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SUMMARY

An integral calculation method for the twodimensional turbulent flow over
a slotted flap is described, taking into account the interaction of the wake
from the main aerofoil with the boundary layer on the flap, and the variation
of static pressure normal to the flap surface. The results are compared with
experiment, and it is found that the method gives quite good agreement with the
measured variation of the integral properties of the wake and boundary layer,
and with the measured skin friction. The limitations of the method are

discussed briefly in relation to the more complex approach of a differential
method.

* Replaces RAE Technical Report 72124 - ARC 34236
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I INTRODUCTION

In the flow over a slotted flap the wake from the main aercfo1l and the
boundary layer on the upper surface of the flap tend to merge with each other.
Some typical total head profiles obtained during experiments described in Ref,1
are shown in Fig.l. From these results it was observed that there 1s a need for
a method of calculating the development of the wake and boundary layer which
takes their mutual interaction  into account. A particular feature of this flow
is the presence of a velocity minimum in the wake and a velocity maximum where
the wake meets the boundary layer. With the addition of further auxiliary high
lift aerofoils, i.e. slats and vanes, the velocity profile exhibits further
maxima and minima, which can disappear as the viscous layer develops downstream.
It is likely, therefore, that in the final analysis only a differential
calculation method will be sufficiently flexible to deal with all the situations
encountered in the flow over aerofoils with high 1ift devices. At present,
however, much remains to be understood of the details of such flows, and so the
simplicity of an integral method has advantages in that the empirical assumptions
required are usually simpler and can be quickly tested. Also, the accuracy is
probably no less than that of a differential method in conditions where the

integral method can be applied.

In this Report, therefore, an integral method is described which uses an
approach similar to that which Gartshore and Newman2 applied to the problem of

a turbulent walljet in an arbitrary pressure gradient.

2 BASIS OF METHOD

The viscous layer is assumed to consist of three sections: the boundary
layer, the inner wake and the outer wake. This enables the velocity profile of
the viscous layer to be defined by three mathematical expressions, which in turn
require a total of six variables to be defined. The numerical value of each of
these six quantities varies in the streamwise direction; integration of the
momentum equation for the viscous layer in a direction normal to the stream over
five different intervals will yield five of the six equations necessary for the
evaluation of these six quantities. The sixth equation is an expression for the

rate of change of massflow in the region below the velocity minimum in the wake.

Soluticon of these six equations requires assumptions to be made regarding
the shear stress at five positions in the viscous layer, and also regarding the
massflow across the line of minimum velocity. The assumptions made, together

with the choice of expressions used for the velocity profiles, are discussed in

detail below.



2.1 The velocity profile

In choosing a velocity-profile family simplicity was a primary considera-
tion. The power law is a traditional assumption for boundary layers, and has
been used by Gartshore and Newman2 for walljet calculations. Townsend3 and
Gartshore4 have used the Gaussian form for wakes, and it was considered that
these two forms - power law and Gaussian - could be used both for the condition
when the wake and boundary layer are separate (Fig.2a), and when they have
merged (Fig.2b).

Using therefore the nomenclature of Fig.2, and considering first the con-
dition where the wake and boundary layer have merged (Fig.2b), the velocity

profile of the boundary layer, 0 <y < Yma® is assumed to be

U y
—_ = [ . (1)
Uma (yma)

For the inner wake, Ypa SY < Vi ? the velocity profile is assumed to be

2
(u -0.) Yy - v_.
u _ _ ma mi _ ml
g~ = 1 -—gF——exp k’("i?"") (2)

ma ma 0

and for the outer wake, Vi €y <=®, the velocity profile is assumed to be

2
v -0, - .
L ———————( £ ml) exp| - k -———-——y Tmi (3)
Ue U L '

e 1

The six variables to be determined from the equations are then Uma’ U ., n,

mi
Vi ® L0 and Ll'

When the wake and the boundary layer are separated by a region of
irrotational flow the velocity profile takes the form shown in Fig.2a. As the
'inviscid' velocity distribution is assumed to be known, the values of the
velocity at the inner edge of the wake and at the outer edge of the boundary
layer are known, and Uma ceases to be an unknown quantity., It is replaced by
L, the width of the irrotational region. However since the Gaussian form,
equation (2), would give an infinitely long tail to the inner wake, the inner
wake will be truncated at a position Vi G.L. below the wake centre line.

G0

The value of G0 influences the development of the inner half wake, and also
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plays a part in deciding when the region of irrotational flow has disappeared.
A value must be found empirically, and the choice of a suitable value is
discussed in section 3.3. For similar reasons the outer wake is assumed to end
at a position Vi * G]L15 the value of G, does not have a strong influence
on the calculation, and has been chosen such that at y = Yoi + G,L, the

i
velocity is given by

= 0.005 .

2.2 Integration of the momentum equation

The twodimensional incompressible flow equations for steady flow of a

viscous layer along a plane wall are, making the classical assumptionss,

. oC

oU v 1 at
u ax +v 3y 2 ox + oy (4)
T (5)
ol av
= By - o . (6)

Comparison with the exact equations shows that, whilst equation (6) is

exact, equations (4) and (5) contain errors of the order of Rf]. JJMHEA— FQ

For flow along a curved wall, of curvature «, with the co-ordinates x,y
measured along the wall and at right angles to it, Goldstein5 shows that by
making similar assumptions to simplify the exact equations as were used for the
flow along a plane wall, equations (4) and (6) remain unaltered, whilst equation

(5) becomes

aC 2
3;2 = 2¢U . (7N
Whilst the term 2KU2 is of order K'R_i, (where «' = xC) and, therefore,

of higher significance than the terms ignored in the derivation of the equations
for the plane wall, the analysis of the flow along a curved wall results in
errors of the order of K'R—i occurring in the equation for momentum in the

x direction (equation 4)) and in the continuity equation (equation (6)) also.



