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SUMMARY

The present roport deuls with the acrodynamic damping of a rotor
oscillating in paitch {or roll) and 1s meinly concerncd with the
comparison betwsen theory and experiment, Both the frece and forced
oscillations of a rotor system pavoted below the rotor cenftre are
investigated,

The results can be summarized as follows:-

(a) The behaviour of a rotor oscillating in pitch or roll depcnds
on a parameter, which is the ratio p of iwo non-dimensional quantitics,

p = (frequency ratio of the 030111at10n)/(sp601f10
damping of the rotor blade),

{v) It i1s shown ithat the ordinary quasi-static theory holds only for a
certain range of thas parameter p., Generally, the oscillations of the
full-scale aircraft lie inside and those of model tests outside this
rangc. This means that the quasi-static theory is valid for ithe full-
scale helicopter but in most cases not for model tesis.

(¢) The frequency response theory outlined an this report explains
the results obtained from model tesis,

(d) The interpretation of model tests for application to full scale work
should be dohe by using the frequency response method given in this report.
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1 Introduction

If a rotor with hinged blades 1s subjected to angular oscillations in
pitch or roll, the blades perform a periodic flapping motion which can be
interpreted as an oscillation of the tip~path plans relative to the rotor
shaft. In the first approximation it can be assumed that the thrust vsctor
of the rotor 1s, at any time, normal to the tip-path plane, which means that
the thrust vector oscillates in relation to the airceraft, It 18 ocbvaious '
that this oscillation of the thrust vector 1s one of the uportant
aerodynamic characteristics of the rotor,

The present report deals with the aerodynamic damping of an osecillating
rotor i1n the hovering condition and 1s mainly concerned with a comparison
between theory and experiment. Previous investaigations, based on the
ordinary quasi-static rotor theory, which seems to give the correct value
for the full-scale aircraft, have shown that in scme model tests the tneory
did not give good agreement. Until now a satisfactory explanation for
this discrepancy could not be offered, though there were possibilities
suggested such as the "down-wash lag" theory by Hohenemser, see Ref. 3.

The present investigations indicate that the "quasi-static" theory holds
only for a curtain range of conditions and that outside this range the
complete equation of motion for the flapping of the blades must be used.

2 The aecrodynamic damping of o rotor coscillating in pitch

2.1 Determination of the frequuncy equation

The following dynamic problem is investigated: a rotor, with
radius R and a flapping hinge off'set eR, oscillates in pitch about a
pivet located hR below the rotor centre, The system is constrained by
spring forces and - in addition to the aerodynamic damping of the rotor =~
damped by a viscous damper, If a denotes the angular displacement
about the pivot {positive nose-up), the equation of motion for the
oscillation in pitch can be written as

Ia + Dpa +Ca = May X 8, = 0 (1)

v

The terms of equation (1)} represent the moment of the inertia ferces, the
damping of the system wlth the rotoer vecillating but not rotating, the
restraining moment of the spring forces and finally the moment due to the
longitudinal talt a; of the tip-path plane, The latter gives the coupling
term intreducing the flapping motion of the blades and ocan be expressed
asi-

Mpy = THR + % beRF, (2)
where T = rotor thrust, assumed to be always normal to the tip-path
plane
b = number of blades
F, = centrifugal force of one blade

Equation (2) states that 1L, consists of two components, one due to the
tilt of the thrust vector, &nd another due to inertia forces, The latter
1s proportional to the flapping hinge offset and the centrifugal forces

of all blades,
3.



The second degree of freedom which has to be taken 1into account
18 the flapping motion of the blades, The equation of motion for the
longitudinal tilt a. of the tip-path plane can be wriatten as, see Ref, 1,

1
&) + & =Klapp - ay) h (3)
In this equation ‘ s
K = gpecific damping of the rotor blade, K = 3];
) = angular speed of rotor,

alp = rate of change of a, with tip speed ratio u

Though egquation {3) 1s exactly true for centrally arranged flapping hinges
only, 1t can also be used for offset hinges (as a first approximation),

It can ea51ly be seen that for a state of steady rotation with the angular
velocity &, equation (3) becomes the well known "quasi-static" equation:

a, = a - —— L
where in our case .
e L
‘ = - h =
m 5 (5)

Substituting from equation (5), equation (3) can be written as

8, + Kay + &(i + Kha%i) =0 (6)

