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SUMMARY

Three methods of determining an unsteady interference parameter tn slotted wind tunnels are
described In each case the governing equation for the flow 1n the wind tunnel 1s Laplace’s
equation which 1s solved by a finite difference approximation The methods differ in the represen-
tation of the disturbance due to the wing A discussion of the ments of each method 1s included,

results are quoted for tunnels of square section with roof and floor of varying slot parameter.

*Replaces A.R.C.30 834



1 INTRODUCTION

In a recent paper Gamer, Moore and Wight' have presented a theory for the hift interference
effects on wings 1n slow pitching oscillation 1n slotted wind tunrels at subsonic speeds This
theory requires values for the steady interference parameters, §, and 3,, and a further parameter,
5;. that anses 1n oscillatory flow Though information 15 available for the steady interference
parameters, values of the oscillatory parameter are only available for limiting cases of the open
and closed tunnels

This paper 1s concerned with the evaluation of the oscillatory parameter for slotted tunnels
Three alternative methods are examined In the first a solution to the steady flow equation 1s
obtained, the interference parameter 15 then evaluated from an infinite integral of the interference
upwash The second method uses rearranged equations in terms of a function &', 8;, 15 obtained
from the first denivative of ¢’ at the ongin In the third method the unsteady flow equations
are solved for incompressible flow over a range of frequency

These three methods are similar 1n that each requires a solution to the Laplace equation in
three dimensions, but they have different conditions on the downstream boundary and at the wing
The fn;nte difference methodzreplaces the Laplace equation and the resultant fimte difference
equations solved either using an analogue computer or by the dynamic relaxation method’on a
digital computer The accuracy of the different methods of solution illustrates both the advantages

and disadvantages of the finite difference method



2 SUMMARY OF METHODS

As an aid to the comparison of the methods their salient features are presented 1n Table 1
Further details of the first method, in which the interference due to steady flow 1s considered, are
to be found 1n Ref 2 The rearranged flow equations of Method 2 are derived 1n Appendix A, and
the important unsteady flow equations of Method 3 are recorded 1n Appendix B The temainder of
this section explains certain of the items of Table 1

With each method the poverning equation 1s the Laplace equation 1n three dimensions
Rectangular tunnels are considered which should extend from minus infimty to plus infimity How-
ever, since a finite difference method 1s to be used, 1nfimity cannot be included 1n the solution but
the field will be taken to cover the maximum streamwise distance practicable

A small wing 1s positioned at the centre of the tunnel, expressions are available for the
perturbation velocity potential due to the presence of the small wing 1n unconstrained flow The
relevant formulae are listed as Item 4 1n Table 1

The walls of the tunnel can have vanous boundary conditions, 1n this study the only con-
ditions considered are closed, open or slotted For a closed wall the perturbation velocity poten-

tial satisfies

where n 1s the direction of the outward normal, whilst for an open wall

¢ =0, (2
on an 1deal slotted wall, the homogeneous condition, .
¢ + K dd/dn = 0, (3

1s taken, where K 1s the geometric slot parameter 1n equation (4) of Ref 1.
As explained previously, the tunnel cannot be continued upstream to infimity but 1s usually
terminated a distance upstream from the wing roughly four times the height of the tunnel On this

plane the boundary condition 1s taken to be,
d¢p/dx = 0,

where x 15 the streamwise direction

On the downsteam boundary different conditions hold for each of the three methods From
the steady flow equations the perturbation velocity potential tends to a steady value, whence the
imposed condition 1s

depfdx = 0

With the rearranged flow equations an examination of the expression for ¢/ , 1n Appendix A, shows

I3



that 1t steadily increases for large x, but since the streamwise ordinate, x, becomes the dominant

term, the downstream condition 1s taken to be
db'/dx = constant

For the imaginary part of the unsteady flow equation d¢, /dx 1s unknown, but 1t 1s possible to find
a plane on which ¢, 1s zero, this plane 15 made the downstream boundary of the problem
Since this analysis 1s intended for calculating the interference parameter 3;,accurate

information 1s required about the interference velocity potential, defined as,

¢, =¢-9¢, (4)

