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SUMMARY

This Report describes how warped (i.e. cambered and twisted) mean
surfaces have been derived for a series of wind-tunnel models of low aspect
ratio wings with pointed apexes, 'mild-gothic' planforms and sharp leading edges.
The primary aim was to obtain higher ratios of lift to drag than those of the
plane wing while maintaining the same orderly development of the flow.
Subsidiary aims were to assess how far performance might be compromised by
varying the centre of pressure of the wing and by shaping it to reduce the

lateral propagation of noise from an overwing engine installation.

The mathematical basis is the linearised theory of subsonic flow. The

shapes and pressure distributions of the models are shown.

* Replaces RAE Technical Report 71173 - ARC 33723
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1 INTRODUCTION

The design of an aircraft to carry two hundred or more passengers over
short distances at high subsonic speeds has been considered in Ref.l, and a
slender, all-wing type of aircraft has been proposed. The advantages
envisaged for this type of aircraft are a compact layout, a large payload
fraction and a degree of noise shielding. One of the main aerodynamic problems
confronting the designer of such an aircraft, with i1ts wing of low aspect ratio,
is that of take~off performance, since the high thrust of the supersonic,
slender-wing transport aircraft 1s not available. This Report is concerned
with the design of warp (1.e. camber and twist) aimed at 1increasing the ratio
of 1lift to drag of a slender wing of given planform and thickness at lift

coefficients typical of take-off conditions.

Warp designed for a supersonic cruising conditien has been applied to
slender wings (see, for example, Ref.2) with a substantial measure of success,
and wings designed in this way for supersonic cruise have shown 1mproved
performance at low speeds (see, for example, Ref 3). The aim of the earlier
work2 was to seek performance benefits at supersonic speeds, including reduc-
tion of trim drag through control of centre of pressure position, while main-
taining the orderly type of flow development typical of a plane slender wing.
The same general aims apply to the present i1nvestigation, except that the
performance benefits are now required at subsonic speeds and higher lift

coefficients, and so a similar approach 15 followed.

The flow development on a plane slender wing involves the onset of
separation along the whole length of the leading edge at a very small angle of
incidence, with the formation of continuously-fed, coi1led vortex sheets above
the wing, which maintain their smooth, tightly rolled structure until they
break down at some large 1ncidence beyond the typical range of operating
conditions. These leading-edge separations dominate any other separations
which may occur. Warp of a general kind will disrupt this pattern, with the
formation at low incidences of vortex separations both above and below Lhe
wing from different parts of the leading edge. To avoid this, the type of
warp chosen must be restricted by requiring the wing to have an attachment
incidence, that 1s, an incidence at which the flow 1s attached over the whole
wing and above which vortex sheets are formed only above the wing. TFor there
to be no tendency for the flow to separate at the sharp leading edges at this

attachment incidence., the pressure difference between the upper and lower



surfaces must tend to zero there in a physically appropriate fashion. Else-
where on the wing, the pressure distribution must be compatible with the
development of attached boundary layers. Since these requirements, and that
of centre of pressure specification, are related directly to the distribution
of 1ift over the wing, it is reasonable to adopt a design method in which the

wing shape is determined from the lift distribution.

In the earlier work at supersonic speedsz, the wing shape was related
to the 1lift distribution using the linearised theory of supersonic flow. The
corresponding linearised theory for subsonic flow therefore seems appropriate
for the present investigation, though larger viscous effects are to be
expected in subsonic flow and the disturbances are larger at the larger lift
coefficients. A linearised theory has the important advantages in a design
problem of permitting the superposition of solutions and allowing the
separation of lifting and thickness effects., The theory provides an expres-—
sion for the local slope of the mean surface of the wing as a double integral
over the planform of a function related to the lift distribution. When the
position of some line comnecting root and tip (in the present case the
trailing edge) is specified, the distribution of surface slope can be
integrated to yield the shape of the mean surface of the wing. The calcula-
tion of mean surfaces from lift distributions with appropriate behaviour at
the wing edges has been programmed by Carra. Some indication is given (see
Appendix B) that adding the wing thickness normal to the mean surface is more
likely to preserve the attachment condition than adding it normal to the wing
plane, as was the earlier practice, so the final wing shape is derived by

adding, in the cross—-flow plane, the wing thickness normal to mean surface.

Lift-dependent drag is conveniently discussed in terms of a life-

dependent drag factor:

- 2
K = TFA(CD CDO)/CL

where A 1is the aspect ratio and C is the drag coefficient of the unwarped

D

0]
wing of the same planform and thickness distribution at zero incidence. Previous
work has shown that, for warped wings designed for an attachment incidence, K

is smaller at 1lift coefficients greater than that at which the flow is attached.

This is due to two effects: the non-linear growth of the 1lift with incidence,



and the alleviation of the drag at higher incidences, obtained because the
warped wings have leading edges drooped to meet the incident flow at the
attachment incidence, so that the leading edge vortices generate their suction
peaks on forward-facing surfaces. Consequently, the attachment lift coeffi-
cient (i.e. C, at the attachment incidence) should be lower than the lift
coefficient at which the best performance is required, which we may call the
operating lift coefficient, This introduces an empirical element into the

design process, since the methods available for the design of wings can only

be applied in conditions of attached flow.

The problem is then how to choose a lift distribution at the attachment
condition to produce desirable properties at the operating condition. So far,
only an appropriate behaviour at the edges has been specified. The centres of
pressure at the attachment and operating lift coefficients can be related
approximately by a knowledge of the aerodynamic centre of the plane wing, so
the condition on the centre of pressure can be transferred to one at the
attachment condition. On the basis of previous measurements, the attachment
lift coefficient should be about half the operating lift coefficient 1f the
lowest values of lift-dependent drag are to be obtained. It seems reasonable
that low drag at the operating condition will be associated with low drag at
the attachment condition, so the lift distribution at attachment should be
chosen to give a spanwise distribution of chord loading close to the elliptic
distribution which is the optimum for inviscid attached flow. To these
somewhat imprecise quantitative requirements can be added two entirely quali-
tative considerations. The pressure distribution resulting from the lifting
and thickness contributions should i1nvolve only modest adverse pressure
gradients, so that boundary layer separation is avoided at the attachment
condition and the leading-edge vortices dominate any subsequent separation
at higher incidences. Finally, the shape of the wing resulting from the
addition of the thickness to the warp surface should be free from

unnecessary waviness.

The approach described above has been followed in the design of five
exploratory warped models for flow visualization and three-component balance
measurements in the low speed 4ft x 3ft tunnel at RAE Farnborough. All have
a common 'mild gothic' planform (see Fig.l) of aspect ratio 1.4, which has
suitable performance and balance properties. The volume distribution is

biconvex in cross-section, with a centre section related to the incorporation



of a pressure cabin within the wing4 in the 9Z thick version shown in Fig.2,
Four of the warped wings have this thickness and one has a similar volume
distribution of 4% thickness intended for combination with a fuselage. The
test programme includes two unwarped wings with these volume distributions,
All the warp distributions were designed for a Mach number of zero and for
the same spanwise distribution of chord loading., Other factors influencing
the design have been kept simple where possible.

