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INTERFERENCE PROBLEMS ON WING-FUSELAGE COMBINATIONS 

PART I: LIFTING UNSWEPT WING ATTACHED TO A 

CYLINDRICAL FUSELAGE AT ZERO INCIDENCE 

IN MIDWING POSITION 

J. Weber 

SUMMARY 

The incompressible flow field past a single straight vortex line which 

crosses a cylindrical circular fuselage at right angles has been studied. In 

particular the downwash induced in the plane through the vortex and the axis of 

the fuselage has been determined numerically. 

The results are used to solve the design problem for an unswept wing of 

infinite aspect ratio for which the chordwise load distribution is given and the 

spanwise distribution in the presence of the fuselage is required to be constant. 

It is shown how the interference effect varies with the ratio R/c between the 

body radius and the wing chord, and with the spanwise distance from the junction. 

A modification of existing methods (see e.g. Ref.3) for calculating the 

spanwise load distribution of wing-fuselage combinations is suggested to take 

account of the body interference with the chordwise load distribution. 

- 

* Replaces RAE Technical Report 69130 - ARC 31 532. 
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1 INTRODUCTION 

To study some of the interference effects between a fuselage and a lifting 
wing, we begin with a simple case in incompressible flow. We consider an 
infinite cylindrical fuselage of circular cross section with the axis parallel 

to the main stream. The isolated fuselage does thus not perturb the main 
= ; stream. We consider an unswept lifting wing of constant chord and infinite 

span. The fuselage is attached to this wing in the midwing position. 
,’ 

a 

The wing is supposed to have such a camber surface that it produces, with 
the fuselage present, a given chordwise load distribution which is constant 
along the span (i.e. chordwise and trailing vorticity occurs only far away from 
the fuselage and its effect is neglected near the fuselage). 

The present investigation is to be of an accuracy similar to that of 
linear wing-theory, which means we may assume that the bound vortices lie in a 
plane, namely a plane through the axis of the fuselage. Each half of the wing 
is thus represented by a chordwise distribution of semi-infinite unswept vortex 
lines. 

We are free to choose the way in which the vortices from one half of the 
wing are joined to the vortices from the other half. The vortices could, for 
example, run along the circumference of the fuselage. We take them such that we 
have infinite straight vortices in the gross wing plane. 

To these vortices we must add singularity distributions either inside the 

fuselage or on its surface such that the total sum of the singularities produces 
zero normal velocity on the body surface, i.e. the fuselage remains to be a 
stream surface. We choose for the additional singularity distribution a source- 
sink distribution on the surface of the fuselage. 

5, 

---r 

This source-sink distribution induces in the wing plane a normal velocity. 
The vortex distribution and its velocity field are the same as for the isolated 
wing, so that the total interference effect is given by the velocity field from 
the source-sink distribution. 

We begin by considering a single vortex in the presence of the fuselage 
and determine the downwash field in the wing plane. From this we can then deter- 
mine by a chordwise integration the downwash, i.e. the required camber, for a 

given chordwise load distribution. This means that in this paper we deal mainly 
with the design problem. 



For the design problem, it seems sufficient to consider only a fuselage at 
zero incidence, since the design case is usually the cruise configuration, where 

the passenger cabin is at zero incidence. In this case, the effects of the nose 
and the rear of the fuselage on the flow over the wing can be approximated by 
those of the isolated fuselage. 

The major aim of this paper is to elucidate certain interference effects. - 72 
This is the reason for choosing a simple configuration, though the latter has no 
direct practical application. I s 

The answers to the design problem can however be of some use when dealing 
with the problem to calculate the load distribution of a given wing in the 
presence of a fuselage. The framework used by Kiichemannl to calculate the 
chord and spanwise load distribution for isolated wings can be extended to deal 
with wing-fuselage combinations. 

I 
Kiichemann uses extensively the concept of a sectional life slope a(y) 

which on a swept wing varies along the span. It seems justifiable to introduce 

for a straight wing attached to a fuselage a sectional lift slope which also 
varies along the span. This modification can easily be introduced into the 
method, developed by Multhopp2 and extended in Ref.3, for calculating the span- 

wise load distribution on wing-fuselage combinations. Some results from the 

design problem can be used to determine the sectional lift slope a(y) as func- 
tion of the ratio of the body diameter and the wing chord. 

