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SUMMARY

This parametric study examines the application of nose blunting
to axisymmetric forebodies at supersonic speeds to reduce pressure drag
and stagnation-point heat-transfer rate and to increase their volume.
Sufficient information 1s given to enable the magnitude of these benefits
to be estimated for most practical applications.

Nomenclature (see also Fig (1))

C specilfic heat of air at constant volume

drag coefficient based on maximum cross-sectional area and
free-stream dynamic pressure

ay

drag coefficient of blunting in i1solation (based on maximum

DN crosg~-sectional area of blunting and free-stream dynamic
pressure)
C pressure coefficient - difference between surface pressure
P and free-stream static pressure normalised by the free-stream
dynamic pressure
a sonic velocity
d body diameter at junction between blunting and conical portion
of body (single cones only)
k a constant (used in section 5.3)
ky a constant (used in section 5.8)
£ fineness ratio - ratio of length to diameter of forebody
4 stagnation-point heat-transfer rate
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5 distance measured along surface of body from stagnation
point
y' radial distence from axis of symmetry normalised by
maximum diameter of body
D maximum (base) diameter of forebody (single conmes only)
D, body diameter at downstream end of blunting (double
cones Only)
Dy body diameter at junction between two conical portions
of body (double cones only)
Dg base diameter of hody (double cones only - normally
taken as unity)
¥, ,F;,Fs ,Fy functions (section 5.6)
L length of foreboedy
Me Mach number Jjust external to boundery layer
M free-stream Nach number
N a constant (section 5,3)
Q stagnation-point heat-transfer rate normalised by § for
a hemisphere of base diameter equal to that of forebody
(i.e. equal to D or Dy for single or double cones
respectively
Rs Y co-ordinate of shock-wave in base-plane of forebody.
AS inecrease in entropy of unit mass of air on passing through
bow shock-wave
U velocity Jjust external to boundary layer
v totel internal volume of forebody, normalised by the
cube of the base diameter (D®or D)
X,x streamwise distance (1.,e. measured parallel to axis of
symme try )
Y radial distasnce from axis of symmetry
B shock angle
£ semi-apex angle of conical portion of body
T thickness ratio (7 = L})
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6 semi-apex angle of (conical) blunting

u Mach angle

Subscraipis

MIN minimum value’
s.C. value avpropriate to sharp cone

= conditions such that C_ is equal to that for a sharp
cone having the same value of f

OPT. condi tions such that CD is a minimum for a gven value
of f

b spherical blunting
s conditions at stagnation point
t truncated

ref reference conditions (defined in text)

Superscripts

1 transformed values (section 5.3)
* conditions at sonic point

1. Introduction

The recent past has seen & revival of interest in the use of nose
blunting to reduce forebody drag., Imitially, existing data were reanalysed
to obtain some general guide lines {or "ground rules")1’2. Most of these
data were for spherically-blunted cones. Although this elass of bedy is
only one of many in common use and is definitely non-optimum, this analysis
served to delineate the circumstances in which the use of nose blunting was
advantageous. In particular, the use of blunting can give substantial gains

in both drag and volume when the fineness ratio of the forebody is constrained

to be a fixed value. This 1s in conflormity with results obtained using
approximate analytical expressions for surface pressure together with either
the calculus of variations, or numerical optimisation techniques”»™>-,
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These facts generate 2 need for a prediction method which is
powerful enough to be capable of dealing with blunted boedies yet is
sufficiently zimple to allow og 1ts repetitive use in optimisation studies.
Few such methods are available, and a novel approach has been developed
by the present authors/, This method has been checked as far as 1s
practicable at present and gives satisfactory agreement with experiment,
so that it is appropriate to use it in parametric studies to elucidate
further the potential of nose bluntness. Having then derived at least
semi-quantitative ground-rules for applying nose blunfting, two vital
things can be done. Firstly, new experiments can be devised with the
specific aim of further validating the proposed uses of nose blunting.
Secondly, full optimisation studies can be conducted in order to derive
minimum-drag forebody shapes appropriate to practical constraints under
which nose blunting is likely to be advantageous.

This report takes a few steps along this road. It describes a
parametric study of the type mentioned above and draws some conclusions
as to the uses of nose blunting which appear most likely to be profitable.
The majority of the calculations were performed for a Mach number of 3.05
but some consideration i1s given to the effect of varying the lMach number.
The precise quantitative conclusions as to optimum forebody shapes
naturally require experimental confirmation., However, the calculation
method employed has been well enough validated already to allow reasonable
confidence to be reposed in the results,

2. Forebody Geometry

A natural extension of earlier analyses of the drag of blunted
single cones ’“ is to consider blunted double cones of unit base diameter
(Fig.1). By so doing it 1s possible to consider the effects of some
shaping of the body downstream of the bluntness and, hence, to examine the
influence of such shaping on the effectiveness of nose blunting. If the
benefits of nose blunting were found to be much less for a douuble cone
than for a single cone then grave doubt would be cast on the generality of
the utility of blunting. If, however, bluntingis nc less beneficaal for
the double cone than for the single cone then this would tend to suggest
that blunting was of widespread usefulness. Both single and double cones
are considered in this report. To ensure unambiguity and to make clear
which type of body is being considered a different nomenclature has been
used for each (see Fig.,1). In the case of double cones the base diumeter
Da is taken to be unity except where otherwise stated,

Although a blunt double cone is, of course, still well removed
from the continuously curved shapes commonly adopted for low-drag
forebodies, it has the merart of being completely described by three
independent variables (L, D;, Do® As will be seen later, even as few as
three independent variables pose considerable problems of presentation
and analysis, To use more would run the risk of obscuring the central
points in a mass of detail. Whale 1t would, of course, be possible to
take the forebody shape between D; &nd the hase as being derived from a
family of curves, this 1s no more general than the study of double cones
unless the family of curves used 1s described by more than one independent
parameter.

«These being respectively the total length from the extreme rise rip to the base, the diameter of
the body at the blunting, and the diameter of the body at the 'iscontlnuity of slope dornstream
end of which is assume” t¢ be midway betveen 01 and Dj
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Accordingly, the majority of the calculations analysed in thas

report were performed for blunted double-cone forebodies. A few additional

calculations were done for continuously curved forebody shapes. -

3. Constraints and Dependent Variables

An optimum forebody shape 1s only optimum in the sense that it is
the shape that corresponds to the best value of some dependent variable
that can be obtained given certain constraints. It is important, therefore,
to specify al the oulset of a study such as this which dependent variables
are to be optimised and under what constraints the study is to be verformed.

Two dependent variables are cunsidered. These are the forebody
pressure-drag coefficient €., and the volume of the forebody V. Since the
drag of thz forebedy is usually a substantial fraction of the total drag
of a practical vehicle, the importance of minimising C. 1s self-evident,
It is also often desirable to maximise the volume V since such volume 1s
required for the stowage of equipment.

