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THE DESIGN OF A SERIES OF WARFED SLENDER WINGS FOR SUBSONIC SPEEDS 

by 

Patricia J. Davies 

This Raport describes how warped (i.e. cambered and twisted) maan 
surfaces have been derived for a series of wind-tunnel mdels of low aspect 
ratio wings with pointed apexas, 'mild-goth~c'planforms and sharp leading edges. 
The primary aim was to obtain higher ratios of lift to drag than those of the 
plane wing while maintaining the same orderly development of the flow. 

Subsidiary aims were to assess how far performance might be compromised by 
varying the centre of pressure of the wing and by shaping it to reduce the 

lateral propagation of noise from an overwing engine installation. 

The mathematical basis is the lmearised theory of subsonIc flow. The 

shapes and pressma distributions of the models are shown. 

* Replaces ME Technical Report 71173 - ARC 33723 
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1 INTRODUCTION 

The design of an arcraft to carry two hundred or nore passengers over 

short distances at high subsonIc speeds has been considered III Ref.1, and a 

slender, all-wng type of aIrcraft has been proposed. The advantages 

envisaged for th1.s type of arcraft are a compact layout, a large payload 

fraction and a degree of nose shleldlng. One of the nxa~n aerodynamx problens 

confronting the designer of such an aircraft, with ILS wng of low aspect ratio, 

is that of take-off performance, since the high thrust of the supersonic, 

slenderwing transport arcraft 1s not available. This Report is concerned 

with the design of warp (1.e. caml~er and twist) aImed at IncreasIng the ratlo 

of lift to drag of a slender wng of given planform and thickness at lift 

coefflcuznts typIca of take-off condltlons. 

Warp desIgned for a supersonic crulslng condltlon has bee,, applied to 

slender wings (see, for example, Ref.2) vnth a substantw,l measure of success, 

and rings desIgned ITI thu way for supersonic cnnse have shown improved 

performance at low speeds (see, for example, Ref 3). The a~rn of the earlier 

work* was to seek performance benefits at supersonic speeds, l,,cludu,g reduc- 

tlon of trltn drag through control of centre of pressure posItIon, whole Mann- 

taning the orderly type of flow development typIca of a plane slender ring. 

The same general alms apply to the present investigation, except that the 

performance benefits are now required at subsonIc speeds and higher lift 

coefficients., and so a sunilar approach 1s followed. 

The flow development on a plane slender wing involves the onset of 

separation along the whole length of the leadIng edge at a very small angle of 

ncidence, with the formation of continuously-fed, coIled vortex sheets above 

the ring, which mantan their smooth, tightly rolled structure untjl they 

break down at some large ncldence beyond the typIca range of operating 

conditions. These leading-edge separations dominate any other separations 

which may occur. Wasp of a general knd ~111 disrupt this pattern, with the 

formatIon at low lncidencesof vortex separations both above and below Lhe 

wing from dlfferent parts of the leadIng edge. To avo~rl this, the type of 

warp chosen must be xestrlcted by requrLng the Wang to have an attachment 

lncldence, that IS, an incidence at which the flow 1s attached over the whole 

x.nng and above which vortex sheets are formed only above the wing. For there 

to be no tendency for the flow to separate at the sharp leadng edges at this 

attachment incidence, the pressure dIfferewe between the upper and lower 



surfaces must tend to zero there in a physically appropriate fashion. Else- 
where on the wing, the pressure distribution must be compatible with the 
development of attached boundary layers. Since these requirements, and that 
of centre of pressure specification, are related directly to the distribution 
of lift over the wing, it is reasonable to adopt a design method in which the 

wing shape is determined from the lift distribution. 

In the earlier work at supersonic speeds*, the wing shape was related 

to the lift distribution using the linearised theory of supersonic flow. The 
corresponding linearised theory for subsonic flow therefore seems appropriate 
for the present investigation, though larger viscous effects are to be 
expected in subsonic flow and the disturbances are larger at the larger lift 
coefficients. A linearised theory has the important advantages in a design 
problem of permitting the superposition of solutions and allowing the 
separation of lifting and thickness effects. The theory provides an expres- 

sion for the local slope of the mean surface of the wing as a double integral 
over the planform of a function related to the lift distribution. When the 
position of some line connecting root and tip (in the present case the 

trailing edge) is specified, the distribution of surface slope can be 
integrated to yield the shape of the mean surface of the wing. The calcula- 
tion of mean surfaces from lift distributions with appropriate behavrour at 
the wing edges has been programmed by Carr4. Some indicatron is given (see 
Appendix B) that adding the wing thickness normal to the mean surface is more 
likely to preserve the attachment condition than adding it normal to the wing 
plane, as was the earlier practice, so the final wing shape is derived by 

adding, in the cross-flow plane, the wing thickness norm1 to mean surface. 

Lift-dependent drag is conveniently discussed in terms of a lift- 
dependent drag factor: 

K = ITA$, - CD 
0 

where A is the aspect ratio and C 
Do 

is the drag coefficient of the unwarped 

wing of the same planform and thickness distribution at zero incidence. Previous 
work has shown that, for warped wings designed for an attachrwnt incidence, K 
is smaller at lift coefficients greater than that at which the flow is attached. 

This is due to two effects: the non-linear growth of the lift with incidence, 
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and the alleviation of the drag at higher incidences, obtained because the 

warped wings have leading edges drooped to meet the incident flow at the 

attachment incidence, so that the leading edge vortices generate their suction 

peaks on forward-facing surfaces. Consequently, the attachment lift coeffl- 

cient (i.e. CI, at the attachment incidence) should be lower than the lift 

coefficient at which the best performance is required, which we may call the 

operating lift coefficient. Thx Introduces an empirical elenzent into the 

design process, since the methods available for the design of wuxgs can only 

be applied in conditions of attached flow. 

The problem is then how to choose a lift distribution at the attachment 

condition to produce desirable properties at the operating condition. so far, 

only an appropriate behaviour at the edges has been specified. The centres of 

pressure at the attachment and operating lift coefficients can be related 

approximately by a knowledge of the aerodynamic centre of the plane wing, so 

the condition on the centre of pressure can be transferred to one at the 

attachment condition. On the basis of previous measurements, the attachment 

lift coefficient should be about half the operating lift coefficient If the 

lowest values of lift-dependent drag are to be obtaIned. It seems reasonable 

that low drag at the operating condition ~111 be associated with low drag at 

the attachment condition, so the lift distribution at attachment should be 

chosen to glva a spanwlsa distribution of chord loading close to the elliptic 

distribution which is the optimum for invIscid attached flow. To these 

somewhat imprecise quantitative requirements can be added two entirely quail- 

tative considerations. The pressure distribution resulting from the lifting 

and thickness contributions should involve only rudest adverse pressure 

gradients, so that boundary layer separation is avoided at the attachment 

condition and the leading-edge vortices dominate any subsequent separation 

at higher incidences. Finally, the shape of the wng resulting from the 

addition of the thickness to the warp surface should be free from 

unnecessary waviness. 