Since ¢ and ¢, satisfy the Laplace equation, so also does ¢, Therefore information concerning
the interference potential throughout the field can be determined from a second solution to the
Laplace equation, given the boundary vaiues of ¢ and hence of ¢: The method of solution 15
descnbed 1n greater detail in Ref 2 Boundary conditions for each of the three methods are listed
in Table 1

The final item of Table 1 1s the expression used to calculate &, Inthe first method an
integral between minus infinity and zero has to be evaluated Using the rearranged flow equation,

8, can be calculated directly from the slope of the interference potential at the origin  With the

unsteady flow equations the slope of the interference potential at the origin 1s used, but unless the

flow 15 1ncompressible the equation is only valid as the frequency parameter « tends to zero.

3 METHOD OF SOLUTION

From considerations of the previous section it 1s clear that each of the three methods
reduces to a solution of the Laplace equation in three dimensions The only differences 1n the
methods are 1n the boundary conditions and 1n the methods of evaluating the magnitude of the

interference parameter

31 Fute difference solution

At present the most versatile method available for solving the Laplace equation 1s the finite
difference method In the finite difference method the field 1s divided into a three-dimenstonal grd,
then the Laplace equation 1s wntten 1n fimite difference form for each node Linear simultaneous

equations are obtained with one equation for each node For example, with the mesh shown 1n Fig.1,

7 b+ ¢y - 26 b, + By~ 2, by + P — 205,
b - . 2 +
Axz Ay2 Az2

¥

Ax, Ay and Az are the mesh intervals. Similar equations can be wntten for 1rregular meshes, Ref.2.



These simultaneous equations could be solved by a direct matrix inversion method, but
since a variety of specific problems are to be solved 1t 15 preferable to use technigues 1n which
the boundary conditions can be modified quickly

Two methods have been used with success The first, the electncal resistance net\a.'ork,2

solves the simultaneous equations by an equivalent array of resistances Once the boundary
conditions have been applied as electrical currents and potentials, the network immediately gives
the potential distribution within the field

Recently the dynamic relaxation methed has been used to solve the finite difference
equations ? This 1s an 1iterative method using a digital computer By introducing dynamic terms
into the equations and using an explicit finite difference formulation, the equations can be solved
by an iterative method which reguires only a simple substitution routine on a digital computer
Damping factors are chosen so that the oscillations quickly die out leading to the solution of the
static equations The dynamic relaxation method has the advantage that a change 1n boundary
conditions requires an alteration to only one statement of the computer programme.

Both the resistance network and the dynamic relaxation method have been used for each of
the three methods The analogue 15 very useful in the developmént stage since any 1nadequacies
in the technique quickly become apparent Once the technique has been developed 1t 1s advisable
to use the dynamic relaxation method so that extenswé results can be obtained The techniques
used in the dynamic relaxation method will be described 1n the remainder of this report

In the finite difference method the field is divided by mesh planes, the choice of mesh
spacing 1s governed by the need to obtain suffictent numerical values from which the required
result can be calculated For methods 2 and 3 the mesh spacing 1s chosen to give detailed inform-
ation around the origin The mesh spacing used 1n these two methods for a tunnel of square section
15

Vertical and spanwise direction,

0, 0:04167h, 0 0833k, 0 1667k, O 25k, 0 375h, 0 Sk

Streamwise spacing,

0, £0 04167h, +0°0833k, £ 0°1667h, £0:3333h, +0-6667h, + 1'1667h, + 24, + 4h

The mesh spacing for a plane x = constant 1s drawn to scale 1n Fig 2 In Method 1 the integral
from minus infinity to x = 0 has to be evaluated, thus additional mesh planes are provided for
negative x, the mesh being extended as far as -9 375h.

In the dynam:c relaxation method the number of mesh subdivisions 1s limited primarily by

the time taken in obtaining the solution, rather than from storage limitations

3.2  Enforced conditions
An examination of the mathematical expressions representing the disturbance due to the

small wing (Item 4 of Table 1) shows that for x30 each expression tends to infinity as y and z



tend to zero Since an infinite potential cannot be represented 1n the numerical solutions, the
effect of the disturbance 1s introduced 1nto the finite difference solution at nodes surrounding the
ongin At these nodes, indicated 1n Fig 2, fimite values of ¢ can be set.