The most important constraint 1s that of & fixed fineness ratio.f.
This frequently closely approximates constraints arising in practice and
bars the simplest way of reducing C_ (to increase £f). In addition, 1%t is
alsg necessary to consider the imposition of minimum values on either D,
or Dy thus simulating the requirements of particular items of equipment.. .
On other occasions the minimisation of the heat-transfer rate at .the
stagnation point may also be of prime importance,

L. Derivation of Data Analysed

; The data analysed were obtained using the method for predicting
forebody: drag described in Ref (7). Approximately 200 such calculations .,
were made-using about 75 mins of computer time on an ICL KDF9 computer,
£11 the calculations were performed for M = 3,05, but a. limited discussion
of the effects of Mach number appears in section 5.6,

5. Analvsis of Data -

5.1 Blunted cones - optimisation

An anslysis of the data obtained for the blunted (single) cone
forms a'most useful background to any discussion of more complex forebody
shapes, Fig.2 i1llustrates the benefits to be obtained from ncose blunting
of single cones, The presentation employed in this figure 1s comewhat
novel and follows that used by one of the aulhors on an eegller gccaslon
when presenting results for blunted single-cone forebodies~. The variation
of C. wirth V 1c shown for two sets of forebodies, each set heving & fixed
finehess ratio and being generated by varying the bluntness ratio (&/n).
It will be seen that a minimum drag coefficient is achieved for.a forebody
having considersble nose blunting and a substaniizlly larger volume than
the sharp cone (4 = 0) of the same fineness raiio. lose blunting is
clearly useful in this case. Nose blunting is not beneficial an the
application illustrated in Fig.3. Here a range of shorp ccnes, of varyin,

fineness/
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fineness ratio, are compared with a series of blunted cones derived by
keeping the cone apex angle constant and reducing the fineness ratio by
increasing the blunting, Blunting then causes an increase in drag and

a decrease in volume as compared to the sharn cone of the same apex angle,
When compared to sharp cones of the same apex angle, the drag of the -
blunted cone is considerably greater than that of the sharp cone,

tlowever, nose blunting can bean effective way or reducing the
fineness ratio waithout a drag penalty since the drag invaraably decreases
wlth 1ncreasing fineness ratio and nose blunting can be used to decrsase
the drag al a fixed fineness ratio. This way of using nose blunting is
11llustrated in Fig.(4) which combines the information presented in the
previous two figures, As well as reaterating the points made earlier,
this figure shows that one blunted cone of fineness ratio 2 has the same
drag and the same volume as a sharp cone of a different fineness ratio,
This sharp cone has a larger volume (and, hence, greater length) than a
sharp cone of fineness ratio 2. It follows that for fineness ratzos
around 2 {but not for fineness ratio around 1) 1t 1s possible, by the
mroper selection of nose blunting and apex angle, to obltain a modest
reduction 1n fineness ratic without any penalty in eather drag or volume.

Corresponding data for a fineness ratio of 3 are given in Flg.(B).
This figure shows that, just as for a fineness ratio of 2, nose blunting
may be used erther to reduce the drag for a fixed fineness vratio or to
reduce the fineness ratic without an increase in drag or loss of volume.
There are interesting differences, however, in the results for fineness
ratios of 1.0, 2.0 and 3,0, These are best shown, as 1n Flg.(é), by the
variation of three significant bluniness ratios (G/D) with fineness ratio.
These values of d/D are those that corresponding to (a) the minimum drag
for & ziven fineness ratio, (b) that gaving a reduction in fineness ratio
without drag or volume penalties, and (c) the maximum value of (&/D) that
can be used without resulting in a drag greater than that for a sharp cone
of the same fineness ratio. The values of {(d/D) for minimum drag for a
given fineness ratio, and (a/D) for the drag not exceeding that of a sharp
cone of the same fineness ratioc, move i1n sympathy with each other. The
values of (4/D) resulting in reduction of fineness ratio (without reduction
in volume or increase in drag) do not move in sympathy with the other two.
No such blunting appears to exist for a fineness ratio of 1. (Fig.h).
One 1s found for a fineness ratio of 2 but 1ts magnitude diminishes with
increase in fineness ratio beyond 2. Thus, the use of blunting to reduce
fineness ratio may have a somewhat limated range of applicability. ‘lowever,
this range includes many cases of practical interest so that this possible
use of nose blunting should not be neglected.

The minimum values of C_ discussed above are presented an Fig.,7. Tt will

be seen that the use ofDnose blunting offers substantial gains i1n any of the
basic variables without dasadvantageous effects upon the others. It remains
to be sesn 1f these gains are maintained when an extra degree of freedom 1is
intruduced into the body shape.

5.2/
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5.2 3Blunted double cones = optimisation

M™irning, therefore, to the blunted double cone configuiration, ‘he
data are summarised in Figs.B8a and 8b. 1In these fijures the drag coefficient
(C,)) is presented as a function of the volume (V) (as before). Ianes of
constant Dy and Dy are drawn on this figure as also are lines corresponding
to the special cases of sharp nosed double cones (D; ='0) and single cones
(Dg = (Ds + D, )/2). These figures present the information that i1s aveilable
from the computed results in a condensed form. Interpretalion of Figs.8a
and 8b is made easier if it is recalled that increases in eather D, or D,
inéreases the volume i1n a regular fashion, If this 1s kept in mind it is
not dafficult to distinguish between that intersection of a peir of curves
for given values of D; and Dy which corresponds to a particular forebody
shape and any other such intersections which are not significant and arise
tolely because of the difficulty of representing four-dimensional information
on a two-dimensional plane, ’ .

We first seek an answer to the guestion as to whether the
advantages of nose blunting are maintained when the forebody shape 15 allowed
the extra degree of freedom., Figs.9 and 10 present the variaticn of drag
with volume at fixed fineness ratios of 2 and 3 for:- )

(a) charp nosed double cones (D, = 0)
(b) blunted single cones (Dy = (Dg + D, )/2)

(¢) blunted double cones (the values of D; and D; being varied so as
to give the minimum valus of CD for each value of V),

These Taigures demonstrate that adjustments of eirther of T} alone
or D; alone can be made so as to give increased volume and reduced drag.
However, adjustment of both D, and Dy enables yet greater aimprovements in
drag and volume to be effected.

At the lower fineness ratio the introduction of the extra degree

. of freedom on body shape, represented by the extension of the snalysis to

double cones, allows of improvements in both drag and volume. At the higher
fineness ratio such improvements are mainly in increased volume, Indeed, ean
interesting feature of Figs.9 end 10 is that the variation of C, with V for
the blunted double cones 1s seen to have a very flat minima., This must not
be interpreted as showing that C  is insensitive to D; or Di. Indeed,
inspection of Figs.8a and 8b w119 reveal that C_ 1s normelly sensitive to
veriations in either Dy or Dz. However, within a region surrcunding the
dreg minimum, the effects of deviations of Dy from 1ts optimum value can be
almost completely compensated for by adjustment of D, (and vice versa),

This povint will be returned to in more detail in section 5.9.

5.3 More complex bodies — optimisation

Returning to the minimisation of drag, 1t is nelural to enguire
how the picture presented by Figs.9 and 10 would be modafied by the
introduction of furiher degrees of freedom in body shape. Consider,

however/
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however, the effects of adding an extra degree of freedom upon the number
of calculations required. If the "buckshot" or "latin square" method of
finding an optimum i1mplicit in Figs.9 and 10 is applied to bodies with
greater degrees of freedom, unmanageable problems of presentation and
analysis arise, Proper optimisation techniques must be employed and some
future work will be directed towards this end. In the interaim, some
indlcations may be obtained by assuming that the body downstream of D,
is derived from a family of shapes. For example, Fig.11 shows results
obtained in this way for & 3/L power-law body (1.e. the basic body shape

being y ~ xj/h) of fineness ratio 2, this type of profile being of interest
because of the low drag of the basic bedy. The basic shape was first

blunted so that the body diameter at the downstream end of the blunting

(D) was one of a number of chosen values, The process decreased the

fineness ratio of the body, which was then restored to its original value

by the transformation D* =D, ® = x(1 + kx¥) (k being chosen so that

this transformation resulted irn the fineness ratio being restored to 2).

