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SUMMARY 

An integral calculation method for the twodimensional turbulent flow over 

a slotted flap is described. taking into account the interaction of the wake 

from the main aerofoil with the boundary layer on the flap, and the variation 

of static pressure normal to the flap surface. The results are compared with 

experiment, and it is found that the method gives quite good agreement with the 

measured variation of the integral properties of the wake and boundary layer, 

and with the measured skin friction. The limitations of the method are 

discussed briefly in relation to the more complex approach of a differential 

method. 

* Replaces RAE Technical Report 72324 - ARC 34236 
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I INTRODUCTION 

In the flow over a slotted flap the wake from the main aerofoll and the 

boundary layer on the upper surface of the flap tend to merge with each other. 

Some typical total head profiles obtained during experiments described in Ref.1 

are shown in Fig.1. From these results it was observed that there is a need for 

a method of calculating the development of the wake and boundary layer which 

takes their mutual interaction-into account. A particular feature of this flow 

is the presence of a velocity minimum in the wake and a velocity maximum where 

the wake meets the boundary layer. With the addition of further auxiliary high 

lift aerofoils, i.e. slats and vanes, the velocity profile exhibits further 

maxima and minima, which can disappear as the viscous layer develops downstream. 

It is likely, therefoie, that in the final analysis only a differential 

calculation method will be sufficiently flexible to deal with all the situations 

encountered in the flow over aerofoils with high lift devices. At present, 

however, much remains to be understood of the details of such flows, and so the 

simplicity of an integral method has advantages in that the empirical assumptions 

required are usually simpler and can be quickly tested. Also, the accuracy is 

probably no less than that of a differential method in conditions where the 

integral method can be applied. 

In this Report, therefore, an integral method is described which uses an 

approach similar to that which Gartshore and Newnan 2 
applied to the problem of 

a turbulent walljet 1x1 an arbitrary pressure gradient. 

2 BASIS OF METHOD 

The viscous layer is assumed to consist of three sections: the boundary 

layer, the inner wake and the outer wake. This enables the velocity profile of 

the viscous layer to be defined by three mathematical expressions, which in turn 

require a total of six variables to be defined. The numerical value of each of 

these six quantities varies in the streamwise direction; integration of the 

momentum equation for the viscous layer in a direction normal to the stream over 

five different intervals will yield five of the six equations necessary for the 

evaluation of these six quantities. The sixth equation is an expression for the 

rate of change of massflow in the region below the velocity minimum in the wake. 

Solution of these six equations requires assumptions to be made regarding 

the shear stress at five positions in the viscous layer, and also regarding the 

massflow across the line of minimum velocity. The assumptions made, together 

with the choice of expressions used for the velocity profiles, are discussed in 

detail below. 
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2.1 The velocity profile 

In choosing a velocity-profile family simplicity was a primary considera- 

tion. The power law is a traditional assumption for boundary layers, and has 

been used by Gartshore and Newman' for walljet calculations. Townsend3 and 

Gartshore4 have used the Gaussian form for wakes , and it was considered that 

these two forms - power law and Gaussian - could be used both for the condition 

when the wake and boundary layer are separate (Fig.Za), and when they have 

merged (Fig.2b). 

Using therefore the nomenclature of Fig.2, and considering first the con- 

dition where the wake and boundary layer have merged (Fig.2b), the velocity 

profile of the boundary layer, 0 4 y Gyma, is assumed to be 

n 
U -= Y 

u ma ( ) 

- . 
Y ma 

For the inner wake, y,a <y < ymi, the velocity profile is assumed to be 

u 
uma = l- 

(uma u.pi’ ap[b k(’ ioymij] 

and for the outer wake, y mi 4Y 4=-s the velocity proflle is assumed to be 

U ij- = I- 
we - Urni) 

e 
ue exp[- k(' ;,ymi)2] . 

(1) 

(2) 

(3) 

The six variables to be determined from the equations are then Urna, Urni, n, 

'mi' LO 
and L 

1' 

When the wake and the boundary layer are separated by a region of 

irrotational flow the velocity profile takes the form shown in Fig.2a. As the 

'inviscid' velocity distribution is assumed to be known, the values of the 

velocity at the inner edge of the wake and at the outer edge of the boundary 

layer are known, and Uma ceases to be an unknown quantity. It is replaced by 

L, the width of the irrotational region. However since the Gaussian form, 

equation (2), would give an infinitely long tail to the inner wake, the inner 

wake will be truncated at a position y 
mi - GoLo below the wake centre line. 

The value of GO influences the development of the inner half wake, and also 

. 
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plays a part in deciding when the region of irrotational flow has disappeared. 

A value must be found empirically, and the choice of a suitable value is 

i discussed in section 3.3. For similar reasons the outer wake is assumed to end 

at a position ymi + GILI; the value of Gl does not have a strong influence 

on the calculation, and has been chosen such that at y - y 
mi 

* GILl the 

velocity is given by 

2.2 Integration of the momentum equation 

The twodimensional incompressible flow equations for steady flow of a 

viscous layer along a plane wall are , making the classical assumptions 5 , 

au au 
u,+v% = 

L%+aT 
2 ax ay (4) 

i!!!+E = 0 . 
ax ay 

(5) 

6) 

Comparison with the exact equations shows that, whilst equation (6) is 

exact, equations (4) and (5) contain errors of the order of R -‘. A- k 

For flow along a curved wall, of curvature K, with the co-ordinates x.y 

measured along the wall and at right angles to it, Goldstein’ shows that by 

making similar assumptions to simplify the exact equations as were used for the 

flow along a plane wall, equations (4) and (6) remain unaltered. whilst equation 

(5) becomes 

(7) 

Whilst the term 2~lJ~ is of order K’R -‘, (where K’ = UC) and, therefore, 

of higher significance than the terms ignored in the derivation of the equations 

for the plane wall, the analysis of the flow along a curved wall results in 

errors of the order of -1 r’R 
i 

occurring in the equation for mOmenturn in the 

x direction (equation 4)) and in the continuity equation (equation (6)) also. 



