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SLIMMARY 

This parametric study examines the application of noee blunting 
to axisymmetric forebodies at supersonic speeds to reduce pressure drag 
and stagnation-point heat-transfer rate and to increase their volume. 
Sufficient information is given to enable the magnitude of these benefits 
to be estimated for most practical applications. 

Nomenclature (see also Fig (I)) 
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specific heat of air at constant volume 

drag coefficient based on maximum cross-eectional area and 
free-stream dynamic pressure 

drag coefficient of blunting in isolation (based on maximum 
cmss-sectional area of blunting and free-stream dynamic 
pressure) 

pressure coefficient - difference between surface pressure 
and free-stream static pressure normalised by the free-stream 
dynamic pressure 

sonx velocity 

body diameter at Junction between blunting and conical portion 
of body (single cones only) 

a constant (used in section 5.3) 

a constant (used in section 5.8) 

fineness ratio - ratio of length to diameter of forebody 

stagnation-point heat-transfer rate 

s/ 

*Replaces NPL Aero Special Report 043 - A.R.C.32 284 
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distance measured along surface of body from stagnation 
point 

radial distance from axis of syraaetry normalised by 
maxmum diameter of body 

maximum (base) diameter of forebody (smgle cones only) 

body diameter at downstream end of blunting (double 
cones only) 

body diameter at junction between two conical portions 
of body (double cones only) 

base diameter of body (double cones only - normally 
taken as unity) 

functions (section 5.6) 

length of forebody 

Mach number just external to boundary layer 

free-stream h:aoh number 

a constant (section 5.3) 

stagnation-point heat-transfer rate normalised by 4 for 
a hemisphere of base diameter equal to that of forebody 
(i.e. equal to D or b for single or double cones 
respectively) 

Y co-ordinate of shook-wave in base-plane of forebody. 

increase in entropy of unit mass of a1r on passing through 
bow shook-wave 

velocity just external to boundary layer 

total internal volume of forebody, normalised by the 
cube of the base diameter (D:or @) 

streamwise distance (I.e. measured parallel to axis of 
synme try) 

radial alstance from axis of symmetry 

shook angle 

semi-apex angle of conical portion of body 
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semi-apex ankle of (conical~ blunting 

rmnimum value' 

value aupropriate to sharp cone 

condltxw such that CD is equal to that for a sharp 
cone having the same value of f 

conditions such that CD is a mxximum for a &ven value 
of f 

spherical blunting 

contitions at stagnation point 

truncated 

reference conditions (defined in text) 

transformed values (section 5.3) 

conditions at sonic point 

1. Introduction 

The recent past has seen a revival of interest in the use of nose 
blunting to reduce forebody drag. Imtially, exlsting data were reanalysed 
to obtain some general guide lines (or "ground rules")'~z. Most of these 
data were for spherically-blunted cones. Although this class of body is 
only one of many in coxmnon use and is definitely non-optimum, this analysis 
served to delineate the circumstances in which the use of nose blunting was 
advantageous. In particular, the use of blunting can give substantial gains 
in both drag and volume when the fineness ratlo of the forebody is constrained 
to be a fixed value. This 1s in oonformlty with results obtalned using 
approximate analytical expressions for surface pressure together with either 
the calculus of vanatlons, or numerical optimlsatlon techniques 3,495. 

These/ 
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These facts generate a need for a prediction method which is 
powerful enough to be ca,able of dealing with blunted bodies yet is 
sufficiently simple to allow 0 

E 
its repetitive use in optimisation studies. 

Few such methods are available 
by the present authors7. 

, and a novel approach has been developed 
This method has been checked as far as is 

practicable at present and gives satisfactory agreement with experiment, 
so that it is appropriate to use it in parametric studies to elucidate 
further the potential of nose bluntness. Having then derived at least 
semi-quantitative ground-rules for applying nose blunting, two vital 
things can be done. Firstly, new experiments can be devised with the 
specific aim of further validating the proposed uses of nose blunting. 
Secondly, full optimisation studies can be conducted in order to derive 
minimum-drag forebody shapes appropriate to practical constraints under 
which nose blunting is likely to be advantageous. 

This report takes a few steps along this road. It describes a 
parametric study of the type mentioned above and draws some conclusions 
as to the uses of nose blunting which appear most likely to be profitable. 
The majority of the calculations were performed for a Mach number of 3.05 
but some consideration is given to the effect of varying the Mach number. 
The precise quantitative conclusions as to optimum forebody shapes 
naturally require experimental confirmation. However, the calculation 
method employed has been well enough validated already to allow reasonable 
confidence to be reposed in the results. 

2. Forebo&J Geometry 

A papral extension of earlier analyses of the drag of blunted 
single cones 9 is to consider blunted double cones of unit base diameter 
(Fig.1). By so doing it is possible to consider the effects of some 
shaping of the body downstream of the bluntness and, hence, to examine the 
influence of such shaping on the effectiveness of nose blunting. If the 
benefits of nose blunting were found to be much less for a double cone 
than for a single cone then grave doubt would be cast on the generality of 
the utility of blunting. If, however, blunting= no less beneficial for 
the double cons than for the single cone then this would tend to suggest 
that blunting was of widespread usefulness. Both single and double cones 
are considered in this report. To ensure unambiguity and to make clear 
which type of body is being considered a different nomenclature has been 
used for each (see Fig.?). In the case of double cones the base didmeter 
Ds is taken to be unity except where otherwise stated. 

Although a blunt double cone is, of course, still well removed 
from the continuously curved shapes commonly adopted for low-drag 
forebodies, it has the merit of being completely described by three 
independent variables (L, Di, DcE As will be seen later, even as few as 
three independent variables pose considerable problems of presentation 
and analysis. To use more mould run the risk of obscuring the central 
points in a mass of detail. While it would, of course, be possible to 
take the forebody shape between D, and the base as being derived from a 
family of curves, this 1s no more general than the study of double cones 
unless the family of curves used is described by more thanone independent 
parameter. 
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Accordingly, the majority of the calculations analysed 
report were performed for blunted double-cone forebodies. A few 
calculations were done for continuously curved forebody shapes. 

^ 3. Constraints and Dependent Variables 

An optimum forebody shape is only optimum in the sense that it is 

in this I 
additional 

d the shape that corresponds to the best value of some dependent variable 
that can be obtained given certain constraints. It is important, therefore, 
to specify at the outset of a study such as this which dependent variables 
are to be optimised and under what constraints the study is to be uerformed. 

Two dependent variables are cunsidered. These are the forebody 
pressure-drag coefficient CD, and the volume of the forebody V. Smce the 
drag of th? forebody is usually a substantial fraction of the total drag 
of a practical vehicle, the importance of minimising C is self-evident. 
It is also often desirable to maximise the volume V s&e such volume is 
required for the stowage of equipment. 

The most important constraint is that of a fixed fineness ratio.f. 
This frequently closely approximates constraints arising in practice and 
bars the simplest way of reducing C (to increase f). In addition, it is 
also necessary to consider the impo%tion of minimum values on either D, 
or Ds thus simulating the requirements of particular items of equipment., I 
On other occasions the minimisation of the heat-transfer rate at .the 
stagnation point may also be of prime importance. . _ 

4. - Derivatxon of Data Analysed 

The data analysed were obtained using the method for predicting 
forebody;d%ag described in Ref (7). Approximately 200 such calculations _,. 
were made.using about 75 rains of computer time on an ICL KDF9 computer. 
All the calculations were performed for M = 3.05, but a.limited discussion 
of the effects of hIach number appears in section 5.6. 