The first warped wing was designed for an attachment lift coefficient
of 0.1, which is the largest attachment lift coefficient used in previous
investigations of slender wings, but still less than half the lift coefficient
of 0.4 to 0.5 envisaged for the 'operating' condition of take—offs. Its centre
of pressure was chosen to coincide with an estimated position of the aero-
dynamic centre of the plane wing, so that it should vary little between the

attachment and operating conditions. 1Its trailing edge was a straight linme.

The other four warped wings each differ from this specification in one
particular. One has an attachment lift coefficient of 0.2, to assess more
precisely the appropriate relation between the attachment and operating lift
coefficients. Another has its centre of pressure at attachment 0.05 of its
length further forward, to indicate whether increasing longitudinal stability
introduced a performance penalty. The next is the wing of 47 centreline
thickness. The last has its trailing edge modified to a gull-wing form by
the incorporation of dihedral inboard and anhedral outboard {(see Fig.43).
The object was to discover whether a performance penalty arises from an
attempt to use the wing to reduce the lateral propagation of noise from an
overwing engine installation. A summary of the wings designed is given in

Table 1.

Some results of the tests are already availableﬁ, but no attempt will be

made to assess them here, as the programme is not complete.

2 DETAILS OF THE DESIGN PROCEDURE

These models were designed using the linearised theory of subsonic flow
past thin wings to have specified distributions of lift at the attachment
incidence. In linearised theory, the effects of warp and volume can be
considered separately. Thus a volume distribution chosen independently can be
added to a warped mean surface without affecting 1ts lifting properties. The
pressure distributions on the upper and lower surfaces, are, in this
approximation, just the sums of those produced by the warp and the volume

separately.



2.1 Choice of planform and volume distribution

All the warped models have a common planform and the same form of
volume distribution, though one of the models has approximately half the

thickness to chord ratio of the other four.

The choice of planform and volume distribution for a slender all-wing
aircraft depends mainly on layout, stability and trim considerations,
Structural aspects and aerodynamic performance interact with these, so that a
detailled study aimed at a specific application is needed to resolve them. For
the present purpose it was decided to continue with a simple planform and
volume distribution which had been chosen by Handley Page Ltd. as typical of
what might emerge from a more detailed examination. A similar planform was

used by Kiichemann and Weber1 in a discussion of layout and balance problems.

The planform, shown in Fig.l, 1s of the gothic type, but is i1ntermediate
in form between the full, parabolic gothic and the delta. In fact, 1ts area,
for given span and length, falls midway between those of the gothic and the
delta. It is called a 'mild gothic'. Using a Cartesian coordinate system
(x,v,2), nondimensionalised with respect to the root chord ¢, which has 1ts
origin at the apex, X axis along the planform centreline, y axls to
starboard and z axis vertically, see Fig.l, the equation for the starboard

leading edge 1s

5

T 5
y = s(x) = v (5x - x7) (1)
where Sp is the semispan at the trailing edge.
This has been taken as Sp = 0.40385 ,
giving an aspect ratio = 1.385 s
planform parameter p = 7/12 ,

and leading-edge sweep-back angle at the apex of 63°13".

The distribution of volume over the wing was originally defined in
relation to a broad central pressure cabin, Cross-sections of biconvex
parabolic form were drawn to contain the cabin, so defining much of the centre
section. This part of the centre section was continued smoothly forward to the
apex and aft to the trailing edge, and the remaining cross-sections were also

taken to be parabolie for simplicity. This produced the wing shown 1n Fig.2,



with a thickness to chord ratio of about 97 on the centreline and leading edge
angles which are small enough not to interfere with vortex development. The
pressure distribution, shown in Figs.3-5 involves only modest adverse pressure
gradients. The upper surface ordinate of the volume distribution is of the

form

2
z (%) = B(x) (} - L 2) (2)
5(x)

where B(x) can be represented to sufficient accuracy by the sixth order

polynomial:

3

B(x) = =x(l - x%){0.29224 - 0.68199x + 1.60782x2 ~ 1.72866x + 0.69079x4) .(3)

This distribution of volume was used for four of the warped wings. The
remaining warped wing was made thinner, with a view to eventual combination
with a fuselage. The same planform was retained and a thickness~to-chord ratio
of 4% on the centreline was chosen for consistency with an extensive series of
measurements on unwarped wings7. The same variation of thickness was used as

on the other models, the volume distribution being

2
zv(x,y) = 0.44314 B(x) (} -3 5 ) . (4)
s(x)

The pressure distribution due to the volume distribution was calculated
using the linearised theory of subsonic flow past thin wings. In this theory,
the flow due to the volume distribution is represented by a distribution of
sources over the planform, where the source strength is twice the streamwise
derivative of the upper surface ordinate. The disturbance velocity potential

of this flow 1s therefore

6 (x,y,2) = --”—ﬁz(x y,) !
¥ 2 3 171 2 2 2 22
TR [(M-X)+B(y-y)+BZ1i
S 1 1
where U 1is the free stream velocity, z, is the upper surface ordinate of
the volume distribution, S denotes the planform area, and 82 =1 - Mz,

where M 1is the Mach number of the undisturbed flow.



Using the linearised theory approximation for the pressure coefficient,

Cp’ i.e.,

o
n
I
(=1 ]

23
oX
the pressure coefficient at a point (x,y) on the wing is

dxldy1

[ (x - x1)2 + 62(y - y1)21%

13 azv
Cp(x,Y) = ;T—-g}—{ffﬁz (Xl’yl)
S

This integral can be integrated by parts with respect to X5 and the
differentiation with respect to x then leads to an expression for Cp which
is easy to evaluate numerically for sharp-edged wings, on which the slope 1is

everywhere finite:

5,

T A ) A ( )
1 S R2A 07 }
C (X,Y) = = j T T dy
P " {{ Gg = 0%+ 85 - AT ey -0t s gty -yt

-S

T

+‘U ah(xl,yl) dx, dy, (5)

7T

ax1 [ (x - xl)2 + Bz(y - yl) ]1*

S
where
6zv

Wy = 5= () (6)

and xL(yl) and xT(yl) are the values of x at the leading and trailing
edges.