By varying N the restoration of the fineness ratio could be made to stretch
the body edither predominantly at the front (N < 0}, eveniy (N = 0), or
predominantly at the rear (I > 0). The best results were cbtained with

N = +2 and (as shown in Fig.(11) g sagnificant increase in volume accompanied
by a slight reduction in drag was then obtained from the use of nose blunting.
It is also interesting to note that virtually the same performance as regards
C, and V was obtained from the best blunted double-cone as from the hasic
tgree*quarter power-law body. This fact seems to suggest that the introduction
of additional degrees of freedom in body shape af't of the blunting proper
would not open the way to significant additional reductions in €, and would
only allow of modest increases in V at a given value of C.. Thus, at least
for the present purpose of outlining trends and of obtaining a "feel" for the
benefits to be obtained from nose blunting, the single degree of freedonm
(that of choosing D) seems to represent adequatiely the effects of variations
in forebody shape aft of the blunting. In interpreting Fig.11 it must be
remembered that the basic 3/k power-law body is already blunted in the sense
that the surface slope is infanite at the axis of symmetry. Therefore, 1t
would have been surprising had the application of nose blunting had as marked
an effect as 1t has when applied to a sharp-nosed body. HNowever, Fig.11
clearly shows thet there are siill gains to be made from bolder use of blunting
than that implicit in a 3/ power-law profile,

5.4 The physical mechanism of drag reduction by nose blunting

Before proceeding further 1t 1s useful to disecuss the physical
mechanism underlying the reductions in C. and increases in V desecribed above.
In addition, this discussion provides a measure of cross-checking, tending to
confirm the validity of the coneclusions reached so far, and to give confirdence
in latler anualyses,

The basic mechanism whereby benefits are obtained from the use of
lorger than average surface slopes over the most forward part of a forebody of
fixed fineness ratio 1s, of course, well understocd . Because of the
axisymmetry of the body, the increased precsures consequent upon such increased
rurface slopes act upen a relatively small forward-facing ares, The
dizadvantageous effecl of these increased pressures 1s more than offset by

the/
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the influence of the lower pressures' associated with reduced surface slopes
further aft (which act upon a much 1arger area), Additionally, such a
forebody clearly has a higher volume than a forebody whose surface slopes
were more nearly constant, It should be noted that the lower pressures on
the rearward portion of the forebody are not solely a direct consequence

of the reduction in surface slope, In fact, ‘the entropy layer i.e. the

gas which suffers a larger increase-~in entropy because 1t passes through

ihe stronber bow shock-wave near the exis of_symmetry’, has a dlbplacement
effect analogous to that of a boundary layer7 However, unlike the boundary
layer, the éntropy layer has a constant displacement cross-sectlonal area,
As the flow proceeds downsiream this constant ares is spread out over an ~
increasing periphery. Thus, the effective surface slope (and the pressure)
1¢ further reduced, Co s pr

t It sHould be noted that these qualitative arguments are 1ndependent
of the numerical,value of the maximum surface slope. They are equally ‘valad
&s an explanation of the benefits of adopting a convex shape for a sharp-

nosed forebody as they are of describing why nose blunting can be used to
reduce the drag of a circular cone, Indeed, too much should not be made of,
tne differences between the use of nose blunting and other, longer-established,
drag-reduction techniques. Nosze blunting simply represents the logical
concluglon of the classical.approaches such as’thgse'bdsed on linearised theory
theory Vartually all previous attecks on the drag minimisation’'problems’
have resulted in "optimum" shapes in which the surface slope decreases with
increasing distance downstream of the nose. A major difficulty inherent in
these earlier works is that the methods used to compute the forebody drag

have a llmlte% valid range which may be expressed in terms of a maximum

surface slope® and which 1s often vioclated, at least locally, by the derived
"optimum" shape., Thus, the truly novel aspects of the results presented in =
this paper are:- A s '

. (a) they are derived using 2 theory which is not subject to a limitation
on maxaimum surface slope and is, accordingly, more reliable;

(b) they suggest that earlier studies of drag minimisation have under-
estimated the advantages of high surface slopes near the nose, Indeed 1t
seems clear that, for a fixed fineness ratio, the' optimum body has a marked
degree of nose blunting,

{c) bvecause more confidence can be reposed in the computed values of
C. 1t is possible to study the benefits and penalties of nose blunting
greater than that required for minimum drag., This information is of value
since such increase;aln nose blunting may sometimes be desirable for non-
aerodynamic reasons -

3

Returning to the examination of the physical mechenism underlying
forebody optimisation, the benefits of high surface slopes near the nose
may be Llhoughl of as arising in two ways:-

(a) by accepting higher pressures acting on & small forward-facing
arga of the body, lower pressures are-produced downstream.where.they are.
acting over a larger forward-facing area of the body.

[
L . T
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(b) by accepting higher rates of entropy production over a small
forward-facing area of the bow shock-wave, lower rates of entropy production
are produced downstream and over large forwaerd-facing areas of the shock-
wave,

"hese itwo concepts are, of course, equivalent; the latter
corresponds to the calculations embodied in the prediction methed used in
this report and the former corresponds to previous, more conventional,
approaches to this problem, It is, accordingly, useful to demonstrate the
equivalence of these two concepts., Indeed, bty the use of an i1nverse,
non-hcmeontropic® characteristics calculation method due to Moorel0 1% 1s
possible to do this in such a way as to provide some check on the reliability
of the data presented in other parts of this report,

Bow shock~wave shapes, predicted during the course of deriving
some of the data presented earlier, were used as input to ihe inverse,
non-homeontropic characteristics calculation mentioned above 10, Thus, the
shock shape predicted by one method was analysed by an independent meihcd
to yield streamline patterns and pressure distributions. The compatibality
of these streamline patterns with the body geometries originally assumed
give a measure of the accuracy with which the shock shape was predicted.

An additional check can be obtained by comparing drag cocefficients (C.),
computed using the basic prediction method (Ref 7), with corresponding drag
coefficients obtained by integrating the derived surface pressure
distributions, Unfortunately, the inverse characteristics method cannot

be used to calculate pressures on a streamline 1f the flow velocity &t any
point on that streamline is subsonic. Therefore, this method cannot be

used to calculale the flow over the surface of the body, However, a

typical radial distance between the surface of the body and the innermost
streamline along which the flow can be calculated 1s normslly small compared
to the redial distance between this strezmline and the bow shock-wave, It
is, thus, not unreasonable to estimate the surface pressures by extrapolating
the variation of static pressure along each characteristic to the point at
which that characteristic would cross the surface of the body.

