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SUMMARY 

Two methods are presented for the calculation of transonic flows. 

Firstly a method is described for the design of aerofoils with prescribed 

pressure distributions including shock waves. The method is essentially an 

inversion of a numerically refined version of the Murman-Krupp technique for 

the solution of the transonic small perturbation equation with linearized 

boundary conditions. To demonstrate the usefulness and accuracy of the 

method examples are shown of the design of supercritical type aerofoil 

sections, the final results being compared with calculations by the nominally 

exact Garabedian & Korn analysis method. 

The second method is for the calculation of axisymmetric transonic flow 

past bodies of revolution. Following Garabedian & Korn the exact potential 

flow equations are solved in the inside of the unit circle obtained from the 

body contour by conformal transformation. The particular problems of 

calculating axisymmetric flows by such methods are discussed and examples are 

shown of calculations by the present method compared with other methods and 

experimental data. 

(Paper presented at Euromech 40, Stockholm, September 1973). 
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*Replaces A.R.C.34 701. 
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1. 

1. INTRODUCTION 

The most successful methods to date for the calculation of steady 

transonic flows have been finite difference techniques for the solution of 

either the small perturbation or the exact equations for the velocity 

potential. It was first shown by Murman and Cole1 that by using difference 

schemes, retarded in the flow direction at all points in the hyperbolic region, 

solutions could be obtained for transonic flows in which the shock waves 

emerged in the course of the calculation. They presented solutions of the 

transonic small perturbation equation for the case of a sharp nosed 

non-lifting two dimensional aerofoil. Shortly afterwards the method was 

extended (Murman & Krupp 2y3) t o cover blunt nosed lifting aerofoils. The 

first method to be presented here is a development of the Murman-Cole-Krupp 

techniques for the design of aerofoils with prescribed pressure distributions 

including embedded shock waves. The two obvious alternatives to such a method are 

either laborious "cut and try" methods with alternate manual geometric 

modifications and forward calculation of the flow or the use of the hodograph 

4 5 methods of Nieuwland or Korn . The latter whilst awe-inspiring in the 

quality of the numerical analysis involved require a lot of experience to use 

and are valid for shock free flows only. Optimum aerofoils will usually, of 

course, not have shock free flows, weak shock waves being acceptable from both 

the wave drag and boundary layer separation viewpoints. 

Solution of the transonic small perturbation equations with linearized 

boundary conditions produce surprisingly accurate solutions for many aerofoil 

shapes and provide a particularly convenient basis for design and three 

dimensional calculations. However the use of the exact inviscid potential 

equations is not only preferable but can, when allied with an efficient 

coordinate system provide simpler, faster solutions than the small 

perturbation techniques. 
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* 
Thus the Bauer, Garabedian and Korn 596 and the similar Jameson 

methods are very important weapons in our armoury for the calculation of 

planar flows.The second method to be described is an extension of BGKJ 

methods to the calculation of the transonic flow about non-ducted 

axisymmetric bodies at zeroincidence. For bluff nosed bodies of revolution 

the use of linearized boundary conditions is unlikely to give sufficient 

accuracy for practical purposes hence we have been forced to adopt the use 

of a Sells coordinate system for these calculations as in the BGKJ methods. 

In section 2 the Murman-Krupp method is briefly described together with 

the improvements which we have made in order to increaseits speed and 

accuracy. The design version is described and some examples of its use are 

given. Section 3 contains a description of the axisymmetric flow method and 

examples of calculations using it are shown. 

2. TRANSONIC SMALL PERTURBATION DESIGN METHOD 

2.1. Introduction 

Although most people will be familiar with the Murman-Cole-Krupp 

method it will be convenient to describe it here in brief detail in order to 

bring out the differences between their basic method and the refined version 

we have developed at A.R.A. which has led to the design method. 

The transonic small perturbation equation for the perturbation 

potential @ 

2 

1 - Mz - (y+l) Mi 2) 3 + $ =o 
X 

is rewritten as 

I 

2 2 
(1 - & 

Mzp 6 I3 
- (y+l)Mi-3p 2 +-& + &$ 

1 
=o * 

3Y 

= MI6 
l/3 -213 

where y y,$=MEd 0 

* Henceforth collectively called the BGKJ method. 

. 
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and6 is the aerofoil thickness/chord ratio. The aerofoil shape being 

defined by y = 6Y u,,(x>, Fig-l, and p is an arbitrary power to 

be determined later. 