The integration (5) has been programmed4 in Extended Mercury Autocode,
The volume distribution can be specified by providing numerical values of
derivatives of the volume distribution, X and 33/3x, at points of a grid
over the planform. The volume derivatives at any point on the planform are
then obtained by the program by interpolation. Alternatively, i1f the volume
distribution can be specified analytically, a small section can be written
into the program to evaluate the derivatives directly. The latter procedure
has been used as 1t takes less computing time for simple shapes and 1s more

accurate.
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The pressure distributions calculated using the program for various
spanwise and chordwise sections on the thicker symmetrical wing, with volume
distribution (2), are shown in Figs.3 and 4, and che 1sobars on the wing
are drawn 1in Fig.5. The calculated pressure distributions are not valid 1in
the 1mmediate neighbourhood of the edges of the planform, since the linearised
theory predicts an unrealistic logarithmic singularity at an edge which is
sharp but not cusped. The figures suggest that the regions affected by these
singularities are small. Fig.5 shows that the pressure distribution is
smooth, with a broad, low suction peak. The adverse pressure gradients over

the rear are moderate and fairly uniform across the span,

2.2 Choice of load distribution and the resulting mean surface

According to the linearised theory of subsonic flow over thin wings,
the local streamwise slope a(x,y) of the mean surface, which will give a
specified load distribution over the wing, 1s given by a double integral
over the wing planform of the product of a kernel function and a function
directly related to the load distribution £(x,y) 1.e. each lifting element
induces a downwash and the resulting surface slope 1s the sum of these

contributions. Thus

2%, ,y.) (x - x.)
a(x,y) = - —L-j] 171 5 1+ 5 21 7T dxldy1 (N
(y - yl) [(x - xl) + 87 (y - yl) }?

where the integral must be interpreted as a principal value integral.

The wings considered here are designed at their attachment condition,
when the load vanishes along the leading edges of the wing. For this case,’
the integral (7) can be expressed4 1in a2 form suirtable for direct numerical

evaluation as

_ 1 2 3280 . 2%n4) dx,45,

alx,y) B +

? 47U 2 Z_J 2 2 2.1
2x) oy  d [Gx)™ + 87 (y-y )7

S

Srp 9
3 ad(x,,y,) 1

L [ 8:3 L log XT(yl)-x+[(xT(yl)—X)2+82(y-y1)2]2 dy,

-5, 1 coe (8)
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where A¢(x,y) 1s the difference in the velocity potential between lower and
upper surfaces. The local load, which is the difference 1n pressure coeffi-

cient between lower and upper surfaces of the wing, 1s

ang
- )

(=] ¥ X

1x,y) = -

Some method for specifying A¢ was required in order to program the
integration (8) for o. Experience 1in designing slender wings for supersonic

flow led to this general expression for 4A¢ being adopted

N L

A 2 2 3/2 2 2%
“A - a-H a0 T s e sto | ong (10)
n=0 2=0
where
M m
a_(x) = mzl by X (11)
and
- _ 7
no= s (x) ?
so that the local load 1s given by
; NOOM ,
2(x,y) = 4 (l-ﬂz)%(l-x)2 Z Z bn mﬂZnXm—l X §T£¥l-(l—x){(3+2n)n2~2n}
n=0 m=1 ?

Rl

L L
et @D @ s 2?) T o - naen®) ] 2en
=0 =1

The program is restricted to planforms with streamwise tips and unswept
traitling edges. The leading edge 1s represented by a polynomial or series of

polynomirals

s(x) = ) Ck,JX for X = x ggxk . (12)
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The use of the combination n = y/s{(x) 1in (10) makes 1t possible to
specify an appropriate behaviour at the leading edges. Although a similarly
defined chordwise variable, such as £ = (x - xL(y))/(xT(y) - xL(y)), would
also permit the specification of the leading edge behaviour, it would lead
naturally to a consideration of streamwise sections, rather than of spanwise
sections, which are more significant on a slender wing. The required
behaviour, that the load vanishes at the leading edge like the square root of
the distance from it, is enforced by the first factor in (10). The form (10Q)
was chosen before the singular behaviour of the loading at the apex of the
plane wing had been calculateds. The form given is appropriate for wings of
vanishing aspect ratio and no difficulty has been found in calculating smooth
distributions of surface slope from i1t. The restriction to terms 1n n

produces lateral symmetry and avoids the difficulties which arise when

differentiating functions of |n . The second factor on the right of (10)
contains two terms. The first of these 1s included to provide the appropriate
behaviour of the load very near the trailing edge, which is that the load
tends to zero like the square root of the distance from the edge. This term
also controls the variation of the load along the length of the wing. However
1ts contribution to the chord loading (proportional to A4 at x = 1) is zero,
and the chord loading is determined entirely by the second term in the second

factor on the right of (10).

We discuss the spanwise distribution of chord loading in terms of

*r
E]-E' [ E(X,n) dx

1

D(n)

L
2 2,3/2 28
=2a-5"s, | np (13)
£=0
where € 1is the geometric mean chord, which is 7/12 for the mild gothic
planform. The lift coefficient 1s given by
1
¢, = .[ D(n)dn
-1
L h
_ 3y Jop b1, 0 (14)
c LR L+1 4 )

=1 2 {(2+2)!
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The dependence of the lift-dependent drag on D{(n) and hence on the

coefficients hg in equation (10} s discussed in Appendix A,

The other features of interest in the loading involwve all the coefficients

bn n 10 particular, the distance of the centre of pressure from the apex,
]
xcp, 1s given by
.ﬂ[(x - xcp)Q(x,y)dxdy = 0
5
so that

1 - 1
C. c M N
(;%(1‘ch)- j‘[S(x)]zdx) L. z [S(X)(l—x)Blzxm z (2n-1)...1 b

3TrST m=1 . n=1 2n+1(n+2)! n,m
0 O
b
+ %;m dx . (15)

The design of the warp distributions for the present models starts with
a choice of chord loading. As discussed in section 1, this should correspond
to a low vortex drag at the attachment condition. In addition, we wish to avoid
the waviness of surface and load distributions often associated with optimum
solutions (e.g. Smith and Manglerg). Accordingly we choose the chord loading

. . . . 2
previously used in the design of slender wings for supersonic speeds :

by = 2 -5 sn @+ oen® + 160" (16)

illustrated i1n Fig.6. According to slender wing theory, this corresponds to a
smooth load distribution and yields a surface which 1s almost flat inboard, with
leading edge droop outboard of a 'shoulder'. Its lift-dependent drag factor is

calculated in Appendix A to be only 107 above the overall minimum. The lift

coefficient follows from (14):

0.9TrsTh0

Wt oTE an

so that ho,

when the attachment 1lift coefficient is specified.

and hence the second part of the expression for A¢, are fixed

To illustrate the procedure used to specify the remainder of A¢, the

design of the warp surface for the first of the warped wings (see section 3.1)



14

15 described below., Superposition of solutions 1s used to generate suitable

warp surfaces from simple basic distributions.