2 SINGLE STRAIGHT VORTEX IN THE PRESENCE OF A CIRCULAR CYLINDRICAL FUSELAGE 

2.1 Velocities induced by the vortex at the fuselage 

Let x, y, z be a Cartesian system of coordinates and x, r, 9 a system 
of cylinder coordinates. We consider an infinite vortex through x = 0, z = 0 
and parallel to the y-axis. The strength of the vortex is constant and equal to 
r . We consider further an infinitely long cylindrical fuselage of circular 
cross section y 2 2=R2=1 + 2 . The vortex crosses the fuselage thus at right 
angle. 

The velocity field of the vortex has the components: 

r 2 
v = 

X x x2 + z2 



vY = 
0 

r ‘X 
v = 

z 2;;x2+z2 - 

The vortex induces therefore at the surface of the fuselage a normal 
velocity component (positive outwards): 

2 . vnl(x,~) = vy cos 8 + vz sin 9 

r - x sin 9 
= 21r x2 + sin2 +) l 

(1) 

The distribution of -v (x,8) 
"1 

is illustrated in Fig.]. 

2.2 Source distribution on the fuselage to make the fuselage a stream surface 

This normal velocity can be cancelled by a source distribution of strength 
q(x,a) on the surface of the fuselage. 

A three-dimensional source Q at x', y', z' induces at x, y, z the 
velocity components 

A- 
vy = 4" 

Y - Y’ 

(x - x') 2 
2 + (Y - Y’12 + (2 - 2') 2'3 

The source distribution q(x,o) induces therefore at the cylinder the 
normai velocity 

vn2 (x,9 = qbb@ 
2 

+ 
I I 

q(x' ss'> (COS 9 ‘COS 8') COS 6 + (sin 8 -sin 8') sin $]d6'dx' 
4" 3 

-00 0 (x- xy2 + (cos 9 -COS 8')2+ (sin tp- sin t9')2 

= d%‘B 
2 

+ 
I I 

q(x' ,w [I -cos (6@)]do'dx' 
4" . I 

- 0 (x -x')2+2[1 -cos c4-q3 
(2) 
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To make the cylinder a stream surface we have to determine q(x,fi) such 
that 

vn2W) = - vnI(xy8) * 
Since 

00 
Cl - cos (8 - @)]dx’ = 1 

4 
-Qo (x - x')2 + 2[1 - CO6 (19 - P)J3 

s 

(3) 

we obtain from equations (1) to (3) 

2a 
q(x,6) = ; 2x sin 9 _ 

X + sin2 8 
@&t!&,' 

0 

m 2s 

-II 
~q(x',8') - q(x,W)] [I - cos (8 - @)]do'dx' 

3 . 
-0 x - x')2 + 2 [I - CO6 (8 - WI 

The source distribution q(x,@ has the same planes of symmetry or anti- 
symmetry as v 

nl 
(x,8 : 

q(x,@ = - QC-x,@ 

= - qb,-0) 

= q(x, IT - 9) . 

As a consequence 

J q(x,@da = 0 . 
0 

The source distribution has therefore to satisfy the equation: 

4(x,@) = $ x sin 9 
X2 + sin' 8 

z -- 

L :  

--c 

^-- 

= 2TT 

-II' 
q(x’,6’) - q(x,tP)] [l - cos (6 - o')]da'dx' 

. I 3 (4) 
.-co 0 2n (x - x')2 + 2[1 - cos (8 - W-J 

2 



A numerical solution of this equation could be determined in a manner 
similar to the method developed by A.M.O. Smith and J.L. Hess (see, for example, 
Ref.4) for calculating the pressure distribution on a non-lifting wing-fuselage 
combination. This would however involve the solution of a large system of 
linear equations. 

