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SUMMARY 

A finite difference representation of equations that govern the steady 

supersonic three-dimensional flow of an inviscid ideal gas with constant 

specific heats is described. A method of using the finite difference 

equations to calculate solutions of mixed initial and boundary value problems 

associated with supersonic flow fields is explained. The application of 

boundary conditions is straightforward because the finite difference equations 

are based on a form of the supersonic flow equations which has stream surfaces 

as independent variables. 

The finite difference equations are arranged so that shock waves that occur 

in a flow field are computed automatically. Across computed shock waves, the 

dependent variables change rapidly but the changes cannot be regarded as 

discontinuous. 

Numerical results for a symmetric delta wing at zero incidence 

uniform mainstream flow are presented. These results are compared 

from a numerical characteristic method. 

in a 

with results 

1. INTRODUCTION 

The investigation described in this paper is concerned with the calculation 

of pressures at points on the surface of an aerodynamic body moving at a steady 

speed faster than sound. This is an important practical problem which has yet 

to be solved satisfactorily for the variety of complex shapes which are of 

interest to designers. Currently much research effort in numerical fluid 

mechanics is aimed at solving this problem. The work presented here is a 

contribution to this research. 

*Replaces A.R.C.34 161 



In a recent paper, Walkden (1) has derived a special form of the non- 

linear partial differential equations that govern the steady supersonic three- 

dimensional flow of an inviscid ideal gas, with constant specific heats. 

The equations derived in reference (1) are generalisations of some equations for 

two-dimensional flow which have been used successfully (2)) (3) as the basis 

of a numerical method for calculating supersonic flow fields. In the three- 

dimensional form of the equations stream-surfaces are used as independent 

variables. 

In this paper we describe a numerical method for calculating three- 

dimensional supersonic flows. This method is based on the equations of 

reference (1) . The choice of stream surfaces as independent variables 

simplifies the task of systematically applyin g boundary conditions for arbitrary 

body shapes. 

For the convenience of readers, the equations of motion derived by 

Walkden are reproduced in section 2. A method of constructing finite 

difference approximations to these equations is given in section 3. Section 

4 contains a description of the computational procedures to be followed when 

the finite difference equations have to be solved for a supersonic external flow 

field generated by an arbitrary body. 

The method described in sections 3 and 4 of this paper has been used to 

calculate the flow past a delta wing which has round subsonic leadine edges, 

which is symmetric with a pointed nose and which is placed at zero incidence in 

a uniform steady supersonic main-stream flow. The resulting flow is 

supersonic everywhere. The wing shape and some numerical results are given 

in 5. The numerical results obtained are discussed in 6. Section 7 contains 

some concluding remarks. 
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2. EQUATIONS OF MOTION 

The following equations from reference (1) have been used in the investigation 

described in this paper. 

- 2) 
3 ( ‘y ” JtLglf - 91) 9L)) + 333/h) = 0 II 

(2.1) 

(3.3) 

(T-6) 



(2.8) 

(2.9) 

(2.10) 

Equations (2.2) - (2.4) define certain terms which appear in (2.1). 

Equation (2.5) defines two characteristic slopes c)ld and ;\,. The quantity 

';\ + is the slope of the right hand characteristic curve and the characteristic 

relation associated with this curve is obtained by substituting Lx, in (2.1). 

Similarly hW is the slope of the left h>nd characteristic curve and 

substituting A.>- in equation (2.1) yields the associated characteristic 

relation.. 

Equations (2.6), (2.7) - (2.10) and the two equations obtained from (2.1) 

by substituting a=h+ and 1~1, oitainel froa ('>.5) f,3rT a system of 

seven equations relating the unknowns 
PP 

3 , andx . 
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The independent variables 3’ , fL and f’ define surfaces in I$, Tf f’) 

space. When the parameter + is zero (w ‘, 2,x1) are co-ordinates in a 

Cartesian space and when 4 is equal to 1 (a’, xi 2,) are cylindrical polar 

co-ordinates. The planes f: constant and f 35 constant in O’, 9‘; T3) 

space define surfaces +‘, XL, a y = constant and r3&,&ta3) zconst ant 

in LX’, r’; x3] space. For the equations given in this section, these 

surfaces are stream surfaces in &‘, 2’) 9) space. It must be mentioned also 

that 3’~ 3’ in the equations of this section. For further details the 

reader should consult reference (1). 