The linearised boundary condition on the aerofoil 

aa 

ay 
(x, ‘0) = 5Y: ,(x) - a 

, 

then becomes 

2 (x,+0) = Y;,%(x) - A, A = a/6 
a7 

For M near 1 the equation can be further simplified to 

where the transonic similarity parameter K = 1-d 
Mm2P&213 * 

. 
The perturbation velocity is strictly 

u = -p 213 
ox Mm 5 

. 
but Krupp allows himself the opportunity of writing 

-q 213 
U = @xMm5 9 9fP 

and takes the first order equation 

C = -2u 
P 

Krupp chose the two parameter p,q to obtain the best agreement 

with certain exact solutions and suggests the values p = 1, q = 2 should 

be used. Partly because our method is somewhat different to Krupp's we 

have found that taking ~~0.425, and q'o.75 and then using the exact 

. 

isentropic relationship 
3.5 

C 
P 

1 + 0.2 Mi - 1 

. 
gives superior results for the areas in which we have the most interest 

i.e. fairly thick lifting aerofoils. In particular shock wave position and 

the velocity level near the t.e. lower surface are more accurately predicted. 
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Krupp uses a non-equally spaced rectangular mesh in the (x, 9) 

plane truncated some distance away from the aerofoil, the far field 

boundary conditios'being applied there using an approximation to the far 

field influence of a thin lifting aerofoil. In the main body of the flow field 

the Murman-Cole mixed finite difference scheme is used solving the equations 

along successive vertical lines, sweeping in the direction of the free 

stream flow. Both as regards the grid system and the finite difference 
* 

scheme our version of the method is virtually identical to the 

Murman-Krupp method. Where our method mainly differs to the original is in 

the treatment of circulation and the boundary conditions on the slit 

representing the aerofoil. 

2.2. Treatment of Circulation 

Krupp's far field approximation may be conveniently written 

4(xaG) = 91inear(x,;) - g arg (2 + AFi) 

1- z=x+iKy 

The 4 
linear 

term represents the contribution of the aerofoil 

thickness and camber which are known (for forward calculations) a priori. 

On the other hand the circulationyois unknown and must be determined during 

the course of the calculations to satisfy the Kutta condition, which states 

that $x and I$ 
Y 

must be continuous along the slit ;=O, x > 1 downstream of 

the aerofoil trailing edge. Thus in a converged solution there is a jump 
., 

in 0 of value yo along y = 0, x > 1. 

Krupp suggests an iterative scheme for the determination of yo 

in which the circulation at infinity (yff) is periodically updated using 

an extrapolated value derived from the latest value of the jump in $ across 

the trailing edge and the value used at the last update. Differencing across 

the slit x > 1 is achieved by assuming a linear variation in the jump in cp 

between the trailing edge and the far field boundary. This technique is 

both cumbersome and slow to converge. 

J( the one exception to this is described in section 2.4 below. 
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Consider the following scheme. Referring to Fig.2 

for the simplified case of a uniform mesh the difference approximations 

can be written 

0 
1 

xxli,J* = -iiT - 24i Jk+ 'i-1 J+ , , 

v = 
i,J* 

K- i+l,J* -4J i-l,J* 
1 

where the continuity in $I 
Y 

has been implicitly assumed in the equation 

for $7~. 

The difference approximations to the small perturbation equation 

at (i,J+) and (i,J-) can then be written 

V i,J* 'xx)i,J* + @;yli,J? = ' 

From the equation for (i,J-) Oi J- may be determined and substituted 
, 

in the equation for (i,J+); this equation is then used in the finite 

difference scheme at column i, $i J being determined when required from the 
, - 

remaining equation. 

Having removed any assumptions about the variation of the potential 

jump across the slit it is then possible to force the circulation in the 

field to change more rapidly. This is done by updating the circulation 

used in the far field boundary condition and the circulation in the main 

body of the flow field after every sweep through the field. This compares 

with only occasional updating of the far field boundary condition in the 

original Krupp method. 
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If wte is the change in the jump across the trailing edge 

between consecutive iterations then we increment + in the far field by 

putting 

WA'te 
A@ = 2n arg (2 + LZi) 

and in the rest of the field by 

OA'te 
A+ = 2n arg( d 

where w is a relaxation factor (usually taken as 1.0). 

