to be small, and x_, Ts refer to a point on the steady

s
mean profile.
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The boundary condition for the oscillating aerofoil can be

written as
Usino +w - 3z/5t 9z/ X
z = (&) = S (8)
U _cosa + u - ox/3t 30X’ t=const 3x7'axS i

where u and w are the total perturbation velocities at the surface of
the aerofoil relative to fixed axes and 3z/5t and 9x/3t are the surface
velocities in the z and x directions respectively. It is assumed that
the variables will be composed of an oscillatory solution superimposed
on the basic steady solution; the oscillatory solution is assumed to
be proportional to eiwt. Thus,

t

[=
1]

fw
u  +u e

. (9)
w o +w_ e'wt

W ) 0

From equations (8) and (9) the following relations are obtained for the

upper surface

sina +w_ = E;(i)(COSu +u) (10)

w

W= U

0" U E;(x) = - 8,{(cosa + GS) + (sina + QS)Z;(X)

. (1)
+iv(x +z_(X)g(x)}
s s
where ﬁs, Qs’ ﬁo, ﬁo, are normalised perturbation velocities and Xx(= %),

z (=-%) are nondimensional coordinates, and v is the nondirensional

frequency parameter (%E).

o]

According to Kelvin's circulation theorem the total circulation
around a circuit in irrotational flow must be zero. Thus any change in
circulation around the aerofoil must show up as shed vorticity in the wake.
When the aerofoil oscillates the unsteady component of the circulation
it

around the aerofoil Foe changes with time. It is assumed that this

shed vorticity is convected along the steady trailing streamline at the
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free stream velocity. The vorticity in the wake can be expressed in
terms of the unsteady component of the aerofoil circulation

g () = - @ ol Tl (12)

0 o
where X1 refers to the trailing edge; for further details see
reference (10).

In order to find a unique value of the aerofoil circulation, T,
the Kutta condition at the trailing edge has to be applied. The Kutta
condition for the present theory simply states that the vorticity is
continuous at the trailing edge. It follows from the equation (12)
that the vorticity at the trailing edge

1(»1"0
AN e (13)

o]

The numerical solution is outlined later in Section 3.5,

3.2 Heaving Oscillation

The formulation of the pitching oscillation problem can be easily
adopted for the heaving oscillation problem by modifying the surface
boundary condition.

The simple harmonic heaving motion of the aerofoil to be

superimposed on the steady profile is denoted by
h=h elwt (14)

Following the analysis of reference (10) the boundary condition
o - ] -
Sino + W, = ;S(x)(COSa + us) (15)
and

Wo = U, ;S(x) = v h0 (16)
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3.3 Sinusoidal Gust Response

The boundary condition of the problem of an aerofoil passing
through a stationary vertical gust pattern having a sinusoidal
distribution of vertical velocity has been derived in reference (10).

The boundary condition of this unsteady problem give the following

relations
- - ' -
sina + wg = gs(x)(COSa + us) (17)
== ) = - w a-iWX
W T U, ;S(X) Wg e (18)

where Wg is the normalised amplitude of the vertical gust velccity and

Vv = E%E , where ) is the spatial wavelength of the sinusoidal ¢ust.

3.4 Control Surface Oscillation

When a control surface oscillates about its hinge the unsteady
boundary condition formulated in equation (11) is applied on tke part
of the surface defining the control surface. On the remaining stationary
surface ahead of the oscillating control surface the modified unsteady

boundary condition has been derived in reference (10) and is given by

wo - U, g;(x) =0 (19)

3.5 Numerical Solution

The numerical procedure is similar to the one used in solving
the steady problem, The steady mean camberline of the aerofoil is
divided into N-straight line elements as shown in Fig.4; numbering of

the elements starts at the trailing edge and proceeds towards the leading

th

edge. There is a small gap between the end of the N™ element and the

aerofoil leading edge. A uniform source distribution of strength

(9 +9, e1Uty 55 placed on the it element together with a vorticity
i i .
distribution of strength varying Tinearly from (y, + y, e‘“t) to
i i

(ys Y, e1wt) across the element. Two point sources of strength
i+l T+l
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N Qo th