It is not therefore clear o priori that the replacement of equation (5) by 

equation (7) will result in a significant improvement in the overall accuracy 

of the representation of the motion of the viscous layer. 

Nevertheless the experimental result8 amply demonstrate the existence of 

a non-zero pressure gradient through the viscous layer, Fig.3. The change of 

sign of the pressure gradient, as the flow proceeds ‘downstream over the flap, 

was considered to be due to a change of sign of the curvature of the mainstream 

flow. This “as confirmed by using the method of Hess and Smith6 to calculate 

flow velocities both on and near to the flap, under inviscid conditions. Fig.4 

shows that the pressure gradient changes sign, even when viscous layers are 

absent. 

In an attempt to ascertain if the pressure gradients result from the 

curvature of the flow, values of the curvature K have been derived from Figs.3 

and 4, using equation (7) with U assumed to be the local flow velocity. The 

results of these calculations are given in Table 1. For the first two traverse 

positions the numerical values agree reasonably well, but this agreement breaks 

down as the flow approaches the trailing edge of the flap, due to the the rapidly 

increasing effect of the viscous layer on the real flow, making it markedly 

different from the inviscid flow. An alternative source of data for the flow 

curvature “as therefore considered, this source being the shapes of the stream- 

lines in the real flow above the flap, shown on Fig.5. By fitting cubic curve 

to each of the streamlines the variation of curvature along its length could be 

deduced, and the values obtained in this manner are compared in Table 2 with 

values of the curvature deduced from the static pressure gradients. Al though 

the agreement is not exact, the values for the downstream stations do show 

similar trends with distance through the viscous layer. 

It would appear, therefore, that the measured static pressure variation8 

do result from the curvature of the flow, and it is very possible that the con- 

tribution to the equations of motion from the term involving the static 

pressure gradient is larger than the contributions given by the similar order 

terms to the equations involving the x-wise momentum and continuity. The form 

of the equations given by equations (4), (6) and (7) have therefore been 

adopted, and upon integrating equation (4) between arbitrary limits y, and y2. 

and including equation (6), the following equations may be obtained 

F 
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. 

y2 

I 
y2 Yl y2 

d U2dy - U2 -& 
J 

d 
ZG 

Udy * U1 z 
J 

.Udy l ; 
J 

vdy- (r2-r,) = 0 

71 0 0 r, 

. . . (8) 

where U 1 and U 2 are the values of U at y, and y2 
respectively; 

T1 
and T 2 the corresponding values of r and Cp.y) the static pressure 

coefficient at the general point y. The results of substituting the assumed 

velocity profiles into this equation, and of carrying out the integrations, 

are given in Appendix A. 

2.3 The massflow in the region below the velocity minimum 

Analogous with Head's entrainment function' a function F is defined as 

the rate of change of the mssflow in the region 0 <y Gymi, i.e. 

Ymi 

F= d 
z i 

'Jdy (9) 

0 
5 

3 F therefore represents the massflow from the outer half wake into the inner 

; half wake. For a wake that is symmetrical both in velocity profile and 

turbulence structure about its centre, F would be sero. For asymmetric wakes 

one would intuitively expect the half with the steeper velocity gradient normal 

to the stream direction to grow at the expense of the other half, and this is 

borne out by some measurements made during the experiments of Ref.]. In Fig.6 

the measured massflow below the velocity minimum is shown for three different 

flap configurations, and it can be seen that just downstream of the trailing 

edge of the main aerofoil there was a significant massflow from the outer to 

\ 

the inner half wake, where the steeper velocity gradient normal to the stream 

existed. Further downstream, as the asymmetry became less, the exchange of 

mass decreased and, in fact, over a large proportion of the flap chord was 

almost zero. The experimental point nearest the flap trailing edge, for the 

case where the flap deflection was 30' and the slot width O.O25c, was almost 

certainly an overestimate of the massflow, caused by the presence of a sizable 

i 
region of reverse flow within the boundary layer at that station. 



For the purpose of calculating the flow development it appears from Fig.6 

that the value of F is sufficiently small over most of the flap for it to be 

taken as zero. It would be useful, however, if an estimate could be obtained of 

the effect of non-zero values of F on the calculations and for this purpose a 

relationship between F and the parameters describing the velocity profile is 

required. Since little is known about the interaction between the halves of an 

asynmetric wake there is no readily available expression for F. However, an 

expression which incorporates the qualitative variation of F observed in the 

previous paragraph is 

F = Fs (10) 

where F 
S 

is a scaling factor. Providing F is small there is some justifica- 

tion for using a relation such as equation (IO), despite its crudrty. in order to 

observe the effect of non-zero values of F on the calculations. The scaling 

factor Fs has been chosen somewhat arbitrarily to be the same as the rate of 

entrainment of irrotational fluid into the outer half wake, treating it as half 

of a far wake. Using the entrainment law of Townsend3 for a far wake the 

following expression for Fs can then be obtained 

. 

FS 

Uef (U - urn;, 
= Oa3’ ue + 4;lJe - Urni) . 

(11) 

Substituting for Fs into equation (10) and evaluating the velocity gradients 

at y=ymi-Lo and y=ymi+LI the expressIon for F becomes 

F = 0.31 
Uel (Ue-Umi) 

ue + ICU - Urni) 
-I . 

e 1 (12) 

2.4 The shear stress 
Y 

The value of the shear stress is required at y equal to zero, F , 
5 

Y ma' 'mi and ymi + L,. At the wall the shear stress is assumed to be given by 

the Ludwieg-Tillman law, in the form i 
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. 