It will be seen later that in most' cases 1 >> Khay This means that
the effect of the linear velocity of “the rotor cen%re can be neglected,
Equations (1) (6) lead to tae follewing frequency equation in M

/
P AN AN 4 A =0 < (D
where
Ay = K0 + D_/I &
Ay = {KD, + O+t (L + Kooy )} /I (8) =
A, = CKQ/I

b,
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If the flapping motion of the blades 1s considered as a sequence of steady
conditions, 1nserting equations {4) (5) in equation (1) gaves '

X + [D KO + Mgy (L + Kha.lp)} A+ CKQ = O (9)
This means that the damping coefficient k ain the amplitude equation
ot =a, € ' (10)

amounts to

1
. =DOKQ + Mpy (1 + Khay )

(11)
21K

Since My, 1s proportional YF, 1t follows from equation (11) that for
the quasﬁustatic theory the damping coefficient k ancresses linearly
with the angular speed of the rotor.

2.2 Comparison with model tests (free oscillations)

The only comprehensive measurements on oscillating rotors publashed
to date are those recorded in Ref, 2. The tests were carried out on a
model with the following principal data-

Rotor radius R=6"ft
Number of blades b =3
Flapping hinge offset eR = 0,1876 ft
Height of rotor centre above pitching axis bR = 1,475 £t
Inertia number of rotor blade Yy = 3.52
Thrust at 200 r.ﬁ.m. (8° pitch setting) Togo = 18.2 1b
Centrafugal force at 200 r.p.m, Foooo = 289 1b
From the data listed above and with B = 0,97 1t follows

o )

K= — =0.,195
16
1
(M) 00 = (TagohR + ¥ DeR Fepog) = 108 1b £t r (12)
n

M = (—-—-)2 X 108 lb ft '
ajl 200
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Further, with K = 0.195, h = 0,246, and the assumed figure alu = 0.4
1t follows that Khay = 0.02 which means that the linear velocity of the
rotor centrs can be %eglected.

To cover a wide range of the frequency ratio v, the tests were
conducted with two rigs having different natural periods of oscillation:

Big "A"
Period of oscillation To = 0,97 s
Circular frequency v = 6.47 st
Total mbment of inertia I =105 1b ¢ S2
Damping constant DO = 3,57 1b ft 8
Spring constant:
Component due to spring force + 4380 1b ft/rad
Weight moment without blades + 55 1b ft/red
Weight moment of blades - 47 1b ft/red

C = 4388 1b ft/rad

Rag "B
Period of oscilliataon ) TO = 40 s
Circular frequency ' v = 1,57 s‘l
Total moment of 1nertia I =2661b ft s
Spring constant:
Component due to spring force + 648 1b ft/rad
Weight momsnt without blades + 55 1b Pt/rad
Weight moment of blades - 47 1b ft/rad
C = 656 1b ft/rad

2

For comparison the damping coefficient k of the amplitude equation (10)
has been calculated with

(1) The complete equation of motion for the flapping, and
(2) The ordinary "guasi-static! theory.

The theoretical resulss, together with the experimental onss for Rig. A
and Rig B are given in Figs., 1 and 2 respectively. The curves show the
damping coefficient k and the parameter p = ;/K against the rotor revs,
‘The importence- of .the parameter p 15 discussed in more detail in

Para, 3.

Moreover, for "Rig A" the effect »f the damping with the rotor
osecillating but not rotating has been investigated,  According to
Table II &f Ref, 2, the weasured demping coefficient for n =0 was
k = 0,017 which means that the amplitude of an oscillation is halved
in 40 secs, As no viscous damper had been installed, it must be assumed
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]

H

1)

s ]

>



9

that this damping is mainly dus to friction. For simplicity, Nowever,
1in the theoretical investigation the friection has been replaced by a
viscous damper with Dy = 2Ik = 3.57 1b £t s, whach results in the same
damping coefficaent k.,

The effect of D, has been evaluated for each case (quasi-static
and expanded theory) and the two curves have been plotted in Fig, 1.

In the curves "a" the term D, has been taken into account, and in the
curves "b" this effect has been neglected. Fig. 1 shows that the effect of
Do 18 independent of rotor speed, and results 1n an increase 1n k by
approximately

bk =D, /21 (13)

However, since the value of D, was introduced to evaluate what was probably
a friction influence, the effuvct of D, may not exist to any extent at the
higher rotational speeds and the curves of Fag. 1 sheould be interpreted
accordingly.