(Q
1 1

element and a point vortex of strength (KS + KO e
th

e1wt), (Q52 + Q02 e1wt) are placed at the ends of the N
1wt)

S
is placed at the

mid-point of the N*' element. Because the wake extends to infinity
downstream the vorticity in the wake cannot be represented by a finite
number of elements. Following the procedure of reference (10) it

is assumed that only the first chord length of the wake behind the
trailing edge need be represented by finite elements. The effect

of the remainder of the wake is calculated analytically by making the
assumption that only downwash is induced at the aerofoil by this far wake.
For one chord behind the aerofoil a number (M) of straight 1line elements
are taken similar to those on aerofoil camberline and the uniform vortex

strength of each of these wake elements is taken to be the vorticity

strength at the centre of each element, as given by equation (12).

S 0. . -
1 1 i i 2
respect to ¢ and U_, the normalised perturbation velocities due to the

Taking o_ 4, o_ Yo.5 Yo.0 Qsl, QS , Q°1’ Qoz’ Ks’ Ko all normalised with
singularities will have a steady and an oscillatory component, The
steady components of the velocities will be given by equation (4), while

the oscillatory components can be expressed as

- N N+1 _ 2 _
u = % A..o + ¥ C..y. + ¢ R..Q +E.K
(20)
) N i N+1 i 2 ] )
w = L B.,.o + I D..y + I S.. + H, K
SV T L B T e T
where GO R Wo are the complex velocities at the centre point of jth element
; .
and Aji’ Bji’ Cji’ Dji’ Rji’ Sji’ Ej’ Hj are the appropriate influence

coefficients, (see Appendix). The contribution to the velocity components
due to the first chord length of the wake behind the trailing edge can be

expressed in the form



o,

(21)

The remainder of the wake aft of one chord behind the trailing edge
is retained as a continuous distribution of vorticity and it is assumed
to 3ie in the free stream direction; furthermore it is assumed that the
velocity field due to this far wake is a downwash field only. The
downwash field due to this far wake has been derived in reference (10)
and is given as

- 1vFO -iv(ij-iT) . o

wOj =- o {Cilv(T - (x5-%7))]

(22)

HSTV(T - (X5-%7))] - 1)

where
Ci(g) = - r 021
g€
Si(g) = - fm.ﬁ%ﬂl dy + % ,
s

are standard tabulated functions.

The steady state solution is obtained by satisfying the steady
state boundary condition at the collocation points along with the Kutta
condition, as applied in the steady state. The procedure is that
described in Section 2.

The unsteady problem is solved by satisfying the unsteady boundary
condition, eqns.(11),or(16),0r(18),0r(19), at the same collocation point
along with the Kutta condition, eqn. (13). The solution gives the unknown
complex variables 50 . ?0., Q

i i
components are obtained using eqns. (20, 21 and 22). The calculation of

, § and K_ from which the unsteady velocity
0, o, 0

the unsteady pressure coefficient cpo follows from the unsteady Bernoulli

equation,
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) _ _ ‘ _ Ziw¢o
Cpy = = 2 U (cosa + Ug) = 2w (sina + W ) - —= (23)

[oe]

The velocity potential ¢0 is calculated by following the procedure of
reference (10). Total force and mcment coefficients are obtained by
nurerical integration of the pressure coefficient.

A prograrme hés been developed in FORTRAN IV for the steady
problem which requires a core size of less than 20 K on the ICL 1904S,
including system and programme for a problem involving 50 unknowns.

For a 'clean' aerofoil of moderate thickness it has been found that

gbout 12-14 elements on the camber line with closely spaced elements

in the nose region give an accurate solution. Thus, for a 1ifting problem
the number of unknowns is of the order of 30 and a solution on 1904S

takes about 4 secs. lhen the aerofoil thickness is small and the aerofoil
is fitted with a control surface the number of elements needs to be
increased, for example, a 4% thick symmetrical Joukowski aerofoil fitted
with a 30% control surface chord requires about 40 elements on the mean
camberline for a reasonably accurate solution,

A separate programme has been developed in FORTRAN IV fcr the
oscillating problem which requires a core size of just over 35 K including
system and prograrme for 23 elements on the mean camberline (abcut 50
unknowns ).  The number of elements required for an oscillatory solution
is about the same as for the steady solution except that the unknowns
are now complex. Typical time for a solution involving 15 elerents on
the camberline (34 complex unknowns) and one frequency parameter is about

10 secs on ICL 1904S.