2' . Our aim was to determine only an approximate solution but with somewhat 

less effort. Further we intended to deal with continuous functions for the 
Z 

m source distribution, instead of using panels of constant source strength, since 

with the latter one obtains realistic results only for certain points on the 

panels. This is particularly important, since we wanted to perform the lengthy 

part of the calculation (i.e. the determination of the source distribution on 

the fuselage and the downwash which the latter induces in the wing plane) only 
once namely for a single vortex and then use the results with a series of chord- 
wise vortex distributions VW l 

Equation (4) can also be solved by an iteration procedure, such that the 

nth approximation q b-d (x ,s> is derived from the (n - I)th approximation by 

,(d (x,Q = 2 x sin 8 
Tr x2 + sin 219 

00 2n 

-Jf q 

c (n-1) (x’ p) - q(n-l)(x,s’,] [l - cos (8 - Wld6’dx’ . 
r 13 

-00 0 2T (x - x’)2 + 2L-l - cos (8 - WI 
2 

We note first that the approximation 

Y- 

_-  

q(o) (x,g) = L x sin 19 
= x2 + sin 219 

represents the approximation according to slender theory, for which we would 
solve at each station x the corresponding two-dimensional problem. 

We have performed only 
calculated q(*)(x,o) from 

q(l) (x,fj) = z. x sin t9 
= x2 + sin2 9 

the next step in the iteration procedure and 

(5) 

a 2a 

-If 

[q(o)(xt , 8') - ,(')(x P)][l - cos (6 - 8')]d6'dx' , 
03 

. (6) 

-0 0 (x - x')2 + 2[1 - cos (9 - It+'>] 
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To do this we followed Vandrey' and expressed v and q(x,@ as 
Fourier-series: "2 

CQ 
2v =.!I x sin 6 r 

"2 IT x2 
= 

+ sin 2 fi c y n=o 
Y 2n+l(x) sin (2n + 1)9 (7) 

- k 
03 

q(x,N = $ 
c 

P2n+IW sin (2n + I)8 . (8) e ‘L 
n=O 

Since 

sin (2n + I)a'[I - cos (8 - 8')]d8' = 
*3 

(x - x') 2 + 2[1 - CO6 (6 - O')] 

sin (2n + l)a cos (2n + 1)X(1 - COB X)dX 
d 

we obtain from equation (4) for the unknown functions P~~+~(x) the equations 

‘2n+ 1 (x) = Y2n+,w 

OD 2a iv 
-II 

2n+]o) - u~~+~(x)] cos (2n + 1)X(1 - cos x)dxdx' 
(9) 

-Q) 0 (x - xy2 + 2(1 
‘3 

- CO6 x) 

and for the approximate value 

= Y2n+, (4 

03 2n 

- II 
c y 2n+l(x1) - Y2n+l(~)] cos' (2n + 1)X(1 - cos X)dXdx' .(,o) 

(3 
--crD 0 (x - x1)2 + 2(1 - CO8 x) 

-I 

-c - 
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The functions Y2n+l(x) have for n = 0, 1, 2 the values 

y5 (x> + 12x2 + 16x4 - 
1x1(5 + 20x2 * 36x4) 1 

. (11) 

For large x , Y2n+* (x) behaves as -22n+l . 
(2x1 

We have determined numerically some values of the integral in equation (10) 

and have plotted the resulting values of ug;, w in Fig.2 together with the 

values of Y2n+l (4 = lJ’2n+I (O) (x) . 

We note from Fig.2 that the differences between vi;.1 64 and P::: 1 W 
are not very large. The ratio 

is for n = 0 less than 0.15, for n = 1 less than 0.055 and for n = 2 less 

than 0.035. The maximum value of 
q(o) (x,@ - qC1)(x,9) 

qm 
is less than 0.17. 

(WV 
The differences p 

'2n+l (x) reach their maximum value where 

a maximum and for increasing x they tend more rapidly to zero than 

as is to be expected. 

If we were to perform a second step in the iteration to determine q(x,S) 

by calculating the integral in equation (9) with u $, w , we can expect that 

& lx> would lie between IJ,$~(x) and uiAil(x) but noticeably closer to 

vg;* (4 l We may expect that q ( ') (x,iQ and q (2) (x ,a> would not differ by 

more than about 3%. 