Now 

and 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

The quantities c i are elements in a transformation from cf’, fs r’) 

space to (X’, x: a’) space. T is the Jacobian determinant of the 

transformation and the elements 5j I<j=Gh3) are elements of the 

metric tensor in (f’, f’, T3) space. The quantity V' is a contravariant 

velocity component. The other two contravariant velocity components 

v” and V’ are zero because the surfaces 3% constant and x3= constant 

have been chosen as stream surfaces. It follows that the velocity mae;nitude 
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It must be stated also that at each point in space the vector 

with components ( 44, $1 in the directions of the axes of co-ordinates 

in (2) 2, x3 ) space is tangential to the streamline< through the point. 

Equation (2.11) is a representation of the conservation of mass equation, 

and (2.12) expresses conservation of momentum in the 3 
t 

direction. With 

certain other equations of motion, (2.11) and (2.12) were used in reference (1) 

to construct the characteristic equations which here we obtain by substituting 

3 =I+ and >=‘;\, in equation (2.1). 
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3. FINITE DIFFERENCE EQUATIONS 

It will be assumed that a uniform finite difference mesh is constructed 

in (s;T: 3:') space. We shall suppose that mesh points in the [J: f; ?'I 

directions are separated by constant distances bf', bf 
L 

and df3 

respectively. We shall suppose further that G boundary condition is to be 

applied on 3~ Lo, and that the solution of the equations of motion is 

required only in some part of the region 
p&o l 

In section 3.1, we list the finite difference equations which have been 

derived from the equations of motion given in 2. and which have been USO? to 

obtain the numerical results shown in 5. Then, in section 3.2, a brief account 

is given of the way in which the finite difference equations have been 

constructed. 

3.1 Finite ITifference Equations for an Arbitrary Mesh Point 

. In this section finite difference equations for an arbitrary mesh point 

. 
F,j, k) in (f/,5: r3) space are listed. Seven equations are associated 

with each point c&;&k) . These equations have the form 

where 

5 = cog) , h = ep) ) d = (P(p) 

are column vectors each of which kas seven components. 

For the equations of motion given in section 2, 
4! = CP)t+ t,j ,& 

G;r = l 
e 

) bLl,j,IC 

5 = "');+I, j, k 

'4 = 'dL)C*I, jlk 

G,- = "8 ) L; 1, j, & 

Kc = cd * w,jr k 
a, = c4 - 'W, j,& 

(3.1) 

(3.?) 

-7- 



The not at ion 6 ‘L,j,lc is used to denote the value of the 

quantity inside the brackets at the mesh point (‘i)‘,(L) . 

(3.3) 

(3.4) 
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The elements ytq f or integer k t?,at are used in eouation (3.2) are 

defined in table 1. The auant ity JmO o\,J,) for integer n and Jr= 

I or 0 is defined to be 

The quantity J, is set equal to unitv if j+ and it is set equal to zero if 

The quantity w is a pre-assigned constant. 

It is clear from equations (3.3) and (3.5) that the ouantities bad , d s ‘,I,” 7 

are functions of the dependent variables at the five mesh points C L,j) kl 

Cc; j*J, k) and (t, j, ktl) . Relationships which can be used to 

determine 4l , d=~,l,,.. 7, in terms of values of the dependent variables at 

these points will be given later. TJe can state now, however, that if the 

values of the dependent variables are known at the five mesh points CG jN 

(L,j+-1, k) 9 lL,j, kt!I) then their values at the point C”+), j, 4 

can be calculated from equation (3.1). 