The approach described above has been followed UI the design of five 

exploratory warped models for flow visualisation and three-component balance 

measurements in the low speed 4ft x 3ft tunnel at RAE Farnborough. All have 

a comrwn 'nnld gothx' planform (see Fig.1) of aspect ratio 1.4, which has 

suitable performance and balance properties. The volume distribution is 

biconvex in cross-section, with a centre sectIon related to the uxorporation 
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of a pressure cabin within the wing4 in the 9% thick version shorn in Fig.2. 
Four of the warped wings have this thickness and one has a similar volume 

distribution of 4% thickness intended for combination with a fuselage. The 
test program includes two unwarped wings with these volume distributions. 
All the warp distributions were designed for a Mach number of aero and for 
the same spanwise distribution of chord loading. Other factors influencing 
the design have been kept simple where possible. 

The first warped wing was designed for an attachrent lift coefficient 
of 0.1, which is the largest attachment lift coefficient used in previous 
investigations of slender wings, but still less than half the lift coefficient 

of 0.4 to 0.5 envisaged for the 'operating' condition of take-off5. Its centre 
of pressure was chosen to coincide with an estimated position of the aero- 

dynamic centre of the plane wing, so that it should vary little between the 
attachment and operating conditions. Its trailing edge was a straight line. 

The other four warped wings each differ from this specification in one 
particular. One has an attachment lift coefficient of 0.2, to assess more 
precisely the appropriate relation between the attachrent and operating lift 
coefficients. Another has its centre of pressure at attachment 0.05 of its 
length further forward, to indicate whether increasing longitudinal stability 
introduced a performance penalty. The next is the wing of 4% centreline 
thickness. The last has its trailing edge modified to a gull-wing form by 
the incorporation of dihedral inboard and anhedral outboard (see Fig.43). 
The object was to discover whether a performance penalty arises from an 
attempt to use the wing to reduce the lateral propagation of noise from an 
overwing engine installation. A sunnrary of the wings designed is given in 
Table 1. 

Some results of the tests are already available6, but no attempt will be 
made to assess them here, as the programme is not complete. 

2 DETAILS OF TRR DESIGN PROCEDLIRR 

These nodels were designed using the linearised theory of subsonic flow 
past thin wings to have specified distributions of lift at the attachment 

incidence. In linearised theory, the effects of warp and volme can be 
considered separately. Thus a volume distribution chosen independently can be 
added to a warped mean surface without affecting its lifting properties. The 
pressure distributions on the upper and lower surfaces, are, in this 
approximation, just the sums of those produced by the warp and the voluma 
separately. 
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2.1 Choice of planform and volume distribution 

All the warped nndels have a common planform and the sane form of 

volume distribution, though one of the models has approximately half the 

thickness to chord ratio of the other four. 

The choice of planform and volune distnbutxn for a slender all-wng 

aircraft depends mainly on layout, stablllty and trim considerations. 

Structural aspects and aerodynatic performance interact with these, so that a 

detaIled study aimed at a specific application is needed to resolve them. For 

the present purpose it was decided to continue with a simple planform and 

volume distribution which had been chosen by Handley Page Ltd. as typical of 

what might emerge from a more detaIled examination. A similar planform was 

used by Kiichemann and Weber' in a dIscussion of layout and balance problems. 

The planform, shown III Flg.1, 1s of the gothic type, but is Intermediate 

in form between the full, parabolic gothic and the delta. In fact, Its area, 

for given span and length, falls midway between those of the gothic and the 

delta. It is called a 'mild gothic'. IJslng a Cartesian coordnate system 

C%Y,Z), nondunensxnallsed with respect to the root chord c, which has Its 

origin at the apex, x ans along the planform centrelIne, y axis to 

starboard and z axis vertically, see Fig.1, the equatun for the starboard 

leading edge IS 

y = s(x) = 2 (5x - x5) 

where sT is the semispan at the tralllng edge. 

This has been taken as sT = 0.40385 , 

giving a* aspect ratio A=l.385 , 

planform parameter P = 7112 , 

and leading-edge sweep-back angle at the apex of 63'13'. 

The distribution of volume over the wing was originally defined III 

relation to a broad central pressure cabIn. Cross-sections of biconvex 

parabolic form were drawn to contan the cabIn, so defining much of the centre 

section. This part of the centre section was continued snwothly forward to the 

apex and aft to the trailing edge, and the renalrung cross-sectIons were also 

taken to be parabolic for simplicity. This produced the wng shown ln Flg.2, 



with a thickness to chord ratio of about 9% on the centreline and leading edge 

angles which ara small enough not tc~ interfere with vortex development. The 

pressure distribution, shown in Figs.3-5 involves only modest adverse pressure 

gradients. The upper surface ordinate of the volume distribution is of the 

form 

where B(x) can be represented to sufficient accuracy by the sixth order 

polynomial: 

B (~1 = x(1 - x)(0.29224 - 0.68199x + 1.60782x2 - 1.72866x3 + 0.69079x4) .(3) 

This distribution of volume was used for four of the warped wings. The 

remaining warped wing was made thinner, with a view to eventual combination 

with a fuselage. The same planform was retaIned and a thickness-to-chord ratio 

of 4% on the centreline was chosen for consistency with an extensive series of 

measurements on unwarped wings7. The same variation of thickness was used as 

on the other models, the volume distribution being 

Z”kY) = 0.44314 B(x) (l - -&) . 

The pressure distribution due to the volume distribution was calculated 

using the linearised theory of subsonic flow past thin wings. In this theory, 

the flow due to the volume distrlbutlon is represented by a distribution of 

sources over the planform, where the source strength is twice the streamw*se 

derivative of the upper surface ordinate. The disturbance velocity potential 

of this flow is therefore 

where U is the free stream velocity, z 
v 

is the upper surface ordinate of 

the volume distribution, S denotes the planform area, and B2 = 1 - I.l2, 

where M is the Mach number of the undisturbed flow. 
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Using the linearised theory approxmation for the pressure coefficient, 

C i.e., 
P’ 

C 2 a@ E --- 
P u ax 

the pressure coefficient at a point C&Y) on the wng is 

This integral can be integrated by parts with respect to xl, and the 

differentiation with respect to x then leads to an expressmn for C which 
P 

is easy to evaluate numerically for sharp-edged wmgs, on which the slope 1s 

everywhere finite: 

and I and xT(y1) are the values of x at the leadmg and trailing 

edges. 

The integration (5) has been programmed4 in Extended Mercury Autocode. 

The volume distribution can be specified by provldlng numerical values of 

derlvatxves of the volume dlstrlbution, A and ahfax, at points of a grxd 

over the planform. The volume derivatives at any point on the planform are 

then obtaned by the program by lnterpolatwn. Alternatively, If the volume 

distribution can be speclfled analytically, a small sect=on can be wrItten 

into the program to evaluate the derlvatlves directly. The latter procedure 

has been used as lt takes less computing time for sunple shapes and IS more 

accurate. 



