


C.P. No.1348' 
November 1973 

NUMFRICAL METHODS FOR CAICUIATING UNSTEADY FLOWS 
IN SUBSONIC AND SUPERSONIC TURROMACHINERY CASCADES 

- by - 
D.E. Hobeon 

Central Electricity Generating Board 

SUMMARY 

Two numerical metbode are proposed for the prediction of unsteady fluid 
flows in turbomachinery cascades; they both WBume that the unsteady effects 
are linear and sinusoidal in time, and are superimposed on a previously 

determined, non-uniform steady flow-field. In the first method an unsteady 
velocity potential is used, whilst in the second the unsteady velocity 
components and pressure and density perturbations are used in either a 
differential or integral representation of the unsteady Ruler equations of 
motion. 

The methods may be used to predict blade flutter effects and the 
acoustic field'generated by interacting rows of blades; they may be 
generalised to deal with three-dimensional flowe, although only two-dimensional 
flows are considered here. 

Some preliminary results for the case of a flat plate cascade 
operating at zero mean incidence at subeonic and supersonic inlet Mach numbers 
are presented and compared with existing analytic and numerical solutions. 
In general the agreement is very good for subsonic cascades; for supersonic 
difficulty wa8 encountered when trying to enforce the cascade repeat condition. 

*Replaces A.R.C.36 372 
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Lift on blade (per unit span) 
Mach number W/c; moment about mid chord (per mit span) 
Direction normal to a streamline 
Cascade dimension (see Figure 1) 

Static pressure 
Inter blade phase angle 
Acoustic mode index; mesh size ratio 
Blade spacing 
Time 
Velocity in the x direction s 
Steady uniform velocity in the x direction 
Velocity in the y direction 
Steady uniform velocity in the y direction 
Wake direction 
Velocity in the wake direction; vector in equation (11) 
Cartesian co-ordinates 
x direction mass flux pu 
y direction mass flux pv 
Wave numbers -equation (27) 
Relaxation factor; unsteady incidence angle 
Ratio of specific heats 
Density 
Vorticity 
Velocity potential 
Circular frequency 
Lift coefficient L/~poGnc 
Moment coefficient M/lpoUvnc2 
Pressure coefficient Ap'/ipoUTn 

Subscripts 

i Imaginary 
n Normal to blade surface 

0 Steady state 
r Real 
S Along blade surface 
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1, INTRODUCTION 

Early methods of computing the steady flow through cascades 

of aerofoils were based on replacing the blades by distributions of 
source, doublet or vortex singularities and solving an integral 

relationship to satisfy the prescribed boundary conditions. These 

methods have been superseded by field methods based on finite 
difference or finite element techniques and solutions to three-dimensional 

and transonic stea,dy flows are readily obtainable. Only recently has 
the equivalent step from singularity to field methods been taken in the 
case of unsteady flow. Previously it was possible to calculate flows 
with only a very simple geometry and, for example, the effect of steady 
blade loading in an unsteady,compressible flow was unknown. Field 
methods, based on finite difference techniques, overcome all these 
difficulties, though often at the expense of increased computing time. 

The methods proposed here are based on established steady flow 

solution procedures and it is expected that their development will be 
along similar lines to recent work on steady flows. In each case the 

disturbances are assumed to be harmonic and small compared with the steady 
flow, and to possess a magnitude and phase with respect to some datum. The 
linearisation may not te valid near the sonic speed. Complex notation 
is used to describe the disturbances, and it is found that the equations 
relating the unsteady perturbations are, in general, compiex. These 

may be separated into real and imaginary parts (or, in engineering terms, 
in-phase and out-of-phase components). In the sectiocs that follow the 
governing equations are derived and methods of solution suggested; the 
boundary conditions, both within the blade rows and far upstream and 
downstream are discussed, and finally some examples are given and the 
results compared with existing analytic and numerical solutions. 

2. COMPLEX REPRESENTATION OF THE UNSTEADY PERTURBATIONS 

In the work that follows the dependent variables will be assumed 
to consist of a steady part (subscript o) and a small, harmonic, unsteady 
perturbation (superscript?oscillating with fixed angular frequency w, 
thus 

#(x,Y) = $,(x,y) + 4~‘(x,y) ejwt etc. Cl> 

The quantity I$' represents both the magnitude and phase of the disturbance 

and may-be regarded as complex. Equation (1) may be substituted into the 
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appropriate, non-linearised equations of motion; after elimination of 

second order terms in (+')2 etc, and the known steady state terms which 

separately satisfy the steady form of those equations, the term e 
jut 

cancels everywhere. The remaining terms then represent a linear complex 

set of equations for the (complex) perturbation quantities; it may be 
shown that satisfying both real and imaginary parts of these equations 
separately is identical to satisfying the relationships between in- and 

out-of-phase quantities for all t. 