The evaluation of dependent variables at mesh points in successive planes 
t 

‘5~ nAf’ from values of the dependent variables in A preceding plane 

%‘= Cp+,) At’ , qo(,%3-v , forms the 11a1sjs ,-IF L-e conprltational yrrc~:l ,rp 

described in section 4 for calculating a complete flow field. 

From equations (3.3) and (3.5) it can be seen that the expressions for & 

have different forms depending whether j is equal to or is different from zero. 

It will be seen later that certain of the relationships determining the 

&,1(,1 sr,3 , . . . . 7, differ depending on j being equal to or different 

from zero. This type of dependence on j arises hecause a boundary condition 

has to be applied on f’i 0. In this case, of course, values of the dependent 

variables at the points cc, -1, k) inside the boundary are not available. 
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The equations which enable us to express d a() d= I, ~,-a+7 , in terms 

of dependent variables in the plane Ja i As’ can be written down now. It 

will be seen that these equations are approximations to the equations of motion 

given in section 2. 

The expressions 

db = b, 

and 

4, = 

are derived from equations (2.6), (2.9) and (2.10) respectively. 

(3.6) 

(3.7) 

(3.8) 

The quantities dd for d= $3,4 and SW are determined from four linear 

simultaneous equations which can be expressed in the form 

q= 2 
where g is a four-by-four matrix and 

both column vectors having four elements. 

(3.9) 

and 3 = (jd] are 
d 

For the supersonic flow equations given in 2 

(3.1") 

where the d elements in equation (3.10) are defined in (3.4). The 

descriptions of the elements e 
"P 

and 5d are complicated. 

Before writing down expressions for these quantities it is convenient to 

define a number of other quantities which are useful because they help to relate 
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the finite difference equations of this section to the equations of motion 

given in section 2. 

. 
If, again, J,S 1 when 3 0 andj ,=O when j= 0 then we define 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3.?1) 

(3.2?) 

(3.23) 
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(3.24) 

(3.25) 6 

(3.26) > 

(3.27) 

(3.78) 

(3.29) 

(3.30) 

(3.31) 
I 

(3.34) 

(3.35) 
i 

‘ 

(3.36) 



(3.37) 

It can be seen that all the quantities defined in equations (3.11) - (3.38) are 

functions of,the dependent variables at five mesh points in the plane 3’3 ;A#' , 

the mesh sizes,and other constants of the problem. 

Now we shall write down expressions for the elements e 
+ 

and 9d 

‘)213> 4 

- =,4 ( y40) -b,) / 43’ 
z 

(3.39) 
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(3.40) 

(3.41) 

- 14 - 



Scheme B 

In scheme B the expressions for e and 
dp 4d 

that are used when j= o are :- 

(i) 

(ii) ey, ,p= ,, L, 3,4)3& are as defined in (3.43) 

(iii> e,? J~=,+~), 9J are as defined in (3.41) 

(iv) egp, ((I=I,~,#,~), j4 are as defined in (3.43) 

The equations 

(3.45) 

that are obtained by substituting in (3.45) the expressions for ed 
P ’ 6 

and & given by equations (3.10) and (3.39) - (3.44) have been derived from (?.I), 

(with 4% /7*and A= ‘x, in turn), (2.7) and (?.8) resnectivelv. 

The equations (3.45) and (3.6) - (3.1) are linear enuations which cm be 

solved to obtain expressions for the seven unkno:gns d d , ds I,L, .+--I in terns 

of the dependent variables at tke five lesh noints ( L; j, Ir ) 1 CC ,j+_l, Ic) 

(L, j, k+_l) . Then, as we have remarked earlier, substitutinc these 

expressions for J& in equation (3.1) vields exnressions for the depenr?ent 

variables at the point [GI, ;, k ) in terms of the above listed mesh pints 

in the plane j’= i4s’ * 
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3.2 Structure of the Finite Difference Fouations 

The finite difference eouations listed in 3.1 have been derived fron the . 

equations of motion given in 2 hy annlving three elementarv ideas. These ideas 

are explained in 3.2.1, 3.2.2 and 3.2.3. 