10 

The press"re dlstrlbutlons calculated using the program for various 

spamnse and chordwIse sectIons on the thicker symmetrical Wang, with volume 

distribution (Z), are shown III Flgs.3 and 4, and the Isobars on the wing 

are drawn III F1g.5. The calculated pressui-e dlstrlbutzons are not valid in 

the muned~ate neighbourhood of the edges of the planform, since the lmearised 

theory predicts an "nreal~st~c logarlthmlc slngularlty at an edge which is 

sharp but not cusped. The figures s"ggest that the regions affected by these 

smgulanties are small. Fig.5 shows that the press"re dlstrlbution is 

smooth, with a broad, low suction peak. The adverse pressure gradients over 

the rear are moderate and fairly umfom across the span. 

2.2 Chovx of load dxtrlbutlon and the resulting mean surface 

According to the linearised theory of subsomc flow over thin wmgs, 

the local streamw~se slope a(x,y) of the mean surface, which 1.~111 give a 

speclfled load dlstrlbutlon ovei- the wing, 1s given by a double Integral 

over the wmg planform of the product of a kernel function and a function 

dn-ectly related to the load dlstnbution E(x,y), l.e, each llftlng element 

Induces a downwash and the resultmg surface slope 1s the s"m of these 

contmbutions. Thus 

where the Integral must be interpreted as a pc~nc~pal value Integral. 

The wmgs consIdered here are desIgned at their attachment condltlon, 

when the load vamshes along the leadmg edges of the mng. For this case,' 

the Integral (7) can be expressed4 1" a form suItable for direct mmer~cal 

evaluation as 

sT 
1 -- 

4llLl ./ 

a2A$$.,Yl) 
zc+ [(~(~~)-~)*+6~(y-y~)~]~ dyl 1 -S 

T . . . (8) 
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where A$(x,y) 1s the difference I" the velocity potential between lower and 

"pper surfaces. The local load, which is the difference 1" pressure coeffl- 

aent between lower and "pper surfaces of the wing, 1s 

Some method for specifying A$ was requred I" order to program the 

integratlo" (8) for a. Experience III designing slender wings for supersonIc 

flow led to this general expresslo" for A$ being adopted 

where 

and 

so that the local load 1s give" by 

The program is restrIcted to planforms with streamwIse tips and unswept 

tral~ng edges. The leading edge 1s represented by a polynonnal or series of 

pOl~Oll”.dS 
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The use of the combination n = y/s(x) in (10) makes lt possible to 

specify an appropriate behaviour at the leading edges. Although a smnlarly 

defined chordwise variable, such as E = b - ~~Y~~/~~~Y~ - y(y)), wdcd 

also permit the specification of the leadIng edge behavmur, it would lead 

naturally to a consideration of streamwise sections, rather than of spanwise 

sections, whxh are mre significant cm a slender wing. The required 

behaviour, that the load vamshes at the leadIng edge like the square root of 

the distance from it, is enforced by the first factor in (10). The form (10) 

was chosen before the singular behaviour of the loadmg at the apex of the 

plane wmg had been calculated8. The form given is appropriate for wings of 

vamsh~ng aspect ratio and no difficulty has been found in calculating smooth 

distributions of surface slope from It. The restriction to terms in n2 

produces lateral symmtry and avoids the difficulties which arise when 

differentiating functions of ini. The second factor on the right of (10) 

coataim two terms. The first of these IS mcluded to provide the appropriate 

behaviour of the load very near the trailing edge, which is that the load 

tends to zero like the square mot of the distance from the edge. This term 

also controls the variation of the load along the length of the wmg. HOWl?VlX 

Its contribution to the chord loading (proportional to A$ at x = 1) is zero, 

and the chord loading is determined entuzely by the second term in the second 

factor on the right of (10). 

We dmcuss the spanwise d~stnbutmn of chord loadmg m terms of 

= g (1 - n2)3'2 ST i hEn2' 
.t=o 

where Z is the geometric r&m chord, which is 7/12 for the mild gothic 

planform. The lift coefficient 1s given by 

1 

CL = 
1 

Nn)dn 

-1 

3mT 
cv (Zfi-l)(Z.K-3)...1 + 5 

c 2E+1(g+z)! 1 4. 

(131 

(14) 
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The dependence of the lift-dependent drag on D(n) and hence on the 

coefficients h1 in equation (10) 1s discussed VJ Appendix A. 

The other features of interest in the loading involve all the coefflclents 

b 
n,m* 

In particular, the distance of the centre of pressure from the apex, 

x 
CP' 

IS given by 

11 
b - xcp )k(x,y)dxdy = 0 

S 
so that 

The design of the warp distrlbutlons for the present models starts wth 

a choice of chord loading. As discussed in sectIon 1, this should correspond 

to a low vortex drag at the attachment condltlon. In addltux,, we w1s.h to avoId 

the waviness of surface and load distributions often associated with optimum 

solutions (e.g. Smith and Mangler'). Accordingly we choose the chord loading 

previously used in the design of slender wings for supersonic speeds2: 

sThOU + 0.6n' + l.6n4) (16) 

illustrated ln Fig.6. According to slender wing theory, this corresponds to a 

smooth load distribution and yields a surface which 1s almast flat inboard, with 

leading edge droop outboard of a 'shoulder'. Its lift-dependent drag factor is 

calculated in Appendix A to be only 10% above the overall unnxmum. The lift 

coefficient follows from (14): 

CL = 
0.9nsTho 

E (17) 

so that hO9 and hence the second part of the expresslo" for A$, are fIxed 

when the attachment lift coefficient is specifuzd. 

To illustrate the procedure used to specify the remainder of A+, the 

design of the warp surface for the first of the warped wings (see section 3.1) 
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1s described below. SuperposItIon of solutions 1s used to generate suitable 

warp surfaces from sample basic distributions. 

The sunplest choice for the coefficients III the first part of (10) is 

to make them proportxnal to those III the second part, i.e. If h IS the 
P 

first non-zero coefficient III the second part, w write 

and a*(x) = 0 for nGp-1 

A su~~ple dlstrlbutlon of A@ with this s~m~lanty condltxn and M = 1, 

N = 2 was consIdered, so that 

A!$ = (1 - ,,z)3'z ho 
b 

(1 - x)~'*x F + s(x) [l + 0.6n2 + l.6n41 . 1 08) 
0 

The ratlo b 0 l'ho is fixed by x 
CP' 

and 1s given from equatwns (15) and 

(17). ' 

k 
1 

hO 
s(x)(l - x)3'2xdx = s;(l - xcp) - /,s(x),* dx . (19) 

0 0 

The loadng specified by the form (18) of A$ for a CL of 0.1 and x of 
CP 

0.53306 (chosen for reasons given III sectIon 3.1) was called loading (a), and 

chordwse distributions of this are shown 1x1 F1g.7. Sectwns 1x1 the cross 

flow plane of the mean surface produced by loading (a) are shown III Fig.8 with 

the vertical scale multiplied by five for clarity. Although the chordwIse 

sectIons of the mean surface are smooth, the cross-sectIons were regarded as 

being unnecessarily wavy near the centrelIne, especially towards the apex. 