It is not therefore clear a priori that the replacement of equation (5) by
equation (7) will result in a significant improvement in the overall accuracy

of the representation of the motion of the viscous layer.

Nevertheless the—experimental results amply demonstrate the existence of
a non—zero pressure gradient through the viscous layer, Fig.3. The change of
sign of the pressure gradient, as the flow proceeds downstream over the flap,
was considered to be due to a change of sign of the curvature of the mainstream
flow. This was confirmed by using the method of Hess and Smith6 to calculate
flow velocities both on and near to the flap, under inviscid conditions. Fig.4
shows that the pressure gradient changes sign, even when viscous layers are

absent.

In an attempt to ascertain if the pressure gradients result from the
curvature of the flow, values of the curvature «k have been derived from Figs.3
and 4, using equation (7) with U assumed to be the local flow velocity. The
results of these calculations are given in Table 1. For the first two traverse
positions the numerical values agree reasonably well, but this agreement breaks
down as the flow approaches the trailing edge of the flap, due to the the rapidly
increasing effect of the viscous layer on the real flow, making it markedly
different from the inviscid flow. An alternative source of data for the flow
curvature was therefore considered, this source being the shapes of the stream-
lines in the real flow above the flap, shown on Fig.5. By fitting cubic curve
to each of the streamlines the variation of curvature along its length could be
deduced, and the values obtained in this manner are compared in Table 2 with
values of the curvature deduced from the static pressure gradients. Although
the agreement is not exact, the values for the downstream stations do show

similar trends with distance through the viscous layer.

It would appear, therefore, that the measured static pressure variations
do result from the curvature of the flow, and it is very possible that the con-
tribution to the equations of motion from the term involving the static
pressure gradient is larger than the contributions given by the similar order
terms to the equations involving the x-wise momentum and continuity. The form
of the equations given by equations (4), (6) and {7) have therefore been
adopted, and upon integrating equation (4) between arbitrary limits 2 and Yo»

and including equation (6), the following equations may be obtained

-
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v 0 0 7

where Ul and U2 are the values of U at YI and y2 respectively; T]

and T, the corresponding values of 1 and Cp(y) the static pressure
coefficient at the general point y. The results of substituting the assumed
velocity profiles into this equation, and of carrying out the integratioms,

are given in Appendix A,

2.3 The massflow in the region below the velocity minimum

. . . 7 , . .
Analogous with Head's entrainment function® a function F is defined as

the rate of change of the masflow in the region 0 <y < Vi i.e.

- 4
F-dx fUdy (9)
0

F therefore represents the massflow from the outer half wake into the inner
half wake. For a wake that is symmetrical both in velocity profile and
turbulence structure about its centre, F would be zero. For asymmetric wakes
one would intuitively expect the half with the steeper velocity gradient normal
to the stream direction to grow at the expense of the other half, and this is
borne out by some measurements made during the experiments of Ref.l. 1In Fig.6
the measured massflow below the velocity minimum is shown for three different
flap configurations, and it can be seen that just downstream of the trailing
edge of the main aerofoil there was a significant massflow from the outer to
the inner half wake, where the steeper velocity gradient normal to the stream
existed. Further downstream, as the asymmetry became less, the exchange of
mass decreased and, in fact, over a large proportion of the flap chord was
almost zero. The experimental point nearest the flap trailing edge, for the
case where the flap deflection was 30° and the slot width 0.025¢c, was almost
certainly an overestimate of the massflow, caused by the presence of a sizable

region of reverse flow within the boundary layer at that station.



For the purpose of calculating the flow development it appears from Fig.6
that the value of F is sufficiently small over most of the flap for it to be
taken as zero. It would be useful, however, if an estimate could be obtained of
the effect of non-zero valueg of T on the calculations and for this purpose a
relationship between F and the parameters describing the velocity profile is
required. Since little is known about the interaction between the halves of an
asymmetric wake there is no readily available expression for F. However, an

expression which incorporates the qualitative variation of F observed in the

(E-q)
3y -
y=ymi L0

F = F | 7————— -1 (10)

3y
= .+L
Y=¥ni

where Fs is a scaling factor. Providing F is small there is some justifica-

previous paragraph is

1

tion for using a relation such as equation (10), despite its c¢rudity, in order to
observe the effect of non-zero values of F on the calculations. The scaling
factor F8 has been chosen somewhat arbitrarily toc be the same as the rate of
entraimment of irrotational fluid into the outer half wake, treating it as half
of a far wake. Using the entrainment law of Townsend3 for a far wake the

following expression for FS can then be obtained

Ue%(ue - Umi)

U + iU -u.) - (an
e e mi

F. = 0.3]
s

Substituting for FS into equation (10) and evaluating the velocity gradients

= .~ L = . + L
at vy Yoi 0 and ¥y yml 1 the expression for F Dbecomes
U -U . - .
F = 0.31 e&(ue Uml) Li(Uma Uml) -1 (12)
Ue * 5(Ue - Umi) LO(Ue - Um;§
2.4 The shear stress
. . Tna
The wvalue of the shear stress is required at y equal to zero, =
] 4 . . .
Yoa' Ymi and Yo L] At the wall the shear stress is assumed to be given by

the Ludwieg-Tillman law, in the form

iy

]
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_ 2 -0.268 Ima
TW = %Uma0.246(RUmaB[ma) 10 {13)
yma
] U
where Blma— [[ T (J-U )dy
ma ma
yma
o] -
and H]ma_e (1 T )dy .
Ima ) ma