-0.678Hlma 

=w 

where elma= ?$(I -+-)dy 

and H lma =k T(l - +Jdy * 

9 

(13) 

The accuracy of the Ludwieg-Tillman law when used in this way is doubtful, 

but in the large pressure gradients usu?lly present over high-lift aerofoils it 

is unlikely that small changes in the shear stress ~111 have a significant effect 

on the calculations. In fact the skin-friction calculations described in 

sectlon 4 using equation (13) are in fair agreement with experiment and so the 

errors incurred in calculations of flow development should be small. 

‘ma 
At y=i- and y=ymi+L, the eddy viscosity concept has been used. 

Y 
At y=+ the kinematic eddy viscosity has been assumed to be given by 

, 

\ 
VTI 

u 6* 

u= 
ma Ima R 

RTB 
(14) 

where 
vT 

is the kinematic eddy viscosity, 6Tm,, is equal to OlmaHlma and 

RTB 
is a dimensionless constant. This expression has been obtalned from that 

used by Cebeci and Smith8 for the outer part of a turbulent boundary layer. The 

the boundary layer has been assumed to 

y the expressIon of Cebeci and Smith was 

isfactory agreement with experiment in 

t y=y 
IIll 

+L, the following expression 

where R 
TW 

is another dimensionless constant. This expression is the same as 

that suggested by Townsend9 for self-preserving wakes. The wakes considered here 

are unlikely to be of this category, but at present there is no proven 
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equivalent expression that applies to wakes that are not self-preserving. 

Gartshore4 has proposed an expression by which the variation of RTW in the 

streamwise direction may be calculated, but there is little basis at present for 

assuming it to be any more valid in the conditions considered here than 

equation (IS), which is simpler. 

Townsend's theory was between 13 

The ray&ylues of RTW given by 

an 
f2 

18 +SUK~ the wakes encountered in the 

experiments' were not self-preserving it was not surprising that values 
'0 

different from this were required to give satisfactory agreement with experiment 

in the calculations of section 4. 

At the velocity maximum and minimum the eddy viscosity concept would 

dictate that the shear stress is zero, but there is ample evidence to show that 

this is not generally tr"e109J1912. However, the shear stress at velocity maxima 

and minima is usually small compared to the peak values occurring in other parts 

of the flow, so that in most of the calculations of section 4 it has been 

assumed to be zero. Only in two cases have ~~~ and ~~~ been given non-zero 

values, which were chosen somewhat arbitrarily, so that the effect on the 

calculation could be seen. 

. 

3 COMPARISON WITH EXPERIMENT 

3.1 Choosing a method of comparison i 

The conventional way of assessxng the results of an integral method is 

to compare with experiment the calculated variations of the integral quantities 5 

that will be used in making the viscous correction to potential flow calculations, 

i.e. the momentum and displacement thicknesses. For flows without appreciable 

static pressure variation across the layer the definitions of the momentum and 

displacement thicknesses are simple. Myringl3 has examined the case where 

normal static pressure gradients are significant, and the definitions are more 

complex, depending on where the momentum or displacement thickness is to be 

placed in the flow field. However, it is by no means yet clear how the viscous 

correction is to be incorporated into the potential flow calculations around 

multi-aerofoil sections. Therefore, at present, attention will be confined to 

easily calculated integral quantities similar, but not identical to, the 

momentum and displacement thicknesses. The integral quantities that have been 

used are defined in Appendix B. 

3.2 Experimental data 

The pressure distributions and traverse data used in comparing the results 

of calculations with experiment were obtained during twodimensional wind tunnel 
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c tests on a 0.915m chord wing with a 40% chord slotted flap and plain leading edge 
-I 

at a speed of 61 ms . The experiments have been fully described in Ref.1. 

. To be consistent with the assumptions of the theory, the assumption of 

linear variation of the static pressure coefficient with normal distance from 

the surface, was also used in calculating the velocity profiles of the wake and 

boundary layer from the measured values of total pressure and static pressure in 

the viscous layer. The position of the maximum in the velocity profile was 

calculated in the reduction program by fitting a parabola to the point of 

maximum measured velocity and the two points either side. The velocity minimum 

was found in a similar way. Integration of the velocity profile to find the 

values of the integral quantities defined in equations (B-l) to (B-9) was carried 

out using linear interpolation between the experimental points. 

The starting point for the calculation was chosen to be the first traverse 

position downstream of the slot, where the data was accurate. Although traverses 

were made in the slot itself the thinness of the boundary layer on the flap and 

difficulties in ‘touching down’ the pitot probe on the shroud lower surface 

caused some uncertainties in interpreting the data. 

3.3 Results 
3 

The calculation method has been programmed in Fortran making use of the 

^ 
ICL Scientific Subroutine F4MERS to carry out the integration procedure. The 

starting values of the profile parameters were calculated from the experimental 

values of the integral quantities defined in equations (B-l) to (B-9). using 

equations (B-10) to (B-15). Since a region of irrotational flow existed between 

the wake and boundary layer at the starting point of the calculation it was also 

necessary to provide the measured value of either L or ymi. The value of 

Y mi was used because it was easier to define from the experimental results. 

Before the calculations could proceed it was necessary to decide upon a 

value of the constant Go, as defined in section 2. Calculations ware carried 

out for three different values of Go, 2.30, 2.50 and 2.77, and it was found 

that the only significant effect was on the value of 82,,,a, the momentum 

thickness of the inner wake. When F, 7 and T . were assumed to be zero 
ma ml 

the best overall agreement with the experimental variation of ehna was with 

Go equal to 2.5 and this was the value used in all the calculations described 

below. 