These points are 1llustrated in Fig,12, l!ere the computed flow
field zbout an optimum blunted double cone is shown., The relative
magnitudes of the distances belween the body and the innermost calculated
streamline, and between that slreamline and the shock can be clearly seen.
The innermost streamline 1s evidently compatible waith the body shape., Thas
was found to be true for a number of forebody shapes for which such date
were obtained, Indeed, 1f at the base of the body, the mass flux density
of the flow between the body and the innermost calculested streamline is
taken to be equal 1o the mass fiux densily on this streamline, then a
fineness ratio for the body may be derived from the inverse calculations,
This may be compared with the true fineness ratic. Good agreement 1s found
s can be seen from the follewing table:-

BODY/

*1.e., full account being taken of differences in entropy production at
different points on the bow shock wave.
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FINENESS RATIO

BODY TRUE FINENESS RATIO FROM INVERSE
CALCULATICONS
Sharp cone 2.00 1.9
Sharp cone 3.00 2.93

Cptimum blunted

double cone 2.00 1.93
Optimum bluniled

double cone 5.00 2.93
3/4 power-law 2.00 1.92

body

FPurthermore, the estimated surface pressures may be i1ntegrated
to yield a value for C_ which can be compared with the value of C. derived
from the prediction me%hod used in this report. Comparisons of these two
values of C, are given in the tables of Figs.13, 14 and 15, Again, good
egreement 18 found.

The direct method of Ref 7 comprises two main steps. These are
the prediction of the shock shape from a known body shape, followed by the
calculation of C., from this shock shape. The first of these steps has been
checked by taking shock shapes derived for variocus bodies by the direct
method and analysing these using the inverse method and noting that the
body shapes thus derived agree well with those originally chosen. The
second of these steps has been checked by performing a separate analysis
of the shock shapes, again using the inverse method, and noting good
agreement between the two independently derived values of CD‘

The main purpose of the preceding argument has been to demonstrate
the physical mechanism underlying the use of nose blunting to reduce C., and
to show that this is faithfully represented in the direct method’ used to
generate the data analysed in the main body of this report. It is reasonable
to have confidence in these data and especially in the trends that they
indicate, This is borne out by comparison with experiment. For example,
the differences between calculated and measured forebody drag coefficients
for a 20° semi-apex angle cone having O < d/D < 0.5 have been analysed.

The mean of these differences 1s 6.0% of the mean value of C_, (1.e.
comparable to the differences i1n the two calculated values o? CD shown an

Flgs./
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Figs.13, 14 and 15). ilowever, the standard deviation of these dafferences
was only 1,8% of the mean value of CD' Thus, not only is a useful accuracy
achieved in the prediction of absolute values of CD’ but notably better
accuracy 1s achieved in the prediction of trends. Thas point 1s also
exemplified by the following table showing the values of (d/D) that were

€equired t§ produce a given increment in CD above that of the sharp cone
C. = 0.28
D -

REQUIRED VALUES
INCREWENT _ GF {&/D)
IN Gy
FXPERIMENTAL CALCULATED
0.02 0.20 0.21
0.0k 0.28 .28
0.06 0.33 0.32
0.08 0.38 0.36

In Fig.13 the pressure distribution over the optimum blunted double
cone for £ = 3 is compared to that over o sharp cone of the same fineness ratio,
The pressure distributions are plotted in the form Cp.y' as a function of 7'

so that the ordinate represents the contribution of the surface pressure ccting
at a point on the body to the pressure dras. The area under the curve is thus
proportional to the pressure drag of the forebody tc which it relates. (The

chain dotted portion of the curve for the optaimum double cone is an
interpolation between the first caleculated point and Cp.y' =0 at-y'

O,
which was drawn having regard to the known slope of this ourve at y' 0).

It will be seen that the blunting leads to a local excess of drag of the
optimum double cone over that of the charp cone st y' < 0.15. However, between
y' = 0,08 and y' = 0.15 the local drag contrzbution Cp.y' falls rapidly because

of the expansion in the vicinity of the downstream end of the blunting. For
0.15 £ y' £ 0.275 the local drag contribution rises again bscause c¢f the nearly
constant value of CP over the first conical segment. It is important to note,

1)

however, that, despite the surface slope of the opiimum body being higher in
this region than the surface slope cf the sharp cone, the local drag
contributions are virtually identical. That this 1s so is, of course, due to
the effect of the entropy layer noted earlier. Between 0,275 < y' < 0.375 the
local drag contribution falls becuuse cof the expansion, and subseguent over-
expansion, associated with the change in slope at y' = D,/2. Thereafter the
local drag contribution rises only very slowly and over the whole renge

0.275 < y' < 0,5 the local drag contribution for the optimum body 1s

s1bstantially/
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substantially less than the corresponding value for the :harp cone,

This particular figure has been discussed at some length because
it clearly 1llustrates the physical mechronisms involved and the practical
importance of the entropy leyer. Similar beheviour is evident in Fig.14
which presents the pressure distributions for optimum blunted dcuble cones
and sharp cones for £ = 2 in the same way as Fig.13. Fig.15 presents
sinilar data for a 3/L power-law body having £ = 2. In this case Cp.y'

varies monctonically with y'. Illowever, this figure again demonstrates how
the concession of a small advantage in local drag contribution to the sharp
cone for y' < 0,2 can be made to yield large benefits in local drag
contribution at y' > 0.5.

Figs.16, 17 and 18 are similar to Figs.13, 14 and 15 except that
instead of the local drag contributions being presented in terms of weighted
values of C_, the rate of entropy producticn at the bow shock-wave 1: used,

It will be seen that the distraibution of entropy production is similar %o
the distrabution of surface pressure. In particular, although the optimum
double blunted cones have high local rates of entropy production at small

values of (yﬁ, the rates of entropy productron are low for high values of

(yO resulting 1n o substantial net gain.

5,5 The optimisation nrocess

In thas section we offer some comments upon the problems of
optimising a forebody ~ either by means of a series of calculaticns or vie
experimental tests on a systematic series of bodies, The problem of
efficiently locating a set of values for a multlplicity of independent
variables such that & single dependent variable has an optimum value
{subjeet to constraints on the independent varlables) 15 & complex study
in itself. There would be obvious advantages in combining the prediction
method’ with a suatable optimasation algorithm. Some insight into the
nature of this problem may be gained through an analysas of the present
data., In Figs,19 and 20, the calculated drag coefficients of f = 2 and
f = 3 blunted double cones are replotted so as to provide contours of

G, on the D, ,Dy plane. The existence of a minimum value of CD (end, hence,

an optimum pair of velues for D, and Dp) is evident. The relationship of
this optimum shape lo the minimum drag configurations of a blunted single
cone or a sharp-nosed double cune, is of interest as thais information may
be valuable xn deciding upon suitable siarting points for optimisation
vrocesses for more complex shapes,

It will be seen that points representing all possible blunted
single cones lie on the line 2,Dy = Dy + D;, while all poscible sharp-acsed
double cones are represented by points on the line Dy = 0, By examining
the intersections of the contours of CD with these lines the conditions for

minimum drag forebedies of these tyces can be seen. It i1s interesting to
note that the optimum bodies have slightly larger values of both D, and Dy

than the best blunted single cone or sharp-nosed double cone. An attempt
to establish the optimum value of D, by gradually ingreasing its value from
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zero, and retaining the same value of Dy as 1s best for a sharp nosed body,
would underestimate the optimum value of D;, and over-estimate the minimum
value of CD' These errors could be serious especially for £ = 2, GSaimilar,

but less serious, errors would be incurred if D, was held fixed at the best
value for a blunted single cone and Dy varied in an effort to find the
optimum,

Fortunately, however, CD appears to be a well behaved function of

D; and Dy. Thus, no fundamental difficulties would be expected 1f some
efficient optimisation algorithm were employed, other than that the minimum
is relatively flat, This is not a serious practical problem since it implies
that a slight error in either D, or D will not result in & serious over-
estimate of the minimum value of CD. Such optimisation algorithms are,
however, not suxitable for attempts to find optimum configurations via =
series of experimental tests, This 1s because they use the results of one
set of calculations to identify improved starting conditions for a
subsequent set of calculations, Any attempt to conduct an experimental
programme on this basis would involve bouts of model making interposed
between series of tests. The whole programme would be very protracted.