The exptessions for the respective disturbances, ¢, and ¢, in Methods 1and 2 can be
calculated drrectly, but Method 3 requires the evaluation of an infinite integral for ¢, , This
infimte integral 1s calculated by a summation technigue on the digital computer 1n which x' 1s
increased 1n small steps until the change between two successive steps 1s less than 0+001%.

The boundary conditions on the walls and roof are applied through fictitious nodes Thus,
for an ideal slotted roof (z = const ), if the boundary passes through the nodes ¢,, ¢, ¢,,

the condition

¢ + Kog/an = 0 3)

can be written 1n finite difference form as
K =
?, +2—'A'z*(¢_., - 95,) =0,
hence the fictitious node ¢, 15 given by
b5 = Bo - 202 4, 6)

The closed boundaty 15 a special case of this condition with 2Az/K = 0 The open boundary
condition can be enforced directly by setting the boundary point ¢, equal to zero
Far upstream the condition for each boundary 1s that d¢/dx = 0 Again fictitious nodes are

used, thus

$, = ¢,

The same condition holds on the downstream boundary for the first method For the second method

where d¢p' /dx = const, the equation for the fictitious node 1s
I !
¢, = ¢, + 2const Ax

In the third method ¢, and hence ¢, 1s made to be zero on the appropnate plane. ¢))

33  Interference potential
The method of solution and enforcement of boundary conditions for the interference poten-
tial 1s simlar to the method for the perturbation velocity potential except that there 1s no

singulanty near the axis  The different techniques used to evaluate 5, will be descnbed 1n the

following section, but each method involves the calculation of the first differential (aqb/az)z: 0



Due to the antisymmetrical condition across the plane z =0, (9°¢/92%)s=o = 0, thus a fimte

difference formula can be constructed having an error of order Az *,

(04/02), ., = (B, - b,)/6Az, (8)

where nodes a and b are at distances Az and 2Az above the origin

4 RESULTS

In this section the method of calculating &, 1s described and the results for each method

are presented An estimate 158 made of the probable accuracy

41 Steady flow equation

When calculating 8, from the results of a steady flow solution the following equation is

0
, b A
% = Usc, j. (az)_., d" ®

Since d¢,/9z can be calculated only at mesh points a summation method has to be used In an

used,

earlier repcn'tz the results were fitted to a curve of the form

d¢,/dz = (A + BsinB)cos2b, (10)

£l

where &

]

tan™' (~4x/h),

but 1n the present study Simpson’s Rule 15 used Another difficulty anses because the mesh does
not extend to minus infimty Howevet, if the function is assumed to be proportional to 1/x?
between the last plane and minus 1nfinity, the contniBution to the integral for this region can be
calculated directly For several results both the earlier and the present method were used to
evaluate §) The difference was never more than 0'002, and when the curve of (d¢, /Jdz) was

plotted and the area under the curve determined, very good agteement was obtained with the

present method.
Results for a square tunnel are included 1n column 2 of Table 2. The first result refers toa
tunnel with all four walls open, whilst the five other results are for closed side walls but with an

ideal slotted roof and floor The slot parameter,
Q+B" = (1+ 270" (11)

varies from 0(closed wall) to 1{open wall) Analytical values are available only for the open and
closed conditions, and agreement with these results 1s satisfactory. The estimated accuracy 1s
+ 0003, improved values could be obtained by increasing the number of mesh intervals, but this
would 1nvolve an appreciable increase in time on the computer Some errors, however, do anse

from the integration and also from the use of finite differences to represent a continuous system.



It 15 not possible to assess the magnitude of the finite difference errors but comparisons with
analytical solutions indicate that they are roughly 1 0-0015. Since the errors arising from the

tnfinite 1ntegral will be of the same order the total error will be about * 0-003.

4 2  Rearranged flow equations

The method using the rearranged flow equations 1s apparently straightforward since the
parameter 8, can be calculated directly from the slope of the interference potential &, at the
origin Results for the completely open and the completely closed tunnel are 1ncluded 1n column
3 of Table 2.