5. Analvsis of Data 
.* 

5.1 Blunted cones - optimisation 

An anrlysis of the data obtained for the blunted (single) cone 
forms a.most useful background to any discussion of more complex forebody 
shapes. Fig.2 illustrates the benefits to be obtained from nose blunting 
of single cones. The presentation employed in this figure is cowwhat 
novel and ftjllows that used by one of the authors on an es F lier occasion 
when presenting results for blunted single-cone forebodies . The variation 
of C with V is shown for two sets of forebodies, each set having a fixed 
finezess ratio and bein& generated by varying the bluntness ratio (d/D). 
It will be seen that a minimum drag coefficient is achteved for: a foreboQ/ 
having considerable nose bluntin, 0 and a substantislly larger volume then 
the sharp cone (d = 0) of the same fineness ratio. Nose blunting is 
clearly useful in this case. Nose blunting is not benefioial in the 

c application illustrated in F16.3. Here a range of sharp cones, Of VaryUl; 

% fineness/ 
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fineness retlo, are compared with a series of blunted cones clerlved by 
keeping the cone apex angle constant and reducing the fineness rat.10 by 
increasing the blunting. Bluntzng then causes an increase in drag and 
a decrease in volume as compared to the shar? cone of the same apex angle. 
When compared to sharp cones of the same apex angle, the drag of the . 
blunted cone is considerably greater than that of the sharp cone. 

However, nose bluntin,: can bean effective way or reducing the 
fineness ratlo wlthout a drag penalty since the drag uwarlably decreases 
with IncreasIng fineness ratlo and nobe blunting can be used to decrease 
the drag at a fured fueness ratlo. Thus way of using nose blunting 1s 
illustrated In Fig.(4) which combines the lnformatlon presented in the 
prevmus two fLgures, As well as reiterating the points made earlxr, 
this figure shows that one blunted cone of fineness ratlo 2 has the same 
drag and the same volume as a sharp cone of a different fineness ratlo. 
Thu sharp cone has a larger volume (and, hence, greater length) than a 
sharp cone of fineness ratlo 2. It follows that for fineness ratlos . 
around 2 (but not for fineness ratlo around 1) It 1s possible, by the 
-xoper selection of nose blunting and apex angle, to obtain a modest 
reduction in fineness ratio althoutny penalty in either drag or volume. 

Corresponding data for a fineness ratio of 3 are gxven =n Fig.(5). 
This fqure shows that, just as for a fineness ratlo of 2, nose blunting 
may be used ezther to reduce the drag for a fxed fineness ratio or to 
reduce the fineness ratlo wIthout an xxx-ease in drag or loss of volume. 
There are lnterestlng differences, however, in the results for fineness 
ratios of 1.0, 2.0 and 3.0. These are best shoxn, as in Pig.(6), by the 
variation of three signlflcant bluntness ratlos (d/D) with fineness ratio. 
These values of d/D are those that corresponblng to (a) the mlnunum drag 
for a grven fineness ratlo, (b) that glv1n.g a reduction in fineness ratio 
wlthout drag or volume penalties, and (c) the m&imum value of (d/D) that 
can be used without resulting in a drag greater than that for a sharp cone 
of the same fineness ratio. The values of (d/D) for mlnxwn drag for a 
given fineness ratio, and (d/D) f or the drag not exceeding that of a sharp 
cone of the same fineness ratro, move In sympathy mth each other. The 
values of (d/D) resulting in reduction of fineness ratio (wlthout reduction 
in volume or increase 1n drag) do not move in sympathy with the other two. 
No such blunting appears to exist for a fineness ratlo of 1. (Flg.4). 
One I.S found for a fineness ratio of 2 but Its magnitude dimlushes with 
increase m fineness ratlo beyond 2. Thus, the use of blunting to reduce 
fineness ratlo may have a somewhat limited range of applxablllty. 'lowever, 
this range Includes many cases of practical interest so that this possible 
use of nose blunting should not be neglected. 

The xnimu~ values of C discussed above are presented xn F1g.7. Tt Will 
be seen that the use o fD nose blunting offers substantial gains in any of the 
basic variables without disadvantageous effects upon the others. It remains 
to be seen If these gains are malntalned when an extra degree of freedom 1s 
~ntrucluced Into the body shape. 

5.v 
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5 .2 Blunted double cones - optimisation 

'Pllrning, therefore, to the blunted double cone confl&uratlon, :he 
d&t* are summarised m Fiks.8.e and 8b. In these fl{,ures the drag csefficlent 
(CD) is presented as a function of the volume (V) (as before). I,lnes of 
constant D, and D, are drawn on this figure as also are lines correspondin& 
to the special cases of sharp nosed double cones (D1 ~'0) and slnt;le cones 
(Da = @s + D, )/2). These figures present the information that 1s av.&lable 
from the computed results in a condensed form. Interpretation of Figs.8a 
and 8b is made easier if it is recalled that increases in either D, or Da 
inhreases the volume in a regular fashion. If this IS kept in mind it i:, 
not difficult to distingush between that intersectIon of 8 pcir of curves 
for given values of Di and Da which corresponds to a particular forebody 
shape and any other such intersections which are not significant and arise 
:olely because of the difficulty of representing four-dimensional lnformntlon 
on a. two-dimensional plane. 

Vie first seek an answer to the question as to whether the 
advantages of nose bluntlng are maintained when the forebody shape 15 allowed 
the extra degree of freedom. Figs.9 and 10 present the variation of drag 
with volume at fixed fineness ratios of 2 and 3 for:- 

(a) sharp nosed double cones (Di = 0) 

(b) blunted single cones (Da = (4 + Di)/2) 

(c) blunted double cones (the values of DI and D, being varied so ds 
to give the minimum value of CD for each value of V). 

These figures demonstrate that adjustments of either of D, alone 
can be made so as to give increased volume and reduced drr 

Iiowever adjustment of both D, and Da enables yet greater improvements in 
drag and volume to be effected. 

At the lower fineness ratio the introduction of the extra degree 
of freedom on boay shape, represented by the extension of the bnalysu to 
double cones, allows of Improvements in both drag and volume. At the hl&her 
fineness ratio such improvements are mainly in increased volume. Indeed, an 
Interesting feature of F1gs.9 and IO is that the variation of C 
the blunted double cones is seen to have .a very flat rn~nu~a. dG%&i 

be interpreted BS showing that C is insensitive to I), or Da. Indeed, 
inspection of Flgs.Ea and 8b wll f 
veriations in either D, or Da. 

reveal that CD 1s normally sensitive to 
However, wlth1.n .a reMon surrounding the 

drag muimum, the effects of deviations of D 1 from Its optimum value can be 
almost completely compensated for by adjustment of Di (and vice versa). 
Tils oulnt will be returned to in mole detail in section 5.9. 