3. VELOCITY POTENTIAL METHOD 
3.1 Governing Equations 

The unsteady compressible flow of a perfect gas may be described 
by the equation for velocity potential 4 (see Shapiro, 1953) 

2 
3 4J2 4xX{ l- + 

+yyw- 
-4 -21 ~xt~x+~ytQIy d, 

C2 C* 
)-2!5L.Y-~~o 

C2 

where the velocities in the x and y directions are given by 

u=~rl$ 
X 

and c, the velocity of sound is related to the stagnation velocity of 
sound, ct, by 

(9 s c 2 
t 

- I$ q,;> - (y-l)? l 

Linearising equations (2) and (5) by substituting equation (l), a 

linear, complex equation in the perturbation velocity potential 
+'(x,y) is obtained 

“;x{l-M~l + +;y{&-M;} + ,2 ,j* 
cO2 

“I 
- - {(y+l) i 

cO2 

ug+ (y-l) u*+ 2v aY 

% 
-FUY+l) v g + (v-1) v au 

G + 2u ax 
au} 

0 

- !iJ! (2uvI- jw - "ii 

cO2 cO2 

{2uI - jw 5- (2vI 

cO2 

(2) 

(3) 

(4) 

(5) 

(6) 

- jo 5 {(Y-l)(g + $)}= 0 
c; 

0 
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where u and Y are obtained from a known steady state solution for $o, 

and ix and My are the local Mach numbers in the x and y directions, 

3.2 Method of Solution 

Solutions to equation (6) may be obtained by replacing the 

derivatives $;, $~;x etc.by finite difference approximations, care 
being taken near blade boundaries to ensure high order approximations 
to the normal derivative of 4'. In subsonic flow, the resulting set 
of linear equations may then be solved by any of a number of 
techniques including Gaussian elimination, over-relaxation and 
dynamic relaxation (Rushton (1973)),provided the reduced frequencywc/u 
is low. At high reduced frequencies, or more specifically when the 
physical length of the computational region exceeds half a wavelength 
of the disturbance, the Latter two iterative techniques will not 
converge and Gaussian elimination must be used. Provided care is 

taken in making full use of the banded nature of the set of linear 
equations this may be done economically and is, in general, very 
reliable. 

In supersonic problems, the hyperbolic nature of the equations 
means that an approach closer to the traditional method of characteristics 
is necessary to ensure that the domain of dependence of the numerical 
schemes does not exceed the domain of dependence of the real problem. 
This is ensured b,y basing the finite difference grid on the characteristic 
lines 

9L +($ - 1,-i 
dx - 

and marching the solution downstream (Figure 1). When the flow is 
uniform, equation (6) becomes 

(7) 

and the absence of the cross derivative $ 
XY 

simplifies the method since 
the equations may be solved explicitly. In general, and for reasons 
associated with setting up a suitable grid in the entrance region of the 
cascade, the x-direction grid spacing Ax may not be chosen independently 
of Ay. Provided the ratio 

is greater than about0.9, however, the effect on the lift and moment 
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coefficients of the blades is small, although some smoothing of 

wavefronts does occur, and slight numerical instabilities may be 

present. If r exceeds 1.0, of course, the domain of dependence 
condition is violated and no solution may be obtained. 

Finally, the blade pressure distribution may be obtained 

from 

whereupon the blade lift and moment coefficients may be calculated. 

4. HARMONIC TIME MARCHING METHOD 

4.1 Governing Equations 

The Euler equations of motion may be written in conservation 

aw= z+ aG 
at a~ ay 

where 

W= 

andE= p y-1 + ; p (u2+v2) 

. . 

- PU 

- PU2-P 

- puv 

- u(E+p) 
. . 

G' 

- PV 

- puv 

- pv2-p 

- v(E+p) 
s w 

where an energy equation has been included so that unsteady flows 

caused by entropy variations may be dealt with. 

Several approaches are now possible. In the first the 

dependent variables are assumed to be of the form 

. 
P(X,Y) = P,(x,Y) + ~‘b,y> eJwt etc. 