This device is similar in principle to that used in the GKBJ 

methods but its application is more complicated in the small perturbation 

method and probably less effective. The amount of storage required is 

increased because of the need to store arg (z) at each mesh point but this 

disadvantage is usually outweighed by the decreased computation times. 

2.3. Aerofoil boundary conditions 

In Fig.3 the aerofoil boundary condition used by Krupp is shown 

diagrammatically. The difference equations are solved one mesh point above 

the slit by using 

'qyli,J+l = *h 'i,J+2 - 'i,J+l 
2 

- t+2s 4- yli,J 

It is easily shown that the truncation error is minimised by 

using s =t I 47 . Having obtained $i J+l the values in the slit are obtained 
, 

by linear extrapolation from the points (i,J+l) and (i,J+2). 

It is important to maintain consistency between the boundary 

conditions used for the design and analysis methods. This is difficult using 

the Krupp scheme. It is preferable to solve for $ directly on the slit. 

This can be done quite simply by using 

Q ??b,J = % ‘i,J+l - ‘i,J - “j;]i,J 
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The minimization of the truncation error in this case requires s 

to be small; in order to keep the truncation error to a minimum for the 

difference approximation to I$-.. 
y)rli,J+l 

it is necessary for s = t. It will 

be noted that the tridiagonal structure of the difference equations is 

maintained. 

Figure 4 shows a comparison between pressure distributions obtained 

for a Korn aerofoil' using the two aerofoil boundary conditions. These 

calculations were done using the Krupp transonic similarity parameters and 

Cp definition. The differences are quite small. 

2.4. Other alterations to the Murman-Krupp method 

Two other significant changes have been made to the Krupp method, 

both of them tending to bring it into line with the BGKJ methods. 

Firstly because of the non-linearity of the equations Krupp 

suggests iterative solution at each column until convergence is obtained. 

However this offers little improvement, in terms of the number of complete 

sweeps through the field required, compared with the use of just one iteration 

per column. An increase in speed by a factor of about 3 is obtained by this 

device. 

The second major change is the introduction of mesh refinement. 

Three levels of mesh size are used employing 80x60, 40x30 and 20x15 mesh 

points, the larger number being in the stream direction. One sweep through 

the coarsest grid takes only one sixteenth of the time on the finest and, 

whilst of course, compared with the final solution the detailed pressure 

distributionsat this level are poor, the general form is quite similar and 

the value of the circulationlis fairly accurate. 

2.5. Summary of improvements and examples 

It is convenient at this point to summarise the changes we have 

made to the Murman-Krupp method in trying to improve its speed, accuracy and 

ease of conversion to a design mode. 
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(1) Optimised transonic similarity parameters and Cp definition, 

(2) Treatment of circulation, 

(3) Aerofoil boundary conditions, 

(4) Column iteration removed, 

(5) Mesh refinement. 

Figures 5 and 6 show comparisons between the present method and 

more exact methods. The first figure shows computations for the Korn aerofoi18 

5 
compared with results obtained by the BGK analysis and design methods . The 

second example (fig.6) is for the NACA 0012 section at M = 0.75, u = 2' 

also compared with results obtained using the Garabedian program. The 

agreement is good, the worst features being in the leading edge region on 

the upper surface, and near the trailing edge lower surface for the rear loaded 

section. 

2.6. Design method - treatment of aerofoil boundary conditions 

For aerofoil design the pressure coefficient C 
P (and hence @x) 

is known over all or part of the aerofoil surface and it is required to 

determine the aerofoil shape which produces it. 

The core of the design procedure is, of course, the treatment of 

the aerofoil boundary conditions. Various methods were tried before a 

satisfactory one was found. Initial attempts using modifications to the 

Krupp boundary conditions were unsuccessful because of the necessity to 

transfer information from the slit to one mesh point above. This led to the 

adoption of the aerofoil boundary conditions described in section 2.3 for 

forward calculations. 

Methods which ‘employ Dirichlet boundary conditions from 

j in 

which the integration is initiated near the leading edge of the aerofoil 

do not work because of the fixing of 0 at the leading edge, this only being 

changed by information spreading from the aerofoil into the field and back 

again - a very slow process. 
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It was found that the only methods which converge quickly 

to satisfactorily accurate solutions are those in which successive forward 

calculations are made with regular updating of the aerofoil shapes to obtain 

the required 9, distribution. 