The simplest choice for the coefficients 1in the first part of (10) is
to make them proportional to those 1in the second part, i.e. 1f hp 15 the
first non—zero coefficient 1in the second part, we write

h

an(x) = EE ap(x) for pSn<N-=1L

P

I
=
H
o
R
=

i

f

e~
|
H

and an(x)

A simple distribution of A¢ with this similarity condition and M = 1,

N = 2 was considered, so that

b
SL o - 0H 2 - 0% 2l v s 11+ 0.60% + 1.6n*1 . (18)
2U 0 g
The ratio bo 1/ho is fixed by xcp’ and 1s given from equations (15) and
Hl
(17)-
b 1 1
0.1 [s(x)(l -0 %ax = 2 -x ) - [[s(x)]z dx . (19)
hO T cp '
0 0

The loading specified by the form (18) of A¢ for a CL of 0.1 and xcp of
0.53306 (chosen for reasons given in section 3,1) was called loading (a), and
chordwise distributions of this are shown i1n Fi1g.7. Sections in the cross
flow plane of the mean surface produced by loading (a) are shown in Fig.8 with
the vertical scale multiplied by five for clarity. Although the chordwise
sections of the mean surface are smooth, the cross—-sections were regarded as

being unnecessarily wavy near the centreline, espectally towards the apex.

This effect was caused by the spanwise variation of the downwash, and a
different variation of A¢ across the span was sought at lengthwise stations
other than the trailing edge, where the spanwise distribution of A¢ had

been fixed by wvortex drag considerations.

2
From earlier work 1t 1s known that 1f a spanwise distribution of A¢

of the form

6 = (1 - n2)3/2 {a + bn2 + cna)
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is considered using slender wing theory, a ratio of a:b:ic = 1:0.6:1.6 will
produce a camber surface with almost flat central part and a shoulder near
n = 0.75, while a ratio of a:b:c = 1:0.6:0 produces one with a shoulder near
n = 0.5, A distribution of A4 which varied from the latter spanwise distri-

bution at the apex to the former at the trailing edge was therefore considered.

The A¢ distribution can be written from equation (10), using a single

polynomial of the form (12) for the leading edge, as

N M J L
- A9 7377 (1 - x)3/2 ) b xmn2n + c,x) ) hznl .(20)
(1 -~ 1) n=0 m=1 °’ =t 1 =0
The condition at the trailing edge becomes
hO:hl:h2 = 1:0.6:1.6
and that at the apex
b0,1 + hoczlzbl,1 + hlcl:bz,l + hzc1 = 1:0.6:0
Thus
h1 = O.6h0 h2 = 1 6h0
(21)
bl,l = 0.6b0,1 b2,1 = —1.6h0c1

and the remaining bn m coefficients have been made zero. The form of A¢
3

corresponding to this loading, denoted by loading (b), is then

b
- %% = (1 - n2)3/2h0 [}1 - x)3/2x*{~%il-(1 + 0.6n2) - 1.6c1n4}
0
2 4
+ s{x)(1 + 0.6n° + 1.6n )| . (22)
The ratio b0 1/hO can be found by substituting equations (21) and (17) into
]
equation (15), and depends on Xep® The coefficient e, = 1.25s, 1s 0.50481

for the planform chosen, given by equation (1).

Chordwise distributions of loading (b) for a CL of 0.1 and xcp of

0.33306 are shown in Fig.9, and cross-sections of the mean surface calculated

using this loading are shown in F1g.10, with the vertical scale multiplied by
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five for clarity. These are much smoother than those for loading (a),
especially near the apex. Moreover, the peak loadings near the leading edge

are smaller.

To obtain still smoother cross-sectiens, it is obviously advisable to
proceed further 1in the same direction, so a loading (c) of twice loading (b)
minus loading (a) was considered. The A¢ distribution specifying loading

{(c) 1s then

b b
_he o 2.3/2 _.~33/2 0,1 2, 1.6 0,1} 4
70 = (1-n7) h0 (1-x)7""x o (1+0.6n"7) 13 2.4c1 + 1.1 = N
0 0
2 4
+ s(x)(1+0.6n" + 1.6n )| (23)
where the dependence of the ratio bO 1/h0 on ch 15, from equations (15),

(17) and (23),

X 1.3 h0

0 0

1
b
s%(l - xcp) - [ [s(x)]2 dx = 1 (l.l 0,1 _ 0.2(1) [ s(x)(1 - x)3/2 xdx .(24)

The chordwise distributions of loading {¢) for a CL of 0.1 and xc of
0.53306 are shown i1n Fig.l1l, They show the expected reduction in peak loadings,
The very small negative loads which arise near the trailing edge are not

thought to be significant and no steps were taken to remove them in this

design. However, negative loads were avoided in the design of the warp

surface for the model with the forward centre of pressure position, described

1n section 3.2. The lengthwise distribution of the cross locading

s

DF(x) = < [z(x,y)dy

-3

is shown 1n Fig.12. The cross and chordwise sections of the corresponding
mean surface are shown in Fi1gs.13 and 14, with the vertical scale multiplied
by five for clarity. These are satisfactorily smooth. Fig.15 shows 'contours’
of A¢ (1.e. curves along which A¢ 1s constant, drawn for equal intervals
of A¢). These curves are everywhere in the direction of the bound vorticity
vector and are commonly referred to as bound vortices. They provide a discrete
approximation to the vorticity distribution 'bound' 1n the wing, 1.e. the
vorticity distribution which would generate the same flow field as the wing.
The smoothness and even spacing of the bound vortices in Fig.l5 are a further

indication of the suitability of the design.
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2.3 Addition of the volume distribution to the mean surface

It has been customary to define the surface of the warped thick wing such
that the z-ordinate of the surface is the sum of the z-ordinates of the mean
surface and the volume distribution at each point of the planform. This means,
in effect, that the wing thickness z, is added to the mean surface in a
constant direction normal to the plane of the planform, It is shown in
Appendix B that to preserve the attachment condition of the warp surface it
would be more appropriate to add z, at each point in the direction normal

to the mean surface at this point.

In the design of the present models, the volume distribution has been
added to the mean surface in a number of cross-sectional (1.e. y, z) planes, in
a direction normal to the cross-section of the mean surface but in the
(y, z) plane. This has been done by fitting a fifth order polynomial through
those points P, defining the mean surface outboard of the flat central
section and from this calculating the normal to the section of the mean
surface by the (y, z) plane at each of the points Pi. The volume ordinate
can then be added in the normal direction at each point Pi’ so that the
upper and lower surfaces of the model in that cross-sectional plane are
specified by a distribution of points. This technique produces surface
ordinates at points in the same cross-sectional plane as the warp and volume
were speclfied, but at uneven spanwise intervals. This was adequate for model
manufacture using cross-sectional templates. A more elaborate numerical
technique would be needed if surface ordinates at specified spanwise locations

were required.