In Fig, 2 where, due to the higher moment of inertia cf "Rig B"
the effect 1s much smaller, the damping with the rotor static (1.e.
osc1llating but not rotating) has been neglected.

Fi1g. 1 shows that the tests conducted with the Rig A lie in the
range p> 0.5 and that for these tests the guasi~-static theory breaks
GCoWIL. The expanded theory, however, 1s i1n a fairly good agreement
with the experiment,

In the tests with Rig B, see Fig. 2, 0.13< p<0.,39, The curves
of Pig. 2 show that in this range the results nbtained with the quasi-
static and the expanded theory lie very close together.,  Apart from
the test with n = 600 r.p.m, the agreement between theory and experiment
is very good. For n = 600 r,p.m. the measured damping coefficient 18
about 20% greater than the theoretical value, It may be that here another
effect comes into the picture which has not yet been mentloned viz the
changes 1n the induced velocity caused by changes 1in the distribution
of the thrust around the rotor disc, This effect will be dealts wath
in a later report, :

Another model test on oscillating rotors is reported in Ref. 3.
In this case .

, T = 2,26 mkgs®
¢ = 67 mkg/red \
D, = 0.25 rkgs
/
Moy = 35 mig/rad
, ‘ h= 0,34
‘ v = 8,8 ‘ ‘
' Q = 40,8 s:l

I



With B = 0,97 and an assuned flgurehof alp = 0.48 1t follows
K = 0,51

mlll = 0,083

' Inserting the figures listed above in equation (8) leads to the
following frsquency equation o

A2 4 20.8000° 4 4B.662\ + 612.42 = O
which has the rooits

- 19.90

it

M
A3

1]

- 045 + 5.03 1

The two ccmplex roots correspond to & damped oscillation with k = 0.45 s—l
and T, = 1.3 s, The experimental results were kX = 0,50 s~L and

To = 1,05 s; the agreemént between theory and experiment is again
satisfactory.

3 Investigations on the motion of the t1.p path plang for a rotor
subjeoted to forced oscallotions

Another item dealt with in Ref. 2 i1s the gscillation of the tip path
plane due to a forced oscillasion of the shaft with constant amplitude
Lo In a forced oseillation the behaviour of a rotor 18 characterised
by :

(a) The amplitude ratio r = {amplitude of the oscillation of the
t1p-path plane)/(amplitude a, of the whole system), and

(b) The phase angle & between the two oscillations mentioned
above, '

The characteristic quantlties r, & ocan best be lnvestigated by vector
methods,  If a; denotes the amplitude of the motion of the tip path plane
relative to_the shaft, 1ts absclute amplitude can be expressed as the
Vector sum g + aq, The amplitude ratio r 1s cbtained by dividing

(ay + 87) by ag, IL.e.

r= Il+ al7ao (1)

In the vector diagram of Fig, 3, OC = L and OD = aljho whioh means that

r is given by the length of the vector OE and that the phase angle e =(COE.
18 & Semicircle with 0,5 radius

As shown 1n Ref. 1, the vector lool for a)/u
and centre at the point B (~0.5 4 01). It %ollows that 40 = OC, AD = OE,
and |QAD = | COE. This means that the two characteristic quantities r, e

8.

i
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«can be obtained direct from the vector loci by connecting A with D where
the point D is fixed by the parameter

p = V/K = v/k0 o (15)

of the enforced oscillation, The length AD in Fig. 3 equals to the
amplitude ratio r and |QAD corresponds to thg}phase angle e ,

A8 indicated in Fig., 3, all quantities of the vector diagram can be
expressed as simple functions of the parameter p. With regard to
r and ¢ the following equations hold

r=(1+pd) 2 (16)

tan € = p (17)

t

Another interesting feature 1s that - due to the geometriec configuration
of the vector loci - the time lag of the flapping motion |DQG happens to
be equal to the phase angle €,

In the model test described in Ref, 2 the following results were
obtained from Fig, 6.

r= OcBl‘-{-
€ = 20

average

(18)

With regard to the phase angle € of this experiment, it must be noted,
that the oscillations were manually excited and therefore not purely
sinusoidal. The figure given above 1s the average lag of 5 oscillations,
where the indivadual phase angles soatter between 26 and 58 deg, In this
test

Period of oscillation To = 0,9 s
Angular speed of rotor @ = 62,8 rad/s

With K = 0,195 - see equation (12) of the present report - it follows
from equation (15)

4
1

2R

= = O,
0.9 x 62,8 x 0,195 27

P

and from equations (16) and (17) the theoretical.amplitude ratio and
phase angle are:- '

= 0187

r =

1+ 0,572

| 19)
€ = arc tan 0,57 = 30 deg.