Introducing, for convenience, mass flux variables X’ and Y’ 

X’ = (pu)’ = pu’ + up’ 

Y’ = (pv)’ = pv’ + vp” 

Equations (11) and (12) may be linearised, so that 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 



where 

PI 

W'= x' 
Y' 
E' 

with 
(17) 

E' - (y-l)py-2p’+ + {Zux’ - u2p’ + 2uY’ -  v2p’l l (18) 

4.2 Method of Solution - Differential Form 

Solutions may be obtained by expressing the derivatives 
aF'/ax, X*/ay in finite difference form and solving the resulting 
set of linear equations by Gaussian elimination or relaxation. 
Using the latter method, for example, at iteration n 

W' n*l = w; (1-a) + k [~+*$L,, (19) 

with ct a relaxation factor. This may now be compared with an 

alternative approach proposed by previous authors, e.g. Ni & Sisto (1975), 

W = W + W**(x,y,t) e jut 
0 

F- F. + F"(x,y,t) e jut (20) 
etc. 

Substitution into equation (11) then gives, after rearranging, 

aw,,= _ aF” aG” 
at 

jwW" + ax+ -- 
ay 

or, in a simple one-step time marching method, at time nAt 

W & 
c W" + At (-jaw** ax + aF- + wj 

n ay n 

s W” n (l-jwAt)+At [G+F& 

which may be compared with equation (19). Thus, time marching, in 

this case, may be regarded as a relaxation scheme provided 

a : jwAt . 

The advantage of deriving the relaxation scheme using the second 
method is that a condition for numerical stability is obtained. 
Applying the Courant-Friedrichs-Lewy criterion, which is necessary but 
not sufficent, 

At ( min(Ax,Ay) 
c(l+M)l . 

(21) 

(22) 

(23) 

(24) 



4.3 Method of Solution - Integral Form 

In some problems where the computational mesh is not 
orthogonal, some advantage may be obtained by writing equation (12) 
in integral form and repeating the derivation of the linear 
equations on that basis. Integrating equation (11) over an area A, 

bounded by a closed curve C 

gdxdy = 
Fx + G Y  dxdy l 

A A 
(25) 

Applying Green's theorem to the right hand side, and simplifying 
the integral on the left hand side, 

(26) 

Approximations for the line integrals and time derivatives may then 
be derived and the analysis then follows closely the method based on 
the differential form of the equations. 

5. BOUNDARY CONDITIONS 
5.1 Far Upstream 

There may exist, in any probleqa variety of waves crossing 
the upstream boundary. These may be downstream travelling acoustic or 
vorticity waves which may be regarded as the exciting influence on 
the problem, or upstream travelling waves obtained by reflection or 
transmission of other incident waves. Velocity potential may only 
be used in the absence of vorticity waves or where the streamline, 
and hence vorticity distributions, are known a priori (this dual 
velocity potential/stream function method has been proposed by 
Whitehead, 1974), a condition which is satisfied when the steady flow 
is uniform. The harmonic time marching method, however, has no such 
restriction. 

The steady conditions far upstream (at least for axial flow 
machines) may be regarded as uniform, having a velocity U in the 
axial (x) direction and V in the tangential (y) direction. Now, the 
velocity and pressure perturbations, far upstream, may be written 
(Smith, 1971) 



-7- 

1 
ej bt + ax + 8y) 

. 
where a and 6 are wave numbers, and B is related to the inter-blade 
phase angle AQ by 

B si AQ - 2 rr 
8 

r is the acoustic mode index and varies between + a~. Any general 
disturbance may be regarded as an infinite series of terms such as 
those in equation (27). The conditions for the perturbation to be 
irrotational (acoustic) are 

if = j (a; - B;;j = 0 

I= (w+Ua+VB) 
v 8 

ii a -s- ry B 
and 

(w * Ua + VS)2 - c2(a2 +B2) =o , 

(27) 

(28) 

(29) 

(30) 

(31) 

(32) 

When the disturbance is simply a spatial distribution of 
vorticity caused by wakes and convecting with the fluid the 
conditions to be satisfied are 

F-e 0 (33) 
u - z -at$ 
i? (34) 

r= i(a + t2w # 0 (35) 
and 

a= - (w + VS) 
u l (36) 