The results of calculations have been compared with three experimental 

cases; firstly a case where virtually no interaction occurred between the wake 
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and boundary layer, secondly where slight interaction occurred and thirdly 

where the interaction was greater. The results for the first case, assunnng 

F, T and T . to be zero, are shown in Figs.7 and 8 for values of RTW 

equaYP.3 20 anY40. The velocity profiles in Fig.8 show how the lower value of 

RTWp 
i.e. higher eddy viscosity, tends to reduce the velocity deficit in the 

wake. No interaction between the wake and boundary layer was predicted with 

either value of R 
TW' 

and so the boundary-layer development was the same for 

both. The agreement with the experimental values of elma and Hlma shown in 

Fig.7 was quite good, except very near to the trailing edge, where the high 

value of H 
Ima 

indicated that the flow was on the point of separating. Since 

the boundary layer was unaffected by the wake for this case it was of interest 

to see how the calculated development compared with that by another method for 

turbulent boundary layers. The results of using Green's method14, which is an 

extension of Head's entrainment method7, are therefore included in Fig.7 and 

there appears to be very little difference in 0 
Ima 

and H 
Ima' 

The agreement 

of the calculated values of 0 
2ma 

and 0 3e with experiment was not particularly 

good but improved near to the trailing edge. However, if the sum of eZma and 

'3e 
is considered, the difference between experiment and calculation is con- 

siderably reduced, which suggests that inaccuracy in determining the measured 

value of y 
mi 

might be partly to blame. It is worth noting that the variation 

of 
RTW 

had little effect on 82ma and 03a, in contrast with Its effect on 

H 
2ma 

and H3a. It appears possible to obtain good agreement with the experi- 

mental variation of H 
2ma 

and H3e by choosing the right value of RTW. 

St111 keeping F, T 
mi 

and T 
ma 

zero and with RTW equal to 40, the 

results for the slightly interacting case are shown in Flgs.9 and 10. The 

agreement with the measured Integral quantities was quite good, but the interac- 

tion between the wake and boundary layer was predlcted to ccnnmence at x equal 

to 0.317, whereas the measured profllesin Pig.1Olndicate that some interaction 

was present even at x equal to 0.204. This was considered to be largely due 

to the departure from a Gaussian profile in the inner half wake, owing to the 

presence of a separation bubble on the lower surface of the wing near to its 

trailing edge. This feature was not so noticeable in the previous case, where 

a slightly modified shape of wing lower surface was used. The effect was more 

evident at an angle of Incidence lower than the 8' of this case, as is shown 

by the total head profiles, particularly that at the slot, in Fig.1, for which 

the angle of incidence was zero. The effect of the bubble was to add to the 

inner edge of the wake a turbulent layer of small total head deficit, which 
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interacted with the boundary layer before the main part of the wake. This effect 
. 

can be seen in Flg.10. The point at which the boundary layer separated was 

estimated, by examination of the expenmental pressure distributions on the flap 

surface, to be at ; equal to 0.305, where the calculated value of H 
Ima 

was 

about 1.9. Since the wake had only Interacted very weakly with the boundary 

layer up to this statIon it seems likely that the boundary layer would have 

separated at this point even without the presence of the wake. 

In the third case the slot width had been reduced from 0.025~ to 0.020~ 

with otherwise the same model conflguration as for the second case. The wake and 

boundary-layer interaction was still not very severe although greater than in the 

two previous cases. The results, still keeping F, T and T . 
ma IllI 

equal to zero, 

and with R TW equal to 40, are shown (C 
P 

varying) III Figs.11 and 12, compared 

with experiment. Although the agreement with integral quantities was quite good, 

the point et which interaction cormnenced, x equal to 0.256, was again further 

downstream than the position indicated by the measured velocity profiles. The 

bubble on the wing lower surface was once more considered to be the ca"se of 

this. The calculated velocity profiles III Flg.12 show the interaction to be 

more severe than in the prenous case(Fig.10) but again, by reference to the 

velocity at the edge of the boundary layer, not quite as severe as in the expert- 
? ments. The point where the boundary layer separated, again determined from the 

measured pressure dlstrlbution, was at x equal to 0.340 where the calculated 

^ value of Hlma was 2.0 approximately. 

In Flg.13 the calculated skin friction for the above three cases is 

compared with values measured usng surface pitot tubes. The measurements, 

which have been described in Ref.1, were made using a circular pitot tube for 

the first case and a rectangular one for the remaining two. The agreement for 

the non-interacting case 1" Fig.13a 1s certainly no better than for the interac- 

ting cases in Figs.13b and 13c, giving some Justification for using the Ludwieg- 

Tillman expression in the fonr. given by equation (13). In Fig.13a the result of 

using the Green-Head methodI is also included and It can be seen to be in close 

agreement with the present method. 

In the calculations described so far the values of ~~~~ ~~~ and F have 

all been zero, and the agreement with experiment could be generally described as 

quite good. It is of interest, however, to see how non-zero values of these 

quantities affect the results, and also to see the effect of lgnorlng the 
T 

variation of static pressure normal to the surface. The latter is shown in 
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Fig.11 for the third of the above three cases. The static pressure through both 

the boundary layer and the wake "as assumed to be equal to that at the surface 

and the effect can be seen to be quite large. This implies that pressure 

variations normal to the surface should be included III the calculations. 

In Fig. 14the effects of non-zero values of ~~~ and ~~~ are shown for 

the same case. The choice of values for 'mi and 7ma has, of necessity, been 

somewhat arbitrary. However, as a guide, use has been made of the hot wire 

measurements of Englishl'which showed both 'mi and 7 
ma 

to be predominantly 

negative. Thus T mi has been puttequal to -1~~~ and ~~~ equal to -1~~~2. 