The accuracy of the Ludwieg-Tillman law when used in this way is doubtful,
but in the large pressure gradients usually present over high-lift aerofoils it
is unlikely that small changes in the shear stress will have a significant effect
on the calculations. In fact the skin-friction calculations described in
section 4 using equation (13) are in fair agreement with experiment and so the

errors incurred in calculations of flow development should be small.

y
At y = —%ﬁ and y = Vi + Ll the eddy viscosity concept has been used.
S AEITITITI oI s
yma . . . . .
At y = - the kinematic eddy viscosity has been assumed to be given by
A
v U &%
T 1
_?;! - m; ma o (14)
) TB
. . X . " .
where Vo 1s the kinematic eddy viscosity, alma is equal to BlmaHIma and
RTB is a dimensionless constant. This expression has been obtained from that

ugsed by Cebeci and Smith8 for the outer part of a turbulent boundary layer. The
intermittency factor at the midpoint_of the boundary layer has been assumed to
be-tnity. The value of R implied Yy the expression of Cebeci and Smith was

TB
60, and this has been found to give-Satisfactory agreement with experiment in

calculations described in section 4. At y = yo.* L, the following expression

has been used

(15)

where RTw is another dimensionless constant. This expression is the same as

that suggested by Townsend? for self-preserving wakes. The wakes considered here

are unlikely to be of this category, but at present there is no proven
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equivalent expression that applies to wakes that are not self-preserving.
Gartshore4 has proposed an expression by which the variation of RTW in the
streamwise direction may be calculated, but there is little basis at present for
assuming it to be any more valid in the conditions considered here than
equation (15), which is simpler. The range of jﬁlues of RTW given by
Townsend's theory was between 13 and ‘ Tfslnce the wakes encountered in the
experiments1 were not self—preserving,zﬁt was not surprising that values

different from this were required to give satisfactory agreement with experiment

in the calculations of section 4.

At the velocity maximum and minimum the eddy viscosity concept would
dictate that the shear stress is zero, but there is ample evidence to show that

this is not generally truelo’J]’lz.

However , the shear stress at velocity maxima
and minima is usually small compared to the peak values occurring in other parts
of the flow, so that in most of the calculations of section 4 it has been
assumed to be zero. Only in two cases have i and Tha been given non-zero
values, which were chosen somewhat arbitrarily, so that the effect on the

calculation could be seen.

3 COMPARISON WITH EXPERIMENT

3.1 Choosing a method of comparison

The conventional way of assessing the results of an integral method is
to compare with experiment the calculated variations of the integral quantities
that will be used in making the viscous correction to potential flow calculations,
i.e. the momentum and displacement thicknesses. For flows without appreciable
static pressure variation across the layer the definitions of the momentum and
displacement thicknesses are simple. Myringl3 has examined the case where
normal static pressure gradients are significant, and the definitions are more
complex, depending on where the momentum or displacement thickness is to be
placed in the flow field. However, it is by no means yet clear how the viscous
correction is to be incorporated into the potential flow calculations around
multi-aerofoil sections. Therefore, at present, attention will be confined to
easily calculated integral quantities similar, but not identical to, the
momentum and displacement thicknesses. The integral quantities that have been

used are defined in Appendix B.

3.2 Experimental data

The pressure distributions and traverse data used in comparing the results

of calculations with experiment were obtained during twodimensional wind tunnel

(7]
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tests on a 0.915m chord wing with a 407 chord slotted flap and plain leading edge

~1] . . .
at a speed of 61 ms . The experiments have been fully described in Ref.l.

To be consistent with the assumptions of the theory, the assumption of
linear variation of the static pressure coefficient with normal distance from
the surface, was also used in calculating the velocity profiles of the wake and
boundary layer from the measured values of total pressure and static pressure in
the viscous layer. The position of the maximum in the velocity profile was
calculated in the reduction program by fitting a parabola to the point of
maximum measured velocity and the two points either side. The velocity minimum
was found in a similar way. Integration of the velocity profile to find the
values of the integral quantities defined in equations (B-1) to (B-9) was carried

out using linear interpolation between the experimental points.

The starting point for the calculation was chosen to be the first traverse
position downstream of the slot, where the data was accurate. Although traverses
were made in the slot itself the thinness of the boundary layer on the flap and
difficulties in 'touching down' the pitot probe on the shroud lower surface

caused some uncertainties in interpreting the data.
3.3 Results

The calculation method has been programmed in Fortran making use of the
ICL Scientific Subroutine F4MERS to carry out the integration procedure. The
starting values of the profile parameters were calculated from the experimental
values of the integral quantities defined in equations (B-1) to (B-9), using
equations (B-10) to (B-15). Since a region of irrotational flow existed between
the wake and boundary layer at the starting point of the calculation it was also

necessary to provide the measured value of either L or Y * The value of

Yoi Vs used because it was easier to define from the experimental results.
Before the calculations could proceed it was necessary to decide upon a
value of the constant G as defined in section 2. Calculations were carried

’
out for three different Salues of GO’ 2.30, 2.50 and 2.77, and it was found
that the only significant effect was on the value of BZma’ the momentum
thickness of the inner wake. When F, Toa and T; Wwere assumed to be zero
the best overall agreement with the experimental variation of eZma was with
G, equal to 2.5 and this was the value used in all the calculations described

0
below.