Now, in some cases, numerical problems may arise when trying 
to provide, at an upstream location, an input velocity perturbation in 
the form of a downstream travelling wave. The method of specifying the 
boundary condition must allow upstream travelling waves, of known 
wave-numbers a, 8, but unknown strengths, to pass through this boundary. 
It is entirely wrong, for example, to specify Ci= o since this implies 
that the boundary is solid to acoustic waves and upstreamgoing waves will be 

reflected back into the flow. This difficulty may be overcome by eliminating 
the unwanted waves in turn. For example, ifan incoming wave, amplitude u 

0 
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produces a single reflected wave of mknown amplitude G so that 
1 

UC - ii o exp j Cut + aox + Boy) 

+ El exp j(wt + alx + BlY) 

then zl may be eliminated by use of an operator B 

(37) 

(38) 

so that the boundary condition becomes 
a 

B(u') = co{1 - $fl exp j(wt + aox + Boy) (39) 

where the right hand side is known, and finite difference approximation 

to B(u') may be deduced from equation (38). Repeated use of the operator 

B may be used to filter out several waves but the order of the boundary 
condition increases with each filtered wave. 

5.2 Far Downstream 

Far downstream of a blade row the effect of the unsteady vorticity 
shed by the blade and convected down the steady state streamline is 
dominant. 'However, since the pressure perturbations produced by the wake 
are zero (equation (33)) asuitable far downstream coniition may be simply 

p* = 0 (40) 

where p* may be expressed in terms of the velocity potential at points 
1 and 2 (Figure 2) using equation (10). 

In circumstances where acoustic waves are present at the 
downstream boundary, however, an approach similar to that at the upstream 
boundary is necessary. 

5.3 Repeat Condition Upstream 

In cascade problems the solution must repeat from blade to 
blade with a phase difference AQ. Ihe simplest way to impose this 

condition in the case of the velocity potential method is to relate points 
3 and 4 one blade spacing apart (Figure 2) using 

05 using velocity and pressure perturbations, 

UC UN II [I vtc = VC .,jAQ 

PC 3 PC 4 

(41) 

(42) 
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5.4 Blade Surface Conditions 

In all cases, where the steady flow is uniform, velocities normal 
to the blade surface must be equal to that of the blade itself; a further 
effect which must be considered arises when the blade has a steady loading; 
as the blade vibrates it moves to a region where the steady state normal 
velocity vn is different. If the blade surface at any point vibrates with a 
normal amplitude h, velocity jwh and angular .ampl$tude ~1, the normal velocity 

condition hecomes 

avn 
V ' = jwh + s'h + a.vs n (43) 

on the reference blade. For the flat plate cascade vn, the steady state 
normal velocity, is zero everywhere and the condition is simplified. 

Great care must be taken when applying the normal boundary 
condition so as to preserve a high order difference scheme on the 
boundary. This may be achieved by placing dummy points across the 

boundary and eliminating them using the original full differential 
equations. Figure 2 shows the six points (numbered 5 to 10) of a skewed 

mesh used to calculate the normal derivative of velocity potential 
at the central point on the boundary; the three dummy points shown 
may be eliminated simultaneously when the steady flow field is 
uniform. 

5.5 Wake Conditions 

Vorticity is shed from the blades as the lift varies and 
is convected down the stagnation streamline. It is possible to 
equate this shed vorticity with a velocity or velocity potential 
jump across the wake and, together with the condition that the 
velocities normal to the wake must be the same on either side,to 
solve the problem for a guessed (complex) value of the shed vorticity. 
The velocity at the trailing edge must remain finite and the shed 
vorticity must be adjusted and the solution repeated until this is so. 

A better scheme eliminates the last iterative step by 
using the fact that there is no pressure jump at the wake. It may 
be shown by reference to the energy equation that this scheme is 

entirely equivalent to the shed vorticity model and automatically 
satisfies the Kutta-Joukowski condition of zero trailing edge loading. 
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5.6 Supersonic Cascade Boundary Conditions 

In cases where the axial Mach number is greater than 1.0 
and the blade spacing such that aerofoils may be treated as isolated, , 
the far upstream condition becomes one of zero disturbance and the 
far downstream condition is unimportant since acoustic waves cannot 
propagate upstream. When the axial Mach nunher is subsonic, however, 

neither of these conditions holds since, at all frequencies and 
phase differences, some waves propagate both upstream and downstream. 
Iwo approaches are then possible Inthe first,the cascade is treated 
as a long linear one (Figure la), the end blade being replaced by, 
for example, a solid wall, or better, a boundary which will not reflect, 
numerically, the downward running disturbances back into the cascade. 