First, keeping ~~~ zero, FlgJ4 shows the negative value of ~~~ to have a 

marked effect on the integral quantities of the inner half wake where it 

substantially reduced both 82ma and H2ma. Since it caused considerable 

departure from the experimental values it appears that in the real flow the 

negative value of Tmi "as less in magnitude than -1~~~. The effects on the 

outer half wake and boundary layer were smaller. With both ~~~ and 7ma 

non-zero little further change occurred in the wake but the value of 'alma "as 

increased substantially. The effect on the velocity profile is shown in Fig.12 

to be a tendency to eliminate the velocity maximum and minimum. 

In Fig.15 the results of the calculation are shown with ~~~ and ~~~ z 

zero but with F given by equation (12). In Fig.16 the variation of the mass- 

flow below y equal to ymi in the calculation is compared with experiment and 5 

with the constant massflow resulting when F is zero. It can be seen that 

equation (12) gives a more accurate variation of the massflow than assuming F 

is zero but agreement with the experimental values of the integral quantities in 

Fig.15 is not significantly improved. 

1 . 
The data used above "as obtained during experiments in which the aim was 

to discover the particular features of the flow over an aerofoil with a slotted 

flap that lead, to optimum performance. The optimum "as quite sensitive to slot 

width, lying in the range 0.020~ to 0.025~ for the Reynolds number of the tests 

(R = 3.8 x 106), which "as also the range where the wake began to affect the 

boundary layer, as 1s shown by the velocity profiles in Figs.10 and 12. It is of 

interest, therefore, to carry out the calculation for a smaller slot size. 

However, the only slot size less than 0.020~ at whxch boundary layer traverses 

were made was at O.O05c, where the flow separated from the flap just downstream 

of the slot exit, making a useful comparison with experiment impossible. z 
Therefore, a hypothetical case has been calculated for a slot width smaller than 

5 
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0.02oc. To do this the same starting values and pressure distribution as for 

the 0.020~ case were used, except that the wake was moved nearer to the surface, 

so that interaction commenced at the starting station (x = 0.114). This 

corresponded to a slot size of approximately 0.015~. For comparison the same 

calculation was carried out with the wake moved away far enough for there to be 

no interaction at all. The values of F, T and T we all set to zero. 
ma ml 

The results for the boundary layer are shown in Fig.17 and it can be Seen that 

Hlma 
increased much faster in the interacting case, which can be interpreted as 

indicating an earlier separation of the flow from the flap upper surface. 

4 DISCUSSION 

The results in the previous section show that the calculation method gives 

quite good predictions of the integral properties of the wake and boundary layer, 

and in a non-interacting case the results for the boundary layer were very 

similar to those obtained by the Green-Head method 14 . In the two interacting 

cases for which data was available it predicted less severe interactions than 

those observed, but this was considered to be largely attributable to the effects 

of the bubble on the wing lower surface. In the hypothetical case where the 

mteractlon was strong the calculations predicted that an earlier separation of 

the boundary layer would occur because of the effect of the wake. 
! 

It is worth noting that in the experiments' the pressure distribution on 

: the flap was not very sensitive to changes in slot width, except when the latter 

became very small. Thus, the pressure data used III the hypothetical cases were 

probably only slightly different from the pressures in the equivalent real flows. 

It follows that the starting values of elma and Hlma that were used would 

have been close to those in the equivalent real flows. (Transition occurred 

very near to the flap leadlng edge for the flap deflections of 30° and thus 

would have been unaffected by the irrotatlonal disturbances from the wake 

discussed in Ref.!.) Some change in the size of the wake was to be expected, 

owing to the slightly different load being carried by the wing, in changing the 

slot width from 0.020~ to approximately 0.015~; but assuming that this change 

in size was small compared to the distance (0.005~ approximately) by which the 

wake was moved closer to the flap, this would not have had a large effect on 

the calculation of the boundary layer development. There is some justification, 

therefore, for saying that the calculation of the hypothetical strongly- 

interacting case was carried out in conditions close to those in the equivalent 
F 

real flow. Comparing now the non-interacting case in Fig.17 with the slightly- 

interacting case (F = 0) in Fig.15, the calculated development of the boundary 
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layer was vary similar in both cases, i.e. at the slot width of 0.020~ the 

calculation predicted that, even though some interaction occurred, it did not 

significantly affect the integral properties of the boundary layer. However, 

the calculations indicated that between the slot widths of 0.020~ and 0.015~ 

approximately the wake began to have a significant effect on the boundary layer 

and that the position of separation began to move upstream. This coincided 

with the beginning of the observed fall-off in performance of the wing/flap 

combination in the experiments'. 

Considering some possible improvements of the calculation method, it 

would be most useful if a valid expression for F, the massflow rate across 

the velocity minimum in the wake, could be obtained near to the trailing edge 

of the wing. Such an expression would enable calculations to start very near to 

or perhaps even at the slot exit. It is likely that in a very strongly 

interacting case the approximation that F is zero would not be a very good one, 

and so further knowledge of the variation of F in this situation would be 

useful. There is also the possibility that more sophisticated assumptions 

regarding the shear stress could be made, although this will have to await a 

more detailed understanding of the turbulence structure of wakes and boundary 

layers. 

The limitations of the method are those that apply to integral methods 
2 

generally, in that they can only be used successfully where the streamwise com- 

ponent of velocity can be represented accurately by a certain family of velocity .' 

profiles. In this case it was found that a separation bubble on the lower 

surface of the wing caused some deviation of the velocity in the wake from the 

assumed Gaussian form, and this resulted in slightly stronger interaction with 

the boundary layer than that indicated by the calculations. Also, as it stands, 

the method is not suited to the region downstream of the point where the velocity 

maumum disappears. For the flow over a flap this is unlikely to be a serious 

limitation because it has bean shown in Ref.1 that, when the flap is near to Its 

optimum position, the interaction between the wake and boundary layer is weak, 

which implies that a velocity maximum is still present at the flap trailing edge. 