The results of calculations have been compared with three experimental

cases; firstly a case where virtually no interaction occurred between the wake
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and boundary layer, secondly where slight interaction occurred and thirdly
where the interaction was greater. The results for the first case, assuming
F, t and T , to be zero, are shown in Figs.7 and 8 for values of RT

ma ml W
equal to 20 and 40, The velocity profiles in Fig.8 show how the lower value of
RTW’ i.e. higher eddy viscosity, tends to reduce the velocity deficit in the
wake. No interaction between the wake and boundary layer was predicted with
either value of R and so the boundary-layer development was the same for

’

both. The agreemeif with the experimental values of elma and Hlma shown in
Fig.7 was quite good, except very near to the trailing edge, where the high
value of Hlma indicated that the flow was on the point of separating. Since
the boundary layer was unaffected by the wake for this case it was of interest
to see how the calculated development compared with that by another method for
turbulent boundary layers. The results of using Green's method!®, which is an
extension of Head's entrainment method7, are therefore included in Fig.7 and
there appears to be very little difference in e]ma and H, . The agreement

ima

of the calculated values of sza and G3e with experiment was not particularly

goad but improved near to the trailing edge. However, if the sum of eZma and
83e is considered, the difference between experiment and calculation is con-
siderably reduced, which suggests that inaccuracy in determining the measured

value of Yoi might be partly to blame. It is worth noting that the variation

of R had little effect on 8 and 6_ , in contrast with 1ts effect on
TW 2ma 3e
H2ma and H3e. It appears possible to obtain good agreement with the experi-
tal i i i .
mental variation of H2ma and H36 by choosing the right wvalue of RTW

St11l keeping F, T ., and T zero and with R eqgual to 40, the
ml ma T

W
results for the slightly interacting case are shown in Figs.9 and 10. The
agreement with the measured integral quantities was quite good, but the interac-

tion between the wake and boundary layer was predicted to commence at x equal

to 0.317, whereas the measured profiles in Fig.10 indicate that some interaction

was present even at x equal to 0.204. This was considered to be largely due
to the departure from a Gaussian profile in the inner half wake, owing to the
presence of a separation bubble on the lower surface of the wing near to its
trailing edge. This feature was not so noticeable in the previous case, where
a slightly modified shape of wing lower surface was used. The effect was more
evident at an angle of incidence lower than the 8° of this case, as is shown
by the total head profiles, particularly that at the slot, in Fig.l, for which
the angle of incidence was zero. The effect of the bubble was to add to the

inner edge of the wake a turbulent layer of small total head deficit, which

(st

"
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interacted with the boundary layer before the main part of the wake. This effect
can be seen in Fig.l10. The point at which the boundary layer separated was
estimated, by examination of the experimental pressure distributions on the flap
surface, to be at x equal to 0.305, where the calculated value of H]ma was
about 1.9. Since the wake had only interacted very weakly with the boundary
layer up to this station it seems likely that the boundary layer would have

separated at this point even without the presence of the wake.

In the third case the slot width had been reduced from 0.025¢c to 0.020c
with otherwise the same model configuration as for the second case. The wake and
boundary-layer interaction was still not very severe although greater than in the
two previous cases. The results, still keeping F, T and T equal to zero,
and with RTW equal to 40, are shown (Cp varying) in Figs.1] and 12, compared
with experiment. Although the agreement with integral quantities was quite good,
the point at which interaction commenced, x equal to 0.256, was again further
downstream than the position indicated by the measured velocity profiles. The
bubble on the wing lower surface was once more considered to be the cause of
this. The calculated velocity profiles 1in Fig.l!2 show the interaction to be
more severe than in the previous case(Fig.10) but again, by reference to the
velocity at the edge of the boundary layer, not quite as severe as in the experi-
ments. The point where the boundary layer separated, again determined from the

measured pressure distribution, was at x equal to 0.340 where the calculated

value of H _ was 2.0 approximately.

In F1g.13 the calculated skin friction for the above three cases is
compared with values measured using surface pitot tubes. The measurements,
which have been described in Ref.l, were made using a circular pitot tube for
the first case and a rectangular one for the remaining two. The agreement for
the non-interacting case in Fig.l13a 1s certainly no better than for the interac-
ting cases in Figs.I3b and 13c, giving some justification for using the Ludwieg-
Tillman expression in the form given by equation (13). 1In Fig.13a the result of
using the Green-Head method14 is also included and 1t can be seen to be in close

agreement with the present method.

In the calculations described so far the values of Tma’ Tmi and F have
all been zero, and the agreement with experiment could be generally described as
quite good. It is of interest, however, to see how non-zero values of these
quantities affect the results, and also to see the effect of i1gnoring the

variation of static pressure normal to the surface. The latter is shown in
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Fig.l for the third of the above three cases. The static pressure through both
the boundary layer and the wake was assumed to be equal to that at the surface

and the effect can be seen to be quite large. This implies that pressure

-h

variations normal to the surface should be included 1n the calculations.

In Fig. 14 the effects of non-zero values of T . and Tha 2re shown for
the same case. The choice of values for Thi and Tha has, of necessity, been
somewhat arbitrary. However, as a guide, use has been made of the hot wire
measurements of Englishlowhich showed both T and Tia t° be predominantly
negative. Thus Toi has been putkequal to _£TLi and Toa equal to _iTmaZ'
First, keeping T.a Zeros Figd4 shows the negative value of T E° have a
marked effect on the integral quantities of the inner half wake where it
substantially reduced both 0 and H, . Since it caused considerable

2ma 2ma
departure from the experimental values it appears that in the real flow the
negative value of T vas less in magnitude than —iTLl. The effects on the
outer half wake and boundary layer were smaller., With both T and T

ma

non-zero little further change occurred in the wake but the value of e]ma was

increased substantially. The effect on the velocity profile is shown in Fig.l12

to be a tendency to eliminate the velocity maximum and minimum.

i+

In Fig.l5 the results of the calculation are shown with Toa and T

zero but with F given by equation (12). In Fig.l6 the variation of the mass-

flow below vy equal to Yo in the calculation is compared with experiment and

[

with the constant massflow resulting when F is zero., It can be seen that
equation (12) gives a more accurate variation of the massflow than assuming F
is zero but agreement with the experimental values of the integral quantities in

Fig.15 is not significantly improved.