3.2.1 Construction of a system of eauations with two independent variables 

The seven equations of motion with three indenendent variables given 

in 2 are approximated by a set of partial differential eauations having only 

two independent variables. This is achieved bv 

(i> setting up a family of planes 

and 

(ii) constructing seven partial differential eouations associated 

with each plane f3= kaf J . These eouations have 5’ and 

f as independent variables and the values of the functions 

PI (, v’, 4,) 4~ , AL and s3 in the three planes 1’s kaf 3 

and j3= &J)Af are the dependent variables. The part ial 

differential equations which are associated with f - ‘- kdfland 

which have 3 
I 

and f 
L 

as independent variables are constructed 

simply by replacing derivatives with respect to 33 in the 

equations of motion by central difference expressions. For 

example, for the plane 3’s kdfj , & in eouation (2.8) is 
rf3 

replaced by 

Then the remaining dependent variables in the resultin? enuations 

of motion are replaced by their values in the plane fj= kdf’ 

i.e. for p oh’; T’J we substitute &‘r: 5’) = plr! 5: b3f’, 

and all the other dependent variables are treated in a similar 

fashion. 
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If the total number of planes j3= kbs3 is finite and eoual to J 

then we have 7[r-&) hyperbolic partial differential ecruations (the eauations 

will be hyperbolic provided the main stream Yach number is high enough) for 7r 

unknowns. The differential equations have to be supplemented by extra 

conditions. These conditions may be svmmetry or periodicity conditions on 

the end planes. In the wing calculations described in 5, svmmetrv conditions 

are used. 

3.2.2 Treatment of the system of equations with two independent variables 

The partial differential eauations obtained by followine the procedure 

outlined in 3.2.1 are in the characteristic form recuired For constructing 

finite difference equations for hyperbolic svstems in the manner described by 

Walkden and Caine(‘). The Walkden and Caine method is based on an original 

idea due to Courant, Isaacson and Rees (3) in which 
T”_ 

derivatives in all 

left hand characteristic equations are represented by backward dif<erences 

from f tj &jr. The fk derivatives in right hand characteristic relations 

are represented by forward differences from fkjdf'. ’ Al 1 is- derivatives 

in the equations are replaced by forward differences. 

The equations and d=;1L which were established 

in 3.1 are finite difference approximations of the right and left hand 

characteristic relations at the point CL,j,k) . The last three terms in 

the expressions for 3, and 92 
in (3.39) and (3.40) respectivelT7 are 

?L derivatives that have been treated usinp the rule given in the nreceding 

paragraph. 

3.2.3 Smoothing effects 

As in the !!alkden and Caine 
(2)) (3) method for two-dimensional and axi- 

symmetric supersonic flow, average values of the dependent var:‘ablps at the 

point (“;j ,lJ are used in the finite difference eauations. “his sten is 

needed in order to obtain accepta3le numerical results for s:oc’. ‘jave systems. 



Equations (3.3) are used to calculate average values of the dependent variables. 

4. CALCULATION OF FLOW FIELDS 

4.1 Computational Procedure 

In this section we describe the procedure which would be followed in 

order to compute the flow past an arbitrary body shape such as the delta wing 

described in 5. These flows are such that disturbances to a uniform flow in 

which the body is placed are confined to a region bounded by a bow shock wave 

and the body surface. We shall suppose that the disturbed flow field is 

known on some plane X’V constant and that the nroblem is to calculate the 

disturbed flow downstream of this plane subject to the application of a 

boundary condition on the body surface. 

In practice, values of the dependent variables of the problem have to 

be calculated at mesh points throughout some finite region of l-space. ?e 

shall suppose that this calculation region is defined by the following 

inequalities:- 

0 6 f’s CCf’) 

osf3d 

(4.1) 

(4.2) 

(4.3) 

where b is some constant and c is a function of 5’ which is defined so that 

the region within which the dependent variables have to be calculated contains 

the shock wave. 