4. RESULTS

To check its accuracy the present method has been compared with
results from analytic solutions in particular for 4% and 9,3% thick

syrmmetrical Joukowski aerofoils at 0° and 10° incidences and to a 13%
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thick, 17.8% cambered Karman-Trefftz aerofoil at 10° incidence,
these are cases where the standard A.M.0. Smith method is deficient.
A comparison of the numerical results derived by the present method
with the exact analytic solutions are shown in Figs. 8-12. The
agreement between the analytic and numerical solutions is good.

Figs. 13-18 show a comparison of the present method with the
standard A.M.0. Smith method(!") for a NACA 0012, an NLR and a Garabadian-
Korn aerofoil. For the NACA 0012 and NLR aerofoils 12 elements on
the camberline (28 unknowns) and for the Garabadian-Korn aerofoil
10 elements (24 unknowns) have been taken. For the A M.0. Smith method
80 surface elements (81 unknowns) were taken for both NACA 0012 and
NLR aerofoils and 196 elements (197 unknowns) were taken for the
Garabadian-Korn aerofoil. The numerical accuracy of the present
method appears to be good for a relatively small number of unknowns.

The A.M.0. Smith method only gives the values of the flow
quantities on the surface of the aerofoil at the collocation points at
the mid point of elements, for any other surface locations values are
obtained by interpolation. In the present method the flow quantities
can be directly calculated at any point on the aerofoil surface; the
values of cp at points intermediate to collocation are shown for the
NACA 00712 at 0° in Fig. 13. This is an encouraging feature of the
present method.

The pressure distribution of a 4% thick symmetrical Joukowski
aerofoil fitted with a 30% control surface chord and a 1541 section fitted
with a 20% control surface chord have been calculated.

In Figs. 19 and 20 the overall forces and moments and the loading
distribution for the 4% thick symmetrical Joukowski aerofoil fitted with
a 30% control surface chord are compared with the standard linearised
solution, the comparison shows that the present numerical method has

the correct tendency to converge to the Timit of thin aerofoil theory.
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In Fig. 2] results for the 1541 section are compared with
the AMO Smith solution. For the present method 13 elements on the
camberline (30 unknowns) have been used for the 1541 section of which
only 4 elements are on the control surface. For the AMO Snmith nethod
156 elements have been used of which 80 elements are on the control
surface. There is a small difference in the pressure distributions;
which is more accurate is debatable,

Figs. 22 and 23 show the results of a NACA 0012 aerofoils in
a cascade at 0° incidence and at 0° and 30° stagger. In the solution
it is assurmed that there are 30 aerofoils above and 30 aerofoils below.

Fig. 24 shows a comparison of the numerical oscillatory pressure
distribution derived by the present method with an analytic solution
obtained by De Vooren and De Vel, The comparison shows clearly that
the oscillatory pressure distribution both in-phase and out-of-phase
agrees well with the analytic solution.

The results of an 8.4% thick symmetrical Von Mises aerofoil
and a 4% thick syrmetrical Joukowski aerofoil performing a simple harmonic
heaving oscillation at 0° incidence are plotted in Fig. 25. A comparison
with the numerical so1ution(]o) based on the AMO Smith approach for the
VYon Mises aerofoil shows that a solution using 11 elements on the
carberline (26 unknowns) has a comparable accuracy using 72 surface
elements (73 unknowns) for the AMO Smith solution. The numerical results
for the Joukowski aerofoil when compared with the linearised theory
show that the present method has the correct limiting tendency for thin
aerofoils.