5.3 More complex bod;Les - oxtzmlsatlon -- 

Fleturnlng to the mlnunlsation of &rag, It is mLUra1 to enqure 
how the pxixre presented by Figs.9 and IO would be modified by the 

c introduction of further degrees of freedom in body shape. Consider, 

. e 
however,' 
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hov:ever, the effects of adding an extra degree of freedom upon the number 
of calculations required. If the "buckshot" or "latin square" method of 
finding an optimum implicit in Figs.9 and 10 is applied to bodies with 
greater degrees of freedom, unmanageable problems of presentation-and 
analysis arise. Proper optimisation techniques must be employed and some 
future work will be duected towards this end. In the interim, some 
lndlcations may be obtained by assuming that the body doxnstream of D, 
is derived from a family of shapes. For example, Flg.11 shows results 
obtained in this way for a 3/4 power-law body (i.e. the basic body shape 
being y ,- x 3'4) of fineness ratio 2 , this type of profile being of interest 
because of the low drag of the basic body. The basic shape was first 
blunted so that the body diameter at the downstream end of the blunting 
(Di) was one of a number of chosen values. The process decreased the 
fineness ratio of the body, which was then restored to its original value 
by the transformation ti = D, 2 = x(1 + d) (k being chosen so that 
this transformation resulted in the fineness ratio being restored to 2). 
By varying N the restoration of the fineness ratio could be made to stretch 
the body either predominantly at the front (N < O), evenly (N = 0), or 
predominantly at the rear (N > 0). The best results were obtained ~71th 
N = +2 and (as shown in Fig.(ll) asignificant increase in volume accomparued 
by a slight reduction in drag was then obtained from the use of nose blunting. 
It is also interesting to note that virtually the same performance as regards 
C and V was obtained from the best blunted double-cone as from the basic 
three-quarter power-law body. This fact seems to suggest that the introduction 
of additional degrees of freedom in body shape aft of the blunting proper 
would not open the way to significant additional reductions in C and would 
only allow of modest increases in V at a given value of CD. Thut: at least 
for the present purpose of outlining trends and of obtaining a "feel" for the 
benefits to be obtained from nose blunting, the single degree of freedom 
(that of choosing Da) seems to represent adequately t.he effects of variations 
in forebody shape aft of the blunting. In interpreting Flg.11 it must be 
remembered that the basic 3/4 poser-law body IS already blunted in the sense 
that the surface slope is infinite at the axis of symmetry. Therefore, it 
would have been surprising had the application of nose blunting had as marked 
an effect as it has when applied to a sharp-nosed body. However, Fig.11 
clearly shows thet there are still gains to be made from bolder use of blunting 
than that implicit in a 3/4 power-law profile. 

5.4 The physical mechanism of drag reduction by nose blunting 

Before proceeding further it is useful to discuss the physical 
mechanism underlying the reductions in CD and Increases in V described above. 
In addition, thx discussion provides a measure of CrOss-Cht?Cking, tendug to 
confirm the validity of the conclusior~s reached so far, and to give confidence 
m later anblyses. 

The basic mechanism whereby benefits are obtained from the use of 
larger than average surface slopes over the most foTward part of a forebody of 
fixed fineness ratio is, of course, well understood . Because of the 
a=symmetrJ of the body, the increased prersures consequent upon such increased 
r~~rface slopes act upon a relatively small forward-facing area. The 
disadvantageous effect of these increased pressures is more than offset by 
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the influence of the lower pressures associated with reduced sllrface slopes 
further aft (which act u$on a much larger area). Additionally, such a 
forebody clearly has a higher volume than a forebody whose surface slopes 
were more nearly constant. It should be noted that the lower pressures on 

^ the rearward portion of the forebody are not solely a direct conse,quence 
of the reduction in surface slope. In fact,'the entropy layer; i.e. the 

$ 
gas which suffers a larger increase-in entropy becau&e it'pdsses through'- ‘ 
the str6nger bow shock-wave near the axis of symmetry', has a displaceneht 
effect analogous to that of a b&ndary layer7. However; unlike the;boundary 
layer, the entropy layer has a constant displacement cross-se~ctional area,. 
As the flow proceeds downstream this cbnstant area is spread out over an - 
increasing periphery. 
1‘ further reduced. 

Thus, the effective surface slope (and the pressure) ~ _, ., 1 

It should be &ted that these qualitative afguments.are'independent 
of the numerical,value of the niaximum surface slope. They are equally'valid 
as an explanation of the benefits of adopting a con& shape for a sharp- 
nosed forebody as they are of describing why nose blunting can be used to 
reduce the drag of a circular cone. Indeed, too mudh should not be made of, 
tne differences between the use of nose blunting and other;longer-established, 
drag-reduction techniques. Nose blunting simply represents the logical 
conclu 

!J 
i'on of the classical.approaches such as't.hGse'based on linearised theory 

theory . Vxtually all previous attacks on the drag mi~imlsatio~'problems' 
have resulted in "optimum" shapes in which the surface slope decreases with 
increasing distance downstream of the no&e. A major difficulty inherent in 
these earlier bvorks is that the methods used to compute the forebody drag 
have a limitk 

f 
valid range which may be expressed in terms of a maximum 

surface slope and which 1.g often violated, at least locally, by the derived 
I, optimum" shape. Thus, the truly novel aspects of the results presented in - 
this paper are:- , * 

_ (a) they are derived usin& a theory which is not subject to a limitation 
on maximum surface slope and is, accordingly, more reliable; 

(b) they suggest that earlier studies of drag minimisation have under- 
estimated the advantages of high surface slopes near the nose. Indeed it 
seem clear that,, for a fixed fineness ratio, the‘optimum body has a marked 
degree of nose blunting. 

(c) because more confidence can be reposed in'the computed values of 
CD it is possible to study the benefits and penalties of nose blunting 
greater than that required for minimum drag. This information is of value 
since such incredseqC in nose blunting may sbmetimes be desirable for non- 
aerodynamic reasons . 

Returning to the examination of the physical mechanism underlying 
forebody optimisation, the benefits of high surface slopes near the noz.e 
may be though! of as arising in two ways:- 

(a) by accepting higher pressures acting on a small forward-facing 
area of the body,-‘lower pressures are-produced downstrenn.where.they are- 

': acting over a larger forward-facing area.of the body. 
/ I < 

6 (b)/ 
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(b) by accepting higher rates of entropy production over a small 

forward-facing area of the bow shock-wave, lower rates of entropy productIon 
are produoed downstream and over large forward-facing areas of the shock- 
wave. 

"hese two concepts are, of course, equulvalent; the letter 
corresponds to the calculations embodied In the prediction method used in 
this report and the former corresponds to previous, more conventional, 
approaches to this problem. It is, accordingly, useful to demonstrate the 
equvalence of these two concepts. 
non-homeontropx: 

Indeed, by the u;e of an Invex--, 
characteristxs calculation melhod due to Voore It 1s 

possible to do this In such a way es to provide some check on the rellabillty 
of the data presented In other parts of this report. 

Bow shock-wave shapes , predlcted during the course of deriving 
some of the data presented earlier, were used as input to the xnverse, 
non-homeontropic characterutics calculatson mentIoned abovelo. Thus, the 
shook shape predxted by one method was analysed by an independent method 
to yield streamlIne patterns and pressure tistrlbutions. The compatibility 
of these streamlIne patterns with the body geometries orlgznally assumed 
give a measure of the accuracy mth which the shock shape was predxted. 
An addlt~onol check can be obtained by comparing drag coefficients (C,), 
computed using the basic prediction method (Ref 7:) lrrith corresponding drag 
coefflclents obtained by integrating the derived surface pressure 
distributions. Unfortunately, the inverse characteristics method cannot 
be used to calculate pressures on a streamline If the flow velocity nt any 
point on that streamline is subsonic. Therefore, thu method cannot be 
used to calculate the flov: over the surface of the body. !!owever , * 
typical radial distance between the surface of the body and the innermost 
streamline along which the flow can be calculated 1s normally small compared 
to the radial &stance between this strezmllne and the bow shock-wave. It 
IS, thus, not unreasonable to estlmote the surface pressures by extrapolating 
the varu.tlon of static pressure along each characteristic to the point at 
whxh that characteristx would cross the surface of the body. 