Thu effect was caused by the spanw~se var~,~t~on of the downwash, and a 

different variation of A$ across the span was sought at lengthvase statIons 

other than the trallng edge, where the spanwse <dlstrlbutlon of A$ had 

been fIxed by vortex drag conslderatlons. 

From earlier work' It 1s known that If a spaw~se distribution of A$ 

of the form 
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is consIdered using slender wzng theory, a ratm of a:b:c = 1:0.6:1.6 will 
produce a camber surface with aluost flat central part and a shoulder near 

I- = 0.75, while a ratio of a:b:c = 1:0.6:0 produces me with a shoulder near 
q = 0.5. A distribution of A+ which varied from the latter spanw~se distrl- 
bution at the apex to the former at the traling edge was therefore consIdered. 

The A+ distribution can be written from equation (lo), using a single 
polynotial of the form (12) for the leadmg edge, as 

W 
2U(l - n2j312 

z (1 - x)3/2 ! F bn,mxmq2n + jil cjxJ i h$ .(20) 
n=o Ill=1 P,=o 

The condition at the trailing edge becows 

and that at the apex 

hO:hl:h2 = 1:0.6:1.6 

Thus 

bO,l + hocl:bl,l + hlcl:b2,1 + h2cl = 1:0.6:0 . 

hl = 0.6ho hz = 1.6hC 

(21) 

bl,l = 0.6b0 ~ b2,1 = -l.6hocl 

and the remaining bn ~ coefficients have been made zero. The form of A$ 
corresponding to thls'loading, denoted by loading (b) , is then 

A4 -- = 
2u (1 - n2)3'2ho kl - ~4~ (1 + 0.6n2) - l.6cln4 

+ .s(x)(l + 0.61~~ + l.6n4) . 1 cm 

The ratio b cl,l'hO can be found by substituting equations (21) and (17) uxto 
equation (15), and depends on x . The coefficient cl = 1.25~~ 
for the planfOrm chosen, given byequation (1). 

LS 0.50481 

ChordwIse distributions of loading (b) for a CL of 0.1 and x of 
CP 

0.53306 are shown in Fig.9, and cross-sectIons of the uean surface calculated 
using thu loading are shown in Flg.10, with the vertical scale multiplIed by 
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five for clarity. These are much smoother than those for loading (a), 

especially "ear the apex. MOJXOV~~, the peak loadlngs "ear the leadIng edge 

are smaller. 

To obtain still smoother cross-sections, Lt is obviously advisable to 

proceed further 1" the same dIrectIon, so a 1oadLng (c) of twice loading (b) 

n""us loading (a) was consIdered. The A$ dlstrlbution speclfylng loading 

(c) 1s then 

A@ = (l-,,z)3'2h0 
b 

-zi 
+ (l+0.6nz) . . 

0 
2.4~~ + 1.1 

+ s(x)(I+o.~~I* + 1.6~~) 1 (231 

where the dependence of the ratlo bO l/hO 0" x 
CP 

IS, from eq"at1ons (15), 

(17) and (23), 1 1 

[s(x)]' dx = 
b 

1.1 + - s(x)(l - x)3/2 xdx .(24) 
0 

O.ZCl 

H 
0 

The chordwIse distributions of loading (c) for a CL of 0.1 and x of 
CP 

0.53306 are show" 1" F1g.11. They show the expected reductran in peak loadings. 

The very small negative loads which arose "ear the tralllng edge are not 

thought to be slgniflcant and no steps were taken to remove them in this 

design. However, negative loads were avoIded I" the design of the warp 

surface for the mdel with the forward centre of press"re posItlo", described 

1" sectlo" 3.2. The lengthwIse dlstrlbutlon of the cross loading 

s 

D*(x) = $ 
/ 

E~,Y)~Y 
-S 

is show" 1" Fig.12. The cross and chordwIse sectIons of the corresponding 

mea" surface are show" 1" Flgs.13 and 14, w1t.h the vertical scale multlplwd 

by five for clarity. These are satlsfactorlly smooth. Fig.15 shows 'contours' 

of A$ (1.e. cur"es along which A$ 1s constant, drawn for equal Intervals 

of A$). These curves are everywhere III the directlo" of the bound vorticity 

vector and are coumwnly referred to as bound vortices. They provide a discrete 

approxxutlo" to the vortlclty dlstrlbutlon 'bound' 1" the vxng, 1.e. the 

vortlclty dlstrlbution which would ge"erate the same flow field as the wing. 

The snmothness and eve" spaxlng of the bound vortices 1" Flg.15 are a further 

lndlcatlon of the sutability of the design. 
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2.3 Addition of the volume distribution to the mean surface 

It has been customary to define the surface of the warped thick wing such 

that the z-ordinate of the surface is the sum of the z-ordinates of the wan 

surface and the volume distribution at each point of the planform. This means, 

in effect, that the wing thickness z is added to the mean surface in a v 
constant direction norm1 to the plane of the planform. It is shown in 

Appendix B that to preserve the attachment condition of the warp surface it 

would be more appropriate to add zv at each point in the direction normal 

to the mean surface at this point. 

In the design of the present models, the volume distribution has been 

added to the mean surface in a number of cross-sectional (I.e. y, a) planes, in 

a direction normal to the cross-section of the mean surface but in the 

(Y, d plane. This has been done by fitting a fifth order polynomial through 

those points Pi defining the mean surface outboard of the flat central 

section and from this calculating the normal to the section of the maan 

surface by the (y, z) plane at each of the points Pi. The volume ordinate 

can then be added ln the normal direction at each point Pi, so that the 

upper and lower surfaces of the model =n that cross-sectional plane are 

specified by a distribution of points. This technique produces surface 

ordinates at points in the same cross-sectional plane as the warp and volume 

were specified, but at uneven spanwse Intervals. This was adequate for model 

uwwfacture using cross-sectional templates. A more elaborate numerical 

technique would be needed if surface ordinates at specified spanwise locations 

were required. 

3 DETAILS OF mDELS 

3.1 Basic rmdels with CL of 0.1 and CL of 0.2 - wings 1 and 2 

For the first warped model, the choice of design parameters was 

deliberately conservative. An attachment lift coefficient of 0.1 was selected, 

corresponding to the highest value used in prevwus work on slender wings at 

BAE, because the operating lift coefficient envisaged is substantially larger 

than before, as explained in section 1. In order to concentrate on lift- 

dependent drag, no attempt was n!ade to affect the stability of the wing through 

the warp distribution, I.e. the centre of pressure at the attachment condition 

was chosen to lie at the aerodynamic centre of the unwarped wing. 
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Neither measurements nor adequate calculations of the behavwxr of the 

unwarped wng were available, so an empirical estimate 10 
of its aerodynamic 

centre was used, based on an extensive series of measurements 7,ll on mngs of 

slnnlar aspectratlos,planform shapes and thicknesses. One advantage of 

planforms Intermediate between the delta and the parabolic gothx 1s that their 

aerodynannc centres can be almst independent of lift coefficient over a range 

of c L between 0.1 and 0.6 (Ref.7, Fig.25d). The estimated position of the 

aerodynaunc centre was 0.12 of the root chord ahead of the centre of area at 

cL = 0.5 and the estimate of centre of prassure varied little from this for 

cL between 0 and 1. The cantre of prt?ss"re was chosen to be at this point, 

i.e. x = 0.53306. 
CP 

The warp surface for this model was desIgned as described in sectIon 2.2, 

and Its properties are dIsplayed in Flgs.11 to 15. The volume dlstrlbution 

given by equation (2) was added to the warp surface as described in section 2.3. 