We intend to apply the results within the framework of linear wing theory, 

i.e. we ignore the interference between the wing thickness and the lift. 
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Further we intend to calculate the downwash induced by a vortex distribution in 

a plane and not in the resulting cambered surface. These simplifications can 
involve errors of the same order as the 3% uncertainty in the source distribu- 
tion q yx,a> . 

We have therefore not performed any further iterations for ~2~+1(x) . 
. Since the ~2~+, (x) for n > 2 contribute less to q(x,@ than the first 

three terms and since the relative difference AU) u2n+l(~)/$I(~) is decreas- - " 

ing with increasing n , we have not calculated A (1) v2n+l (4 for n > 2 l * ‘? 

We have therefore taken for the source distribution q(x,@ the value 

qbd) = f - A(') 

_ L\(l) p3(x) sin 38 - A (1) u,(x) sin 58 . 
I 

(12) 

We quote in Table 1 some values of the functions A(l) 
y ' 

A(1) 
A(l) u3 ' 

M5 
in case someone might want to calculate for example the streamwise 

velocities induced at the body surface. 

2.3 Downwash in the plane through the vortex and the axis of the fuselage 

*We consider now the velocities which the source distribution q(x,@ on 
the fuselage induces in the plane 2 = 0 , i.e. the plane through the vortex and 
the axis of the fuselage. 

If we consider a pair of source elements at x, 19 and x, -19 and remember 
that the strength of these elements is the same but of opposite sign, then we 
find that in the plane of symmetry 8 = 0 such a pair does not produce a 
velocity component v nor a component v , but only a component v- . From 

X Y 
this follows that the total source distribution on 

duce v or 
"Y 

velocities in the plane z = 0 . 
X 

The source distribution q(x,6) produces in 
downwash 

the fuselage does not pro- 

z = 0 the additional 

- Avz(x,y,O) = 
II 

4(x’ $1 sin 8 d8dx' 
4lT c 

-cQ 0 (x - x’) 2 + (y 2 - cos 8) C sin 

_P 

--i 

- 2lT 

IJ sin 8 d8dx' = 
13 l 

--m 0 (x-x') 
2 2 

+y + I-2ycos19 
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L * 

(Note that a positive vs velocity is directed upwards.) This equation can be 

written in the form 

02 2Tr 
[q(x',o) - 4(x,8)] sin 8 d8dx' 

- Avz(x,y,O) = JJ 
-00 0 4x j (x - x')2 + y2 -I- 

63 
I - 2y cos 6 

2T 

+ 
I 

q(x,o) sin 19 do 

0 27T[y2 1 2y cos 83 
. 

+ - 
(13) 

The single integral gives the -Avz (x,y,O) produced by a distribution of two- 

dimensional source lines q(G,x) on the circle y2 + z2 = 1 . 

The integral 

2ll 

- Av;')(x,y,O) = 
J 

q(")(x,s) sin 6 dti 

o 21T[y2 + 1 - 2y CO6 61 
(14) 

may be called the approximation from slender theory, where we would assume that 

vn (x,@ and q(x,6) vary only slowly with x . 
1 

With q(')(x,o) = 5 x2X sin t we obtain: 
+sin 6 

x sin2 8 (l+y2)d8 

c2 x +sin 2 9][(y2+ 1)2 -4y2 cos2 03 

x(1 +y2) sin2 6 do 

Is2 +sin2 o][(y2- 1)2 + 4y2 sin2 $1 
I- 1 

X3 y2- 1)2 

2 x +sin 2 a-( 4y2 

r = - (y2+1) 

IT [4y2x2 - (y2 * 
(15) 
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In this relation we have to exclude the case X2 = (y2 - ‘12/4y2 . For 

this case we obtain for y + 1 

- AJO) x = f Y22; l,y,o = L x 
z 

( ) 7r 1x1 (y2y+ 1)2 l 

With the q(x,6) given in equation (12) the single integral in 

equation (13) has the value 

(16) 

-- 

0 

r = - 
IT 

q(x,a) sin 8 do 

2qy2 + 1 - 2y cos 8-j 

r r 

i 

2 
y +I 

L 

3 

4y2x2 - (y2 - l)2 
,4j- 1 + x2 

1 1 (1) -- - - 
2Y2 

p I-Ip 
2Y4 

A(1) 
v3(x) --$A (17) 