These points are illustrated in P1g.12. !Iere the computed flow 
field about an optimum blunted double cone 1.s sh0Fj-n. Tne relative 
magnitudes of the distances between the body and the innermost calculated 
streamline, and betrreen that streamline and the shook can be clearly seen. 
Tile innermost streamline 1s evidently compatible mth the body shape. This 
was found to be true for a number of forebody shapes for which such data 
were obtalned. Indeed, If at the base of the body, the mass flux density 
of the flow between the body and the innermost calculrited stre3mllne is 
taken to be equal to the mass fiilr density on thx. streanllne, then R 
fineness ratlo for the body may be derived from the inverse calculations. 
This may be compared with the true fxneness ratio. Good agreement 1s found 
1~1 can be seen from the following table:- 

*I.e., full account being taken of differences In entropy productlon at 
dxfferent points on the bow shock wave. 
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I FINENESS RATIO 
BODY TRUE FINENESS RATIO FROM INVERSE 

CXXULATIONS 

Sharp cone 2.00 1.94 

Sharp cone 3.00 2.93 

Optimum blunted 
double cone 

Optimum blunted 
double cone 3.00 I 

I 
2.99 

3/4 P ower-law 
body 2.00 1.92 I 

Furthermore, the estimated surface pressures may be integrated 
to yield a value for C 
from the prediction me ?h 

which can be compared with the value of C derived 
od used in this report. Comparisons of t ese two R 

values of CD are given in the tables of Figs.13, 14 and 15. Again, good 
agreement is found. 

The direct method of Ref 7 comprises two main steps. These are 
the prediction of the shock shape from a knovm body shape, followed by the 
calculation of CD from this shock shape. The first of these steps has been 
checked by taking shock shapes derived for various bodies by the direct 
method and analysing these using the inverse methodlo and noting that the 
body shapes thus derived agree well with those originally chosen. The 
second of these steps has been checked by performing a separate analysis 
of the shock shapes, again using the inverse method, and noting good 
agreement between the two'independently derived values of CD. 

The main purpose of the preceding argument has been to demonstrate 
the physical mechanism underlying the use of nose blunting to re uoe 
to show that this is faithfully represented In the direct method di CD, and 

used to 
generate the data analysed in the main body of this report. It is reasonable 
to have confidence in these data and especially in the trends that they 
indicate. This is borne out by comparison with experiment. For example, 
the differences between calculated and measured forebody drag coefficients 
for a 20" semi-apex angle cone having 0 $ d/D < 0.5 have been analysed. 
The mean of these differences is 6.@ of the mean value of C (i.e. 
comparable to the differences in the two calculated values 0 'D C shown in 

F1g.s. / 
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F1gs.A3, 14 and 15). hvever, the standard deviation of these differences 
w&s only 1.8.4 of the mean value of CD. Thus, not only is a useful accuracy . " 
achieved in theprediction of absolute values of CD, but notably better 
accuracy is achieved in the prediction of trends. This point LS also 
exemplified by the following table showing the values of (d/D) that were 
required to produce a given increment in CD 
(CD = 0.28) 

above that of the sharp cone 

.-.. . 

REQUIRED VALUES 
INCREIVYENT OF (d/D) 

IN CD 
WI3RlXENTAL CALCULU'ED 

0.02 0.20 0.21 

I 0.08 0.38 0.36 

In Flg.13 the pressure distribution over the opt~~~um blunted double 
cone for f = 3 is compared to that over e sharp cone of the same fineness ratio. 
The pressure distributions are plotted in the form Cp.y' as a function of y' 

so that the ordinate represents the contribution of the surface pressure acting 
at a point on the body to the pressure drab. The area under the curve 1s thus 
proportional to the pressure drag of the forebody to which it relates. (The 
chain dotted portion of the curve for the optimum double cone is an 
interpolation between the first calculated point and Cp.y' = 0 at-y' = 0, 
which was, drawn having regard to the known slope of-this curve at y' = 0). 
It will be seen that the blunting leads to a local excess of drag of the 
optimum double cone over that of the sharp cone &t y' < 0.15; However, between 
Y' = 0.08 and y' = 0.15 the local drag contribution Cp.y' falls rapidly because 
of the expansion in the vicinity of the downstream end of the blunting. For 
0.15 d y' 6 0.275 the local drag contribution rises a&am because of the nearly 
constant value of C 

P 
over the first conical segment. It is important to note, 

however, that, despite the surface slope of the optimum body being higher in 
this region than the surface slope of the sharp cone, the local dr-tg 
contributions are virtually identical. "hat this is so is, cf course, due to 
the effect of the entropy layer noted earlier. Between 0.275 G y' d 0.375 the 
local drag contribution falls because of the expenslon, and subsequent over- 
expansion, associated with the change In slope at y' = De/z. T!lereafter the 
local drag contribution rises only Vera slowly and over the whole range 
0.275 6 y’ 6 0.5 the local drag contribution for the optimum body 1s 

substantially/ 
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SUbstantrally less than the corresponding value for the sharp cone. 

This particular figure has been discussed at some length because 
it clearly illustrates the physical mech,lnisms involved and the pract-ical ^ 
Unportance of the entropy layer. Limllar behaviour is evident in Fig.14 
which presents the pressure distributions for optimum blunted double cones 
and sharp cones for f = 2 in the same way as Fig.13. Fig.13 Presents \ similar data for a 3/4 power-law body having f = 2. In thx case Cp.y' 
varies monotonicnlly with y'. iIowever, this figure aga-~n demonstrates how 
the concession of a small advantage in local drag contrlbutlon to the sharp 
cone for y' < 0.2 can be made to yield large benefits in local drag 
contribution at y' > 0.5. 

Figs.46, 17 and 18 are similar to F1gs.13, 14 and 15 except that 
instead of the local drag contributions being presented in terms of weighted 
values of C the rate of entropy production at the bow shock-wave 15 usea. 

P' 
It will be seen that the distribution of entropy production is similar to 
the distribution of surface pressure. In particular, although the optimum 
double blunted cones have high local rates of entropy production at snail 
values of (~9, the rates of entropy production are low for high values of 
(yl) resulting in a substantial net gain. 

5.5 The optimisation process 6 
In this section we offer some cements upon the problems of 

optimising a forebody - either by means of a series of calculations or via 
experimental tests on a systematic series of bodies. The problem of 
efficiently locating a set of values for a multiplicity of independent 
variables such that a single dependent variable has an optimum value 
(subject to constraints on the independent variables) U, a complex study 
in itself. There would be obvzous advantages in combining the prediction 
method7 with a suitable optimisation algorithm. Some insight into the 
nature of this problem may be gained through an analysis of the present 
data. In Figs.19 and 20, the calculated drag coefficients of f = 2 and 
f = 3 blunted double cones are replotted so as to provide contours of 
CD on the D,,Da plane. The existence of a minimum value of C D (and,hence, 
an optimum pair of values for D, and Da) is evident. The relationship of 
this optimum shape to the minimum drag configurations of a blunted single 
cone or a sharp-nosed double curie, is of interest as this informatxn may 
be valuable In deciding upon suitable starting points for optimisation 
processes for more complex shapes. 

It will be seen that points representing all possible blunted 
single cones lie on the line 2.Da = Da + 9, while all poscible sharp-ncsed 
double cones are represented by points on the line D* = 0. By exaslning 
the intersections of the contours of CD with these lines the conditions for 
minimum drag forebodies of these ty-ses can be seen. It is interesting to 
note that the optimum bodies have slightly larger values of both D, and Ds C than the best blunted single cone or sharp-nosed double cone. An attempt 
to establish the optimum value of D, by gradually increasing its value from 

r: zero/ 
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zero, and retammg the same value of Do as 1s best for a sharp nosed body, 
would underestimate the optimum value of Di, and over-estimate the minimum 
value of c D' These errors could be serious especially for f = 2. Similar, 
but less serious, errcrs would be incurred if Di was held fixed at the best 
value for a blunted single cone and Da varied in an effort to find the 
optimum. 