Two methods of updating the aerofoil shape and hence (p- come 
Y 

to mind. We can either use the vorticity equation 

or the governing partial differential equation 

I K- (Y+mx 4,, + $p = O 
1 

The values of 0, (and $xx) can be calculated using the 

required surface values of $x. Solution of the equation then yields #-. 
Y 

Both equations have been tried and the one which has proved the 

most successful in terms of its convergence properties is the vorticity 

equation. 

Briefly the scheme is as follows. The first few points on the 

aerofoil are specified, the method then being restricted to the modification 

of a known profile. For the remainder of the profile (either top, bottom 

or both surfaces) the pressure distribution 

After each sweep though the fie 1 

aerofoil using 

+X 
is specified. 

(P is calculated on the 
XY 

where 

,J+l - 'zli J+2 , 

i,J 

is determined from central differences (even in the hyperbolic region) 

from the values of $I from the previous sweep. The superscript denotes 

l iteration number and $ x is the required value of $x. The surface slopes 
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can then be calculated from 0%) = 
(xi 

jtli,J J 
4 

n+l 
XPI i,J dx* + @plxzxo 

x0 

where x = xo is the last fixed point near the leading edge. The trapezium 

rule is sufficiently accurate for the integral. The values of the surface 

slopes used for the next sweep through the field are then 

In order to obtain convergence the two relaxation parameters 

w1 and w2have to be small, 0.1 and 0.3 being used. 

This scheme is similar to that used by Steger and Klineberg' 

except that they used the perturbation velocity components as their main 

dependent variables. 

2.7. Design method - far field boundary conditions etc. 

The overall convergence of the method can be speeded up by 

rapidly changing the circulation over the whole field to 

that implied by the integration of the desired pressure distribution. The 

far field boundary condition, the transonic similarity factor and in fact 

the relationship between C 
P 

and 4x are all dependent on the aerofoil geometry. 

Thus all of these parameters have to be recalculated as part of an extra 

iteration sequence as the main calculation proceeds. In order to obtain 

convergence it is not possible to start these modifications until the major 

part of the aerofoil geometry modifications has been computed. 

2.8. The design method in practice 

It has been mentioned previously that the method is restricted to 

the modification of existing aerofoils. The restrictions imposed by this fact 

are not too severe. Rough designs for aerofoils are often available from prev- 

ious designs or by use of one of the many approximate inverse subcritical 

methods. In addition the leading edge of an aerofoil is often optimised for 
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low or intermediate Mach number conditions where the performance is 

dominated by the leading edge velocity peak. It can thus be 

advantageous to optimise the high speed performance without disturbing the 

leading edge region. 

To be fair,it would of course be an advantage to be able to 

specify the pressure distribution over the whole of the aerofoil surface. 

Our computer program is arranged to have various design 

options. The upper surface and lower surface may be altered simultaneously 

or separately; alternatively the pressure distribution may be specified over 

the upper surface and the thickness distribution may be kept constant. This 

latter option is particularly useful as problems of crossed or too thick 

trailing edges may be avoided and having once found an aerofoil satisfying 

structural constraints, as far as the thickness distribution is concerned, 

this quality may be maintained. 

Some expertise is needed of course in specifying the pressure 

distribution. In particular the pressure distribution away from the leading 

edge must be compatible with the fixed leading edge geometry. Changing 

the pressure distribution over the rear part of the aerofoil in general 

implies a changed circulation, this then alters the pressure distribution 

near the leading edge. After a major modification it is often useful to 

do a minor tidying-up operation to remove any unwanted blemishes in the 

pressure distribution. This will be demonstrated later. 

Both in this case and in other conditions where the specified 

pressure distribution is not consistent with other features of the flow 

the program will usually converge to a smooth consistent result. 

2.9. Run times 
max 

Taking a convergence criterion that n-l i,j 142 j - $i j 1 < 5x10 -5 
, , 

the number of iterations needed for forward calculations is usually about 

200 - 300 on each of the coarser grids and between 100 - 250 on the fine 

(80 x 60) grid. 100 iterations on the finest grid would take about 45 sets. 
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on a CDC 6600. Design calculations can be completed in about 150-300 

iterations on the fine grid. 

2.10. Examples of use 

The first example is of the successive modification of a 

NACA 0012 aerofoil to convert it into a shape having many of the 

characteristics of a supercritical aerofoil. This is shown in fig.7(a-d). 