3 DETAILS OF MODELS

3.1 Basic models with CL of 0.1 and CL of 0.2 - wings 1 and 2

For the first warped model, the choice of design parameters was
deliberately conservative. An attachment 1li1ft coefficient of 0.1 was selected,
corresponding to the highest value used in previous work on slender wings at
RAE, because the operating lift coefficient envisaged is substantially larger
than before, as explained in section 1. In order to concentrate on lift-
dependent drag, no attempt was made to affect the stability of the wing through
the warp distribution, 1.e. the centre of pressure at the attachment condition

was chosen to lie at the aerodynamic centre of the unwarped wing.
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Neither measurements nor adequate calculations of the behaviour of the
. . . . 10 . .
unwarped wing were available, so an empilrical estimate”  of its aerodynamic

>

centre was used, based on an extensive series of measurements 1 on wings of
similar aspect ratios, planform shapes and thicknesses. One advantage of
planforms intermediate between the delta and the parabolic gothic 1s that their
aerodynamic centres can be almost independent of 1lift coefficient over a range
of CL between 0,1 and 0.6 (Ref.7, Fig.25d). The estimated position of the
aerodynamic centre was 0.12 of the root chord ahead of the centre of area at

CL = 0.5 and the estimate of centre of pressure varied little from this for

CL between O and 1. The centre of pressure was chosen to be at this point,

i.e. X = 0.53306.
cp

The warp surface for this model was designed as described in section 2.2,
and 1ts properties are displayed in Figs.1l to 15, The volume distribution
given by equation {2) was added to the warp surface as described in section 2.3.
Cross-sections of the resulting wing are shown in Fig.l6 and a side view of
the wing at its attachment incidence 1s shown in Fig.17. The attachment
incidence (of the line joining the apex to the mid-point of the trailing edge)
1s 5.32°. The centre section, shown 1n Fig.17, has noticeable negative
camber, in spite of the attempt to reproduce the longitudinal stability of the
unwarped wing. The change of cross—sectional shape of the warp surface, with
a shoulder that is further inboard near the apex, produces an effect of this
kind.

The pressure distribution, obtained by adding the lifting and thickness
contributions, 1s shown 1n Figs.18 and 19 1in the chordwise and spanwise direc-
tions. The 1sobar pattern on the upper surface 1s shown in Fig.20. At this
attachment condition, the disturbances to the flow are small, the pressure
distributions are smooth and the adverse gradients are modest. It therefore
seems likely that the main properties of the wing can be described by an
inviseid, small-disturbance theory. Doubt about the applicability of the
present linear theory may be confined to the use of the thin-wing approxima-

tion near the apex, as suggested by the example treated 1n Appendix B,

For the second warped model the attachment 1ift coefficient was 1increased
to 0.2, which is around half the operating 1ift coefficient. Again no attempt
was made to 1nfluence the stability of the wing. The warp design of the first
wing was used with a factor of 2 on the ordinates. The resulting sections are

shown in Fig.21, with a side view in Fi1g.22, the attachment incidence being
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10.54°. The pressure distribution is shown in the same form as before in
Figs.23, 24 and 25, Although the adverse pressure gradients have steepened,

particularly outboard, they are still not severe.

3.2 Model with forward centre of pressure - wing 3

A model with its centre of pressure further forward than in the basic
models was designed to investigate the effect of an increase of stability on
the performance. The model was designed for a CL of 0.1 and a centre of
pressure of 57 of the root chord further forward (i.e. xcp = (0.48306) at the

attachment incidence, with a volume distribution given by equations (2) and

(3).

It was found that a loading of type (c} produced significant negative
load at the rear of the wing. However, by including higher-order terms in x
in the first half of the expression (10) for A4, i.e. M > 1, the dominant
term in the load near the trailing edge can be made positive instead of
negative. Thus the local load 2(x,y) and the cross-loading D#*(x) can be
made non-negative for all x. Proceeding only gs far as quadratic terms in
x, 1i.e. M =2, led to load distributions with high loads in the apex region,
but the use of cubic terms (M = 3) as well allowed the load at the apex QA
to be reduced to a more reasonable value. This could be specified by the choice

of b0,1 since

Ly = 4(b0’1 + ClhO) . (25)

Accordingly, load distributions with M = 3 were considered which gave non-

negative loadings, a specified local load at the apex, a C/ of 0.1, xCp of

0.48306, the form of chord loading given in equation (14), and which had, for

simplicity,
b = kb
n,m mn,l
where k2 and k3 were constants. Loadings (d) and (e) were two such load
distributions. Loading (d), like loading (a), had
By
bn,'[ﬂ = H“(‘)" bo’m [

and loading (e) had similarity properties like loading (b):

bl,l = 0.6b0,1 1:)2,1 = -1.6h0c1

A loading (f) comprising
1.5 x loading (e) - 0.5 x loading (d)
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gave reasonably smooth spanwise mean—surface sections and was adopted for

this forward— x model .
cp

The details of this wing are given in Figs.26-35. Comparison with the
first warped model, which has the same CL but a further aft centre of
pressure, is relevant, so the numbers of the corresponding figures for that
wing are given in brackets. Fig.26 (11) shows the chordwise distributions of
loading. The increase in peak values 15 marked, 1in spite of the limitation
placed on £,. The reduction in loading is found near the centre section over
the rear of the wing, the load on the tips being maintained in order to keep
the lift-dependent drag at the same level. Fig.27 (12) shows the cross loading
and suggests that the forward shift has been accomplished smoothly. The
bound vortices are shown in Fig.28 (15). The cross—-sections shown in
Fi1g.29 (13), with the vertical scale multiplied by five, are rather less
smooth than before, and more highly cambered near the apex. The chordwise
sections in Fig.30 (14) show increased negative camber, as would be expected,
and an 1ncreased attachment i1ncidence of 7.62°. The sections of the model,
Figs.31 (16} and 32 (17), show the same features. The pressure distributions,
Fi1g.33 (18) and Fig.34 (19), show the concentration of the loading towards the

apex and tips. The upper surface isobars are shown in Fi1g.35 (20).

3.3 The thin model - wing 4

The volume distribution of this model 1s of the same form as that of
the other wings, but the thickness 1s 47 instead of about 9%. It is described

by equation (4) and 1llustrated in F1g.36.

In principle, the reduction in thickness reduces the beneficial effect
which the favourable pressure gradient due to volume over the forward part of
each chord (see Fig.3) exerts on the steepest part of the adverse gradients
due to lift (see Fig.ll). In the present case no attempt was made to compen—

sate for this and the warp surface of the basic design for C. = 0.1,

L
ch = 0.53306 was used with the smaller volume.

The resulting wing 1s illustrated in Figs.37 and 38. The pressure distri-
butions are shown in Fi1gs.39-41. These closely resemble in shape those for the
basic wing with an attachment C, of 0.2, since both the lifting and volume

L
contributions have been approximately halved (cf. Figs,23-25).
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3.4 The gull-wing model - wing 5

Considerable attention is now being paid to alleviating the noise caused
by aircraft, and proposals for noise reduction include the mounting of
high-bypass-ratio engines above the wings to shield their noise from the
ground. This model is an example of the wing of an aircraft adapted to exploit

these ideas.