The data used above was obtained during experlments] in which the aim was
to discover the particular features of the flow over an aerofoil with a slotted
flap that lead to optimum performance. The optimum was quite sensitive to slot
width, lying in the range 0.020c to 0.025¢ for the Reynolds number of the tests
(R = 3.8 x ]06), which was also the range where the wake began to affect the
boundary layer, as 1s shown by the velocity profiles in Figs.l0 and 12. It is of
interest, therefore, to carry out the calculation for a smaller slot size.
However, the only slot size less than 0.020c at which boundary layer traverses
were made was at 0.005c, where the flow separated from the flap just downstream

of the slot exit, making a useful comparison with experiment impossible.

in

Therefore, a hypothetical case has been calculated for a slot width smaller than

(&)
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0.020c. To do this the same starting values and pressure distribution as for
the 0.020c case were used, except that the wake was moved nearer to the surface,
so that interaction commenced at the starting station (E = 0.114)., This
corresponded to a slot size of approximately 0.015¢. For comparison the same
calculation was carried out with the wake moved away far enough for there to be
no interaction at all. The values of F, Tna and T, Ve all set to zero.

The results for the boundary layer are shown in Fig.!7 and it can be seen that
H increased much faster in the interacting case, which can be interpreted as

ima
indicating an earlier separation of the flow from the flap upper surface.

4 DISCUSSION

The results in the previous section show that the calculation method gives
quite good predictions of the integral properties of the wake and boundary layer,
and in a non-interacting case the results for the boundary layer were very
similar to those obtained by the Green-Head methodla. In the two interacting
cases for which data was available it predicted less severe interactions than
those observed, but this was considered to be largely attributable to the effects
of the bubble on the wing lower surface. In the hypothetical case where the

interaction was strong the calculations predicted that an earlier separation of

the boundary layer would occur because of the effect of the wake.

It is worth noting that in the experiments! the pressure distribution on
the flap was not very sensitive to changes in slot width, except when the latter
became very small. Thus, the pressure data used in the hypothetical cases were
probably only slightly different from the pressures in the equivalent real flows.
It follows that the starting values of elma and Hlma that were used would
have been close to those in the equivalent real flows. (Transition occurred
very near to the flap leading edge for the flap deflections of 30° and thus
would have been unaffected by the irrotational disturbances from the wake
discussed in Ref.1.) Some change in the size of the wake was to be expected,
owing to the slightly different load being carried by the wing, in changing the
slot width from 0.020c to approximately 0.015¢; but assuming that this change
in size was small compared to the distance (0.005c approximately) by which the
wake was moved closer to the flap, this would not have had a large effect on
the calculation of the boundary layer development. There is some justification,
therefore, for saying that the calculation of the hypothetical strongly-
interacting case was carried out in conditions close to those in the equivalent
real flow. Comparing now the non-interacting case in Fig.17 with the slightly-

interacting case (F = 0) in Fig.l5, the calculated development of the boundary
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layer was very similar in both cases, i.e. at the slot width of 0.020c¢ the
calculation predicted that, even though some interaction occurred, it did not
significantly affect the integral properties of the boundary layer. However,
the calculations indicated that between the slot widths of 0,020¢ and 0.0l5¢
approximately the wake began to have a significant effect on the boundary layer
and that the position of separation began to move upstream. This coincided
with the beginning of the observed fall-off in performance of the wing/flap

. . . 1
combination 1n the experiments ,

Considering some possible improvements of the calculation method, it
would be most useful if a wvalid expression for F, the massflow rate across
the velocity minimum in the wake, could be obtained near to the trailing edge
of the wing. Such an expression would enable calculations to start very near to
or perhaps even at the slot exit, It is likely that in a very strongly
interacting case the approximation that F 1is zero would not be a very good one,
and so further knowledge of the variation of F 1in this situation would be
ugseful. There is also the possibility that more sophisticated assumptions
regarding the shear stress could be made, although this will have to await a
more detailed understanding of the turbulence structure of wakes and boundary

layers.

The limitations of the method are those that apply to integral methods
generally, in that they can only be used successfully where the streamwise com-
ponent of velocity can be represented accurately by a certain family of velocity
profiles. In this case it was found that a separation bubble on the lower
surface of the wing caused some deviation of the velocity in the wake from the
assumed Gaussian form, and this resulted in slightly stronger interaction with
the boundary layer than that indicated by the calculations. Also, as it stands,
the method is not suited to the repgion downstream of the point where the velocity
maximum disappears. For the flow over a flap this is unlikely to be a serious
limitation because it has been shown in Ref.l that, when the flap is near to 1its
optimum pesition, the interaction between the wake and boundary layer is weak,
which implies that a velocity maximum is still present at the flap trailing edge.
If the slot width is much smaller than the optimum, the calculation will indicate
this by predicting a strong interaction. However, if the turbulent flow over the
wing with a slatted leading edge is to be calculated, where the wake and boundary
layer usually interact strongly near to the optimum configuration, a differential
method would be more suitable. This also applies to the turbulent flow over

multiple-slotted flaps where more than one wake is present.
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5 CONCLUSTIONS