Fortunately, however, CD appears to be a well behaved function of 

D, and Da. Thus, no fundamental difficulties would be expected if some 
efficient optimisation algorithm were employed, other than that the mxmmum 
is relatively flat. This is not a serious practical problem since it implies 
that a slight error in either D, or Da will not result in a serious over- 
estimate of the minimum value of CD. Such optimisation algorithms are, 
however, not suitable for attempts to find optimum configurations via a 
series of experimental tests. This 1s because they use the results of one 
set of oaloulat~ons to identify improved starting conditions for a 
subsequent set of calculations. Any attempt to conduct an experimental 
programme on this basis would involve bouts of model making interposed 
between series of tests. The whole programme would be very protracted. 

It IS, therefore, appropriate to enquire ti there IS any way in 
which a family of models may be designed a priori with scme confidence that 
experImenta data obtained using these models will reveal a best configuration 
which will, in turn, be close to the optimum shape. For econom such a 
family should be described by one disposable parameter (Di, 3 say . The 
simplest such family is that in which D2 is a linear function of D,. 
Geometrical considerations require that when D, = 1, Da = Di = l(Ds = 1). 
However the choice of Da when D, = 0 remains arbitrary. Fig.21 shows three 
such families, including one for which Da has, when D1 = 0, the value 
pertaining to the minimum drag for a sharp-nosed double cone. Fig.22 shoris 
the variation of CD with D, for each of these three families of bodies. 
There are marked differences between both the minimum values of CD and the 
corresponding values of D% for each famly of forebodxs and only one 
approximates to the true optimum condition. It 1s clear that attempts to 
find optimum configurations via a iimlted series of ad hoc experiments are 
of doubtful value. If no other recourse I.S available then a sensible approach 
would seem to be to adopt a one parameter family similar to those represented 
in Fig.21 and having the minimum dra g for a sharp-nosed body when 3, = 0. 
Even this is an unsatisfactory course in that it is necessary to know a 
priori what is the best shape when D, = 0 and because, given current 
understanding of the problem, there is still a consldereble rusk of mssmg 
the true optimum by a consxderable Lmount. ! far more preferable ccurse 1s 
to conduct a programme of experimental tests incorporating systematic 
changes In each variable. Results from such tests can then be used to 
validate or modify appropriate predIction methods which can, in turn be used, 
together with suitable optimisation algcrithms'5, to determine an optimum 
forebody shape. 

5.6/ 
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5.6 Generalisation of optimum conditions 

The derivation of an optimum configuration, especially one 
F involving a large number of independent variables, will, inevitably, sbsorb 

considerable effort despite the relative simplicity of the prediction method 
used in this report. It is, therefore, appropriate to enquire whether date. 

9 
obtained for one Mach number can be generalised in such a way as to give an 
approximate indication of optimum configurations at other Mach numbers. Such 
a generalisation would enable the designer to:- 

(1) economise on the effort needed for full optimisation at additional 
Mach numbers by making available good initial estimates of the appropriate 
optimum configurations 

(2) establish whether the optimum configuration for any particular set 
of constraints is sensitive to htach number. 

The latter aim is particularly important since this must be 
established if optimisation at a particular hiach number is to have any 
practical utility in,many applications. 

Unfortunately, adequate experimental data for a comprehensive 
treatment of this topic are not available. Indeed, for blunted 
configurations, data including systematic variation of both body shape and 
Mach number are available only for blunted single cones. Even for this class 
of body extensive interpolation of the available data is necessary. Such an 
interpolation has been performed by the Engineering Sciences Data Unit2. 
However, the quoted accuracy of their data sheets is such as to invalidate 
their use for optimisation studies except for high-drag bodies, for example, 
those having f < 1.5. 

The'original sources of data 1,2,12 used in such compilations and 
other, more limited analyses, are, of course, available and some are useful 
in providing particular examples of optimum, blunted single cones for larger 
fineness ratios. 

The variation of CD with both bluntness (d/D) and Mach number (M) 
for f = 1 blunted single cones (derived from Ref.2) is illustrated in Wg.23. 
The contours of CD show the expected optimum values for each Mach number. 

Moreover, the optimum values of d/D vary little with b&h number, except 
near M = 1. Even then, the behaviour of CD with M and D, is favourable in 

. 
the sense that a body having the optimum value of D, for some supersonic 
speed will have a lower drag at transonic speeds than the sharp cone of the 
same fineness ratio (albeit not the minimum drag for the lower Xach number). 
Blunting also tends-to decrease the maximum in the variation of drag 
coefficient with Mach number. These points were discussed in much greater 
detail in Ref.6 and it is not proposed to repeat that discussion except to 
say that the oonclusions as to the favourable effect of blunting noted above 
are shown to be generally true for blunted single cones having f d 1.5. 

c While there is every. reason to believe that similar conclusions will also be 
valid for f > 1.5 no supporting experimental evidence is to hand. 

-+ The/ 
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The nethod of ~ener,+lx~ng optlnw cunfl,crat?on; s~~&ge:ted in 
this report 1s based upon an ante-pretati,n of t!le cor.ve!~t~c?.;ll sl-Clarity 
parameters for supersomc and hypersonic flow. 

The norm& hypersomc slmllarlt:r relationahlp 13 states that, for 
affmely-related bodxs:- 

cp = F1 (1%) or in more general supersonic/h7personx 
form:- 

C&a = FA (- . +) 

where T = l/f, so:- 

CDf2 = F3 (f/m) 

Although this relationship 1s generul and 1s not invalxlated by 
nose blunting, examlnatlons of the requirement that the bodies considered 
chould be sffinely related shows that it cannot be applied dzectly to the 
type of bodies considered in this report. The above expressrons relate, say, 
a spherically-blunted body at one ?"ach number to a body, at another I:ach 
number, whose nose bluntln;, takes -the form of part of an ellipse. Thus, 
equation (I) does not allow one to relate, say, a spherically-blunted body 
at one Mach number to a second spherxally-blunted body of related, but 
different , geometry at a second I.iach number. To do this It IS necessary 
to consder the physxal slgnxflcance of the rxght-hand side of equation (1) 
(which IS, of course, entirely adequate for sharp-nosed bodzs). 

For sharp-nosed bodxs the bow shock-wave is inclined to the free- 
stream dlrectlon at an angle which 1s everywhere closely related to the ?1ach 
angle. For slender bodies (,+p)<<p, and if body Length is taken as L, the shock 
radws at the base plane of the forebody is approximately given by 

% = L tan jA = L/./P-7 

The body radius at the base plane is, of course, L/2. 

i 

shock radius 
Thus, the ratio 

body radius 1=&-/;=g 

f 
Accordingly, the term - 

dP-3 
may be Interpreted as characterising 

the rat.10 of the shock radius to the body radius at the base plane of the 
fa 

forebody. Its square r5oresents the ratio of the base area to the 
(P-1 ) 

area of the flow "captured" by the bow shock wave upstream of the base plane, 
and thus, represents the area change which the fluid IS forced to undergo. 

It/ 
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It is thus a index of the aerodynamic slenderness of a slender sharp-nosed 
body. 