The results of the 8.4% thick Von Mises aerofoil and a 4% thick
symmetrical Joukowski aerofoil passing through a sinusoidal (vertical)

gost are plotted in Fig. 26 along with the nurerical solution using the
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AM.0. Smith approach for the Von Mises aerofoil and the linearised
theory solution. A comparison of the results for Von Mises aerofoil
confirms that the accuracy of the present method using 11 elements

on the camberline (26 unknowns) is of the same order as that of the
AM.0. Smith type solution using 72 surface elements (73 unknowns).

The results of the Joukowski aerofoil when compared with the linearised
theory confirms the correct behaviour for thin aerofoils.

The present method is also applied to the case of an oscillating
control surface on a symmetrical Joukowski aerofoil. The results are
plotted in Figs. 27 and 28 along with the A.M.0. Smith type solution
for the Karman-Trefftz aerofoil and the linearised theory solution. It
shows that the present method gives a solution using 14 camberline elements
(32 unknowns) comparable to the A.M.0. Smith solution using 120 surface
elements (121 unknowns). The results for 4% thick symmetrical aerofoil
show the method has the correct tendency to converge to the linearised

solution as the thickness becomes small.

5. CONCLUDING REMARKS

(a) A method has been developed for the calculation of the pressure
distribution on steady and oscillating aerofoil in incompressible
inviscid flow by placing the singularities on the mean camberline
of the aerofoil.

(b) Satisfactory agreement has been obtained between the present
numerical approach and analytic solutions.

(c)  The number of unknowns in the present method is generally much
less than those in the A.M.0. Smith approach for comparable
accuracy. In addition the present method gives satisfactory

results for thin aerofoils where the A.M.0. Smith method breaks down.
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The faster method presented here is particularly advantageous
for oscillatory problems.

Flow guantities can be calculated directly at any point on
the aerofoil surface rather than by interpolation between

collocation points.
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APPENDIX

SOURCE DISTRIBUTION

A. A.
A source distribution on the 1th element between - 71 < X < ?l

(as shown in Fig. 5) with uniform normalised strength Ei/unit length is

considered.

The velocity components 6u and Sw at the point (x,z) due to

the small element of source distribution on &¢ are

%7 x-&
Su(x,z) = ?F[ T ZZJ 8¢

- f (A.1)
Y% z )
SW(X,2) = > T zzJ 8g ,
on integration
A. -
81 [(x + 2102 + z2 _
u(x,z) = 7N = 0y F(x,z,Ai) (A.2)
Bs
L(x - 7)) +2°

w(X,2z)

A_i A_i‘
S 1T -
tan - tan = 0, G(x,z,Ai) (A.3)

In equation (A.3)

W -1 il
-5 < tan 9§ <<§

this condition gives the correct velocity distribution i.e. antisymmetric

w and symmetric u, about the x axis.

Since elements are at different orientation the problem is transformed
to a fixed axis system (X,z) as shown in Fig. 6; the origin of the (X,z)
system is taken at the leading edge.

For the source distribution along an element i the normalised
velocity components u(x,z) and w(x,z) are by reference to egqns. (A.2), (A.3),

now taken relative to 0xz axes



A.2

u(x,z) = Si{F(x,z,Ai)cose - 6(x,2,4;)s1n6 }
o _ ' (A.4)
(x,2) = 0. {F(x,2,4;)sin6 + G(x,2,4;)cos6 }
when
x = (x - io)cose +(z - Eo)sine
- - . - - (A.5)
z == (x- xo)s1ne + (z - zo)cose
The velocity components on the mid-point of the jth element on
the aerofoil surface due to N elements as shown in Fig, 1 is therefore
written in the form
- N . -
U = 121 {Fjicosei - Gj151”91} o;
N _ (A.6)
= ¥ A..o0o
i=1 91
- N -
wj = 121 {Fjis1nei + Gjicosei} op
N (A7)
= ¥ B..o0
jop 31
where
Fj'i = F(X 'I’zj'i’A'i)’ Gj'i = G(ij szj.i ’Ai) (A.S)
where
N P - . oz - - = - )
X35 = ?{([xj+1+xj] [X1+1+Xi])c°561 + ([zj+]+zj] [Zi+1+21])51n6i}