Starting with a forward calculation (fig.7(a)) we first 

specify a pressure distribution on the upper surface aft of 15% chord, 

shown by the dashed line. The shock wave has been weakened and moved 

rearwards by about 15% chord, and the upper surface rear loading has been 

increased. The lower surface shape is kept fixed. The pressure distribution 

output by the design program is shown by the dotted line. Note the new 

pressure distribution near the leading edge and the decreased velocities 

on the lower surface caused by the increased circulation. 

The pressure distribution shown by the dotted line in Fig.7(a) 

becomes the starting solution in Fig.7(b). As mentioned previously a 

small tidy-up operation is now done near the leading edge. This is shown 

by the dashed and dotted lines. 

Finally in Fig.7(c) lower surface rear loading is added by 

specifying a similar pressure distribution on the upper surface as in the 

previous figure, and the required lower surface pressure distribution 

(the dashed line). The aerofoil shape after this modification had too thick 

a trailing edge, this was thinned somewhat and the pressure distribution 

calculated. This is shown by the dotted line in Fig.-/(c). 

In Fig.7(d) the final section is compared with the NACA 0012 

starting point. The final aerofoil is thicker than the original, 12.5% 

compared with 12% and the CL has increased from 0.44 to 0.98 for roughly the 

same shock strength. 
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Finally in Fig.7(e) a comparison is presented of 

calculations for the final shape using the present small perturbation 

method and the nominally exact method of ref.5. The agreement is good. 

For the second example of the application of the 

design method somewhat more ambitious targets are chosen. Initially a 

cusped thickness distribution with a t/c of 9% was taken and a subcritical 

design method was used to produce an initial approximation to the required 

shape. The pressure distributions obtained for this shape by forward 

calculation at a Mach number of 0.825 is shown as the solid line in Fig.8(a). 

A new upper surface pressure distribution was then specified - shown as the 

dashed line in Fig.8(a). The shock wave has been moved to beyond 80% chord 

and made quite weak. The design program was used to obtain this upper 

surface pressure distribution whilst maintaining the original thickness 

distribution. The design calculation was not taken to convergence as it 

became clear during its course that the lower surface velocity distribution 

would not be acceptable. The pressure distribution obtained by subsequent 

forward calculation is shown in Fig.8(b) - the solid line. As the design 

process was not taken to convergence this does not correspond to the 

required upper surface pressure distribution - shown once again by the 

dashed line. The section was then redesigned to obtain the same target 

upper surface velocities as before but in addition, a more acceptable 

lower surface target was specified (Fig.8(b)). Thus both lower surface and 

upper surface shapes were allowed to change with no direct control over 

thickness. This calculation was taken to convergence and forward 

calculation gave a virtually identical result. 
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The final aerofoil is depicted in Fig.8(c). According 

to the present calculation it produces a C 
L 

= 0.53 at M = 0.825 with a 

very weak shock wave. It is 8.9% thick and has a base thickness of 1% 

chord. 

Unfortunately it was not found possible to perform 

calculations using the Bauer, Garabedian & Korn program5 at the design 

condition of this section. When the hyperbolic region extends to near 

the trailing edge of the aerofoil and far out from the surface the 

velocity vector may become non-aligned with the coordinate system and 

the zone of dependence of the difference scheme no longer includes that 

of the differential equation. This then leads to instability and 

divergence. This phenomenon is further discussed in Section 3.6. below. 

A comparison of the pressure distributions obtained 

for the present method and by the Garabedian method at an off-design 

condition (M = 0.79) is shown in Fig.8(d). Bearing in mind that the 

forward shock should move from around 20% chord to 80% for a change in 

Mach number of 0.035, the agreement is good. 



. 

15. 

3. CALCULATION OF AXISYMMETRIC TRANSONIC FLOWS PAST BODIES OF REVOLUTION 

3.1. Introduction 

Both Bailey 10 and Murman and Krupp* have obtained solutions 

for the axisymmetric transonic flow past very slender bodies of revolution 

by methods analogous to the ones for aerofoils. Neither method is suited 

to the treatment of blunt nosed shapes which constitute a class of 

considerable practical interest. We would expect in any case that the 

use of an efficient coordinate system which accurately treats the nose 

region should not only provide more accurate solutions but also quicker 

ones. 