Cross-sectIons of the resulting wing are shown =n Fig.16 and a side view of 

the wing at its attachment lncldence 1s shown in Flg.17. The attachment 

incidence (of the ~HW joining the apex to the mid-point of the trailing edge) 

1s 5.32'. The centre section, shown =n Fig.17, has notIceable negative 

camber, 1" sp1te of the attempt to reproduce the longltudlnal stability of the 

unwarped wx~g. The change of cross-sectIona shape of the warp surface, with 

a shoulder that 1s further inboard near the apex, produces an effect of this 

kind. 

The pressure dlstributlon, obtained by addIng the llftlng and thickness 

contrlbutlons, 1s shown 1" Flgs.18 and 19 ln the chordwIse and spanw~se direc- 

t1ons. The isobar pattern on the upper surface 1s shown ln Flg.20. At this 

attachment condltlon, the disturbances to the flow are small, the pressure 

dlstrlbutlons ara smooth and the adverse gradlents are modest. It therefore 

saems likely that the main propertIes of the wing can be described by an 

invlscld, small-disturbance theory. Doubt about the applicability of the 

present linear theory may be confIned to the use of the thin-wing approxima- 

tlon near the apex, as suggested by the example treated ln Appendix B. 

For the second warped mdel the attachment lift coefficient was Increased 

to 0.2, which is around half the operating lift coefficient. AgaIn no attempt 

was made to Influence the stability of the wing. The warp design of the fxst 

mng was used with a factor of 2 on the ordinates. The resulting sections are 

shown ln Flg.21, with a side view in Flg.22, the attachment incidence being 
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10.54O. The pressure distribution 1s shown in the same form as before in 
Figs.23, 24 and 25. Although the adverse pressure gradients have steepened, 
particularly outboard, they are still not severe. 

3.2 Model with forward centre of pressure - wing 3 

A modal with its centre of pressure further forward than in the basx 

models was designed to investigate the effect of an increase of stability on 
the performance. The model was designed for a CL of 0.1 and a centre of 
prassura of 5% of the root chord further forward (i.e. x 

CP 
= 0,48306) at the 

attachment incidence, with a volume dlstrlbution given by equations (2) and 

(3). 

It was found that a loading of type (c) produced significant negative 
load at the raar of the wing. However, by Including higher-order terms UI x 
in the first half of the expressxon (10) for A4, i.e. M > 1, the donnnant 
term in the load near the trailing edge can be made positive Instead of 
negative. Thus the local load k(x,y) and the cross-loading D*(x) can be 
made non-negative for all x. Proceedxng only as far as quadratIc terms in 

x9 i.e. M = 2, led to load distributions with high loads in the apex region, 
but the usa of cubx terms (M = 3) as well allowed the load at the apex EA 
to be reducad to a more reasonable value. This could be specifxd by the choice 
of b 

0-1 
since 

kA = 4(bo 1 + clho) . (251 

Accordingly, load distributions with M = 3 were considered which gave non- 
negative loadings, a specified local load at the apex, a CL of 0.1, x of 

CP 
0.48306, the form of chord loading given in equation (141, and which had, for 
simplicity, 

b = *em klnbn 1 , 

where k 2 and k 3 were constants. Loadings (d) and (e) wera two such load 
distributions. Loading (d), like loading (a), had 

h 
b = 

*>m +om ' 0 ' 
and loading (e) had similarity propertIes like loading (b): 

b 
191 

= 0.6bo 1 b2,l = -l.6hocl . 

A loading (f) comprising 
1.5 x loading (e) - 0.5 x loading (d) 
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gave reasonably smooth spanwlse mean-surface sectIons and was adopted for 

this forward-x model. 
CP 

The details of this wing are given in Figs.'26-35. Comparison with the 

first warped model, which has the same CL but a further aft centre of 

pt?SS"R, is relevant, so the numbers of the corresponding figures for that 

wing are given in brackets. Fig.26 (11) shows the chordwise distributions of 

loading. The increase III peak values 1s marked, ln spite of the limitation 

placed on LA. The reduction ln loading is found near the centre section over 

the rear of the wing, the load on the tips being maIntaIned =n order to keep 

the lift-dependent drag at the same level. Fig.27 (12) shows the cross loading 

and suggests that the forward shift has been accomplished smoothly. The 

bound vortices are shown in Fig.28 (15). The cross-sections shown in 

Flg.29 (13), with the vertical scale multiplied by five, are rather less 

smooth than before, and more highly cambered near the apex. The chordwise 

sectIons in Flg.30 (14) show increased negative camber, as would be expected, 

and an Increased attachment lncldence of 7.62'. The sectIons of the model, 

Flgs.31 (16) and 32 (17), show the same features. The pressure distributions, 

Flg.33 (18) and Fig.34 (19), show the concentration of the loading towards the 

apex and tips. The upper surface Isobars are shown in Flg.35 (20). 

3.3 The thin model - wing 4 

The volume dlstrlbution of this mdel 1s of the same form as that of 

the other wings, but the thickness 1s 4% Instead of about 9%. It is described 

by equation (4) and Illustrated ln Flg.36. 

In principle, the reduction in thickness reduces the beneficial effect 

which the favourable pressure gradient due to volume over the forward part of 

each chord (see Fig.3) exerts on the steepest part of the adverse gradients 

due to lift (see Fig.11). In the present case no attempt was made to compen- 

sate for this and the warp surface of the basic design for CL = 0.1, 

x = 0.53306 was used with the smaller volume. 
CP 

The resulting wing 1s illustrated =n Figs.37 and 38. The pressure distri- 

butIons are shown in Flgs.39-41. These closely resemble in shape those for the 

basic wing with an attachment CL of 0.2, since both the lifting and volume 

contributions have been approxlmtely halved (cf. Flgs.23-25). 
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3.4 The gull-wing model - wing 5 

Considerable attention is now being paid to alleviating the noise caused 

by aircraft, and proposals for noise reduction Include the mounting of 

high-bypass-ratio engines above the wings to shield their noise from the 

ground. This mdel is an example of the wing of an aircraft adapted to exploit 

these ideas. 