^ If attention is now turned to blunted foSebodles, then examnatlon 
of the predicted shook-wave shapes reveals that, for moat such bodies, the 
shape of the bow shock-wave upstream of the base-plane of the forebody either 

': derives completely from that region of the shock-wave which is determined 
by the blunting alone, or else such a large portion of It is thus derived 
that the blunting is the dominant influence on the radius of the shook-wave 
in the base plane. The bow shook-wave due to a blunt body at supersonic 
speeds is insensitive to Mach number and is given approximately by14:- 

where CD is the drag ooeffiment of the bluntin& in isolatzon. 
N 

Thus, the ratio of base arca to area of flow captured by the bow 
shock wave upstream of the base plane is proportional to:- 

Thus, by analogy with the well-established smllarity rules for 
slender bodies, we hypothesiee that:- 

'D * f= = d(;).&-)] 

DN 

We, therefore, s eek relationshlps of the form of equatzon (2) for 
blunted bodies. In so doing It is reassuring to note that both the result 
of Chernyi's analysis of the hypersonic flow about slight 
(based on blast-wate theory) and Erricso~'s scaling laws 'P 

blunted cones'? 
(based on Sleff's 

embedded Newtonian flow theory) can be put into the form of equation (2). 

z If attention is initially concentrated upon those blunted single 
cones which have the minimum drag for .e given Mach number and fmeness ratio, 
then the correlation shown in F1g.24 may be denvecl. To a first approximation 

the/ 
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the data, vfhxh are derived fro-? Sefs.i,? and 3 (ad are for spherlcalkJ- 
blunted cones and 1.21 6 I; 6 5.0 .nd 1.0 < f < j.O!, :.re colk ,sed onto 
a single curve. The calculated o!:tlmdil confq~~-at~o~~, w'hen plotted in 
this fashion, agree well rrith tile e:qr~~?enl.:l dat2, thus further 
confirning the valu?~~ty of the wlwl~~~.~o:~ nethod of Ref.7. 

Since the optimum blwtness ratlos are coxelated by plotting 

l/(f C,%, It 1s reasonable to expect tla t these same parameters w.~uld also 
correla e a the ratio of minuwm drag to the drag of the sharp cone of the 
same fineness ratio. F16.25 show that this is SO. Addltlonally, ~1~.26 
demonstrates the particularly slm?le relationship betneen the optimum 
bluntness ratio and the bluntness ratlo corresgondlng to C, equal to that 
of a sharp cone of the same fineness ratlo. 

T‘x fact that these three pzr~meteis 

a spherically blunted cone 15 x~sens~t~ve 'LO !:ech mm-osr III lhe su?ersonlc 
and hypersonx speed ranges. The drag noefflcle,lt of mosj. blunt budxei 
varies little ntn Increasing Mach number once the trusonlc speed rLn&e 
has been passed"r'3. It 15 encouraging to note, however, that the 
correlation shovn ~1 P1&~.24,25 and 26 COWL-S 2 V,LI-LZJ:.IOII ~n CD betrroen 

I! 
0.55 d CD 6 0.91 and, hence, includes a:. les3; the uppw part of Lhe 

N 
transonic speed range. 

The dra& savings shown in 312.2j dre :,os:lbly typical of tho:e 
that can be achieved by nose blunting. ~li.27 ~0n?cire~ the ;-em ~2i-ve 
through the data of Fl;.- 35 with t!ie drag coefflclents of two rnuxrnltv-dr+, 
spherically-blunted double-cones (normalised by the drag cueffxlents of 
both share single cones and o?t~xum, shrp double coqes of the sane 
fineness ratio). Care LS necessary to avou3 re,adlng too much Into this 
sparse set of data, but It would apnear t-ha+ t~lose reduct~~x in ?z~c; 
which can only be realised by the use of nose bluntrnk are ~11~11:'s for 
boti sq$e and double cones. 

fcr/ 
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for values of fCDT : at least as high as 4. Thus, the usefulness of nose 
N 

blunting for fineness ratios within the range shown in Fig.28 has been E 
established. Further work is required to investigate the use of blunting 
at higher fineness ratios, and the boundary drawn in Fig.28 should be 

.~. regarded as a pessimistic lower limit based on current knowledge. 

5.7 Alternative forms of blunting 

The entire preceding discussion has been confined to spherically- 
blunted bodies. While this is probably the case most commonly occuring in 
practice, there is no a priori reason why it should be the best form of 
blunting. For example, truncated (flat-faced) bodies are sometimes of 
practical importance and represent a considerable departure from spherical 
blunting. The variation of drag and volume with bluntness ratio has been 
examined for truncated single cones. The results of these calculations are 
presented in Figs.29,30, and 31. Each figure corresponds to a single, fixed, 
fineness ratio and, hence, may be compared with Figs.2 and 5, curves from 
which are also repeated in Figs.29, 30 and 31, in order to facilitate such 
comparisons. 

Another form of blunting, often having a loner value of CD than 
N 

spherical blunting, 
7, 

is a cone of semi-apex angle substantially greater than 
that of the basic forebody. Results for single cones blunted by a 30" semi- 
apex angle conical cap are also shown in Figs.29, 30 and 31. 

? Comparison of the ways in which CD varies with V for the different 

forms of blunting shows that, in general, those forms of blunting having 
high values of CDN (the dr ag coefficient of the bluntness in Isolation) are 

to be preferred when attempting to minimise the drag of a complete body 
having a fixed fineness ratio. IIowever, the drag penalties for increasing 
V (at fixed fineness ratio) beyond that corresponding to the mxr~mum value 

of CD are usually largest for the form of blunting having the highest value 
of CD . Thus, the preference expressed above for high values of CD may not 

N N 
be valid for other, albeit less common, optimisation criteria. 

The calculated results obtained regarding blunted single cones 
having the minimum dra for the three forms of blunting described above and 
three fineness ratios f = I, ? f = 2 and f = 3) are summarised in Flgs.32, 33 
and 34, which ase the same form of presentation as Figs.24, 25 and 26. The 
mean curves through the data points drawn on Figs.24, 25 and 26 have been 
transferred to Figs.32, 33 and 34 SO that the two sets of graphs may be 
readily compared. It will be seen that, within the limitations of the 
admittedly ap roximate correlation of the earlier graphs, a collapse of the 
data for (a/n C~ and (d/D)= is achieved, P thus further D.ustrat~ng the 

i + usefulness of the parameter f.CD , particularly since CD now varies 
N 71 

ci between/ 
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between 0.535 6 C 
DN 

< 1.60. 

The drag reduction parameter (CdCD s.c) is, however, not correlated 

- indeed many of the data points lie well below the mean curve for 
spherically blunted cones. This situation 1s further exam~~d 1x1 Fig.35 
hex-e (CdCDsc) is presented as a function of fineness ratio. It is 

immediately seen that truncated cones perform best at low values of f, but 
spherical blunting is to be preferred for f = 3. To at least partially 
explain this effect It is necessary to refer back to sectlon 5.4. There it 
was polnted out that the use of nose blunting causes two changes to occur 

in the surface pressures. Fwstly, there ~111 be an increase in drag due 
to high pressures acting on a small area of the body close to the axis of 
symmetry; but, secondly, this is more than offset due to reduced surface 
slopes and, hence, lower pressures acting over a larger forward facing area 
further downstream (and, thus, more remote from the axis of symmetry). It 
is evident that to minimise the first of these changes CD should be small. 

N 
The blunting ~111 then tend to present comparatively low surface slopes to 
the oncomlng air. Unfortunately, in order to maximise the second (favourable) 
change, it is necessary that the conical part of the body should commence as 
little downstream of the stagnatIon point and as far removed from the axis 
of symmetry as possible. This, of course, demands that the average surface 
slope of the blunting should be high and, accordingly implies a high value 
of c 

DN' 

Thus, the choice of the best form of blunting IS a complex matter 
requxring close study outslde the context of this paper. However, It may 
be remarked that when the fineness ratio 1s very low CD 

SC 
tends towards CD 

N 
so that the former of the two effects noted above is comparatively unxnportant. 
However, any reduction of nose length (I.e. the streamwise distance from the 
stagnation point to the bluntness/cone junction) has a marked effect on the 
apex angle of the conical portIon of the body. Thus, the latter effect tends 
to dominate and high values of CD are to be preferred. Conversely, when the 

N 
fineness rat10 is very large CD 1s very small so that the former effect 

SC 
assumes considerable importance. Also, changes in nose length have only a 
modest effect on the apex angle of the conxal part of the b&y. Thus, the 
former effect is important and loner values of CD *re preferred. 