The choice of coordinate system falls on that due to Sells 
11,12 

in which the region exterior to the profile is conformally mapped to the 

interior of the unit circle. Sells'* showed this to be particularly 

suitable for subcritical aerofoil calculations. The BGKJ methods use the same 

coordinate system for their transonic aerofoil calculations, the mapping, 

however, being derived by somewhat different methods. 

3.2. The basic equations 

Once again we attack the equation for the velocity potential, 

in this case the exact equation for the full potential in the physical 

z(x,y> plane is 

I a2 - 4:) $xx + (a' - +i )4 
YY 

+ f2 Cp 
Y 

- *$x4y+xy = 0 
This differs from the equation for planar flow by the inclusion 

of the term in l/Y . 

The speed of sound a is given by 

4): + @2 
y + a2 u: at -=- 

2 Y-l 2 +y-l 

The transformation to the o(r,B) computation plane is described 

by the modulus of the transform derivative 



16. 

In the u plane the above equation then becomes 

(a'- u2)$66 + r2 (a2- v~)$,~ - 2ruv 1$6~ + $ g 0, 

+ 
r 'r (a2+a$ z + u2) + r (u'+ v2)(r* + + ) = 0 

where u =ge/Br , v =4rD 

in the 8 and r directions. 

are the velocity components 

The singularities in 4 and B at r = 0 (corresponding to 

infinity in the physical plane) are removed by introducing the 

reduced potential CP 

Q 4 - case/r = 

and f = Br2 

the governing equation then becomes 

(a'- u2)Qee - 2ruv Qre + r2(a2- V2)Qrr +( t2 4$ - 2uv)Qg 

+ r (a2+ - a2r jy + ,2 
Y ar 

- 2v2)ar + f-l(u2+ v2)(r2frar + feQe) 

a2 EJ 
= 7 ar case + a 2 2Y sine + 

ry ae 
g( u2+ v2)(rfrcos0 + fg sine) 

which is the equation we use. 

3.3. Mapping 

Both the transform derivative and y, the radius in the 

physical plane, are required at points within, and on the surface of, 

the unit circle. 

We use the mapping due to Catherall,Foster and Sells 11 

which is directly valid for blunt nosed bodies with pointed, rounded or 

open tails. In the case of open bodies the "sting" is mapped to the 

line 0 = 0 in the computational plane (see Fig.9), the "sting"/body 

junction being mapped to r = 1, 8 = 0. By using a small (and in this 
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context irrelevant) amount of nose rounding, bodies with pointed noses 

may also be treated. 

The Catherall-Foster-Sells method conveniently supplies 

the B and y on the surface of the circle. Values on the inside of the 

circle can be calculated by the use of Poisson's integral. 

In order to use this we put 

sine 
Y' = y+y-- +y, (1 -$ 

J = RnB + 2Rnr - k (ian (1-2rcose+r2)+ rcose) 

where k = 1 - 6/~, 6 is the trailing edge angle 

and Y, is the sting diameter 

to remove all singularities at the tail, along 8 = 0 and at r = 0. 

The Poisson integral is 

r 2lT 
1 

f(reie) = x 
J 

1 - r2 
l-2r cos(&$) + r2 

f(ei$) d$ 

0 

which when written in the form 

. 
f(rei') 

. 
= f(eie) 

I 
2lT 

1 (1 - r2) 
I 

. 

+z- l.-2rc0s(e >+r2 f(el') 
0 

is suitable for any simple numerical integration routine. 

The geometric terms L 2 and '2 in the partial 
Y ae 7 ar 

differential equation are calculated by simple finite differences. 

3.4. Boundary conditions 

3.4.1. Body surface (r = 1) 

Here $r = 0, (Pr = cos 8. This may be conveniently 

incorporated in the difference scheme via the expression for Qrr. 
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3.4.2. Axis of symmetry ( 8 = 0, 71 ; r < 1) 

Terms originating from the -$ I$ expression in the 
, Y 

basic equation for axisymmetric flow tend to certain limits on the axis 

of symmetry. Referring to the equation for the full potential 4 at the 

top of page 16 we have as 8 -+ 0,~ 

-+ 

L ay YTT -+ 

and also aB 
u9 ae 

-f 

i?Y a 
ae 7% (%) 

I 

+ (Y) 

%e 

a2 

4 

ay 
ar ar 

0 

3.4.3. Leading and trailing edges (6 = O,IT ; r = 1) 

At these points the velocity components vanish 

i.e. u = v = 0 

and the equation for the full potential reduces to that of Laplace 

At the nose and tail of closed bodies r = 1, y = 0 

and so the equation further reduces to 

24& + or, = 0 

For open tailed bodies,at the body/"sting" junction y # 0 and the equation 

reduces to 

$ t3e+ rr 4 = 0. 