To cbtain maximum shielding of both fan and jet noise, the engines must
be close to the centre of the wing. In addition, high-bypass-ratio engines
have large diameter and must probably be mounted well clear of the wing surface.
Thus for a typical airbus configuration with a rootchord of 40 metres, and
semispan at the trailing edge of 16 metres, the high-bypass-ratio engines may
be mounted close to the centre section at 607 of the root chord at a height
such that the noise source of the engines 1s about 3 metres above the upper
surface of the wing. At spanwise sections near the engines, around 60 or 70%
of the root chord, the noise sources will thus be about 3 metres above the
upper surface of a cross-section of about 10 metres semispan. In crder to
provide adequate sideways noise-shielding at these sections, noise propagated
laterally from the engines at more than about 15° below the horizontal should
be cut off. Morecever, recent workl2 suggets that the wing surface outboard
of the cut-off point should have curved droop to minimise the diffracted noise
field within the shadow of the aircraft. To fulfil these conditions, the wing
upper surface outboard of the centreline must curve first upwards and then
droop downwards, as sketched in Fig.42., In other words, in the region of the

engines, the wing must have dihedral inboard and anhedral outboard.

Such a gull-wing model has been designed to discover whether incorporat-
ing these features, desirable for noise reduction, involves performance
penalties. Slender gull-wings have previously been designedl3 by slender
thin-wing theory and experimental investigations14 have shown that the
behaviour of slender wings 1n cross winds can be considerably improved by

anhedral over the rear part of the wing.

The model was designed to have the same volume distribution, l1fE,
centre of pressure position and leoad distribution at the same attachment
incidence as the CL = 0.1 model, and thus its mean surface has the same stream
wise glopes. However, it differs from the CL = 0.1 model in that its trailing
edge, from which the mean surface slopes are integrated, is warped and not

straight, A trailing edge warp was chosen that gives the required shielding
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1n the neighbourhcod of the engines, and produces little effect on the warp of
the forward sections. It has about 20O dihedral inboard and 400 anhedral
outboard with a smooth transition between dihedral and anhedral so that the

rear sections of the model are curved smoothly.

The trairling edge warp chosen 1s given by: a blending section near the

centreline

LA =wy2 for O"‘<'- ]yi "‘<‘-0.25 :
5 T
T

an 1nboard section with dihedral

z = 0.36397 y - 0.03640s,, for 0.2s, < |y] €§0.6ST;

a blending section outboard

-2,00512 2
g = ——y

S

+ 2.77011 y-0.75824s for 0.6s_ < |y| <0.9s_;
" T T T

and an outboard section with anhedral

z = ~0.8391 y + 0.86591s,, for 0.9s, < |y ésT.
The trailing-edge warp and cross-sections of the model are shown in
F1g.43. The centre section and streamwise variation of the leading edge are
1llustrated in Fig.44a and the side view of the model in Fig.44b. The
pressure distribution on the model 1s the same as for the CL 0.1 model and 1s

1llustrated in Figs.l8, 19 and 20.

4 CONCLUSIONS

It has been demonstrated that smoothly warped wings embodying various
desirable features can be designed for subsonic flight using mean surfaces
which, according to linear lifting-surface theory, sustain specified distri-
butions of aerodynamic loading. The examples calculated all have an attachment
condition at non-zero lift and are intended to have low vortex drag at and
above this condition. They cover variations in the attachment lift coefficient,
1n the centre of pressure at the attachment condition, 1in thickness and in the
warp of the trailing edge. They form a series of wings on which a number of
wind tunnel tests are to be carried out to investigate the performance and

stability benefits introduced by warp of this form.
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Appendix A
THE CALCULATION OF VORTEX DRAG

The vortex drag, Dv’ of a lifting surface 1s givenls by

1 1
D 8¢, (n) Ay (n')
1 d T d T
ek [ R () e e
1

where n = y/sT and A¢T is the jump in velocity potential at the trailing

edge. We represent this by
——= = § " sinns (A-2)
n

where

cos B = n ., (A-3)

This expression satisfies the condition that A¢T is zero for n = %1, 1.e.
when 6 =0 or w. For the symmetrical case which interests us, the summa-

tion 1s over odd values of n only. We have then

b (y) N
d (T—) = -5 1 o_cosmo . (A-4)

dn U sin 6
n=1

Substituting in equation (4-1), we obtain

T
sz = - é% f [ (Zum cos mB)(Eun cos n8') log |cos 8 - cos 6'| deda’
e 00
M N A
=" E;-mzl nzl a o [ [.cos md cos nd' log |cos 6 - cos B'| d8de’ .
00

Consider the integral

mm I

[ [ cos mf cos né' log |cos & - cos 8'| dode* = ]. cos nd' fm(e') de’

00 o
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where

m

£(6") = fcos m8 log |cos 6 ~ cos 8'| do

0

u T
[%1ﬂmm6 log Icos 8 - cos 6'| _.[ sin md - sin 6 de

m (cos 8 -~ cos 61)

T
i cos (m - 1)9 - cos (m + 1)8
= - do
2m cos § - cos 6
0]
S0, by 332,2lc of Ref.16,
iy - 1w . - Vo s ty o ~—T cos mf'
fm(e ) 5m Sim v (sin (m - 1)8 sin (m + 1)8') —
Thus
Tom -

ff cos m8 cos né' log |cos 6 - cos 8'] dede' = - %[cos no' cos mh' de'

00 0
0 for m2=#n2
S for m = n, as m and n are = 1

Therefore, we obtain

Dv . bi ai
- — . (A-5)
£DU2 4 ool O

The 1ift, L, of the surface is given by

S
T
o

T

8¢

_L_ 2 —Tdy = 2s £ == sin nd sin © do
2 U T n

boU

-ST 0

= 780y . {A-6)
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The lift-dependent drag factor K 1is

(Cy = Cy )
D D,

“L

P (_.I_)_Y_ L_)z
2 2
T \sou fpU

Substituting from equations (A-5) and (A-6), we obtain

N 1{°n
C b)) o

from which it is clear that XK 21, with K =1 when a = 0 for m=>2,

In the present work, the form of A¢T/U has been taken as

Ag,

G %x (a polynomial of order M in nz)

This can easily be rewritten as

M
—_— = sin3 8 (b0 + b1 sin2 6 + b2 sin4 0 +uuu.. + b,, sin 8) . (A-8)

By comparison with equation (A-2) we obtain

Ml o M

) 2L sin (2p + 1) = J b sinzm+3 8 (4-9)
2p + 1 m

=0 m=0

whence, multiplying by sin (2p + 1)8, 1integrating from 0 to w, and using
equations 332.6b and 332.8c of Ref.l6,

M

opHl T _ Z o DP fame 3 )n
2p +1 2 m 22m+3 m+1-p
m=max{0,p-1)

or
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M

p bm 2m + 3
= (- 1 Sp <
m+1-p
memax(0,p-1) ... (A-10)
For an example consider a distribution of A¢T given by
bd
— = K- 1532+ 0.6n” + 160" (A~11)
where K0 is a constant and M = 2, Then
A
_ﬁz = Kb sin3 g (3.2 - 3.8 sin2 8+ 1.6 sin4 )
so b0 = 3.21(.0 b1 = --3.81(.0 b2 = 1.6K0
whence, by eguation (A-10)
o, = 0.9K0 ay = -0.4125K0 og = —0.31251(0 0y = -0.1751(D

Substituting in the expression for the lift-dependent drag factor, which 1is,

from equation (A-7),

M+1 o

1 2p+l

K = 7§ ( ) (A-12)
p=0 (Zp + 1) ay

we obtain K = 1,0995.