It 1s, therefore, appropriate to enquaire if' there 1s any way in
which & family of models may be designed a prior: with some confidence that
experimental data obtained using these models will reveal a best configuration
which will, in turn, be close to the optimum shape. For eccnomy such a
family should be descrlbed by one disposable parameter (Di, say The
simplest such family is that in which D; 1s a linear function of Di.
Geometrical considerations require that when Dy = 1, Dy =D, = 1(Dy = 1).
However the choice of Dp when D, = O remains arbitrary. Fig.21 shows three
such families, including one for which D5 has, when D; = 0, the value
pertaining to the minimum drag for a sharp-nosed double cone., TFig,22 shows
the variation of CD with Dy for each of these three families of bodaes,

There are marked differences between both the minimum values of CD and the
corresponding values of Dy for each family of forebodies and only one
approximates to the true optimum condition. It 1s clear that attempts to
find optimum configurations via a limited series of ad hoc experiments are

of doubtful value. If no other recourse is available then a sensible approach
would seem to be to adopt a one parameter family similar to those represented
in Fig.21 and having the ninimum drag for a sharp-ncsed body when Iy = O,
Even this is an unsatisfactory course in that 1t 15 necessary {o know a
priori what 1s the best shape when I, = O and because, given current
understanding of the problem, there is still a considerable risk of missing
the true optimum by a considerable cmount. % far more preferable course is
to conduct a programme of experimenlal tests incorporeting systematic

changes in each variable. Results from such tests can then be used to
validate or modify appropriate prediction methods which cen, in turn be used,
together with suitable optimisation algorithms 9, Lo determlne an optimum
forebody shape,

, 5.6/
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5.6 Generalisation of optimum conditions

The derivation of an optimum configuration, especially one
involving a large number of independent variables, will, inevitably, absorb
considerable effort despite the relative simplicity of the pred:rction method
used in this report. It 1s, therefore, appropriate to enguire whether data
obtained for one Mach number can be generalised in such a way as to give an
approximate indication of optimum configurations at other Mach numbers. Such
& generalisation would enable the designer to:-

(1) economise on the effort needed for full optimsation at additional
Mach numbers by making available good initial estimates of the appropriate
optimum configurations

(2) establish whether the optimum configuration for any particular set
of constraints is sensitive %o Mach number,

The latter aim 1s particularly important since this must be
astablished if optimisation at a particular Mach number is to have any
practical utility in.many applications.

Unfortunately, adequate experimental data for a comprehensive
treatment of this topic are not available, Indeed, for blunted
configurations, data inecluding systematic variation of both body shape and
Mach number are available only for blunted single cones. Even for this class
of body extensive interpolation of the available data is necessary. Such an
interpolation has been performed by the Engineering Sciences Data Unit?.
However, the quoted accuracy of their data sheets 1s such as to i1nvalidate
their use for optimisation studies except for high-drag bodies, for example,
those having f < 1,5,

The original sources of data1’2’12 used in such compilations and
other, more limited analyses, are, of course, available and some are useful
in provaiding particular examples of optimum, blunted single cones for larger
fineness ratios,

The variation of G with both bluntness (4/D) and Mach number (M)

for £ = 1 blunted single cones (derived from Ref.2) is 1llustrated in Fig.23.
The contours of CD show the expected optimuam values for each Mach number.

Moreover, the optimum values of d/D vary little with Mach number, except
near M = 1. Even then, the behaviour of CD with M and D, as favourable in

the sense that a body having the optimum value of D; for some supersonic
speed will have a lower drag at transonic speeds than the sharp cone of the
seme fineness ratio (albeit not the minimum drag for the lower Mach number) .
Blunting also tends to decrease the maximum in the variation of drag
coefficient with Mach number. These points were discussed in much greater
detail in Ref.6 and it is not proposed to repeat that discussion except to
say that the conclusions as to the favourable effect of blunting noted above
are shown to be generally true for blunted single cones having f < 1.5.
While there is every. reason to believe that similar conclusions will also be
valid for f > 1,5 no supporting experimental evidence 1s to hand.

The/
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The method of preneralisaing optimum confi _urations siggested in
this reoort 1s based upon an interpretati.n of the cornvenl znel similaraty

parameters for supersonic and hyperscnic flow,
39 Y

hd 1
The normal hypersomic similarity relationship 3 siates that, for
affinely-related bodies:-

¥, (Mr) or in more general supersonic/hypersonic
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where 7 = 1/f, so:-

Cyf* = Fy (£ -71)

eu(1)
Although this relationship 1s genersl and 1s not invalidated by
nose blunting, examinations of the requirement that the bodies considered
chould be affinely related shows that it cannot be applied directly to the
type of bodies considered in this report. The above express:ons relate, say,
a spherically-blunted body at one Mach number tc a body, at another llach
number, whose nose blunting takes the form of part of an ellipse. Thus,
equation (1) does not allow one to relate, say, a spherically-blunted body
at one Mach number to a second spherically-blunted body of related, but
different, geometry at a2 second Mach number. To do this 2t 1s necessary
to consider the physical significance of the right-hand side of ecuation (1)
(which 1s, of course, entirely adequate for sharp-nosed bodies).

For sharp-ncsed bodies the bow shock-wave is inclined to the free-
stream direction at an angle which 1s everywhere closely related to the Mach
angle, For slender bodies (f-u)<<p, and if body length is taken as L, the shock
radius at the base plane of the forebody is approximately given by

R, = L tanp = LAVIE = 1

The body redius at the base plane is, of course, L/2f,

shock radius L 2.f 2,f
Thus, the ratio( = . =
body radius Yir-1 (L) VME-1
f
Accordingly, the term may be i1nterpreted as characterising
VIF-1
the ratio of the shock radius to the body radius at the base plane of the
f2
forebody. Its square _-_‘3 revresents the ratio of the base area to the
(M2-1

area of the flow "captured"” by the bow shock wave upstream of the base plane,
and thus, represents the area change which the fluid is forced to undergo.

1t/
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It is thus a index of the aerodynamic slenderness of s slender sharp-nosed
bedy.

If attention is now turned to blunted forebodies, then examination
of the predicted shock-wave shapes reveals that, for most such bodies, the
shape of the bow shock-wave upstream of the base-plane of the forebody either
derives completely from that region of the shock-wave which is determined
by the blunting alone, or else such a large portion of 1t is thus derived
that the blunting is the dominant influence on the radius of the shock-wave
in the base plane. The bow shock-wave due to a blunt body at supersonic
speeds is insensitive to Mach number and is given approximately by '*:-

1

R 1 1
—S"\.C4 (E\E
a Dy d

where CD is the drag coefficient of the blunting in isolation.
N

Thus, the ratio of base area to area of flow captured by the bow
shock wave upstream of the base plane is proportional to:-

X

() - (2 (D~ (g (D

D 2 D 1
Y~ () (=
R é - £C.2
S Dy

Thus, by analogy with the well-established samilarity rules for
slender bodies, we hypothesige that:-

D 1

Cy . 2 = n((- . —— } )

ANY | (chE)

N

We, therefore, seek relationships of the form of equation (2) for

blunted bodies. In so doing 1t is reassuring to note that both the resulti
of Chernyi's analysis of the hypersonic flow about sligh*%y(blunted cones]

(based on blast-wave theory) and Erricson's scaling laws based on Sieff's
embedded Newtonian flow theory) can be put into the form of equation (2).