2Y 

.The double integral of equation (13) has been determined numerically. The 

value for y = 1, x -+ 0 has been derived by graphical extrapolation from the 

values calculated for x + 0 , since the author has been unable to determine 

analytically the limit: 

c0 2?r 

I = lim 
i i[ 

X’ X sin2 8 dadx' 

x-4 * 

0 

XV2 + sin 2l9-X2 + sin 1 2 I9 
‘3 l 

--m (x - xfj2 + 2(1 - cos 8) 
2 

In Fig.3 we have plotted for the wing body junction, y = R = 1 , the 

chordwise distribution of the additional downwash, -Avx , produced by the source 

distribution on the fuselage, together with the downwash induced by the vortex 

line itself: 
** The curve Avs is obtained from equation (13); Av(') is z 

the result from slender theory, equations (14) to (16); and Av(+) z is given by 

equation (17). The additional downwash changes its sign with x , 

Avz(x> = - Avz(-x) . 

The figure shows that the interference term Avs cannot be neglected com- 

pared to the downwash of the isolated vortex except close to the position of 
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the vortex. The figure shows further that slender theory overestimates the 

interference close to the vortex. We note from Fig.3 and equation (15) that 

for large values of x , ‘lvz 
m 

is equal to J- 
27T fi &+$ ' i*e* it is as large 

as the downwash produced by the vortex itself. 

: ' 

In Fig.4, we have plotted Avz and *v(O) 
Z 

for two spanwise stations away 

from the junction. We note that for y > R , Av 
Z 

vanishes at the position of 

the vortex whilst for y = 1 , Av z has a discontinuity at x = 0 , but the mean 

value vanishes also for y = 1 . 

This fact that the interference between a straight vortex and a fuselage 

with fore and aft syrmmetry vanishes at the position of the vortex has been noted 

by Lennertz' and Vandrey5. Within the framework of the so-called 'lifting line' 

theory this fact has been interpreted as implying that there is no interference 

between an unswept plane wing of infinite aspect ratio at an angle of incidence 

and a cylindrical fuselage in midwing position at zero angle of incidence. In 

the next sections we shall demonstrate that this interpretation gives misleading 

results. 

The Avz values given in Fig.4 show that the body effect decreases 

rapidly with distance from the junction. For large x it decreases as (R/yj2 , 

i.e. as in two-dimensional flow, or in slender theory. For small x , the 

interference effect decreases more rapidly. 

3. DESIGN OF THE CAMBER SURFACE OF A WING-FUSELAGE COMBINATION FOR A GIVEN 
CHORDWISE LOAD DISTRIBUTION 

c‘ . 

We consider now an unswept wing of constant chord, c , and infinite 

aspect ratio, attached to a circular fuselage in the midwing position. The 

wing is supposed to have a camber surface zs (%Y) such that the load distribu- 

tion -ACp(x,y) is constant along the span. For a thin wing 

-*Cp (x, y) = 2Y(x,y) = 2Y(X) . 

The required camber surface can be calculated by means of the downwash for 

a single straight vortex, if we make the approximations of linear theory and 

assume the vortices to lie in the chordal plane and approximate the normal 

velocity at the camber surface by the downwash induced in the chordal plane. 
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We obtain for the camber surface zs(x,y> the equation 

azs (X,Y> vz(x,y,z = 0) 
ax = vO 

1 

with Av from equation (13) or from Figs.3 and 4. 

As a first example we have chosen the load distribution 

Y (4 = 2ovo =$ 
II 

, o<x<c (19) 

which gives for the isolated wing a flat plate, aqx,y)/ax = - a . 

Fig.5 shows the slope of the camber surface in the wing-body junction and 
the shape of the section. We note that a positive twist and some positive 

camber is required for the section in the junction. The figure shows that the 
interference effect is quite large in the junction, except for fuselages where 
the body radius is large compared to the wing chord, i.e. the case where the 
fuselage acts as a plane normal to the plane of the wing. 

Fig.6 shows the slope of the wing, also in the wing-body junction, for 
the load distributions given by the second and the third term of the Birnbaum 
series. 