This can be compared with the minimum lift-dependent drag factor of unity.
Another meaningful comparison is with the minimum value which can be obtained
using an expression of the form given in (A-8). For this A¢T/sin 8 tends

to zero as O tends to zero, and so

M+]1
g = z o
p=0 2p+l

For K to be a minimum subject to this condition we require

3

Ba2p+1

(K=-x) =0 ; o = 0 for M+1=2p>0

or
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o
2 2p+l _ _ _
HFD A 0 3 o = 0
@
1
Therefore
Aai
2+l © T2 (2p + 1) forp=1, ...., M+ 1
and
Aal M+l
a, {1 +—= ) 2p+1] = 0
i 2
p=1
Therefore
-2 *2p+1 - (2p + 1)
o= and P = P
s G D+ ) 3 @+ DM+ D
Hence the minimum value of K, K , 1s
mn
- 1 Mi'l 1 p+1 Y
min pal (2p+ 1)\ M+ 1M+ 3)
therefore
K = 1+ L
min M+ 1M+ 3

Thus for a A distribution with three terms i1n the polynomial in
n2 (i.e. M = 2), the minimum value of K attainable is 1.0667. The wvalue
obtained from the distribution in equation (4-11) is 1.0995, which is close

to the minimum.

27
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ABEendlx B

THE ATTACHMENT INCIDENCE OF A THICK WARPED WING

In the linear theory of subsonic (or supersonic) flow, the effects of
thickness and warp are separable. A thick warped wing 1s represented by a
distribution of sources (volume—producing elements) and lift-producing elements
over a mean plane, on which the boundary conditions satisfied on the surface
are applied 1n a linearised form. It 1s customary to construct a thick wing
by adding thickness equally above and below a warp (or mean) surface in a
direction normal to the mean plane, and to construct the warp surface of a
thick wing by taking the average of upper and lower surface ordinates
measured from the mean plane. This is geometrically simple and retains the
relation between source strength and velume which 1s useful 1n supersonic

linear theory.

However, 1t is not obvious that another relationship between the thick
warped wing and 1ts 'warp surface' might not be more appropriate, for
instance, to make the attachment incidences of the thick wing and the warp
surface correspond more closely. Indeed, 1t seems Lntulrtively that adding
thickness normal to the warp surface 1s less likely to change the attachment
1ncidence than adding it in some direction unrelated to 1ts local shape. A
systematic investigation of this 1dea has not been attempted for the present
purpose, though 1t could be undertaken by a surface singularity method like
that of Hummel17 for slender body theory or A. Roberts, of BAC, Weybridge,
for i1ncompressible flow. Instead, some evidence 1s presented from earlier

work using slender body theory.

Before presenting this evidence, a little further examination of the
i1dea 1s necessary. Lf we are designing a wing, then the warp surface 1s
likely to be the starting point, the direction of 1ts normal 1s known and
the thickness can readily be added in the normal direction. On the other hand,
1f we are considering the direct problem of the properties of a given thick,
warped wing, the comstruction of a warp surface which lies midway between the
upper and lower surfaces, measured normal to the warp surface, presents con-
siderable difficulty. Instead, 1t seems natural to start from the given
upper and lower surfaces and proceed along the normals to them, to define a
warp surface which 1s midway between them, measured normal to the upper and

lower surfaces themselves. Obviously, these definitions of warp surfaces are
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distinct from one another, as well as from the usual definition used in linear
theory. We shall show now that the two new definitions of the warp surface
agree to second order in the wing slope, but differ from the linear theory

definition by a term of second order.

Consider a wing whose upper and lower surfaces, in a given cross—flow
plane x = constant, are given by =z = zu(y) and z = zz(y) (see Fig.45). We
define three warp surfaces zl(y), 1 =1,2,3 with associated thickness

6i(y). The first is the classical definition of linear theory:

il

zl(y)

1z (y) + z, (M) }
(B-1)

§.(y) = %(zu(y) -z, (y))

For the other two definitions we need to introduce an angle (y) between
the tangent to the curve z = z(y) and the y axis, with subscripts u, £,
1, 2 and 3 to ¢ and z. Then 1f we start from the warp surface z = zz(y)
and add thickness 62(y) normal to the warp surface (the design problem)

we find

2,() *+ 6,(y) cos 4, (y) = z (y - 5,(y) sin ¥, (¥)) } (5-2)

zz(y) - 8,(y) cos voly) = zg(y + 52(y) sin ¢, (y))

The third case is a little more complicated. Normals of length 63(y) are
drawn to the upper and lower surfaces to meet at a point (y’ZB(y)) on the
warp surface. If the values of wu and wl at the points from which these

normals are drawn are wu and wg’ we have

z5(y) + 85(y) cos 4 (y) = z (y - 6,(y) sin u‘»u(yn} 53
z4(y) = 8,(y) cos Eg(y) = z (y + 8,(y) sim 5E(y))
and
Uy = b (y - 8.(y) sin iy (y)
_u u 3 _u } (B-4)
¢Q(y) = ¢2(y + 53(Y) sin wR(Y)).

Now assume, as usual, that the warp and thickness are small, so that
is small compared with upity, and expand equations (B-2) and (B-3), keeping
terms of second order in ¢, wusing Taylor's theorem for the right hand

sides and noting that z' 1s of the order of ¥:
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2
z, + 6, = §8 .y, = z =~ z'6_p
2 " %2 2'2 u Zut2%2 } (B-5)
- = [
z, 62 + 562w2 z, + 2262¢2
23 + 63 - 56355 = z = z&63a
- £ooact (B~6)
- - 1
2y = 85 + 1850y 2y * 2,850,

The arguments of all the functions are now y and have been suppressed for
compactness. Now the terms involving ¥ in (B-6) are of second order, so a

first order approximation to J is adequate. From (B-4) this 1s clearly
wu(y) = ¥, (y) and v (y) = ¥, ()

provided ' 1is of the same order as ¢, as 1s the case for smooth wings.
With the bar removed from (B-6), the terms in (B-5) and (B—6) involving
are all of second order, so again a first order approximation to ¥ is

adequate. This is

u(y) = z'(y)

for all suffixes. Equations (B-5) and (B-6) now become

2
- 1 = - Pt
z, + 62 56222 =z, 622u22 } (5-7)
- 12 _ "
2y T Sy * A8yz)7 = oz, + fyzpzg
2 2
- ' - - '
24 63 iﬁszu z 63zu
2 2 (8-8)
23 = 8y ¥ 48,27 =z + 8yzy

Taking the sums and differences of the pairs of equations (B-7) and (B-8) and

eliminating z, and 2z, by (B-1), we have

z, = z; = 626izé 1

23 T 7 7 83812 | (5-9)
8 = 91 7 SyZp(zg  4zy)

6, = &) - 563(z{2 + 5i2) .
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The second terms on the right hand side of (B-9) are all of second order, so

again first order approximations may be made in them, giving

= = s [ I | -
z, 23 zg 6161z1 (B-10)
2
= _ ' -
52 61 56121 (B~11)
6, = 8 - gelziz - galaiz = 6, - 5615i2 . (B-12)

Therefore, the three definitions of warp and thickness agree to the first
order. To second order, the two modified definitions of the warp agree, but
differ from the classical definition by a term which vanishes for an unwarped
wing or for a wing of uniform thickness. All three definitions of thickness
differ in the second order, the first pair agreeing for an unwarped wing and
the second pair for a wing of uniform thickness.