If the slot width is much smaller than the optimum, the calculation will indicate 

this by predicting a strong interaction. However, If the turbulent flow over the 

wing with a slatted leading edge is to be calculated, where the wake and boundary 

layer usually interact strongly near to the optimum configuration, a differential 

method would be more suitable. This also applies to the turbulent flow over ‘ 

multiple-slotted flaps where more than one wake is present. 
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5 CONCLUSIONS 

An integral method has been developed for calculating the turbulent flow 

over a slotted flap. The effect of the static pressure variation normal to the 

flap surface is included and account is taken of the interaction between the 

wake and boundary layer. It gives some idea as to the extent of the interaction 

of the wake and boundary layer and predicts au earlier separation of the boundary 

layer when the effect of the wake is large. When the wake has no effect the 

results for the boundary layer are very close to those obtained using the Green- 

Head method14. 
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5 

Appendix A 

DERIVATION AND SOLUTION OF THE EQUATIONS 

The momentum equation of the viscous layer equations (4) is integrated in 

the direction normal to the surface between the arbitrary limits y = y, and 

Y = Y2' If the continuity equation (6) is used, this gives 

Y2 Y2 y1 Y2 
d J ” 2 

dy 
d ac 

2T - u2 z J d 
“dy + “, z J "dy + + 

J 
-&@- dy - (r 

2 -Tl) = 0 

YI 0 0 y1 . . . . (A-l) 

where U 
1 and U 2 are the values of U at yI and y2 respectively and 

r1 and ' T2 are the corresponding values of T. The assumed velocity profiles 

can be substituted into equation (A-l) to obtain the required equations. The 

model has to deal with two distinct physical situations; the case where the 

boundary layer and wake are separated by a region of irrotational flow and the 

case where the boundary layer and wake are merged. A set of equations will be 

derived for each-case. 

This distinction does not apply to the outer half of the wake, thus 

substituting the assumed profile into equation (A-l) for two intervals in the 

wake will give results having general applicability. For Y, = ymi, 

~2 = Y,i + GlLl 

d".. dL1 d" 
mlc +- 

dx I dx c2 
= 2 C3 + p5 + CSF - r 

mi (A-2) 

for Y, = ymi, y2 = Ymi + L, 

d" . dL1 d" 
-$c4+- 

dx c5 
= -$ c6 + p4 + C,4F + (r LI - Tmi) (A-3) 

' where the coefficients C. and P. are defined in Appendix C; 
Tmi' rL1 are 1 1 

the nondimensional shear stresses at y equal to ymi and y mi + L I 
respectively, and F is the rate of change of massflow in the region 

0 <Y <Ymi. Equations (A-2) and (A-3) can be rearranged to give two equations 

applicable to the merged and unmerged conditions: 

. 
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dL1 I -= 
dx (c5cI - C2C4) 

- C4C3) + P/+C, - P5C4 

+ (C c 
1 14 

- C9C4)F + rL,CI - Tmi(C, - C4) 

1 

dU . 
-!!A= 1 

dU 

C 

dL1 
dx q dx 

2 C3 + p5 + C9F - ~~~ - ;i;;- C2 1 . 
(A-4) 

(A-5) 

Now returning to the integral of the momentum equation (A-l), substitution 

of the velocity profiles for the inner wake and boundary layer of the merged 

case can be made. For y, = 'yai - GoLo), y2 = ymi 

dU dLO 
dU . 

-$c7+- 
dx % 

= mlc 
dx 10 

+ P3 + C,,F + ~~~~ - T& (A-6) 

for Y, = Y,f2. Y2 = Y,, 

dy dn 
dU 

-!!?EC 
dx II +zc12 

= mat 
dx 13 +P2+(r -7 ma ma2 

) (A-7) 

for Y, = 0. Y2 = Yma 

dy 
+d”c 

dU 
-EC 

dx 15 dx 16 E 2 '18 + '1 + CT ma - 'J (A-8) 

where T w' 'ma2' 'ma are the shear stresses at y equal to zero, y,,/2, y,,. 

The set of equations is completed by substitution of the velocity profile into 

the equation for the rate of change of massflow in the region below the velocity 

Y mi 

minimum, i.e. d 
F=x 

d 

Udy. 

dy 
AC 

dx 19 
+d"c dUrna dU . 

dx 20 
= dxc +mlc dLO 

21 dx 22+dxC23+F ' (A-9) 
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i 

The four equations ((A-6) to (A-9)) can be rearranged to give 

dy 
m-E? = (b,b6 ! b5b2) dx 

- bgb2) - P,b2 + P2b6 

+P (bb 
3 63 

- b7b2) + (b9b6 - b,Ob2)F 

+ CT mi - Tma)(b3b6 - b7b2) + (T - Tma2)b6 

- bma - TW)b2 1 (A-IO) 

dy 
- e b5 + P, + P3b7 + b,OF 

+ CT mi - T&b, + hma - 

dU 1 dU . 
ma= 

dx 
(V21 

- C7C23) 
clgc* - 2 (c22cs + c,oc23) 

+d”c 
dx 208 

C - P3C23 - (C, + C23C,7)F 

- bmi - Tma)c23 1 

(A-II) 

(A-12) 

dU 
+ C,7F + (T . - T 

ml ma) - 3 5 1 (A-13) 

where b. 
I 

are defined in Appendix C. 