An integral method has been developed for calculating the turbulent flow
over a slotted flap. The effect of the static pressure variation normal to the
flap surface is included and account is taken of the interaction between the
wake and boundary layer. It gives some idea as to the extent of the interaction
of the wake and boundary layer and predicts an earlier separation of the boundary
layer when the effect of the wake is large. When the wake has no effect the
results for the boundary layer are very close to those obtained using the Green-
Head methodla.
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Appendix A
DERIVATION AND SOLUTION OF THE EQUATIONS

The momentum equation of the viscous layer equations (4) is integrated in
the direction normal to the surface between the arbitrary limits y = Yy and

Y =Y, If the continuity equation (6) is used, this gives
Y2 Y2 yl yzac
d 2 d d 1 )
= - = + — = :162] - - -
7y

71 0 0 cen. (A=1)

2
T and fz are the corresponding values of t. The assumed velocity profiles

where Ul and U, are the values of U at Y, and ¥, respectively and

can be substituted into equation (A-1) to obtain the required equations. The
model has to deal with two distinct physical situations; the case where the

boundary layer and wake are separated by a region of irrotational flow and the
case where the boundary layer and wake are merged. A set of equations will be

derived for each “case.

This distinction does not apply to the outer half of the wake, thus
substituting the assumed profile into equation (A-1) for two intervals in the
wake will give results having general applicability. For Yy T Ypit
Y2 = Vi ¥ GlLl

du . . dL du
e

dx C] ¥ dx C2 = dx CB * P5 * C9F - Tmi (a-2)

du . dL du

_ e - -
o 4t a % T @ CetPatCuFt () (4-3)

where the coefficients C.l and Pi are defined in Appendix C; T are

L T
mi’ L1
the nondimensional shear stresses at y equal to Yoi and Yoi + LI
respectively, and F 1is the rate of change of massflow in the region
0y <:ymi. Equations (A-2) and (A-3) can be rearranged to give two equations

applicable to the merged and unmerged conditions:
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(r

U
;o I e _ .
& T ©L, -5 [gx (€C)Cg = €4C4) + P,Cy ~ PiC,

* (CC,, ~CgCIF + 7 Cp- T L (C) - Ca{] a-4) )

aw . e, ay
-..-Ti_x_. = -C—l- E}—c-——- C3 + Ps + CgF - Tmi - '&'x_ C2 . (A--S)

Now returning to the integral of the momentum equation (A-1), substitution

of the velocity profiles for the inner wake and boundary layer of the merged

case can be made. For y = (ymi - GOLO)’ Yy = Yai
dUma dLO dumi
B, + CS = 4 Cot Byt C]7F + (T, - Tma) (A-6)
for < yma/2’ Y2 = Yna
dyma dn dUma
dx Cl] + E§-012 = dx C13 * P2 * (Tma - TmaZ) a-7)
for ¥, = 0, Yo = Yoa
dyma dn dUma
P c:15 * I C16 = I 018 +P o+ (Tma - Tw) (A-8)

ere T, ., T T the shear .
wh W’ ma °F€ ear stresses at y equal to zero, yma/Z, Ya

ma2’
The set of equations is completed by substitution of the velocity profile into

the equation for the rate of change of massflow in the region below the velocity

mi
. . . d
minimum, 1.e, F = ix Udy.
dy du du dL
ma dn - ma mi 0 -
dx C19 v ax %20 ° Tax Car tax St Cog*F . @a9)

[«
d
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Appendix A

The four equations ((A-6) to (A-9)) can be rearranged to give

dyma 1 dU
ax " b, - 5,5 Tx (bybg ~ Pgby) = Bib, + Poby
+ Pylbeby = bobo) + (bob = b b)F
* (Tmi - Tm.a.)(b3b6 N b7b2) * (Tma - TmaZ)bG
- (Tma - rw)b%] (A-10)
dn _ L dUmi b dyma + b T
dx by| dx 8 “dx 5 | 377 10
+ (Tmi - Tma)b7 + (Tma - 'rw:] (A-11)
au__ | [dy dum
= c..C (c c + C )
dx €,y - €Cp0) 19”8 ~ dx 10%23
dn
* ax Coolg ~ Palay ~ (Cg + Cp3CIF
- (Tmi - Tma)c23:] (A-12)
dL, , [ev_, __
ax q ax Clo T Ey O F () - G (A-13)

vhere bi are defined in Appendix C.

These four equations taken with equations (A-4), (A-5) formed a complete

0 Ll' They can be
integrated in the downstream direction by a standard computer program. The

set of equations for the unknowns Uma’ yma’ n, Umi’ L

program used in this case was Merson's method, which varies the step length to
keep errors within specified limits and is available in ICL Scientific Subroutine
F4MERS .

For the case where the wake and boundary layer are separated by a region of
irrotational flow, the equations derived from the substitution of the velocity
profiles in the inner wake and boundary layers into equation (A-l) can be

rearranged to give:
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dLO 1 dUmi dUiW
W T T Gt PO tai T TR (A-14)
au,
dn 1 iB
dn - (C, .C ) + PG - BC
dx (C“C16 ]2 15) [: 18711 ]3 15 |8 215
* (Tma - TW)Cll - (Tma B 1"rnaZ)CISi] (A-13)
dy du,
ma 1 iB dn
= - - 2 -1
ax G [dx C13* Pyt (pp ™ Tna?d T ax C12] (A-16)
where in is the 'inviscid' velocity at the edge of the inner half wake
and UiB that at the edge of the boundary layer.