If attention is initially concentrated upon those hlunted single
cones which have the minimum drag for a given Mach number and fineness ratio,
then the correlation shown in Fag,24 may be derived. To a first approximation

the/



the data, which are derived frot Refs.t,2 ond 3 (and are for spherically-
blunted cones and 1,24 € V £ 5,0 and 1,0 € £ ¢ 3.03, cre colle .=ed onto
a single curve, The calculated oupiimam configuratioans, when plotied in
this fashion, agree well with tne ziperamenlal dats, thus further
confirning the validaty of the caleulation nethod of Ref.7.

Since the optimum bluntness ratios are correlated by plotling

1
1/(f CD2), 1t 15 reasonable to expect thal these same parameters would also

correla%e the ratic of minimum drag to the drag of tiie sharp cone of the
same fineness ratio, F1z,25 shows that this is so., Additionally, Fig.26
demonstrates the particularly simple relationship between the optimum
bluntness ratic and the bluniness ratio corresomonding to CD equal to that

of a sharp cone of the same fineness ratio.

m

Te fact that these three perumetsi

( ( % ) , ( % Yy, (CDNIW/C ' ) , Jihich broadly charsclerise lhe
¢rT = ©D,

variaticn of CD with bluniness ratio, can be anproxunately exprecsed &g

y
functions of 1/(f CDE) alone, explains whr the opuiaus configuration for

I3
a spherically blunted coune 1s insensitive 1o llach numbsr in the supersonic
and hypersonic speed ranges, The drag cosfficieanl of most blunl budirec
varies little witn increasing lach number once the transonie speed rongs
has been passed’ '°® 7. It 1s encouraging to note, however, that the
correlation shown in Fags.24,25 and 26 covers a variailon in CD hetween

n
0.55 ¢ CD € 0.91 and, hence, includes at leasi the uppser part of Llhe
N

transonic speed range.

The drag savings shown in F1:.25 are noscibly iypical of thowe
that can be achieved by nose blunting. Fi:.27 compares the —ean curve
through the data of F1z.25 with the drag coefficients of two minimum=dra.,
spheracally-blunted double-cones (normalised by the drag couefficienls of
both sharr single cones and optrmum, sharp double cones of the same
fineness ratio). Care 1s necessary to aveid re~ding too much into this
sparse set of data, but 1t would apuear tha® inose reducticng 1n drig
which can only be realised by the use of nose blunting are sipilor for
both single and double cones.

The available evadence zp;ears to be wnsufficient Lo reach sny
firm answer to tne question of & possible upper limrt to the range of
fineness ratior over whaich 10se bluniin, cwn be used to reduce dreg,
Fig.24 would appear to indicate that the optamun bluniness ratio 15 very

1

small for fCD2 ~ 5, Towever, .-, 25 ap-ears to 1idiecate some non cero
N
asymptotic velue for reduction in

o]

ilevertheless, 1t is clear that

-

n*
properly a,plied, no.e blunting ouy be exiuected tc reduce forebody dras

Py -
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1
for values of chd at least as high as 4. Thus, the usefulness of nose
N
blunting for fineness ratios within the range shown in Fig.28 has been
established, Further work i1s required to investigate the use of blunting
at higher fineness ratios, and the boundary drawn in Fig.28 should be

regarded as a pessimistic lower 1lim:t based on current knowledge.

5.7 Alternative forms of blunting

The entire preceding discussion has been confined {to spherically-
blunted bodies., While this 1s probably the case most commonly occuring in
practice, there is no a priori reason why 1t should be the best form of
blunting. For example, truncated (flat-faced) bodies are sometimes of
practical importance and represent a considerable departure from spherical
blunting, The variation of drag and volume with bluntness ratio has been
examined for truncated single cones. The results of these calculations are
presented in Figs.29,30, and 31, Each figure corresponds to a single, fixed,
fineness ratio and, hence, may be compared with Figs.2 and 5, curves from
which are also repeated in Figs.29, 30 and 31, in order to facilaitate such
comparisons,

Another form of blunting, often having a lower value of CD than
N
spherical blunting, is a cone of semi-apex angle substantially greater than
that of the basic forebody. Results for single cones blunted by a 30° semi-
apex angle conical cap are also shown in Figs.29, 30 and 31,

Comparison of the ways in which CD varies with V for the different

forms of blunting shows that, in general, those forms of blunting having

high values of CD (the drag coefficient of the bluniness in 1solation) are
N

to be preferred when attempting to minimise the drag of a complete body

having a fixed fineness ratioc. However, the drag penalfies for increasing

V (at fixed fineness ratio} beyond that corresponding to the mimimum value

of CD are usually largest for the form of blunting having the highest value

of CD . Thus, the preference expressed above for high values of CD may not
b N
be valid for other, albeit less common, optimisation criteria.

The calculated results obtained regarding blunted single cones
having the minimum drag for the three forms of blunting described above and
three fineness raticos (f =1, f = 2 and f = 3) are summarised in Figs.32, 33
and 34, which ase the same form of presentation as Figs.24, 25 and 26, The
mean curves through the data poinis drawn on Figs.24, 25 and 26 have been
transferred to Figs.?2, 33 and 34 so that the two sets of graphs may be
readily compared. It will be seen that, within the limitations of the
admittedly approximate correlation of the earlier graphs, a collapse of the
data for (d/D§OPT end (d/D)  1s achieved, thus further 1llustrating the

o)

usefulness of the parameter f.CD , particularly since CD now variles
Iyl

=
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between 0.535 < C, < 1.60,

Dy

The drag reduction parameter (CD/CD P) is, hovever, not correlated
S.u
- indeed many of the data points lie well below the mean curve for
spherically blunted cones, This situation 1s further examined in Fig.35
where (CD/CD ) is presented as a function of fineness ratio. It is
SC
immediately seen that truncated cones perform best at low values of f, but
spherical blunting is to be preferred for f = 3. To at least partially
explain this effect it is necessary to refer back to section 5.4. There it
was pointed out that the use of nose blunting causes two changes to occur
in the surface pressures. Firstly, there will be an increase in drag due
to high pressures acting on a small area of the body close to the axis of
symmetry; but, secondly, this is more than offset due to reduced surface
slopes and, hence, lower pressures acting over a larger forward facing area
further downstream {and, thus, more remote from the axis of symmetry). It
is evident that to minimise the first of these changes CD should be small.
N
The blunting will then tend to present comparatively low surface slopes to
the oncoming air, Unfortunately, in order to maximise the second (favourable)
change, it is necessary that the conical part of the body should commence as
little downstream of the stagnation point and as far removed from the axis
of symmetry as possible. This, of course, demands that the average surface
slope of the blunting should be high and, accordingly implies a high value
of CD .
N

Thus, the choice of the best form of blunting 1s a complex matter
requiring close study outside the context of this paper. However, 1t may
be remarked that when the fineness ratio 1s very low CD tends towards CD
sC N
so that the former of the two effects noted above is comparatively unaimportant,
However, any reduction of nose length (1.e, the streamwise distance from the
stagnation point to the bluntness/cone junction) has a marked effect on the
apex angle of the conical portion of the body. Thus, the latter effect tends
to dominate and high values of CD are to be preferred. Conversely, when the
N
fineness ratio is very large CD 1s very small so that the former effect
se
assumes considerable importance. Also, changes in nose length have only a
modest effect on the apex angle of the conical part of the bedy. Thus, the
former effect is i1mportant and lower values of CD are preferred.
N