Fig.7 gives the slope of the wing for the flat plate load distribution, 
equation (19), and R/c = 0.2 , at a few spanwise stations away from the junc- 
tion. To judge the importance of the interference effect for fuselages of 
different size, it seems more relevant to measure the spanwise distance with 
respect to the wing chord. We have noted in Fig.4 that the interference down- 

wash Avz of a single vortex decreases with distance from the junction at 
least as (R/yj2 . The interference effect decreases therefore more rapidly for 
bodies with smaller R/c , but the effect in the junction is larger for smaller 
bodies. 

In Fig.8 we compare the slope in the junction calculated with the inter- 
ference term from slender theory Av(') z , see Fig.3 and equation (15), with the 
slope calculated with Avz , equation (13). We note that slender theory gives 
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a qualitatively correct estimate of the interference effect; the numerical 

values are for the chosen example about 20% too large. The percentage error 

increases of course with decreasing c/R ; it is about 60% for c/R = 1 . 

4 THE LOAD DISTRIBUTION OF A GIVEN WING ATTACHED TO A FUSELAGE AT ZERO 
ANGLE OF INCIDENCE IN MIDWING POSITION 

In practice, one is just as much, if not more so, interested in the prob- 

lem of determining the load distribution for a given wing at a given angle of 

c . incidence in the presence of a fuselage. With the isolated wing, the solution 

of this problem requires already far more numerical work than the design problem, 

since an integral equation has to be solved. 

If one were to attempt a solution of the wing-fuselage problem by an 

iteration procedure, then it would be necessary to determine for each modifica- 

tion to the load distribution of the wing the modification to the source distri- 

bution on the fuselage and its effect on the downwash at the wing. To solve the 

problem in this way would be very laborious. One would probably prefer to 

obtain an approximate solution, in a manner similar to that of Ref.7, by means 

of panels of constant source distribution on the surface of the configuration 

and panels of constant doublet strength on the camber surface and in the wake. 

We have seen in Fig.7 that the body effect can vary rapidly along the span. 

This makes it necessary to use a large number of panels if one wants to be able 

to extrapolate to the load distribution in the junction. 

We intend in this section to make use of the results obtained so far, to 

derive some modification to the existing approximate methods for determining 

the load distribution on wing-fuselage combinations, which are based on the work 

of KGchemann' and Multhopp . 2,3 

I . 

To do so, we want first to interpret some implications of the wing-body 

interference in a manner somewhat different from the previous section. We ask, 

what is the load distribution of a wing with a given shape at the junction, if 

the remainder of the wing has a shape such that the load distribution is con- 

stant along the span? (We note that this is not a problem which arises in 

practice.) 

To answer this question, we have to find a solution of equation (18), for 

the special case y=R , with azs/ax given. We consider the special case 

that in the junction the wing has an uncambered section at the angle of incidence 

OL . As stated above, we are only working to the accuracy of linear theory, 



16 

i.e. we are dealing with the limit a-to. This means that the variation of 

the wing height with respect to the axis of the fuselage is ignored. 

Equation (18) cannot be inverted analytically, as without the interference 

term. We have therefore determined only a crude approximation to the load 

distribution by expressing V(x) as a sum of the first three terms in the 

Birnbaum series. For R/c = 0.2 , an approximately flat section is obtained 

from 

(20) l -’ 

The slope of the section and the load distribution are plotted in Fig.9. 

The most important fact is that the lift coefficient is 37% smaller than 

for a wing without fuselage, which has the same section throughout as the wing- 

fuselage combination has in the junction. We must however remember that for the 

wing-fuselage combination considered the section varies along the span, 

In practice, we are more interested in wing-body combinations, where the 

wing has the same flat section along the span. For this the load distribution 

varies along the span and the lift coefficient further outboard tends to 27ra . 

The ensuing system of trailing vortices is such that it produces an upwash in 

the junction which means the lift there is larger for the flat wing than for 

the cambered wing with the flat junction. 

To obtain an estimate of the Cl, -distribution of the flat wing at incidence 

in the presence of the fuselage at zero incidence, we make use of the concepts 

of Kiichemann's method' for calculating the spanwise loading on isolated wings. 