To obtain maximum shielding of both fan and jet noise, the engines must 

be close to the centre of the wing. In addition, high-bypass-ratlo engines 

have large diameter and must probably be munted well clear of the wing surface. 

Thus for a typical alrbus configuration with a rootchord of 40 metres, and 

semispan at the trailing edge of 16 metres, the high-bypass-ratio engines may 

be nvunted close to the centre section at 60% of the root chord at a height 

such that the noise source of the anglnes 1s about 3 metres above the upper 

surface of the wing. At spanwise sections near the engines, around 60 or 70% 

of the root chord, the noes sources will thus be about 3 metres above the 

upper surface of a cross-sectIon of about 10 metres semispan. In order to 

provide adequate sideways noise-shielding at these sections, noise propagated 

laterally from the engines at mora than about 15’ below the horizontal should 

be cut off. Moreoever, recent work 
12 

suggets that the wing surface outboard 

of the cut-off point should have curved droop to mx~xn~se the diffracted noise 

field within the shadow of the aircraft. To fulfil these conditions, the wing 

upper surface outboard of the centrelIne must curve first upwards and then 

droo; downwards, as sketched in Fig.42. In other words, in the region of the 

engines, the wing must have dihedral Inboard and anhedral outboard. 

Such a gull-wing mdel has been desIgned to discover whether lncorporat- 

ing these features, desirable for noise reduction, involves performance 

penalties. Slender gull-wings have previously been designed 13 by slender 

thin-wing theory and experimental investigations 
14 

have shown that the 

behaviour of slender wings zn cross winds can be considerably Improved by 

anhedral ovar the raar part of the wing. 

The mdel was desIgned to have the same volume dlstrlbutlon, lift, 

centre of pressure position and load distribution at the san~e attachment 

incidence as the C 
L - 0.1 mdel, and thus its mesn surface has the same stream- 

wise slopes. However, it differs from the C 
L 

= 0.1 mdel in that its tralllng 

edge, from which the mean surface slopes are Integrated, is warped and not 

straight. A trailing edge warp was chosen that gives the required shielding 
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ln the neighbourhood of the engines, and produces little effect on the warp of 

the forward sections. It has about 20' dihedral inboard and 40' anhedral 

outboard mth a smooth transition between dihedral and anhedral so that the 

rear sectIons of the model are curved snmthly. 

The trallmg edge warp chosen 1s given by: a blending sectmn near the 

centrelme 

iz = o*gogg2 YZ 
sT 

an Inboard section nth dihedral 

z = 0.36397 y - 0.03640ST 

for 0 G iyi <0.2s . T' 

for 0.2ST s iyi SO.6s . T' 

a blendmg section outboard 

7. = -2.00512 Y2 
sT 

+ 2.77011 ~'-0.75824~~ for 0.6ST G iyi so.9sT; 

and an outboard sectIon with anhedral 

z = -0.8391 y + 0.86591sT for 0.9ST =G iyi s ST. 

The tralmg-edge warp and cross-sectmns of the model are shown in 

F1g.43. The centre sectmn and streamnse variation of the leadIng edge are 

illustrated in Fig.44a and the side mew of the model m Fig.44b. The 

pressure d~stributicm on the node1 1s the same as for the CL 0.1 model and 1s 

Illustrated III Flgs.18, 19 and 20. 

4 CONCLUSIONS 

It has been demonstrated that smoothly warped wings embodyIng various 

desirable features can be desIgned for subsonIc flight using n~ean surfaces 

which, according to linear lifting-surface theory, sustam speclfled dlstrl- 

butums of aerodynamic loadmg. The examples calculated all have an attachment 

condition at non-zero lift and are intended to have low vortex drag at and 

above this condition. They cover wrmtmns HI the attachment lift coefficient, 

m the centre of pressure at the attachment condltlon, ln thickness and in the 

warp of the trailing edge. They form a series of wings on which a number of 

wind tunnel tests are to be caned out to mvestlgate the performance and 

stablllty benefits introduced by warp of this form. 
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Appendix A 

THE CALCULATION OF VORTEX DMG 

The vortex drag, Dv, of a lifting surface 1s given 15 by 

where ll = y/s T and AL$~ is the jump in velocity potential at the trailing 

edge. We represent this by 

A+T -c 
U jl > sin no CA-3 

where 

case = ll . (A-3) 

This expression satisfies the condition that A@T is zero for n = 51, I.e. 
when O=O or r. For the symmetrical case which interests us, the summa- 
tion IS over odd values of n only. We have then 

(A-4) 

Substituting in equation (A-l), we obtain 

Consider the integral 
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So, by 332.21~ of Ref.16, 

Thus 

Therefore, we obtain 

The lift, L, of the surface is given by 

sT 
A@T 

lT 
L a 

- z 2 

bU2 
T dy = 2sT z $ sin ne sin e de 

-sT 0 

E lrSTctl . 

(A-5) 

CA-61 
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The lift-dependent drag factor K is 

ND - CD ) 
K = nA 0 

2 
cL 

Substituting from equations (A-5) and (A-6), w obtain 

G-7) 

from which it is clear that K al, with K = 1 when o = 0 for III> 2. 
m 

In the present work, the form of Ac$~/IJ has been taken as 

A+T -z 
U (1 - 112)3’2 x (a polynomial of order M in n2) . 

This can easily be rewritten as 

A@T 2M -c 
II sin3 8 (b0 + b 1 sin2 0 + b2 sin4 tl +.....+ bM sin 0) . U-8) 

By comparison with equation (A-2) we obtain 

ml a2 +1 
1 Lsul(zp+l)e = 

p=o 2p + 1 Ill=0 
bm sin2m'3 !3 

whence, multiplying by sin (2p + l)f3, Integrating from 0 to 7T, and using 

equations 332.6b and 332.8~ of Ref.16, 

M 

&.?J.-x = 
2p + 12 

m=max(O,p-1) 

or 
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M 

a2p+l = (-l)P(2p + 1) 
-z 

forO<p<M+l 

m=max(O,p-1) . . . (A-10) 

For an example consider a distribution of A$T given by 

@T 
-ii- 

= K (1 - ,,2)3'2(1 + o.bn2 
0 + l.bu4) (A-11) 

where KO is a constant and M = 2. Then 

A@T -x 
U K. sin3 0 (3.2 - 3.8 sin2 6 + 1.b sin4 6) 

SCI b. = 3.2Ko bl = -3.8Ko b2 = l.bK 
0 

whence, by equation (A-10) 

Y = 0.9Ko a3 = -0.4125Ko a5 = -0.3125Ko a, = -0.175Ko . 

Substituting in the expression for the lift-dependent drag factor, which EY, 
from equation (A-7), 

2 
K = (A-12) 

we obtain K = 1.0995. 

This can be compared with the minimum lift-dependent drag factor of unity. 
Another meaningful comparison is with the minimum value which can be obtained 
using an expression of the form given in (A-8). For this A$T/sin S tends 
to zero as S tends to zero, and so 

For K to be a minimum subject to this condition we require 

a 
aa2p+1 

(K - AU) = o ; r~ = o forM+l>p>o 
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a2p+l 
7&x a; 

--A=O;a=O. 