The reason for the inaccurate results becomes clear on examining the vanation of the
function ¢’ with the streamwise direction ¥ For example, on the downstream boundary the value of
&' on the arc surrounding the wing 1s roughly 100 times the value in the plane of the wing This
should be compared with the steady flow equations where the potential at the downstream boundary
1s only double that at the wing With such a large vanation in ¢’ the finite difference errors become
serious, leading to the poor results recorded in Table 2 Imitially the results showed an error of up
to 30% but by averaging the values given at different mesh positions the figures given in Table 2
were obtained Any method, however, requiring such averaging 1s not thought to be reliable Due

to these errors the method of using the rearranged flow equations 1s not to be recommended

43  Unsteady flow equations

The third method, 1n which the imaginary part of the complex function, &, is used, 15
similar to the steady flow problem but differs in the representation of the downstream boundary
Downstream of the wing the velocity potential does not tend to a constant value but continues to
oscillate It is possible to estimate the position of the first plane, x = constant, at which the
undisturbed potential, ‘Em: ., becomes zero, this plane is then taken as the downstream boundary
with zero values applied to this plane Although q;m‘, from equation (B8) does not vanish over the
whole plane, the values at all nodal points lie close to zero

To investigate whether this assumption can lead to errors a check was made by taking the
second plane on which q_fsm, 15 zero and using this as the downstream boundary The results were
identical to those obtained with the first zero plane as the downstream boundary, thus demonstrat-
ing that the method of representing the downstream boundary 1s satisfactory

The parameter &, 1s calculated from equation (B6) which states that at x = 0 and for

small w,

5 - _b by (12)

The method adopted 1n calculating 8; 1s to obtain solutions for three values of wh/U, 0 5, 0°1 and



0:01, By extrapolation the value at wh/U = 0 can be determined, the extrapolation 1s 1tlustrated
in F1g. 3 Results are calculated for the previous values of the slot parameter, and recorded in the
fourth column of Table 2 The estimated accutacy for these results 1s 10-0015, and they are
thought to be more reliable than those given by Method 1 since the only source of errors 15 the
finite difference approximation.

In Fig 4 the results of Table 2 are plotted against (1 + F)™' The curve plotted through
the ponts indicates that, to a fair approximation, the variation with (1 + F) ' 1s linear for the

particular case of a square tunnel

5. CONCLUDING REMARKS

Of the three methods, the method involving the rearranged flow equations can be discarded.
At first this method appeared to be promising since the boundary conditions and the method of
calculating 8, are straightforward However, due to the streamwise vanation 1n the magnitude of
the function the finite difference errors become serious

Although the evaluation of the infinite integral in the first method can lead to small etrors
it 1s more economical 1n computer time than the final method

Since 1t 15 necessary to use the computer to evaluate :bm, in the final method a large
amount of computer time 15 used for each solution The most accurate results, however, are given
by this method which solves the unsteady equations Further, the method can be used for per-
forated tunnels in incompressible flow at arbitrary frequency, since the real and imaginary parts
of q_!» both satisfy the Laplace equation but have to be solved simultaneously.

Though the results of Table 2 are derived for sncompressible flow, they can be applied to
compressible flow of low frequency. The validity of this assumption is discussed in Ref 4 where
it 15 shown that the interference can still be derived from a solution of the Laplace equation For

higher frequency it 1s necessary to solve an equation of the form,
V'é + k% = 0, (13)

where K is a function of @ and M An equetion of this form can easily be solved using the

dynamic relaxation method
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NOTATION
b tunnel breadth
C, lift coefficient
C, complex Lift coefficient, Cpp + 1Cyy
F non-dimensional slot parameter, 2K/h
h tunnel height
: 1}
K geometnc slot parameter
M Mach number of undisturbed stream
n outward normal distance from boundary
r radial ordinate (x2+ y2 + zz)%
by planform area of wing
U undisturbed stream velocsty
X, ¥,2 Cartesian coordinates
x' increment in streamwise direction
g (1- M7
5, steady lift intetference parameter at the wing
5, steady streamwise curvature parameter
5, unsteady lift interference parameter at the wing
A increment
b perturbation velocity potential
@ rearranged perturbation velocity potential
c; complex perturbation velocity potential, ‘;R + 1q—3;
. 3 velocity potential 1n unconstrained flow
:;I;m complex velocity potential 1n unconstrained flow, E’m;a + u;vm,
b, mterference velocity potential
@, complex interference potential, ‘?’ua + iy
w angular frequency of oscillation.
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Table t