Having established that the warp surfaces obtained by the design approach
(22) and the direct approach (z3) agree to second order, equation (B-10), we
proceed to our example, which is based on the direct approach.

Consider a slender, thick warped wing in the form of one half of a cir-
cular cone. Its cross-section is a semi-circle. Consequently the warp surface
obtained by the classical method of bisecting the ordinates normal to a mean
plane (say the plane surface of the wing) 1s a conical surface whose cross-
section is an ellipse with minor (vertical) axis onme half of its major (hori-
zontal) axis. On the other hand, we find that the cross-section of the warp
surface obtained by constructing equal normals from the upper and lower surfaces
of a cross-section of the wing is a parabola whose focus is on the plane
surface and whose directrix touches the curved surface. Fig.46 shows a para-
bolic arc L'ML, with focus F, directrix C'DC and latus rectum L'FL. Then if

P is a general point on the parabola and PN is normal to C'DC, we have
PN
FL

[

PF by definition of the parabola. In particular, with P at L we see

FD; and so a semi-circle L'DL with centre at F can be constructed. If
FP produced meets this semi-circle at Q and NP produced meets L'L at R, we
see that
PQ = FQ-PF = RN ~PN = PR .

Thus P is equidistant from L'FL and L'DL, each distance being measured normal
to the appropriate surface.

The attachment incidences of thin conical wings whose sections are ellip-
tic and parabolic arcs have been found, on the basis of slender body theory, by

18

Ward . He used an electrical resistance network developed by Redshawl9 con-—

»

taining 144 x 136 square mesh intervals, with electric potential corresponding
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to fluid stream function, to simulate Laplace's equation in the cross—flow
plane. He was able to recover the analytical results for circular arc

. 20 .
sections and found, for the cases of present interest

K

(a) _ J0.72 for parabolic-arc section
att 1.02 for elliptic—arc section

where o 1s the incidence of the plane of the leading edges, K is the tangent
of half the apex angle in the plane of the leading edges and each wing has a
vertical extent one half of its lateral extent.

The original thick cambered wing in the form of the half-cone has proper-
ties that have been found analytically by PortnoyZl, using slender body theory.
He treats a more general problem of a wing-body combination, from which the
half cone emerges when (in his notation) e = 1, £ = 1//3, and S§' = 7TKa, where
a 1is the radius of the circular section., Substituting these values into his

equation (20) for the complex potential W in a transformed complex plane w,

we have
2 ) } 2 _ 2
W o= - = {%.- 22 ‘—} + Ka log 37a° (2w + Ju 1) (B-14)
3/3 (3u™ + 1) (3w2 + 1)5 (w + wz -1)

where we have changed the sign of the incidence, o, to correspond to a wing

wirth its plane face down. Hence

g% = - 32;"“" 5 + 3Ka L - — } (B-15)
V3(3uw” + 1) n + fu2 -1y (W + D)

is the conjugate of the complex velocity in the transformed plane. The trans-

formation between the physical cross—flow plane and the w-plane is singular at
the point w = 1 corresponding to the leading edge, so the condition for o to

be equal to the attachment incidence is that dW/dw =0 for w=1, i.e.

2 =%@=o.65.
att

The attachment incidence of the thick wing (B-16) is therefore closer to
that of the parabolic thin wing than that of the elliptiec thin wing (B-13), i.e.
the approach adopted in the present work is superior to the usual one in this
example. The example is admittedly extreme and the discrepancy between the
attachment incidences is large even on the present definition of the warp
surface, but it is qualitatively typical of the forward part of thick warped

wings like those shown in Figs.2l and 31.



Table 1

SUMMARY OF THE WINGS DESIGNED

At attachment condition

Thickness to

Trailing edge

Wing number chord ratio shape
CL Centre of pressure 4 P

1 0.1 | aerodynamic centre 9 plane
{B of Ref.6) '

2 0.2 | aerodynamic centre 9 plane
{C of Ref.6)

aerodynamic centre

3 0.1 -5% root chord ? plane

4 0.1 aerodynamic centre 4 plane

5 0.1 aerodynamic centre 9 gull-wing

33
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SYMBOL S
A aspect ratio
an(x) coefficients in expression for A¢, see equations (10) and (11)
B(x) root chord thickness distribution
bn,m coefficients in expression for A¢, see equation (11)
CD drag coefficient
o 1lift coefficient
Cp pressure coefficient
c root chord, taken as unit of length
c nondimensional geometric mean chord

sy ; coefficients in the polynomial for the leading edge, see equation (12)
L]

D(n) spanwise distribution of chord-loading
D*® (x) lengthwise distribution of cross—loading
Dv vortex drag
hg coefficients in the expression for A4, see equation (10)
J,Jk orders of leading-edge polynomials, see equation (12)
K lift-dependent drag factor
L overall 1lift
also, see equation (10)
) local load = ACp
QA local load at apex
M Mach number,
also, see equation (11)
N see equation (10)
D planform parameter,= (plan area)/(span x length)
S planform area
s(x) nondimengsional local semispan
87 nondimensional semispan at trailing edge
U free stream velocity
X,V,2 nondimensional Cartesian coordinates
xcp centre of pressure position
X0 Ky values of x at leading and trailing edges
z, volume-distribution ordinate
alx,y) streamwise slope of mean surface
o coefficients in expression (A-2)

8 =1 -



[ng

o »> < 4
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SYMBOLS (concluded)

difference operator across wing, lower-upper

= y/s(x)

= cos-l n, see equation (A-3)

= azvlax, local streamwise slope of volume distribution
disturbance velocity potential

jump in velocity potential at trailing edge
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Planform parameter = 73
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Fig.! Mild gothic planform
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Fig. 6 Spanwise distribution of chord loading
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Fig 12 Lengthwise distribution of cross loading for loading (c)
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FigiS Bound vortices due to loading (c)
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Fig. 28 Bound vortices due to loading (f)
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Fig.45 Different relations between warp surface and
wing surfaces



Fig.46 Construction of a parabola as the warp surface

of a semicircle
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