3.4.4. Far field (r = 0) 

case 
As z + 00 $+x,x+~ 

hence @ = 0 

which is easily incorporated in the difference equations. 

3.5. Difference schemes 

We adopt almost without change the difference scheme used 

in the GKBJ methods. Following Murman they march from the nose to the tail 
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of the body solving the difference equations by line over-relaxation. 

At each point all first derivatives are "frozen" i.e. they are 

calculated using values from the previous sweep through the field. 

Central differences are used for first derivatives and for the approximation 

to @ 
rr' 

If the flow at any point is subsonic, u2 + v2 < a2, the 

second derivatives involving 8 are calculated using central differences. 

For the hyperbolic region a second order accurate version of Murman's 

method is obtained by setting 

(Ae2)‘8e (~j k -  2~j-l k+‘j-2 kI+ ’ (“j k- 3@j-l k+ 3’j-2 k-@j-3 k) 
,  9 ,  ,  ,  ,  ,  

where O,<E<l 

with a similar expression for @ 8r' 

This gives a difference scheme which is second order accurate 

if s>O and which is stable for sufficiently small E because of a favourable 

artificial viscosity. From experience with the GKBJ methods we would 

expect that using E = 0 will give sufficient accuracy in most cases, apart 

from those displaying near shock free recompressive conditions. These 

are in any case less commonly found in bodies of revolution than on 

aerofoils. 

3.6. Limitations of present difference scheme 

The present hyperbolic difference scheme is limited to cases 

where the velocity vector is nearly aligned with the 8 direction. The 

Sells mapping is successful in providing this condition for cases where 

the hyperbolic region is confined to the centre part of the body and does 

not extend too far from it. As the free stream Mach number increases and 

the supersonic region becomes of greater extent,the velocity vector may 

become non- aligned with the 8 direction and at some points 

u2,v2c a2c u2+v2 

i.e. the velocity components are subsonic but the flow is supersonic. 

If too many points obey this inequality then instability will result 
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because firstly the diagonal dominance of the implicit scheme is lost 

and secondly the zone of dependence of the difference scheme no longer 

includes that of the differential equation. This is shown diagrammatically 

in Fig.(lO). 

Jameson 13 
has suggested a difference scheme which remedies 

this situation. At each point in the field the difference scheme is 

rotated to conform with the local flow direction. This eliminates any 

need to align one of the coordinates with the local flow direction. 

Jameson has used the scheme for both two and three dimensional 

calculations and South 14 has used it for axisymmetric flows. One 

important advantage of the Jameson method is that it makes possible 

calculation with supersonic free streams if it is combined with a 

coordinate system which is capable of representing the flow at infinity 

correctly. 

We intend that at a later stage a rotated difference scheme 

should be incorporated in the present method but it is doubtful that 

calculations with supersonic free streams will be possible with the Sells 

transformation. 

3.7. Computer program 

The method described has been programmed in Fortran. Mesh 

refinement is used as described in the first part of the paper. Most 

calculations are done with a fine grid having 60 x 20 points in the 

half circle. This is somewhat coarser than that used in the GKBJ methods 

but is sufficiently accurate in most cases. Computation times per mesh 

point are somewhat larger than the corresponding two dimensional case. 

About 100 iterations are usually required on the fine grid which takes 

about 1 minute on a CDC 6600 computer. 
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3.8. Examples 

3.8.1. Ellipsoid 

The first example is that of an ellipsoid of 

fineness ratio,L/DI3.6 generated by Joukowski transformation from the 

unit circle with singular points at 20.75. Figure ll(a,b) show the 

surface pressure distributions for progressively increasing Mach numbers 

up to 0.95. Some of the results are compared with calculations by 

Jameson7. The agreement is quite good especially at the highest Mach number. 

At this point the peak local Mach number is about 1.3. 

3.8.2. Body with blunt nose and pointed tail 

This body, shown in Fig.12, was generated by rotating 

a symmetric Karman-Trefftz aerofoil about its axis of symmetry. The 

fineness ratio L/D, is 4.74, and total included angle at the tail is 25.95'. 