Therefore 

a2p+l = -L?- (2P + 1) for p = 1, . . . . . M + 1 

and 

Therefore 

A 
-2 c a2p+l - (2p + 1) 

al(M + l)(M + 3) 
and - = 

9 @I + l)(M + 3) * 

Hence the minimum value of K, Kmn, is 

Mtl 2 
K 

mill 
= 1+ 1 

pzl (2Pl+ 1) 
2p + 1 

CM + l)(M + 3) 

therefore 

K 1 
mill = '+0-f +l)(M+3) ' 

Thus for a A,$T d~stnbution with three terms in the polynomial in 

n ' (i.e. M = 2), the minimum value of K attainable is 1.066J. The value 

obtained from the distribution in equation (A-11) is 1.0995, which is close 

to the minmum. 
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THE ATTACHMENT INCIDENCE OF A THICK WARPED WING 

In the linear theory of subsonic (or supersonx) flow, the effects of 

thlckness and warp are separable. A thick warped wing 1s represented by a 

distribution of sources (volumeproducIng elements) and llf?producing elements 

over a mean plane, on which the boundary condltlons satxsfled on the surface 

are applied in a linearised form. It 1s customary to construct a thick wng 

by addIng thickness equally above and below a warp (or mean) surface in a 

dIrectIon nornal to the mean plane, and to construct the warp surface of a 

thick wzng by takxq the average of upper and lower surface ordnates 

measured from the mean plane. This is geometrically simple and retans the 

relation between source strength and volume which 1s useful ln supersonic 

linear theory. 

However, It is not obvious that another relationshIp between the thick 

warped Wang and Its 'warp surface' nnght not be mare appropriate, for 

1*stance, to make the attachment ~nc~dences of the thick wing and the warp 

surface correspond more closely. Indeed, It seems intuitively that addng 

thickness normal to the warp surface 1s less likely to change the attachment 

lncldence than addIng It ln some dn-ectlon unrelated to Its local shape. A 

systematic investigation of this Idea has not been attempted for the present 

purpose, though It could be undertaken by a surface sngular~ty method like 

that of Hummel 17 for slender body theory or A. Roberts, of BAC, Weybndge, 

for nconipress~ble flow. Instead, some evidence 1s presented from earlier 

work using slender body theory. 

Before presentng this endace, a little further exanunat~on of the 

Idea 1s necessary. If we are deslgnlng a wing, then the warp surface 1s 

likely to be the starting point, the dIrectIon of Its nornal 1s known and 

the thlckness can readily be added ln the normal dIrectIon. On the other hand, 

If we are considering the direct problem of the propertIes of a given thick, 

warped wing, the constructIon of a warp surface which lies mIdway between the 

upper and lower surfaces, measured normal to the warp surface, presents con- 

slderable dlfflculty. Instead, It seems natural to start from the given 

upper and lower surfaces and proceed along the normals to them, to define a 

wa.rp surface which 1s nndway between them, measured normal to the upper and 

lower surfaces themselves. Obviously, these deflnltlons of warp surfaces are 
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distinct from one another, as well as from the usual defmltmn used in lmear 

theory. We shall show now that the two new definitions of the warp surface 

agree to second order in the wing slope, but differ from the linear theory 

definition by a term of second order. 

Consider a Wang whose upper and lower surfaces, in a given cross-flow 

plane x = constant, are given by z = zu(y) and z = zL(y) (see Fig.45). We 

define three warp surfaces zI(y), L = 1,2,3 with associated thickness 

SiCY). The first is the classical defxutmn of linear theory: 

For the other two definitions we need to introduce an angle $(y) between 

the tangent to the curve z = z(y) and the y axis, with subscrIpts u, L, 

l,Zand3to $ and z. Then If we start from the warp surface z = 22(y) 

and add thickness 62(y) normal to the warp surface (the design problem) 

we find 

The third case is a little more complicated. Normals of length 63(y) are 

drawn to the upper and lower surfaces to meet at a pomt Cy, z3Cy)) on the 

warp slxface. If the values of $ 
" and $ !. at the points from which these 

normals are drawn are 
6 

and &, we have 

and 

(B-4) 

Now assume, as usual, that the warp and thickness are small, so that $ 

is small compared with unity, and expand equations (B-2) and (B-3), keepmg 

terms of second order in $, using Taylor's theorem for the right hand 

sides and noting that z' 1s of the order of $I: 
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(B-5) 

The arguments of all the functions are now y and have been suppressed for 
compactness. Now the terms involving $ in (B-6) are of second order, so a 
first order approximation to T is adequate. From (B-4) thx IS clearly 

provided $' is of the sarae order as I), as 1s the case for smooth wings. 
With the bar removed from (B-6), the terms in (B-5) and (B-6) involving $ 
a-e all of second order, so again a first order approximation to $ is 
adequate. This is 

e(Y) = Z’(Y) 

for all suffixes. Equations (B-5) and (B-6) IICI~ become 

z2 + 62 - &62z; 2 = zu - 62z>; 

=2 - cs2 + $6 z12 = 22 =.t + 6 2'2 29.2 
(B-7) 

z3 + Ls3 - Q3zA 2 = zu - 63z;2 

=3 - Ls3 + g3z;2 = z1 + 63z;2 I . 

Taking the sums and dlfferences of the pairs of equatuxx (B-7) and (B-8) and 

eliminating z and u zL by (B-l), we have 
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The second terms on the right hand side of (B-9) are all of second order, so 

again first order approximations may be made ln them, giving 

~* = ~3 = al - 616iZi (B-10) 

rs2 = 6l - &zi2 (B-11) 

63 = 6l - $6pi2 - &6i2 = Is2 - +q2 . (B-12) 

Therefore, the three definitions of warp and thickness agree to the first 

order. To second order, the two modified definitions of the warp agree, but 

differ from the classical definltlon by a term which vanishes for an unwarped 

wing or for a wing of uniform thickness. All three definitions of thickness 

differ in the second order, the first pair agreeing for an unwarped wing and 

the second pair for a wing of uniform thickness. 

Having establIshed that the warp surfaces obtained by the design approach 

(z2) and the direct approach (z3) agree to second order, equation (B-lO),we 

proceed to our example, which is based on the direct approach. 

Consider a slender, thick warped vnng in the form of ona half of a cir- 

cular cone. Its cross-section is a semi-circle. Consequently the warp surface 

obtained by the classical method of bisecting the ordinates normal to a mean 

plane (say the plane surface of the wng) 1s a conical surface whose cross- 

section is an ellipse with minor (vertical) ax1.s one half of its major (horl- 

zontal) axis. On the other hand, we find that the cross-section of the warp 

surface obtained by constructing equal normals from the uppar and lower surfaces 

of a cross-section of the wing is a parabola whose focus is on the plane 

surface and whose directrix touches the curved surface. Flg.46 shows a para- 

bolic arc L'ML, with focus F, dlrectrlx C'DC and latus rectum L'FL. Then if 

P is a general point on the parabola and PN is normal to C'DC, we have 

PN = PF by definition of the parabola. In partxular, with P at L we sac 

FL = FD; and so a semi-circle L'DL with centre at F can be constructed. If 

FP produced meets this semi-circle at Q and NP produced meets L'L at R, we 

sac that 

PQ = FQ - PF = RN-PN = PR . 