There, the chordwise load distribution is expressed as the sum of two terms. 

The first is the load distribution of the corresponding two-dimensional section; 

this distribution is derived by ignoring the spanwise variation of the load 

distribution, i.e. the trailing vortices are ignored. For the wing-fuselage 

combination, the corresponding term - ACp(x;y) = 2Y(x;y) is the solution of 

equation (18). The effect of the trailing vortices is approximated by a down- 

wash a;(y) 9 which is constant along the chord, i.e. the second term in the 

load distribution is aiACp(x,y; a = 1) . 

To determine the downwash induced by the wing trailing vortices in the 

presence of the fuselage, we apply the method developed by Multhopp' and 

extended in Ref.3. The equation to be solved, equation (16) of Ref.3, differs 

from the one used previously in that we take for the sectional lift slope, 

v-i 
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a = CLheff , at the junction a value which differs from that of the isolated 

straight wing, 

-I . 

The spanwise variation of the lift slope, a(y) , can be determined from 

equation (la), by calculating for various y > R and given R/c and 

aqx;~) 

ax =” the load distribution Y(x;y) and 

a(y) = 2 2 Y(x;y) d 
a 0 c l 

We have not done such calculations, but have approximated a(y) by the 

relation 

a(y) = aJ@2 + 2s[l - (;)2] , (21) 

similar to the spanwise variation of Av z ' see Fig.4. The accuracy of this 

approximation is consistent with the accuracy of the Kiichemann method. 

In Fig.10, we show the effect of the variable a(y) on the spanwise CL 

distribution for the example of an unswept tapered wing with aspect ratio 

A=6, for which the ratio between the body diameter and the wing span is 0.1 

and the ratio between the body radius and the wing chord at the centre section 

is 0.2. We note a considerable reduction of the lift near the junction. 

We also know from Figs.5 an,d 6 that the difference HIT - aJ is reduced 

when the ratio R/c increases. We have determined some approximate values of 

aJ as a function of R/c in the same way as above, using again only the first 

three terms of the Birnbaum series for Y(x) . The result is plotted in Fig.]]. 

We shall at a later date solve equation (18) to a higher accuracy. 

The chordwise load distribution in the junction, plotted in Fig.9, differs 

from that of the isolated wing in one further respect, namely in that its centre 

of pressure is further forward. For the example plotted, x cp/c = 0.225 , 

compared to x ac/~ = 0.25 for the isolated wing. If more terms of the Birnbaum 

series for y (x;y = R) had been used to obtain a better approximation to 

azs(x,y = R)/ax = - c1 P then xcp would be somewhat forward of 0.225~. Within 

the framework of Kiichemann's method, the chordwise load distribution at the 

junction of the uncambered wing at angle of incidence attached to the fuselage 

at zero incidence would also be approximated by the one given in Fig.9 (or by 

equation (20)) except for the factor 1 - 
oi junction 

. 01 
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5 FURTHER WORK 

Except for part of the last section, we have considered only wings of 

constant chord, infinite aspect ratio and constant spanwise load distribution. 

KGchemann's framework can be used to design swept wings of finite aspect 

ratio for a given load distribution and to determine the load distribution of 

given wings. His method is based on a relation for the downwash induced by the 

bound vortices which was derived from wings of infinite aspect ratio and span- 

wise constant load distributions. 

With straight wings attached to a fuselage at zero incidence, the corres- 

ponding relation is given by equation (18). We can therefore in a similar 

manner derive approximate methods for designing wing-fuselage combinations with 

wings of finite aspect ratio and given load distribution. 

For the isolated wing, Ktichemann has simplified the task by a further 

modification to the relation for the downwash. He has approximated it by an 

equation which can be inverted analytically, so that for a given chordwise 

distribution of the downwash the strength of the bound vortices can be calculated 

from an integral over the downwash. We have not yet obtained an approximation 

to equation (18) which can be inverted analytically, so that we still need to 

solve an integral equation numerically. The function Avz($y) in equation (18) 

can tof course be approximated by analytic expressions as,for example, for 

y/R = 1 and X I I IT <5: 

Avz m = * 0.105 
[ 

1 - 0.4 Ix' 
' + Ix1 

- 0.1 (1 ;J - 0.5 (%)'I . 