It is interesting that unmodified Newtonian theory shows the above
trends as exemplified by Figs,36 and 37 where contours of CD calculated by

Newtonian theory for conically blunted cones of varying bluntness ratic and
angle are presented. It must be remembered, however, that these figures are
a8 rough guide to the relevant relationships only, since unmodified Newtonian

theory/
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theory cannot be held to satisfactorily represent some facturs which are
favourable to the use of blunting in general, and high values of C. in

particular. DN

Sufficient data have, however, been presented tc show that the
benef1ts obtained by (spherical) blunting and demonstrated in the main
body of the report are only typical of what can be achisved with relalive
ease. DB' a proper choice of the type of blunting employed, yet greater
benefits can be attained and, presumably, the range over which nose
blunting 1s useful can be extended,

5.8 Alternative optimisation criteria

Hitherto, this analysi: has been praimarily directed towards the
problem of minimiszng the drag of a forebody subject to the constraint
that 1ts fineness ratio 1s kept constant, This constiraint was chosen
because, although simple, 1t closely represents an important and frequently
occurrang design problem. However, it 1s certainly not the only
cptimisation criterion and set of constraints that are of practical interect,
For example some practical optimisation problems are summarised in the
table below:-

No OPTIMUM CCNDITICN VARIABLES TQ
L_ * SCQUGHIT BE _KEPT CONCTANT
I MINIMUI® DRAG FINENESS RATIO
IT MAXIMUM VOLUME FINENESS RATIO & DRAG

ITI | MINIMUM STAGNATION-

PULINT HEAT TRANSFER FINVENESS RATIO & DRAG

As noted above, problem I has been extensively discussed in
preceding sections of this report. In this section brief analyses of
problems II and ITI are presented since they represent design situaticns
that can arise in practice even 1f not as frequently as those represented
by problem I.

Taking each in turn, we first consider II in which 1t 18 desired
to maximise the volume subject toc the consiraint that CD and f should be
constant,

The topic of 1ncreased volume has been tuuched upen in .he eavclier
discussion of spherically-blunted single cones. There 1t was shown that
even the minimum-drag configurations featured a substaniial inerease in

volume relstive to the sharp-nosed ccne of the same fineness ratics. Ticvever,

foreboay volume 1: clearly stroaly influenced by the shane of Lthe body
downs tream of the biunting, Thus, double cones are analysed in thi, section,

Fig, 338/
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F1g.38 shows volume as a function of the bluntness diameter D, for
spherically-blunted cones of f = 3 and having given values of CD (D; 1s, of

course, then determined by the need to keep C_, fixed). Becalse there zre

D
cases in which the same value of CD 1s generated by two different values of

Da, even when D, is fixed, the curves presented in Fig.38 need be neither
continuous nor single valued. However, it is clear from this figure that
where there are two values of D; for the same D; and CD’ one configuration

has much the higher volume. Both D, and D, exert a powerful influence upon
V. By the correct choice of forebody geometry substantial geins in volume
can be achieved. In particular, the volume can considerably exceed that of
the minmimum drag body for only a modest increase in drag. However, further
increases in the premissible drag level purchase diminishing increases in
volume. This process 1s summarised in Fig.39 where the maximum volume
attainable for a given CD 1s shown as a function of that CD'

It is i1nteresting to note the substantial gains in volume, relative
to that of a sharp-nosed single cone, made by even the forebody shape having
the minimum value of CD. Also, examination of Fig.38 reveals tnat the

use of nose blunting plays an essential part in the attainment of the gains
in volume summarised in Fig.39.

Turning now to problem III, it should be recalled that stagnataon
point heat-transfer rates are, for a given free-stream Mach number, directly
proporgional to the square-rcoot of the velocity gradient at the stagnation
point1 . This heat-transfer rate is thus dependent upon the geometry of the
blunting employed, in a way such that its minimisation tends to favour the
use of blunting having a high value of CD .

N

It 1s, therefore, relevant to enquire whether, in problems involving
the minimisation of stagnation point heat-transfer rate, the preferred type
of nose blunting is likely to be different from those found in section 5.7,
In particular, the question is posed as to whether the relative merits of
spherical blunting and truncetion are different when tackling problem IIT
than when tackling problem I.

Fortunately, stagnation point velocity gradients have recently been

the subject of study and Ref.17 includes observations on shapes pertinent to
the present discussion,

AN
Now, 8 = k ( ——‘>
ds
s
Considering sphericelly-blunted and truncated bodies {(denoted by
suffices b, and t respectively).

o=
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4=k (—)
t * @8 .
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and

t

Now, from Ref.17

() = Gam) - (2)

3 s*
o¥e
where, at M = 3 (-———————‘) ~ 0,9 (for a hemisphere)

5/.%

. a(%/s*)

]
dMe
and (-—j;—n—-) ~ 0,33 (for a disc).
a(%/s*)

s

Also from geometrical considerations

it

s* 0.5 4 for a truncated cone

and S* = 6% , % sec €
or, using ref.17, &% = 0.386 . d . sec € for a spherically-
blunted cone having the sonic point located on the spherical portion of the
body.

For the purpose of this note the stagnation-point, heat-transfer
rates are normalised by dividing them by the stagnation-point, heat-transfer
rate of a hemisphere having the same base drameter as the forebody being
considered, i.e. for this reference body

S¥ = 0.386 0D
and so:-
au
<_> = (0.91.2) / (0.386 D) = 2.355a/ D
ds raf

,
& \2
or brae = 15358+ ()

and, denoting guantities such as qs/qref by the symbol @, we have:-
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cos ~ spherically blunted cone.
a Z
and 4
D2
Qt = 0.529 ( ;‘) ~ truncated cones.
t

Since from these last two equations, values of (%) required to produce any

desired value of § may be evaluated and combined with the earlier calculations
of drag, the comparison between spherically-blunted and truncated cones may
be accomplished.

In fact:- a
( -) = (cos €) / Q%
D
b
and < E ) - 0.28
D Q3

t

Figs. 40,41 and 42 show CD as a function of the normalised stagnation-

point heat-transfer rate for blunted single cones of fineness ratios, 1,2
and 3. Also shown are the limiting values of Cj {at @ » o) for the sharp

cone together with the values of Q for both a dise and a hemisphere. It
wi1ll be seen that in all cases the minimum value of CD corresponds also to
a fairly modest value of ¢. The variation of CD with Q for values of Q
above thet corresponding to the minimum CD is of comparatively little

practical interest since no designer is likely deliberately to incur such
unnecessary penalties in bhoth CD and Q. Of much greater interest is the

variation of CD with ¢ for values of § below that corresponding to minimum CD.

In all cases only small decrements of & below that corresponding
to the minimum CD can be achieved before severe drag penslties are incurred.