9.



Comparison of the theoretical results, equation (19), with the experimental
results of equation (18) shows that the agreement 1s gquite satisfactory,
especially 1f we bear in mind that the oseillations were probably not

exactly sinuscidal, The theoretical figures can, of course, also be .
obtained by the graphical method desecribed above and evaluated in the

vector loci of Fig. k.

Fig. 4 also gaves some useful information about the validity range
of the "quasi-static" theory. If the flappaing motion of the blades
1s considered as o sequence of steady conditions, the time lag of the
flapping motion becomes zero and 1ts amplitude can be expressed as

1 (20)

which means that the vector loci coincide with the negative part of the
imaginary axais. By comparison of the true vector loci wath those of the
quasi-static theory 1t follows that the latter holds good only for
approxamately 9/K < 0.3,

For an average present day full-scale helicopter

T =15 s

2
1

25 rad/s

T

12

-
i}

uy)
]

0.97
LeEa

’ - 2%
7,0

IF

0.017

I
g - 1B

0,66
16

1

0,026

J/K

Ii

o
1]

The figure p = 0,026 lies clearly in the validity range of the quasi-
static theory. This means that for the full-seale helicopter - in
opposition to most model tests - the simplified quasi-static theory oan
practically always be used,

L Conclusions
. .

It 1s shown that the dynamic characteristiecs of an oseillating
rotor depend only on one paramcter, namely the quantity p = 7/K where -
vy = frequency ratio of the oscillation and K = specific damping of the
rotor blade,

The result can be summarized as follows, For p < 0,3 (appr.)

the complete equation of motion for the flapping of the blades can be
replaced by the ordinary "quasi~static" equation. This simplification

10,
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however, no longer holds if values of p>0.3 occur. The apparent
dascrepancy between theory and experiment observed in previous
investigations is mainly due to this faet, Existing model tests on
oscillating rotors, especially those of RAE T.N. No Aero 2049, 1950,
compare fairly well with theory if the complete equation of motion
for the flapping of the blades i1s considered.

Unfortunately, the oscillations of most model tests lie in the range
p>0.3 and those of the full-scale helicopter in the range p<0.3., This
means that the results of model tests eannot be applied direotly to the
fuli~secale aircraft but must be converted by theory.

List of Symbols

R = rotor radius, ft,

hR = height of rotor centre above pivot, ft.

eR = flapping hinge offset, ft,

b = number of blades

¥ = 1nertia number of blade

B = tip loss factor

yB*

X = specafic damping of blade, K = T

n = rotor speed, revs, per minute
-Q = angular rotor speed, rad/sec

T =.rotor thrust, lb,

Fe = eentrifugal force of one blade, 1b.

o = angular displacement about pavot, positive nose up, rad,

@ =& S8in vt
e}

&, = amplitude of patching oscillation, rad.

v = earcular frequency of pitching oscillation, g+

v = frequency ratic, v = v/0

D = non-dimensional parameter, p = ;/K

r = amplitude ratio in a foroed oscillation with constant

amplitude a,
r = (amplitude of the oscillation of the tip-path plane)/
amplitude a, of the pitching oscillation).
E = phase angle, rad
I = total moment of,.inertia of the oscillatang system about the

pivot, ft.lb.s2

-

1.



List of Symbols {Contd)

(@]
[t}

o
.
o

an

spring constant, 1lb.ft/rad ,

damping constant, 1b.ft/rad/sec

Tongitudinal tilt of tip-path plane, rad.

tip speed ratio, B = =~ hi/0

rate of change of aq with M, rad.

prtching moment about pivot, positive nose up, lb.ft.
rate of change of M wath 2, 1b.ft/red

Mg, = (ThR + % beRF,)

= coefficients of frequency equation, see equation (8)

time, s
period of oscillation, s. T, = 2%%/v

damping coefficient in the smplitude equation, g=1

_ -kt
a = Gto e

w

The subscript 200 refers to a rotor speed of 200 r.p.m.
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