Eji =-%{-([§j+]+§j] - [§1+1+§j])sinei + ([Zj+]+2j] - [Ei+]+ii]cosei}

X [(A.9)
n _ > v 2 S - 212
Ay = {(X1+] Xi) + (21.+1 Zi) }
Xo a=X. 7. -2,
cosei - i+] 79 , sinei - 1+1 i
A A /

i i



A.3

LINEARLY VARYING DISTRIBUTION

A Tinearly varying vorticity distribution across the element
i between - Ai/z < X< A1/2 (as shown in Fig. 7) with normalised strengths
vy and vy,
The velocity components Su and &w at the point (x,z) due to the

at x = ¢ Ai/2 is considered.

small element of vorticity distribution &f are
Y zdg
(SU—'Z—TF[ 2J

v =

r (A.10)

i
'
<y
N
| amerassy Y
x
1
WY
Q.
VAS
A

J

For the linearly varying vorticity across the element

S Yty YT Y
3 = . LI p 1¢ (A.17)

From (A.10), (A.11), (A.4) and (A.5)

zF(x,z,Ai) XG(X,2Z,4;)

- 11- i
u = Yo q1(G(X,2,4.) + - - - ) cosé
7 {1+l i /2 /2
xF(x,z,Ai) zG(x,z,Ai) 1
+ (F(x,z,Ai) - ~ - ~ "F) sing }
Bi/2 B/2
- ZF(x,z,Ai) xG(x,z,Ai)
+ yi{(G(x,z,Ai) - — + — ) cos®
A;/2 A./2
xF(x,z,Ai) zG(x,z,Ai) 1
+ (F(XazsA-i) + - + - - 'T—r') sind }
As/2 8;/2 . (A.12)



zG(x,z,Ai)

H
—
-
—
x
-
N
-
>
—
~—
t
1

A1/2

zF(x,z,Ai)
+

XG(X4Z,4,)

1
F) cosei}

i

As/2 Bs/2

xF(x,z,Ai)
+

—) s1nei

) cosei}

1
-
—
x
-
N
-
>

Ay/2 i

21
w

(A.13)

The velocity components on the mid-noint of element j due to N elements

is written in the form

_ N _ N - M+1 _
U. = I a;. Y;,q + 2 b..v. = 7% C..v.
T L UL S
N i N o i
We = T Cus Yeun + 7 doo¥s = % D.. .
J 4o N i+] j=7 91 j21 91 1
when
z.:F.. X..G.. X::F.:  Z..6..
a.. = (G, + 314 JLJN) cose, - (F,, - —1J J1JT
J1 J1 5 E 1 J1 Z 5
] i i 7 i i
z..F.. X..G,. X::F.. Z..G..
by, = (Gy5 LIT 4+ L0 cos, + (Fo, o+ S 4 L
= b b ralligs B
Z.. y >'<1.G.1. X..F.. Z..G,,
ey = (6, + =L - J1dTy sine, - (.. - LI - LD
J £k s B, E.
i i
2 F s $<.1. 5 >'<.1. o 2B
dgy = (65 - JLJ o, T sine, - (Fji 4L, 41
= Y A S B4



A.5

G = 3t by

Dy = Ciay * 4y

0 = hp

Cy el = A (A.16)
Dy <

AR TS I Y

POINT SOURCE

The velocity at the mid-point of element j due to the point source

of strength Q, at (X:5 z;) is

i 53
- ] (ij - ii) Qi -
Us = : = R,. Q. (A.17)
j o nT - _ 7 y\2 S .3 y2 J1 1
(xJ xi) + (zj 21)
- 1 (Ej = 21) Qi -
We = =5S..Q (A.18)
J 2m T _ T N2 = Ji i
(xj Xi) + (zJ 21)2

POINT VORTEX

The velocity at the mid-point of element j due to the point vortex

of strength K at (x,z) is

- 1 (E- - 2) K -

Uy = g e = E, K (A.19)
(xj - X)% + (zj - 2)

. (ij - x) K i

Wj - ‘2‘}"_" = H- R (A.ZO)

(ij - X)2 4 (zj -z)2 J
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