These four equations taken with equations (A-4), (A-5) formed a complete 

set of equations for the unknowns U ma’ Y,,, n, umi’ LO’ Ll’ They can be 

integrated in the downstream direction by a standard computer program. The 

program used in this case was Merson’s method, which varies the step length to 

keep errors within specified limits and is available in ICL Scientific Subroutine 

F4MERS. 

For the case where the wake and boundary layer are separated by a region of 

irrotational flow, the equations derived from the substitution of the velocity 

profiles in the inner wake and boundary layers into equation (A-l) can be 

rearranged to give: 
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+ P3 + C,7F + (T . - T 
ml ma) 

d”iW 
- dx c7 1 (A-14) 

dn 1 
z = (CllC16 - Ci2C15) 

- y3y5) + P C I II - ‘2’15 

+ CT ma - Tw)c,I - (Tma - +ma2)C,5 1 (A-15) 

c13 + p2 + CT ma - Tma2 ) (~-16) 

where U. 
1W 

is the ‘inviscid’ velocity at the edge of the inner half wake 

and u iB that at the edge of the boundary layer. 

The shear stress T- has been left in the above equations, although when 

the wake and boundary layer are separate its value would be expected to be zero. 

Again the equation for the rate of change of massflow in the region below the 

velocity minimum provides the final equation. 

dL 2 
;i;; = (UiW + UiBF 

dn dLO 
dU . 

- ;r;; ‘20 + r ‘23 
+mlc 

dx 22 

dUiW 
+dx 

1 
+F . 

I 
(A-l 7) 

Equations (A-14) to (A-17) with equations (A-4), (A-5) form the complete 

set for the umerged case, where the variables are L, y 
ma’ n, U mi’ LO’ L,. 

This set is solved in the manner indicated above. 

If the calculation starts in the unmerged condition the value of L is 

examined at the end of each integration step, until it is anticipated that it 

will become negative or zero at the end of the next step. The point at which it 

becomes zero is then calculated, together with values of the other five profile 

parameters there, and the calculation procedure then recommences using the 

equations for the merged condition. 
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DEFINITION OF INTEGRAL QUANTITIES 

yma 
elma = 1 +-(I - +-)dy 

Hlma = yma/e Ima 

where U =u ma iB when the wake and boundary layer are separate. 

6” 2ma = mi];Lo 0 - t-Jdy 
Y 

e 2ma = mirLo$(l -i+)dy 
Y 

where U 
ma = uiw when the wake and boundary layer are separate. 

6* 3e = ymi;T' (, - -j-)dy 

mi 

83e x ymi+;;"' -+(I - +-)dy 

Y mi 

(B-1) 

(B-2) 

(B-3) 

(B-4) 

(B-5) 

(~-6) 

(B-7) 

(B-8) 

H 
3e 

= 6$Je3e . (B-9) 
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On substituting the assumed velocity profiles into these equations we obtain the 
> 

relationships between the parameters describing the assumed velocity profiles and 

the integral quantities as: 

H lma = 2n+l (B-IO) 

'?ma 
= Ay 

n+l ma (B-11) 

H2ma = (, -!$ -3)) 

H3e = (,-fi:(,+i)) 
u . 

A* 
3e = LIK1 ' - +F ( > 

(B-12) 

(B-13) 

(B-14) 

(B-15) z 

where K,, K 
2' K5 

and 
K6 are constants given in Appendix C. When the wake 

and boundary layer are separate Uma 1s replaced by Uiw in equations (B-12) 

and (B-13). 

. 
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COEFFICIENTS OF APPENDICES A AND B 

The coefficients are:- 

‘6 
= L 

1 
(( 

AK 
2 3 

- 2K4 - 4 (U 
e - Urni) + Ue(K3 - 1) 

5 
= - 3K5 + 2K6) + 2Umi(K5 - K6) 

‘8 
= ‘U,, - Urni) Uma(K6 - KS’ - UmlK6 

cg = ue - umi 

clO 
= Lo Uma(2K6 

( 
- Ks) - 2UmiK6 

51 = 
- lJ;,*w 

C 
12 = uliayma 

( 

(2n2 - 1)W 
(2n + 1) (n + 1) + I* 2 

( 

1 
(2n + I)(n + 1) 

-w 

>> 

cl3 = - UmaymaW 

cl4 = 
'e - 'mi 

2 

Cl5 = - tan 
(2n + l)(n + 1) 
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56 = 

"&yma(2n2 - I) 

(2n + 1)2(n + 1)2 

c, , = - ‘Urna - Urni) 

C “mayma 
= - 18 (2x-l + I)(n+ I) 

u * 

c19 
z-J!!?- 

n+ 1 

c20 = - 
"may,a * 

b + 1) 
2 

c21 = - LoGo - K5) - 

Cz2 = - LoKs 

'23 = 
- Uma(Go - Ks) - UmiK5** 

G 

I 

I 

w&-e K, = =P(- kn')dn = 1.0633 

0 

GI 

I 

for G1 = 2.77 

K2 = 
i 

exp(- 2kn2)dn = 0.7526 

0 

I 

K3 = exp(- kn2)dn = 0.8101 

1 

K4 = 
J 

exp(- 2kn2)dn = 0.6805 

0 

* In m-merged case U,, is replaced by U. 
1B' 

** In umerged case Uma is replaced by U. 
IW' 
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. 

0 

Kg = 
J 

exp(- kn2)dn = 1.0610 

-GO 
for Go = 2.50 

0 

K6 = 
I 

exp(- 2kv2)dn = 0.7526 

-GO 
I 

, - (*p+’ 

w = (2n + I)(n + I) * 

When the wake and boundary layer are separated by a region of 

irrotational flow U C and C 
ma 

is replaced in 
7’ 

C8, C,o, C 
17 23 by "iW 

and rn Cl,, C,2, C,3, C,5, C,6, C,8, Cl9 and C20 by UiB- 

The coefficients b are given by:- 

c c c 
b, = C,] - 13 19 8 

A 

c c c 
13 20 8 

b2 = ‘,2- A 

c c 
13 23 b3 =- A 

C 
b4 = - (‘22’8 

+ c,oc23) -$ 

c c c 
18 19 8 

b5 = ‘15 - A 

c8c20c18 
b6 = ‘,6- A 

c c 
18 23 bJ =- A 

C 
b8 = 

18 
- (‘22’8 + ‘,0c23) ?i- 
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bg = 
c13 - A cc* + ‘23’17) 

C 

b10 = 
- + cc* + c23c17) 

where A = CgC2, - C7C23. 