The solution proceeds from upstream to downstream-in a single pass, 
sweeping over successive blades until the results from two adjacent blades 
are similar; whether these results are then representative of zin annular 

cascade is debatable. The second approach is to use a long strip, 
one blade spacing in height (Figure ib) and to sweep repeatedly 
from upstream to downstream, updating (b'values on the edges of the 
strip by utilising the cascade condition. 

0' a 4; . exp (jQ) m+l (44) 

linking corresponding points on the top and bottom edges. Unfortunately, 
this method requires more sophisticated treatment of the far upstream and 
downstream boundary conditions and convergence is not guaranteed. 

Problems also arise near blade boundaries when the normal 
velocity condition has to be satisfied; in this case dummy points may 
be set up across the wall so that, for example, (see Figure 7) 

4;; = 4; -‘:a$7 v) 
0 

where vi is the normal velocity of the blade at0. This second order 
treatment is inaccurate near leading edges and other discontinuities 
and may be replaced there by a first order approximation 

$I; - $;. - Ayevaeexp M6,-xo!/l 

where 
(M2-l\W 

I= & 9 
W is the (assuwd uniform) free stream velocity 
and point a, on the blade, is on a characteristic 

. - dy/dx - (&l)+ . 

(45) 

(46) 

(471 

(48) 
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drawn through the point (x0, - Ay/2). This approximation was derived 

by reference to Stewartson's (1950) exact solution 

(49) 

6. RESULTS -- 
6.1 Subsonic Cascades 

Some in- andout-of-phase pressure distributions have been 

calculated for a cascade of bending flat plates at zero stagger, with 

zero and approximately lr/4 phase difference, and at .O and .5 Mach 

numbers. These were obtained using the velocity potential method and 

an iterative solution procedure and compared with results obtained using 

Smith's (1971) integral method. 

Figure 3 shows the case where the stagger is zero, the 

reduced frequency, WC/W, unity and inter-blade phase angle zero. 

Agreement is excellent when the coarseness of the computational mesh 

is considered. The method fails to predict the behaviour near the 

leading edge singularity and is inaccurate near the trailing edge where 

the velocity gradients are, theoretically, infinite. For this latter 

reason an examination of the strength of the shed vorticity is not an 

accurate guide to the unsteady lift. 

Figure 4 shows the effect of increasing the Mach number from 

zero to .5; the effect is small but is accurately predicted. 

Figure 5 shows the results for an inter-blade phase angle of 

.7071. Convergence was poor in this case but the agreement with Smith's 

results was excellent. 

Other comparisons for cases of torsion and non-zero stagger 

have been made and agreement with Smith's results has again been very 

good. 

6.2 Supersonic Isolated Aerofoils and Cascades 

The velocity potential method has been programmed to predict 

lift and pressure coefficients of several isolated aerofoils and 

cascades rotating and flapping in a uniform supersonic stream. Figure 6 

compares the lift coefficient for a flapping isolated aerofoil with those 

obtained analytically by Shade (1946); the agreement is very good 
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everywhere. Figure 7 shows the in- and out-of-phase distribution of 

lift on an isolated aerofoil and is compared with the distribution 

obtained by numerical integration of Stewartson's exact solution - 

equation (49). This problem was repeated with a mesh spacing chosen 

so that r = Ax/AydM2-1 = .96. The solution oscillates about its 

true value close to the leading edge discontinuity but, when it is properly 

integrated to give the total lift, the errors involved are very small. 

Finally, the cascade problem was examined and results 

obtained for the case h/c = .4, o/c = .68 (see Figure 1) using the 

linear cascade method. The variation of lift and moment coefficients 

with blade number are shown in Figure 8; it may be seen that 

convergence is rather poor although the levels approach those 

calculated by Verdon (1973) using a related method. No convergence 

was obtainable using the single strip method, 

7. CONCLUSIONS 

Several examples have been given of how a combination of 

the complex representation of unsteady flows and modern numerical 

methods for solving steady state flow problems may be combined to 

predict unsteady effects in turbomachinery cascades. As a preliminary 

examination of the accuracy of the methods some numerical examples 

have been evaluated for a variety of simple cases and compared 

with existing methods; agreement was, in general, very good. 

The methods described may be used to predict unsteady flows 

in regions where the steady flow is non-uniform, although in this 

report no numerical examples of this are given. 

A simpler approach to the far upstream and downstream baundary 

conditions is needed to deal with cases where several acoustic modes 

propagate away from the blade rows. 
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