Calculations for this type of body have proved to be 

very difficult. With the method as described it was only possible to 

reach a freestream Mach number of 0.8 and this only by using very small 

increments in Mach number. The failure is caused by large disturbances 

starting at the tail and gradually moving forward until complete breakdown 

is produced. 

This behaviour can be plausibly explained by comparing 

the behaviour of the velocity potential near the tip of a wedge and a 

circular cone in incompressible flow. 

Taking 5 as the ordinate along the surface then for 

both cases $ cc 2 

where v is a function of cone or wedge angle. The variation of v with 

wedge/cone angle is shown in Fig.13. Note that the power law behaviour 

is the same in axisymmetric and plane flow for cusped and blunt tails. 

When the wedge is unwrapped by conformal transformation into a half plane 
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(locally near the tail similar to our mapping the entire profile into 

a circle) the potential behaves like a simple stagnation point flow 

4 QL c2 (the 5 direction having mapped into the 5 direction). For a 

cone the behaviour is not so simple except for cusped or blunt tails. 

Thus the behaviour of the velocity potential near a 

pointed tail is more complicated than in the planar case and may not be 

adequately represented by simple difference schemes. 

The situation is almost certainly made worse by the 

fact that the direction of sweeping in the calculation tends to push 

"errors" into the tail region where the symmetry boundary conditions tend to 

magnify them making any inaccuracies in this region worse. 

In view of these arguments we have attempted to 

overcome the problem by matching the calculated solution very close to 

the tail to the solution for the incompressible flow past a cone. This 

certainly leads to considerable improvements for subcritical calculations 

in that it is no longer necessary to proceed in small steps in Mach number. 

However it is still not possible to proceed into the transonic regime by 

any significant amount. 

Figure 14(a) shows pressure distributions calculated 

for this body obtained both with and without a matched cone solution at 

the rear; on this scale the differences between the two sets of results 

are not discernable. In 14(b) a slightly supercritical calculation 

is shown, obtained using a matched cone solution. 

3.8.3. Hemisphere-cylinder 

The singular point of the transformation was placed 

1.5 diameters downstream of the nose. For the case of a continuous 

cylindrical afterbody the boundary conditions at the singular point of 

the transformation are not correct as this point is assumed to be a 

stagnation point. The effect of this error is very local however and is 



23. 

not expected to have any serious effect in the region of interest 

near the nose. Calculations for this body are shown in Fig.15 for 

Mach numbers from 0.1 to 0.75. 

It was hoped that it would be possible to compare 

these calculations with experiment, as the body concerned is one of 

practical importance because of its use as a pitot-static head. However 

the only experimental evidence which could be found 
15 was obtained at 

low Reynolds number without boundary layer transition fixing. The 

measured pressure distributions are thus dominated by shock wave - boundary 

layer interaction and provide no suitable comparison with the inviscid 

theory. 

3.8.4. Ogive-cylinder 

The problems of calculating the flow past a body with 

a pointed tail have already been discussed. The problems for sharp noses 

do not seem so acute, probably because of the direction of sweeping in the 

calculation. For the case in question, an ogive cylinder with nose 

length equal to the maximum diameter, it was necessary to round the nose 

slightly in order to perform the mapping. This may have had some 

beneficial effect on the convergence of the calculations. 

Experimental results for this body in combination with 

a short conical boattail are given in Reference 16 and is designated 

configuration 5. We have made no allowance for the effect of the boattail. 

Figures 16(a,b,c) show a comparison of the calculation with the 

experimental results for three Mach numbers, 0.4, 0.6 and 0.83. The 

agreement is very good. 
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4. CONCLUSIONS 

Two methods have been presented for the calculation of transonic 

flows. Both are logical developments of the relaxation methods first 

developed by Murman and his associates. 

The first method is for the design of aerofoils with specified 

pressure distributions including shock waves. This has been developed 

from the Murman-Krupp method for the solution of the transonic small 

perturbation equation with linearized boundary conditions. Examples of 

its use have been given and its value for the design of supercritical 

aerofoils demonstrated. 

The second method which has been described is for the calculation 

of axisymmetric transonic flows past bodies of revolution. In this case 

the exact potential flow equations have been solved in a manner similar 

to that used by Garabedian et al for planar calculations. The calculation 

of flows with strong shock waves for bodies with pointed tails has not 

been successful but for other bodies excellent resultshave been obtained. 
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