The shear stress Toa has been left in the above equations, although when
the wake and boundary layer are separate its value would be expected to be zero.
Again the equation for the rate of change of massflow in the region below the

velocity minimum provides the final equation,

dL 2 . dyma c -8n., dLO c__ 4+ dumi c
dx (in+UiB§ dx 19  dx 20  dx 23 dx 22

+E-If-i-‘y--L(G -k - L +dUiB-yma -L
dx 0" 0 5 2 dx n+1 2
+ F} : (A-17)

Equations (A-14) to (A-17) with equations (A-4), (A-5) form the complete
set for the ummerged case, where the variables are L, Yna® U i 0, L .

This set is sclved in the manner indicated above.

If the calculation starts in the unmerged condition the value of L is
examined at the end of each integration step, until it is anticipated that it
will become negative or zero at the end of the next step. The point at which it
becomes zero is then calculated, together with values of the other five profile
parameters there, and the calculation procedure then recommences using the

equations for the merged condition.
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Appendix B
DEFINITION OF INTEGRAL QUANTITIES
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Bl

Yna
% = - =2 )ay (B-1)
lma U a
0 m
Yina
U 9)
o [ E)e
ma ma
= &% -
Hlma 6lmalelma (B-3)
where Uma = UiB when the wake and boundary layer are separate.
Tm1
5% = 1 - 2 )ay (B-4)
2ma Uma
Ymi Cot0
Ymi
_ U _ U _
62ma ) [ Uma (I Uma)dy (52
Ymi C0%0
= * _
H2ma 6Zma/GZma (8-6)
where Uma = in when the wake and boundary layer are separate.
Ymi+GlLl
U
* = - — _
6% j' (1 5 )dy (B-7)
e
Ymi
ymi+GlLl
U U
= — ] = — -
®3e f U ( U )dy (B-8)
e e
Ymi
= * -
H3e 53e/e3e ) (B-9)
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On substituting the assumed velocity profiles into these equations we obtain the

relationships between the parameters describing the assumed velocity profiles and

the integral quantities as:

lma

5% =

Ima

5% =

3e

3e

and K

where K], 5 6

K,, K

and boundary layer are separate Uma

and (B-13).

2n + 1

15 replaced by Ui

are constants given in Appendix C.

W

Appendix B

(B-10)

(B-11)

(B-12)

(B-13)

(B-14)

(B-15)

When the wake

in equations (B-12)
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Appendix C
COEFFICIENTS OF APPENDICES A AND B

The coefficients are:-

10

11

12

13

14

15

It

- Ll(Ue(2K2 - KI) - 2Um

iKZ)

(Ue - Umi)(ue(K2 - Kl) - UmiKZ)

- Ll(Ue(GI + 2K2 - 3K]) + 2Umi(Kl - K2))

4) * UeK3)
K
2 I - -1
(Ue - Umi) (KA 2 ) (Ue Umi)ue(%3 2)

3 1
L ((5 K3 - 2K4 - 5) (Ue - Umi) * Ue(K3 - 1))

K3
Ll (Ue - Umi) I K

LO(Uma(G0 - 3K5

+ 2K6) + 2Umi(K5 - KG))

(Uma B Umi)(Uma(KG - KS) - UleG)

u -u.,
e mi

LO(Uma(2K6 - Kg) - 2UmiKe)

- U2 nW
ma

2 ( (2% - Dw

ma’ma (2n + 1)(n + 1)

_ ma’
(2n + 1)(n + 1)

+ 1n 2 (

1

(Zn ¥+ Dn + 1)

)
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16
17
18
19
20
21

22

i3

G

1
2
| f exp(~ kn")dn
0

where X

[}

exp(- 2kn2)d

<

]

i
O'—-_.____‘ o

£
n

]
2
3 [ exp(— kn")dn

exp (- 2kn2)dn

~
o~
]
O‘-—-___.

2
Umaym
o+ D@+ 12

a(2n2 -1

=

= - -0 .,
(Uma ml)
Umayma

TG D@+ D)

U *
- ma

n+ 1}

*
= Umayma
(a + 1)2
¥y

= _ L (G ma

060 " %) -~ &= 1)

I
1
[
fal

05

e - _ _ K%
Uma(GO KS) UmiK5

1.0633

u

> for G, = 2.77

0.7526

n

0.8101

0.6805

Appendix C

* In unmerged case Um is
a

** In ummerged case Uma is

replaced by UiB'
replaced -
eplaced by U:LW
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0 -

KS = .[ exp (- an)dn = 1.0610

_GO

} for G0 = 2,50

0
K6 = f exp (- 2kn2)dn = 0.7526

-G0 J

2n+]

ool

"o+ D+ 1)

When the wake and boundary layer are separated by a region of

irrotational flow Uma is replaced 1in C7, CB’ CIO’ Cl7 and C23 by in
and 1in Cll’ CIZ’ C]3, CIS’ Cl6’ 018’ C19 and C20 by UiB'
The coefficients b are given by:-
c . Cc C

b - Cc - 1371978

1 11 A
b - c - C13C20C8

2 12 A
oo CasCas

3 A

C

b = - (_C. +C C_) 13

4 2278 107237 A
T M TN

5 15 A
R\ o T

6 16 A

C

b BT

7 A

C

b = - (. C_+C C_) _18

8 2278 107237 A
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where A = C_C

821 = €€y

The pressure terms

where y, and vy, take the values given in the table below.