Thi? is, of course, a direct consequence of the fact that Q varies as

D2
(E) 50 that reduced values of Q have to be bought at the expense of large

increases in (d/D) with accompanying increases in drag if 4/D > (d/D)OPT'

Tt is evident that, unless high values of C are acceptable (as in

certain specialised problems) each type of nose blunting has associated with
it & reasonably well defined minimum value of Q. Reductions in Q below this

minimum/
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minimum are better accompished by a change in the type of blunting rather
than by a straightforward increase in {d4/D). A practical limit to the
reduction of Q without excessive CD is, of course, set by the minimum value

of Q attainable with a truncated cone. However, it should be observed that
this value 1s not greatly in excess of 1.0, 21.e. § does nol greatly exceed
that for a hemisphere of diameter D and, as such, may well be lower than
that required in many practical applications.

These results are summarased in Fig.43 in which typical bounds of
stagnation point heat-transfer rate are shown as a function of fineness
ratio for two different types of blunling, The upper bound 1s taken as
that corresponding tc the minimum value of CD for each type of blunting and

fineness ratio, while the lower bound is taken as that corresponding to CD

equal to that for a sharp cone of the same fineness ratio, It is
particularly interesting to note that, as foreshadowed 1in the earlier
discussion, the truncated cone anpears to be the most suitable bedy (in the
sense that the maximum reduction an { can be achieved without increasing

CD beyond that for a sharp cone of the same fineness ratio) throughout the

range of fineness ratios considered.

On thiz bacis, 1t would appear that itruncation as a form of
blunting has been undeservedly neglected ain the past. It must be recognised
that straightforward truncation, while reducing the stagnation point heat-
transfer rate - and, hence, thermal stress problems in thas area’S - might
involve significant thermal stress problems at the downstream end of the
blunting due to the rapid changes in heat-transfer rate with streamwise
distance that are lakely in this region. However, such problems could
possibly be alleviated by limited smoothing of the distribution of surface
slope over the area affected. !oreover, such detailed worries do not
detract from the overall conclusion that, when the aim 1s to reduce

stagnation-point heat-transfer rate without large penalties in CD’ there

is considerable scope for the use of forms of blunting having large radii
of curvature in the stagnation point region and, hence, usually having large

values of CD -
N

5.9 "Off-design" or non-~optimum bodies

To consider all aspects of the behaviour of non-optimum bodies
would demand a paper in 1tself and one which would be much longer than the
present discussion., Moreover, the preceding sections heve already shown
that, in most cases, the variation of CD with the various independent

parameters has relatively flat minima which are insensitive to changes in M.
One may, therefore, safely make the qualitative statement that the
performance of optimum bodies derived as described earlier would not be
seriously prejudiced by even substantial changes in Mach number.

However, 1t is instructive to consider the implications of one
additional geometrical constraint, In particular, 1t 1s possible that non-
aerodynamic considerations might force a designer to fix upon a particular

value/



- 26 -

value for either Dy or Dy. Unless he is lucky encugh to light upon the
optimum value for this fixed diameter, a drag penalty will thereby be
incurred., Such a penalty in CD may, however, be minimised by adjustment

of the other, disposable diameter.

This point 1s illustrated in Figs.s4 45 and 46. In Figs.sk and
45, the variation of CD with Dy for various values of Dy is contrasted

with the variation of CD with Dy that occurs when Dy 1s chosen so as to
minimise CD for each value of Dz. It will be seen that by varying D, in

the proper manner, the drag penalties associated with & non-optimum
value of Dy may be greatly reduced, and CD made to have a very flat

minimum, Thus, the drag penalties associated with a fixed non-optimum
value of Dy need not be severe provided that the appropriate value of D,
is found and Dy is not too far removed from the optimum value. Likewise,
Fig.46 demonstrates that the penalties consequent upon Dy being fixzed at
someé non-optimum value may be greatly reduced by the proper choice of Djg,

6. Conclusions

From the preceding quantitative discussion certain general
principles tend to emerge. Tn the interests of clarity they are restated
here, To facilitate reference to the relevant parts of the discussicn the
number of the appropriate section in the discussion is quoted in brackets.

Vhen minimising the value of CD for a body of given fineness ratio,

it was found that at a free-stream Mach number of 3.05:-

(5.1)For single cones, nose blunting can be used to decrease the drag
at a given fineness ratio, or to increase the volume without any drag
penalty, or, at the higher fineness ratios, to reduce the fineness ratio
without drag penalty or loss of volume,

(5.2)The above advantages of nose blunting apply equally to both single
and double cones. The rudimentary freedom to adjust the shape of the fore-
body downstream of the blunting (independently of the bluntness ratio), in
the case of the double cone does not diminish the utility of nose blunting.

(5.3)A correctly proportioned, blunted double cone can have varitually
the same forebody drag &s & 3/4 power-law body of the same fineness ratio,
thus effeciing a marked simplification of the geometry of the forebody
without drag penalties.

(5.3)Nose blunting, even when applied in a fairly simple fashion, can
achieve 1mprovements in the characteristics of a 3/4 power-lav body, notably
increased volume, This is of particular interest because 3/L power-law
profiles have often been regarded as optimum for supersonic and hypersonic
Mach numbers. In view of this and the previous three conclusions it appears
that an 1nvestigation of blunted bodies using newly-developed drag-prediction
methods together with those powerful numerical optimisation techniques that
are currently available should yield optimum bodies that are substantial

ieprovements over those hitherto considered to be optimum,
(5.4)/
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(5.4)The physical mechanism underiying the above uses of nose blunting,
including the importani role of the entropy layer, has been demonstrated.
These concepts, which are well understood for single blunted cones, ars
sufficient to explain optimisation processes for more complex bodies, the
underlying physical mechanism being i1dentical in both cases. The use of
nose blunting 1s, thus, a logical extension of earlier optimisation methods.

(5.5)The search for truly optimum forebody shapes is best conducted
using a suitable prediction method, such as that used in this report which
can itself be vaiidated by a limited number of experimental tests performed
specifically for this purpose.

(5.6)The supersonic/hypersonic similarity rules for affinely-related,
sharp-nosed bodies may be reinterpreted to give corresponding similarity
parame ters for blunted bodies. Using these parameters approximate
corrglations of the characteristics of such blunted bodies may be obtained
for wide ranges of Mach number and fineness ratio.

(5.7)Spherical nose blunting, as considered in the main body of the
report, is preferable to truncation as a means of reducing the drag of the
higher fineness ratio bodies; but it 1s inferior to truncation at lower
fineness ratios. Thus, the drag reductiuns featured in this report, while
typical of those that can be readily achieved, are not necessarily the
maximum possible, 1i.e. when the best form of nose blunting is employed.

(5.8)The blunted forebody shape having the minimum CD has a substantially

greater volume than a sharp cone of the same fineness ratioc. Further gains
in volume may be made at little cost in CD.

(5.8)An alleviation of stagnation-point heat-transfer is inherent in
the use of nose blunting. In this ccontext blunting which is smaller than
that corresponding tc minimum drag is of no practical interest since to use
such a size of blunting is to incur unnecessary penalties in both heat
transfer and drag. Reductions in stagnation-point heat-transfer rate beyond
that corresponding to minimum CD soon cost subsiantial drag penalties. Thus

for each fineness ratio and type of blunting there 1s only a limited range
of normalised stagnaticn-point heat-transfer rates that can be utilised in
practice. Hence any requirement to attain a given stagnation-point heat-
transfer rate 1s best satisfied by the appropriate choice of the type of nose
blunting - a possibility which has hitherto received little attention,

(5.9)If a designer 1s forced to adopt a non-optimum shape for the
forebody downstream of the blunting, a drag penalty wall necessarily be
incurred., This penalty, however, can be considerably alleviated by the
proper choice of size for the nose blunting.
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