It will be assumed that 

(i) all the dependent variables are known or can be calculated 

on I’==. 
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(ii) sywetry or periodicity conditions are available on J 
3 
= 0 and f= 3 b 

(iii) 
L 

a boundary conditon has to be applied at s3 0 

(iv) for 3’3 elf’) , the dependent variables take known mainstream 

values 

(VI the calculation does not proceed beyond a point where L(f'), c,,++ 

where C,, is a suitably large pre-assigned constant. 

With these assumed conditions, the problem is to calculate the dependent 

variables at mesh points throughout the region defined by the ineaualities 

(4.1) - (4.3). 

Initially, the number of mesh points in the T'- direction [J'bIL)I+~) and 

the number in the 13-direction (ICING+/) have to be chosen. The integers 

juIy and 44t must be large enough to provide the number of mesh points 

needed for an adequate numerical description of the flow field which is to be 

calculated. These integers fix the mesh sizes Af' and 6f3 in the f 
t 

and r3 directions. It is noted that 

41% G4 /j-x 

Next, the step length A$' in the f -direction has to be chosen so that 

stable numerical results are obtained (see 4.2 and 6.2). In practice, for 

the present problem, this means simply that the value chosen for bf' must 

not be too large. 

Once values of 43’, 47’ and 4s 3 have been assigned, the finite 

difference equations described in 3.1 can be applied at each mesh point in 

the plane 3' = 9. to calculate values of the dependent variables at mesh points 

in the intersection of the plane 3'~ GA-&T' and the region defined bv the 

inequalities (4.1) - (4.3). This process, using the finite difference equations, 

can be applied repeatedly to calculate values of the dependent variables at 

mesh points in successive planes 3L ~+r\Af' , a= 2,3,4 ,-***- 
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For the delta wing calculations described in 5, b=fi& and svmmetry 

conditions are applied on j3= 0 and f3=ii/, . The symmetry conditions 

are used to obtain values of the dependent variables at mesh points on 

33= -43j and on $Tk+Ag l Although such mesh points lie outside 

the calculation region, values of the dependent values are required there in 

order to calculate values of the dependent variables at neighbouring mesh 

points on = 0 f3 and Y3 = WA respectively. 

4.2 Numerical Stability 

In 4.1 we have outlined an explicit step-by-step procedure for calculatinE 

the dependent variables of the problem at mesh points throughout the 

calculation region defined by the ineaualities (4.1) - (4.3). 

This integration procedure may be stable for some values of the mesh 

sizes hf’, !$, 03 3, and unstable for others, or it could be unstable 

for all mesh sizes. 

The stability of step-by-step numerical procedures for solving non-linear 

equations generally cannot be examined directly. In practice, approximate 

methods based on locally linearised forms of the eouations are often used in 

stability investigations. An account of methods of stability analysis for 

linear finite difference equations is contained in the book by Richtmeyer 

and Morton(5). 

For the present problem, however, due to the way in which the finite 

difference equations have been constructed, even the ap?roxiaate stabilitv 

analysis based on linearised equations is not easily carried out. It was 

decided that the simplest way to proceed would be to assess whether the 

computational procedure, proposed in 3 and 4 is conditionallv stable or not 

by examining numerical results obtained for a particular problem. Thus one 

object of the investigation of the delta winp flow described in 5 was to obtain 

numerical evidence concerning the stability characteristics of the finite 

difference method used. 
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5. NUMERICAL RESULTS FOR FLOK PAST A 9FLTA TJTNC 

In this section we present some numerical results for the flow field 

produced when a delta wing is placed in a uniform su?ersnnic stream. Ti:e 

uniform stream Mach number is 3.5 and the wing shape is defined by the eouation 

where 

(5.1) 

(5.2) 

and 

Here X',sX and x3 are cylindrical polar co-ordinates so that in the finite 

difference equatiom(see section 3) the parameter I-= 1 . 