The design of an isolated wing can of course be improved by dealing with 

the complete equation for the downwash related to a given load distribution of 

a finite aspect ratio wing. Similarly, the design of a wing-body combination 

can be improved by calculating the normal velocity at the fuselage which is 

induced by the bound and the trailing vortices related to a given load 

distribution. 

Before starting with this problem, it is planned to consider the combina- 

tion of a cylindrical fuselage with a swept wing. For this the design problem 

is of practical interest, e.g. with respect to transport aircraft designed for 

high subsonic cruise, see, for example, Ref.8. We shall again consider wings 

of constant chord and infinite aspect ratio with a given chordwise load 
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distribution which is constant along span and derive a relation between the down- 
wash and the bound vortices. 

Further, fuselages in off-centre position have to be considered. With 
these an uncambered untwisted wing of finite thickness produces a lift at zero 
wing incidence. We shall therefore also deal with the thickness problem. In 

-‘ . preparation for this, we intend to begin again with an unswept wing of infinite 
aspect ratio in midwing position. 

e - 6 CONCLUSIONS 

The flow field past a single straight vortex crossing a cylindrical 
circular fuselage at right angles has been studied, in particular the downwash 
induced in the plane containing the vortex and the axis of the fuselage has 
been determined numerically. 

From this the shape of a wing-body combination with an unswept wing of 
infinite aspect ratio has been found, for which the chordwise load distribution 
is given and the load is constant along the span. The results show that it is 
wrong to assume that a cylindrical fuselage at zero incidence does not affect 
the chordwise or spanwise load distribution of an unswept wing of infinite 
aspect ratio and constant shape along the span. 

. 
If the framework of K%hemann's method' for calculating the load distribu- 

tion on isolated wings is used, then it is possible to take account of the 
interference effect on the chordwise load distribution and modify the method of 

Ref.3 for calculating the load distribution on wing-fuselage combinations. 
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Table 1 

VALUES OF FOURIER COEFFICIENTS IN EQUATION (12) 

x/R 

0.05 

0.1 

0.15 

0.2 

0.3 

0.4 

0.5 

0.6 

0.8 

1.0 

1.5 

2 

2.5 

3 

4 

5 

*w 
? 

0.0121 

0.0226 

0.0324 

0.0423 

0.0587 

0.0710 

0.0798 

0.0852 

0.0883 

0.0843 

0.0620 

0.0399 

0.0240 

0.0139 

0.0040 

0.0005 

Aw 
p3 

0.0045 

0.0075 

0.0095 

0.0113 

0.0125 

0.0117 

0.0100 

0.0078 

0.0039 

0.0013 

0 

A(1) 
t\5 

0.0027 

0.0040 

0.0044 

0.0046 

0.0038 

0.0025 

0.0013 

0.0005 

0 
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SYMBOLS 

A 

a(y) 

aJ 
b 

C 

cL 
C 
P 

AC 
P 

4 (WV 
R 

x,ys= 

x,r,Q 

vO 
V xpvy % 
Avz 

*Jo) z 
V n 
zs (X,Y) 

a 

oeff 
r 

y (4 

'2n+l 
'2n+l 
cp 

aspect ratio 
sectional lift slope 
sectional lift slope in wing-body junction 
wing span 
wing chord 
lift coefficient 
pressure coefficient 
difference between pressure coefficients on upper and lower surface 

strength of source distribution 
radius of fuselage 
rectangular coordinate system, x along the axis of the fuselage 

system of cylinder coordinates 
free stream velocity 
velocity components 
interference velocity for a single vortex (induced by the source 
distribution on the fuselage) 
interference velocity according to slender theory 
velocity component normal to the surface of the fuselage 
ordinate of the mean surface of the wing 
geometric angle of incidence 
effective angle of incidence 
vortex strength of single vortex 
local strength of vortex distribution 
Fourier coefficients defined by equation (7) 
Fourier coefficients defined by equation (8) 
angle of sweep 
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