Thus P is equidistant from L'FL and L'DL, each distance being measured normal 

to the appropriate surface. 

The attachment incidencesofthln conical wngs whose sections are ellip- 

tic and parabolic arcs have been found, on the basis of slender body theory, by 

Ward'*. He used an electrical resistance network developed by Redshaw 19 , con- 

taining 144 x 136 square rcesh intervals, with electrrc potential corresponding 
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to fluid stream function, to simulate Laplace's equation in the cross-flow 

plClIk3. He was able to recover the analytical results for circular arc 

sections 
20 

and found, for the cases of present interest 

kLt = {:::z 

for parabolic-arc section 

for elliptic-arc section 

where a is the incidence of the plane of the leading edges, K is the tangent 

of half the apex angle in the plane of the leadIng edges and each wing has a 

vertical extent one half of its lateral extent. 

The original thick cambered wing in the form of the half-cone has proper- 

ties that have been found analytically by Portnoy 
21 

, using slender body theory. 

He treats a mxe general problem of a wing-body combination, from which the 

half cone emerges when (in his notation) E = 1, f = l/6, and S' = vKa, where 

a is the radius of the circular section. Substituting these values into his 

equation (20) for the complex potential W in a transformed complex plane u, 

we have 

2 

(3u2 
(B-14) 

+ 1) 

where we have changed the sign of the incidence, a, to correspond to a wing 

with its plane face down. Hence 

dW 32aaw 
zT=- G(3u12 + 1)2 

+ 3Ka (B-15) 

is the conjugate of the complex velocity in the transformed plane. The trans- 

formatIon between the physical cross-flow plane and the w-plane is singular at 

the point IJJ = 1 corresponding to the leading edge, so the condition for a to 

be equal to the attachment incidence is that dW/dw = 0 for u = 1, i.e. 

0 it 
= 36 

T- = 0.65 . 
att 

The attachment incidence of the thick wing (B-16) is therefore closer to 

that of the parabolic thin wing than that of the elliptic thin wing (B-13), i.e. 

the approach adopted in the present work is superior to the usual one in this 

eX+XlIple. The example is admittedly extreme and the discrepancy between the 

attachment incidences is large even on the present definition of the warp 

surface, but it is qualitatively typical of the forward part of thick warped 

wings like those shown in Figs.21 and 31. 
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Wing number 

(B oflRef.6) 

3 

4 

5 

Table 1 

SUMMARY OF TBE WINGS DESIGNED 

At attachment condition 

cL 
centre of p?xssure 

0.1 aerodynamic centre 

0.2 aerodynanuc centre 

0.1 aerodynamic centre 
-5% root chord 

0.1 aerodynannc centre 

0.1 aerodynamic centre 

Thickness to 
chord ratio 

% 

9 

9 

Trailing edge 
shape 

plane 

plane 

plane 

plane 

gull-wing 



SYMBOLS 

aspect ratio 
coefficients in expression for A$, see equations (10) and (11) 
root chord thickness distribution 

coefficients 1x1 expression for A$, see equation (11) 
drag coefficient 
lift coefficient 
pressure coefficient 

root chord, taken as unit of length 
nonduwnsional geometric mean chord 
coefficients in the polynomial for the leading edge, see equation (12) 
spa-wise distribution of chord-loading 
lengthwise distribution of cross-loading 
vortex drag 
coeffxxnts in the expression for A$, see equation (10) 
orders of leadingedge polynomials, see equation (12) 
lift-dependent drag factor 
overall lift 

also, see equation (10) 
local load = AC 

P 
local load at apex 
Mach number, 
a, see equation (11) 
see equation (10) 
planform parameter,= (plan area)/(span x length) 
planform area 
nondimensional local semispan 
nondimensional semispan at trailing edge 
free stream velocity 
nondImensiona Cartesian coordinates 
centre of pressure position 
values of x at leading and trailing edges 
volume-distribution ordinate 
streamwise slope of mean surface 

coefficients in expression (A-2) 
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SYMBOLS (concluded) 

difference operator across wmg, lower-upper 

= Y/Sk) 
-1 = cos n, see equation (A-3) 

= %zJax, local stream&e slope of volume distribution 
disturbance velocity potential 
jump in velocity potential at trailing edge 
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Fig. 6 Spanwise distribution of chord loading 



'B- 

b- 

2, 
t 

c 
2 

2 

2 

2 

I 

I 

I 

I 

1, 

0, 

0 

0 

0 

I 

4- 

2- 

,0- 

,a - 

.b - 

l4b 

,2- 

IlO - 

,8- 

96 - 

\ y=o 

k 

0-l OS2 0, 

Fig. 7 Chordwise distributions of loading (a) 



0.06 

Z 

0.04 x -0.3 

x =0*5 

-0.04 

:f r---\ xzo., 

0~02 - -0~02 

2 

O- 

-002- ’ I 8 , 1 I 
m. 4 -* 3 -a2 -*I 0 .I 2 .3 .4 

9 

Fiq. 8 Cross-sections of mean surface due to loading (a) 



6- 

4- 

2- 

o- 

6- 
\ 

4- 

2- 

o- 

a- 

,6 - 

4- 

‘2 - 

0- 
0 

Y=O 

\ 

\ vs.16 

0.1 0.2 0.3 0.4 05 0.6 

Fig.9 Chordwise distributions of loadmg (b) 



0.06 

Z 

0.04 

0.02 

0 1 

n x= O-IS 

x= o-3 

-0 

-o*=:c)!4 
I I I 1 I I I I 

-0.3 -0.2 -0.1 a4 y 
Fiq IO Cross-sections of mean iurfact’ due’: loiiinq (b) 



2.4 - 

2.2 - 

20- 

1.8 - 

I.0 - 

0.0 - 

0.6 - 

0.4 - 

02- 

X 

Fig .I I Chordwise distributions of looding (c) 



CL 

I.4 - 

I*2 - 

I*0 - 

Fig 12 Lengthwise distribution of cross loading for loading (c) 



0 08 

Z 

0.06 

0.04 I 

0.06 - 

z 

0.04 - 

n x= 0.15 

n *=Oa3 
(--- %zo.s 

0.04 2 0.02 

0 kX=Om7 
O-02 *02 

2 
0 

/ 
-0.02 ~111111111 

- 04 -0.3 -0.2 -0-l 0 *I -2 *3 -4 y 

Fig.13 Cross-sections of mean surface due to loading(c) 

x= 0.3 





Fiq.15 Bound vortices due to loadinq (c) 
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Fig. 28 Bound vortices due to loading (f) 
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