The wing described by equations (5.1) - (5.3) has a pointed nose and 

a delta plan form. The leading edges are round and sonic. Upstream of the 

plane x'= 0.~ the wing is formed by an axi-symmetric cone. Downstream of 

a'= O*L 9 the cross-sectional shapesperpendicular to ther'- axis are ellipses 

whose eccentricity increases with x\ . The wing trailinp edge is a straight 

line and at the trailing edge the thickness is zero. The wing is placed at 

zero incidence to the mainstream flow direction and consequently the flov 
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field which has to be calculated is symmetric about x3= o,fi/,,T and ,?/A . 

The quantity x' is the polar angle and the radial planes oL3E 0 and ~~~~ 7 

contain the wing leading edges. 

All the results given in this section are from calculations starting 

at the plane a'= 0.2 in which the disturbed flow field is represented by 

the Taylor-Maccoll (6) solution for the nose cone of the wing. 

The graphs in figures 1 - 6 have been prepared from results obtained for 

the following three cases:- 

Scheme A (see section 3) treatment of boundary noints 

Scheme A treatment of boundary points 

one level 0 sub-division: j,'=o, j:= 1) k,'= O, L,'=A 

Division by factor 2 in the fLand 3'- directions 

c3 - 

Scheme B used to treat boundary points 

one level 0 sub-division: j,“=o,j:z t, k,‘: o , kI=L 
Division by factor 2 in the f 

2. 
and J3' directions 
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In paragraphs cl - c3, &is the pre-assigned constant smoothing parameter 

used in (3.5), andd is the number of finite difference mesh intervals between 

the wing and the shock wave in the startine: plane x’=O*L, . Scheme A and 

Scheme B are two methods of obtaining the dependent variables at mesh points 

3 
L 

on =O. 

ion values 4 of the mainstream Units have been chosen so that the non-dimens 

velocity magnitude density and pressure are 
v= 

respectively. Moo is the mainstream Mach number . In paragraphs c2 and c3, 

the phrase starting “one level 0 sub-division . . .” refers to a device in the 

computer program which we have used. This device enables us to insert extra 

mesh points in selected sub-regions of the workina space. The working space 

is called level 0 . With the aid of these insertions we can assess the 

significance of truncation errors in particular regions. The insertions 

are made so tilat the mes:- in tkc :;clected sub-region of the working space 

L 
is divided uniformly by some constant factor in the f ant’ 3’ - directions. 

The sub-region of the working space which is divided in the cases c3 and c4 

is the region covered by level 0 mesh points for which 

Values of ’ and 4 are given in paraeraphs c2 and s. - 

Figure 9 is a schematic diagram illustrating the level 0 sub-di~vision. 
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6. DISCUSSION OF RESULTS FOR THE DFLT.4 TJI!V 

In this section we discuss,tbe nuTeric representation of the SOY 

shock t~ave, deductions concerning stability of the finite difference method, 

and the computed results on the wing surface. Reference is made to results 

that have been obtained for cases different from the cases listed in 5. ~rauhs 

of results for these different cases have not been Fresented because they 

are not needed for this discussion. 

6.1 Bow Shock Vave Results 

The bow shock is the only shock wave in the winy flow field. Shock 

discontinuities are smoothed in the computing process so that changes in the 

dependent variables across shock waves are continuous. The thickness of 

computed shock waves can be reduced by reducing the finite difference mesh size. 

In problems with three or more independent variables it is often 

necessary to work with coarse finite difference meshes. In such cases it is 

desirable to check that the computed shock wave transition layers do not extend 

to a body surface thus preventing the computation of accurate results on the 

body surface. From the graphs in figures 1 - 4 it can be seen that, for 

the wing flow, with the meshes used in the calculations, the shock transition 

layer does not extend to the body. Moreover, as expected, the computed shock 

waves propagate outwards from the body with increasing X' . 

6.2 Numerical Stability 

With the mesh sizes used in cases C, - C 
2 ' 

for which some results are 

plotted in figures 1 - 6, there is no sign of anv numerical instability. By 

keeping bfL and &x3 constant whilst increasing 45' , a value of df'is 

reached where the computation process becomes unstable. It is clear that the 

finite difference method described in 3 and 4 is conditionally stable. The 

numerical experiments that we have performed do not yield an explicit stabilitv 
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condition, we can state only that stable results can be achieved by making 

4f 
t 

sufficiently small. 