10

P,
1

(i

1

C
13 +C..C )

(Cg + CpaCyy

A

18

1 )

(Cg + €55C5

1,5) are given by

4!
3¢
]
-1 f )
ox
7

i Y1 Y2

1 0 yma

2 y11[13./ 2 yma

31 Yni " Gl i

4 Ymi Ymi T L]
> mi Ymi * GlLl

Appendix C
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SYMBOLS
bi i=1¢tel0 see Appendix
Ci i=1to 23 see Appendix
c reference length (basic wing-section chord)
s skin—friction coefficient (ZTW)
®

CP static pressure coefficient

Ymi
F é% Udy

0
FS scaling factor, {equation (12))
GO’ G1 constants determining the width of the wake
Hlma’ H2ma’ H3e form parameters defined in section 4.1

total head

constant equal to 1ln 2

Ki i=1+to6 constants given in the Appendix

L width of irrotational region between the wake and
boundary layer

LO’ L] length parameters for the wake (see Fig.2)

n exponent for the power law for the velocity in the
boundary layer

P reference pressure

Pi i=1to5 pressure terms given in the Appendix

U C

R Reynolds number,

Rpps RTw dimensionless constants given in section 2.4

u_ reference velocity in the free stream

u streamwise component of velocity divided by U

s the nondimensional 'inviscid' velocity equal to_ ¥l - Cp

Ue the value of Ui at the outer edge of the wake

UiB the value of Ui at the edge of the boundary.layer

U, the value of Ui at the inner edge of the wake

29
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ma

mi

“OWNL oW <3

~

T +9 T
mi ma

» T

ma2® L1

the value of U at the velocity maximum

the value of U at the velocity minimum

SYMBOLS (concluded)

normal component of velocity divided by U

streamwise coordinate divided by ¢

coordinate parallel to flap chord line divided by ¢

coordinate normal to stream divided by ¢

the value of y at the velocity maximum

the value of y at the velocity minimum

angle of incidence of wing

integral thicknesses defined in section 4.1

integral thicknesses defined in section 4.1

curvature of wall

kinematic viscosity

kinematic eddy viscosity

shear stress divided by pUi

and Yoi

values of

+ GIL

1

T

at y equal to zero,

regpectively

Tm

i’ Yma

» Vpa/2
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Table 1 - VARTATION OF CURVATURE ABQVE FLAP SURFACE

Inviscid Viscous
aC 3c
£ = 5.79 ~EB = 4.45
v 3y
7 3
c K c K -y
p u vy b u gosxtxon i
0.0 | -1.698 | 2.69 | 1.08 | 0.00267 | -1.236 | 2.132] 1.05 x = 0.11
0.02 | -1.609 }2.61 ) 1.1t | 0.02008 | -1.157 | 1.421| 1.57
0.04 | -1.467 | 2.47 | 1.17 | 0.04990 | -1.025 | 2.017{ 1.10
0.06 | -1.341 |2.34 | 1.24 | 0.05811 | -0.989 | 1.986| 1.12
0.08 | -1.235 | 2.23 | 1.29
0.10 | -1.148 | 2.15 | 1.35
2% 2
T L = 1.98
-1.2017 | 2.202| 1.045 | 0.00072 | -0.724 | 1.113| 0.89 Position 2
-1.0821 | 2.082| 1.105 | 0.02182 | -0.69 117 | 0.847 | o
-0.9834 | 1.983| 1.159 | 0.04897 | -0.63 1.362{ 0.728 | *= 9
-0.9019 | 1.902| 1.209 | 0.07607 | -0.58 | 1.575| 0.629
-0.8337 | 1.834] 1.254
-0.7763 ] 1.776 | 1.295
% *p
- = 1-82 5 = 0-087
0.0 | -0.6051| 1.6051l0.566 | 0.00163 | -0.29 | 0.340| 0.129 | Position 3
0.02 | -0.5799 | 1.5799/0.575 | 0.02339 | -0-29 | 0.875| 0.050 | = _ . .o
0.04 | -0.5280 | 1.5280]0.595 | 0.04808 | -0.29 | 0.561| o0.078 | * = Y-
0.06 | -0.4889 | 1.4889!0.611 | 0.09371 | -0.30 1.296 | 0.034
0.08 | -0.4596 | 1.4596/0.623
0.10 | -0.4372 | 1.4372l0.632
aC aC
~LP = -1.8 —£ = -2
ay 3y
0.0 0.1825 1 0.8175]-1.10 | 0.006264 | 0.06 ! 0.047|-12.81 Position 4
0.02 | 0.1175[0.8825/-1.02 | 0.04412 | 0.01 | 0.439) -1.371 | =
0.04 | 0.0775 [ 0.9225(-0.976 | 0.07750 | ~0.03 | 0.371} -1.623 .
0.06 | 0.0391 |0.9609|-0.937 | 0.1135 | =0.07 | 1.071] -0.562
0.08 | 0.0066 | 0.9934|-0.906
0.10 | -0.0205 | 1.0205|-0.882
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Position 1

Position 2

Position 3

Position &

X

4

X

Table 2

COMPARISON OF STREAMLINE CURVATURBES

Curvature necessary
to maintain the
static pressure

Curvature of streamline:
calculated by fitting a
cubic polynomial along each

variation streamline
= 0.114
y K K
0.00267 1.05 2.5
0.02 1.57 2.5
0.05 1.10 1.7
0.058 1.12 0.6
= 0.204
0.00272 0.89 1.2
0.022 0.85 0.9
0.049 0.73 0.5
0.076 0.63 0.12
= 0.281
0.00163 0.129 0.477
0.023 0.050 0.005
0.048 0.078 | -0.28
0.094 0.034 |-0.28
= 0.376
0.00624 | -12.8 |=-0.23
0.044 -1.37 |-1.2
0.078 -1.62 |-1.5
0.J135 -0.56 | ~0.9
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Fig.3 Variation of static pressure normal to surface
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Fig-7 Comparison of calculated flow development with experiment and with the
Green-Head method for a noninteracting case:
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Fig 12 Calculated velocuty profiles compared with experiment:
flap deflection 30. slot height O-020¢, 2=8% F =0
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