N 

It is interesting that unmodified Newtonian theory shows the above 
trends as exemplified by Figs.36 and 37 where contours of CD calculated by 

Newtonian theory for conically blunted cones of varying bluntness ratio and 
angle are presented. It must be remembered, however, that these figures are 
a rough guide to the relevant relatlonships only, since unmodified Newtoman 

theory/ 
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theory cannot be held to satisfactorily represent some facturs which are 
favourable to the use of bluntin, in general, and hxgh values of C in 
particular. DN 

7 
Sufficient data have, however, been presented to she!, that the 

benefits obtained by (spherical) bluntin& and demonstrated in the main 
body of the report are only typical of what can be achieved with rela:lve 
ease. B' a proper choice of the type of blunting employed, yet greater 
benefits crrn be attained and, presumably, the ran&e over which nose 
blunting is useful can be extended. 

5.8 Alternative optimisation criteria 

Hitherto, this analysit has been pri&rily directed towards the 
problem of minimising the drag of a forebody subject to the constraint 
that its fineness ratio is kept constant. This constraint was chosen 
because, although simple, it closely represents an important and frequently 
occurrxna design problem. However, it is certainly not the only 
optimisation criterion and set of constraints that are of practice1 intere:.t. 
For example some practical optimisation problems are summarised in the 
table below:- 

NO. OPTIMLM CCNDITION VARIAXES TO 
SCUGlfp RE KEPT COKTAWI' --. 

I MINIKUI' DRAG FIIrZNES; RATIO 

II NAXIMUUM VGLuhlE FIh%NXSS RATIO & DXAG I 

III MINIMUN STAGNATION- 
TCINT IEAT TRANSFER FIJJENESS RATIO 8 DMG 

I 

As noted above, problem I has been extensively discussed in 
preceding sections of this report. In this section brief analyses of 
problems II and III are presented since they represent design situations 
that can arise in practice even if not as frequently as those represented 
by problem I. 

Taking each in turn, we first consider II in which it is desired 
to maximzse the volume subject to the constrnint that CD dnd f shculd be 
constant. 

The topic of increased volume has been touched upon in "he eai.lier 
discussion of spherically-blunted single cones. There It was shown that 
even the minimum-drag confieurations feetured a substanlial increase In 
volume relative to the sharp-nosed cone of the same fineness ratios. ‘:01wer, 
fcrebooy volume 1:. clearly stron,ly wfluenced by ihe sha->e of the b0d-r 
domnstreom of the blunting. Thus, double cones are analysed in t.51. sectJon. 
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Flg.38 shows volume as a function of the bluntness dlameter D, for 
spherxslly-blunted cones of f = 3 and having given values of CD (D, IS, of 

course, then determined by the need to keep CD fixed). Be&se there are 
cases in whxh the same value of CD 1s generated by two different values of 
Da, even when D, is fxed, the curves presented in Fig.38 need be neither 
continuous nor single valued. However, it is clear from this figure that 
where there are two values of Dz for the same D, and CD, one configuration 
has much the higher volume. Both D1 and Da exert a powerful xd'luence upon 
v. By the correct choice of forebody geometry substantial gains in volume 
can be achieved. In particular, the volume can considerably exceed that of 
the mxumum drag body for only a modest increase in drag. However, further 
increases in the premisslble drag level purchase dlmirushing increases in 
volume. This process 1s summarised in Fig.39 where the max~um volume 
attainable for a given CD IS shown as a function of that CD. 

It is lnterestlng to note the substantial gains in volume, relative 
to that of a sharp-nosed single cone, made by even the forebody shape having 
the minimum value of CD. Also, examlnatlon of Flg.38 reveals t,lat the 

use of nose blunting plays an essential part in the attainment of the gains 
in volume summarised in Wg.39. 

Turning now to problem III, it should be recalled that stagnation 
point heat-transfer rates are, for a given free-stream Mach number, directly 
propor ional 

2 point' . 
to the square-root of the velocity gradlent at the stagnation 

This heat-transfer rate is thus dependent upon the geometry of the 
blunting employed, in a way such'that its minimisation tends to favour the 
use of blunting having a high value of CD . 

N 

It 1s) therefore, relevant to enquire whether, in problems involving 
the minimisation of stagnation point heat-transfer rate, the preferred type 
of nose blunting is likely to be different from those found In sectlon 5.7. 
In particular, the question is posed as to whether the relative merits of 
spherxal blunting and tincation are different when tadkling problem III 
than when tackling problem I. 

Fortunately, stagnatIon point velocity gradients have recently been 
the subject of study and Ref.17 includes observations on shapes pertinent to 
the present discussion. 

Now, 

Considerln; spherxdly-blunted and truncated bodies (denoted by 
suffices b, and t respectively). 
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and 

where, at M = 3 
i aca; ) ) s 2 0.91 

s* 
(for a hermsphere) 

s 

and 
( aca; ) > s -z 0.33 (for a disc). 

s* s 

Also from geometrical considerations 

s* = 
5 

and s* = 

0.5 d for a truncated cone 

8' d . 2 set E 

or, using ref.17, S* = 0.386 . d . set E for a spher~cdly- 
blunted cone having the sonic point located on the spherical portion of the 
body. 

For the purpose of this note the stagnatlon-polnt, heat-transfer 
rates 81-e normalised by dlvldlng them by the stagnation-point,, heat-transfer 
rate of a hemisphere having the same base &meter as the forebody bang 
considered, i.e. for this reference body 

s*= 0.386D 

and so:- 

= (0.91.as) / (0.386 D) = 2.355 as/ D 

or 

2 and, denoting quantltles such as 4,/Qref by the symbol Q, we have:- 

t 
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ana 

Qb = ( ;)$ . co& E - spherically blunted cone. 
b 

Qt = 0.529 ( ; )' - truncated cones. 

t 

Since from these last two equations, values of (+ requ1rel.l to produce ar?y 
desired value of Q may be evaluated and. combined with the earlier calculations 
of drag, the comparison between spherically-blunted and truncated cones may 
be accomplished. 

In fact:- 

(00s &) / Q; 

d 
( > 

0.28 
- =- 

D t Q’t 
Figs&O,41 and 42 show CD as a funotlon of the normalised stagnatIon- 

point heat-transfer rate for blunted single cones of fineness ratios, I,2 
and 3. Also shown are the limiting values of CD (at Q +a) for the sharp 
cone together with the values of Q for both a disc and a hemisphere. It 
~111 be seen that in all oases the minimum value of CD corresponds also to 
a fairly modest value of &. The variation of CD with Q for values of Q 

above thstcorresponding to the mlnimum CD is of comparatively little 
practical interest since no designer is likely deliberately to incur such 
unnecessary penalties in both CD and Q. Of much greater interest is the 
variation of CD with Q for values of Q below that corresponding to muunum CD. 

In all oases only small decrements of 6 below that corresponding 
to the minuum CD can be achieved before severe drag penalties are incurred. 
This is, of course, a direct consequence of the fact that Q varies as 

D; 
(g) so that reduced values of & have to be bought at the expense of large 
increases in (d/D) mth accompanying increases In drag If d/D > (d/D)o,'T. 

It is evident that, unless high values of CD are acceptable (as in 

certain specialised problems) each type of nose blunting has associated with 
It a reasonably well defined mlnimum value of Q. Reductions in Q below this 

minimum/ 
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minimum are better accomplshed by a change in the type of blunting rather 
than by a straightforward increase in (d/D). A practical lxnlt to the 
reduction of Q without excessive C D is, of course, set by the minxnum value 
of Q attaInable vnth a truncated cone. However, it should be observed that 
this value 1s not greatly in excess of 1.0, 1.e. 4 does not greatly exceed 
that for a hemisphere of dlameter 3 and, as such, may well be lower than 
that required in many practical applxatlons. 