6.3 Wing Surface Results 

Assessing the accuracy of a set of numerical results is not easy. Ye 

have compared our numerical results with experimental and theoretical results 

given by Butler'b: We have examined the effects of changing mesh sizes. 

In addition we have examined the effect of changing the computational procedure 

at the boundary. 

From figure 4 it can be seen that our results and Butler's results are 

in reasonable agreement with the experimental results at i&o*417 l Further 

downstream, however, at a'= (h&f3 , it is seen from figure 5 that the agreement 

is not good. At present we have no idea which, if any, of the results shown 

in figure 5 are correct. 

From tests with different mesh sizes we do not think that the difference 

between our theoretical results and Butler's theoretical and experimental 

results can be attributed to simple truncation error in our results. 

There are a number of possible explanations for the differences between 

the results shown in figure 5. The experimental results may be unreliable, 

Butler has used an approximate theory which may be unreliable in the 

neighbourhood of a"= o-w3 , and the numerical method that we have used 

may have introduced numerical errors whose elimination could require 

fundamental changes in the computational procedure described in 3 and 4. 

( In an attempt to assess whether our numerical rec,dlt'- at x ~0-663 contain 

fundamental errors or not, scheme B (see section 3) was introduced and used 

to compute the dependent variables on the wing surface. The results obtained 

were not significantly different from those obtained with scheme A and so this 

test was inconclusive. It did emerge, however, that in the neighbourhood of 

the wing leading edge, a region in which it was difficult to obtain satisfactory 
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numerical results, scheme B proved to be a good deal more robust than 

scheme A. This can be seen from figure 8 where the computing process breaks 

down at the leading edge when ~'~0-66 in the case 5 whilst in the 

case Cj breakdown does not occur so quicklv. Both breakdowns occur because 

the streamlines just off the body in the plane x3=0 approach the wing 

leading edge. The distance between the wing leading edge and the streamline 

becomes so small that approximation errors cause the streamline to cross the 

body surface. This is a physically unrealistic situation and, of course, 

the computation process breaks down when it occurs. 
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7. CONCLUSIONS 

From numerical experiments in which the finite-difference method 

described in 3 and 4 has been used to calculate supersonic flow past the 

delta wing described in 5 we can state:- 

(i) 

(ii) 

(iii) 

(iv> 

(VI 

scheme B for calculating dependent variables at mesh points 

on the wing surface is preferred to scheme A 

the numerical method is stable for sufficiently small values 

of Qf' 

the method of this paper appears to treat shock waves adenuately 

the numerical results for the wing are probably satisfactory 

for A1 g O-4-17 

further investigations are needed to deter-i;? a correct set of 

results for the wing in the region SC’) 0.417 . In this 

context, it might be helpful to have 

(a) wing results obtained by using a third independent 

numerical method 

(b) results gained by applying the method of this paner 

to different supersonic flow problems 

(4 results obtained by using the method of this paper 

to integrate the differential eauations solved 

by Butler. 
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l .  1 .  

Mesh point P Q v’ a2 

(i,j,k-1 1 10 11 12 13 

(i,j,k+l) 20 21 22 23 

(i,j -1,k) 30 31 32 33 

( i,j +l,k) 40 41 42 43 

1 i,j,k 1 50 51 52 53 

a3 x2 x3 t’ e2 E3 

14 15 16 17 18 19 

24 25 26 27 28 29 

34 35 36 37 38 39 

44 45 46 47 48 49 

54 55 56 57 58 59 

TABLE 1 

Table of Locations in y-space that 
are used to store values of the 

dependant variables P,Q, v’, 012’0~~’ 
X2,X3and the independent variables 

1 2 
E E; s 1 and c3 for given mesh points. 

Example : ~(23) = tar,) i,j,k+l 
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