The pressure terms Pi (i = 1,s) are given by 

y2 

Pi = -+ 
I 

F dy 

Yl 

where y, and y2 take the values given in the table below. 

i 
y1 

1 0 

2 

lr 

LP 

3 Y mi - GOLO 
4 Y . ml 
5 Y mi 

y2 

Y ma 7 Y ma 

Y mi 

Y. +J-, ml 

Y . ml + GILl 
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SYMBOLS 

. 
b 

i 
i = I to 10 

‘i 
i = I to 23 

c 

=fm 

C 
P 

F 

FS 

Go’ G1 

L "lma~ "2mas "3e 

H 

k 

K. i = I to 6 
I 

L 

Lo’ L1 

n 

PC4 

P. i = 1 to 5 
1 

R 

RTB* RTW 

U m 

U 

“i 

U 
iB 

u 
iW 

see Appendix 

sac Appendix 

reference length (basic wing-section chord) 

skin-friction coefficient (2TW) 

static pressure coefficient 

ymi 
d 

zi J 
W 

0 

scaling factor,(equation (12)) 

constants determining the width of the wake 

form parameters defined in section 4.1 

total head 

constant equal to In 2 

constants given in the Appendix 

width of irrotational region between the wake and 
boundary layer 

length parameters for the wake (see Fig.2) 

exponent for the power law for the velocity in the 
boundary layer 

reference pressure 

pressure terms given in the Appendix 

u-c 
Reynolds number, -;- 

dimensionless constants given in section 2.4 

reference velocity in the free stream 

streamwise component of velocity divided by U, 

the nondimensional ‘Inviscid’ velocity equal to. /I-c 
P 

the value of U 
i 

at the outer edge of the wake 

the value of U. 
1 

at the edge of the boundary,layer 

the value of U. 
1 

at the inner edge of the wake 
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SmBOLS (concluded) 

u ma 

u mi 

V 

x 

;; 

the value of U at the velocity maximum 

the value of U at the velocity minimum 

normal component of velocity divided by Urn 

streamwise coordinate divided by c 

coordinate parallel to flap chord line divided by c 

coordinate normal to stream divided by c 

the value of y at the velocity maximum 

the value of y at the velocity minimum 

angle of incidence of wing 

STma’ &*h, ye integral thicknesses defined in section 4.1 

e Ima' e2ma' e3e integral thicknesses defined in section 4.1 

K curvature of wall 

" kinematic viscosity 

3 kinematic eddy viscosity 

T shear stress divided by pUi 

=us Tmiy Tmas Tma2’ 'IL1 values of T at Y equal to zero. ymi. yma, y,,f2 

and Ymi + GILl respectively 

Y 

Y ma 

Y mi 

0 
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Table 1 - VARIA’CION OF CURVATURE ABOVE FLAP SURFACE 

Viscous Inviscid 

= 5.79 

I 
Y L-D- Position I 

x = 0.11 
2.69 1.08 
2.61 1.11 
2.47 1.17 
2.34 1.24 
2.23 1.29 
2.15 1.35 

0.00267 
0.02008 
0.04990 
0.05811 

0.0 -1.698 
0.02 -I .609 
0.04 -1.467 
0.06 -1.341 
0.08 -1.235 
0.10 -1.148 

-1.236 2.132 1.05 
-1.157 1.421 1.57 
-1.025 2.017 1.10 
-0.989 1.986 1.12 

I 1 

2 = 4.6 2 = 1.98 

0.0 
0.02 
0.04 
0.06 
0.08 
0. IO 

-1.2017 
-1.0821 
-0.9834 I -0.9019 
-0.8337 
-0.7763 

0.00072 
0.02182 
0.04897 
0.07607 

Position 2 

x = 0.204 

c 

ac 
-k! = 1.82 
9 

2 = 0.087 

0.00163 
0.02339 
0.04808 
0.09371 

0.0 
0.02 
0.04 
0.06 
0.08 
0. IO 

-0.6051 
-0.5799 
-0.5280 l- -0.4889 
-0.4596 
-0.4372 

Position 3 

ii = 0.281 

2 = -1.8 
ac 
$ = -I.? 

Position 4 0.0 0.1825 
0.02 0.1175 
0.04 0.0775 
0.06 0.0391 
0.08 0.0066 
0. IO -0.0205 

~I 

0.00624 
0.04412 
0.07750 
0.1135 

.- 

1 
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Position 1 X 

Position 2 X = 0.204 

Position 3 X 

Table 2 

COMPARISON OF STREAMLINE CURVATURES 

Curvature necessary Curvature of streamline: 
to maintain the calculated by fitting a 
static pressure cubic polynomial along each 
variation streamline 

= 0.281 

0.00163 0.129 
0.023 0.050 
0.048 0.078 
0.094 0.034 

Position 4 X = 0.376 

0.00624 -12.8 
0.044 -1.37 LL 0.078 -1.62 
0.1135 -0.56 

K 

2.5 
2.5 
1.7 
0.6 

1.2 
0.9 
0.5 
0.12 

1 
I 
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