These results are summarised in Flg.43 in winch typlcal bounds of 
stagnation point heat-transfer rate are shown as a function of fineness 
ratio for two different types of blunting. The upper bound 1s taken as 
that corresponding to the mxAmum value of CD for each type of blunting and 
fineness ratlo, while the lower bound is taken as that corresponding to CD 
equal to that for a sharp cone of the same fineness ratlo. It is 
particularly interesting to note that, as foreshadowed in the earlier 
discussion, the truncated cone appears to be the most suitable body (in the 
sense that the maximum reduction in Q can be achieved without increasing 
CD beyond that for a sharp cone of the same fineness ratio) throughout the 
range of fineness ratios consxlered. 

On thiz bacis, It would appear that truncation as a form of 
blunting has been undeservedly neglected in the past. It must be recognised 
that stralghtforward truncation, while reducing the stagnation po nt heat- 
transfer rate - and, hence, thermal stress problems in this area 18 - ml&t 
Involve signficant thermal stress problems at the downstream end of the 
blunting due to the rapid changes in heat-transfer rate with streamwise 
distance that are likely in this region. However, such problems could 
possibly be allensted by limited smoothing of the distribution of surface 
slope over the area affected. Lloreover, such deta&zd ~(orrles do not 
detract from the overall conclusion that, when the am 1s to reduce 
stagnation-point heat-transfer rate without large penalties in CD, there 
is considerable scope for the use of forms of blunting having large radii 
of curvature in the stagnation point reglon and, hence, usually having large 
values of C 

DIt' 

5.9 "Off-design" or non-optimum bodies 

To consider all aspects of the behanour of non-optimum bodies 
would demand a paper in itself and one which would be much longer than the 
present discussion. Moreover, the preceding sections have already shown 
that, in most cases, the variation of CD with the various independent 
parameters has relatively flat ml-a which are insensitive to changes ln M. 
One may, therefore, safely make the qualitative statement that the 
performance of optxnum bodies derzved as described earlier would not be 
seriously prejudiced by even substantial changes ln Mach number. 

However, It is instructive to consider the impllcatlons of one 
additional geometrical constraint. In particular, It 1s possible that non- 
aerodynamic considerations might force a designer to fix upon a particular 

value/ 
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value for either DI or Ds. Unless he is lucky enough to lght upon the 
optimum value for this fixed diameter, a drag penalty will thereby be 
mcurred. Such a penalty in CD may, however, be minimised by adjustment 

of the other, disposable diameter. 

This point is illustrated in Figs.44,45 and 46. In Figs.44 and 
45, the variation of CD with Ds for various values of D, is contrasted 
with the variation of CD with Ds that oocurs when D, is chosen so as to 
minimue CD for each value of Ds. It will be seen that by varying Di in 

the proper manner, the drag penalties associated with a non-optimum 
value of Da may be greatly reduced, and CD made to have a very flat 

minimum. Thus, the drag penalties associated with a fixed non-optimum 
value of Ds need not be severe provided that the appropriate value of D* 
is found and Da is not too far removed from the optimum value. Likewise, 
Fig.46 demonstrates that the penalties consequent upon Di being fixed at 
some non-optimum value may be greatly reduced by the proper choice of Da. 

6. Conclusions 

From the preceding quantitative discussion certain general 
principles tend to emerge. In the interests of clarity they are restated 
here. To facilitate reference to the relevant parts of the discussion the 
number of the appropriate section in the discussion is quoted in brackets. 

Rhen minimising the value of CD for a body of given fineness ratio, 
it was found that at a free-stream Mach number of 3.05:- 

(5.l)For single cones, nose blunting can be used to decrease the drag 
at a given fineness ratio, or to increase the volume without any drag 
penalty, or, at the higher fineness ratios, to reduce the fineness ratio 
without drag penalty or loss of volume. 

(5.2)The above advantages of nose blunting apply equally to both single 
and double cones. The rudimentary freedom to adjust the shape of the fore- 
body downstream of the blunting (independently of the bluntness ratlo), in 
the case of the double cone does not diminish the utility of nose blunting. 

(5.3)A correctly proportioned, blunted double cone can have virtually 
the same forebody drag as a 3/4 power-law body of the same fineness ratlo, 
thus effecting a marked simplification of the geometry of the forebody 
without drag penalties. 

(5.3)Nose blunting, even when applied. in a fairly simple fashion, can 
achieve improvements in the characteristics of a 3/4 power-la7 body, notably 
increased volume. This is of particular interest because 3/4 power-law 
profiles have often been regarded as optimum for supersonic and hypersonic 
Mach numbers. In view of this and the previous three conclusions it appears 
that an investigation of blunted bodies using newly-developed drag-prediction 
methods together with those powerful numerical optimisation techniques that 
are currently available should yield optimum bodies that are substantial 
+mprovaments over those hitherto considered to be optimum. 

(5.4!/ 
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(5.4)The physical mechanism underlying the above uses of nose bluntIn&,,, 
including the important role of the entropy layer, has been demonstrated. 
These concepts, which are me11 understood for single blunted cones, are 
sufficient to explain optimisation processes for more complex bodies, the 

3 underlying physical mechanism being identical in both cases. The use of 
nose blunting IS, thus, a logwxd extension of earlxr optimisation methods. 

T (5.5)The search for truly optimum forebody shapes is best conducted 
using a sultable prediction method, such as that used in this report which 
can itself be validated by a llmited number of experimental tests performed 
specifically for this purpose. 

(5.6)The supersonic/hypersonic similarity rules for afflnely-related, 
sharp-nosed bodies may be relnterpreted to give corresponding similarity 
parameters for blunted bodies. Using these parameters approximate 
correlations of the characterlstlcs of such blunted bodies anay be obtalned 
for wide ranges of Nach number and fineness ratio. 

(5.7)Spherical nose blunting, as considered xn the main body of the 
report, is preferable to truncation as a means of reducin& the drag of the 
hxgher fineness ratio bodies; but it 1s inferior to truncation at lower 
fineness ratios. Thus, the drag reductluns featured in this report, while 
typical of those that can be readdy achieved, are not necessarily the 
maximum possible, i.e. when the best form of nose blunting is employed. 

s (5.8)The blunted forebody shape hevlng the ~UWINXO CD has a substantially 
greater volume than a share cone of the same fineness ratlo. Further gains 

': in volume may be made at little cost in CD. 

(5.8)~n alleviation of stagnatlon-point heat-transfer is inherent in 
the use of nose blunting. In this context blunting which is smaller than 
that corresponding tc milllmum drag 3.s of no practxal Interest since to use 
such a size of blunting is to incur unnecessary penalties in both heat 
transfer and drag. Reductions in stagnatIon-point heat-transferrate beyond 
that corresponding to minmum CD soon cost substantxl drag penaltles. Thus 

for each fineness ratlo and type of blunting thcare 1s only a llmited range 
of normalised stagnation-point heat-transfer rates that can be utllxed in 
practice. Hence any requirement to attain .a given stagnation-point heat- 
transfer rate 1s best satlsfled by the appropriate choice of the type of nose 
blunting - a posslbllity whxh has hitherto received little attention. 

(5.9)If a designer 1s forced to adopt a non-optimum shape for the 
forebody downstream of the blunting, a drag penalty ~111 necessarily be 
Incurred. This penalty, however, can be considerably allevrated by the 
proper choice of size for the nose bluntxng. 
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