Comparison of the three methods

Method 1

Method 2

Method 3

1) Tatle

2) Working function

3) Governing equation

4) Disturbance

5) Side walls
6) Roof and floor
7) Condition far upstream

8) Condition far down-

stream

9) Solution 1n inter-

ference potential

10) Formula for 3,

Steady Flow Equations

Perturbation velocity potential, ¢

V% = 0
b = USCrz 14 x
8r(y2+ z?) r

closed or open

1deal slotted

1]
=]

dgp/dx

[}
o

db/dx

Rearranged Equations

Special function, ¢

Vi = 0
b = - Ubz(x+ 1)
™7 8my? + 22)

closed or open

closed or open

]
[ =]

d¢'/dx

do'/ox

constant

¢, set on roof and walls, d¢,/dx = 0 ¢; set on toof, walls and downstream

on upstream and downstream

boundaries

_ _(b/USC,) fca¢, /d2),dx

boundary, d¢, /dx = 0 on upstream
boundary

= (l/UXad’:/az)z =y=g=0

Unsteady Flow Equations

Imaginary part of complex velocity

potential, c_ﬂ;,
2~
Vg, = 0

USEL z s1n (cx’/U)dx’
87 s (Ce—x'Y +y2+ 22)3"2

by = -
closed or open
1deal slotted
Iy /dx = 0

(_:S, = 0, on plane where qu, =0 on

tunnel axis

:;Sq set on roof and walls, a&u/ax =0
on upstream plane; q_S,, = 0 on down-

stream plane

= (b/wS-C—L Xa‘—bu /az)z =y=2=0

as w -+ 0

A S
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APPENDIX A

Rearranged flow equations

The velocity potentiel in incompressible oscillatory flow for a small wing is given By,

- - - ~ —jwa s
P = B + 1By = USCH L ze dx’, (A1)

8 (x__x')z_'_ y3+ zg"!/i

where « is the angular frequency of the oscillation.

For small w,

am - USC. T z{1 - wwx'/1D) dx’

87 [(x-x")* + y2 4 22)*2

USC, zl(x2+y2+ 22)'"* 4 4] (1 _wxteys z’)‘ﬂ)
B (yi+ z®)(x2+y2+ 22)1/2 u

On substituting r? = x24 y2 4+ z2, taking the imaginary part and treating EL as real,

& SE’L z(x +r)

mi
@ T TEm oy 42

Now the complex interference upwash at the centre of the tunnel has been given in equation

(15) of Ref. 1, which with slight rearrangement 1s,

6‘1—5‘“ . US-C‘L[6°+‘3|_"+ﬂ(§’_6_°f+W)+0(f_T]. (A3)
dz bh Br U\B h 28°n* 8

For incompressible flow 8 = 1; thus at the origin where x = 0,

o+—0-'ao

9z bh

I, Usc,, [5 tewh .] (ad)

With T, real, the imaginary part satisfies,
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w dz h3tJ (a5

For 1deal slotted tunnels a, ;/w satisfies the boundary condition,

bu Kby /@) by N/ @)
o e s e (A6)

Moreover, 1n incompressible fiow 5,, satisfies the Laplace equation
Thus 1t follows from equations (A2), (AS) and (A6) that 55 1s equivalent to the steady inter-

ference upwash (9¢,/9z)/U when the unconstrained potential due to the wing 1s,

& = - Ubz(x + r} )
" Brr(y2 + z2)

It should be noted that this method is not applicable to perforated or non-1deal slotted walls,

when the porosity parameter enters into the boundary condition (Ref 1)
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APPENDIX B

Unsteady flow equations

In oscillatory incompressible flow the complex velocity potential (_,'f; satisfies the Laplace

equation
2 T 2,
76, 0% T% _ o (B1)
dxt  dy? dz?

where & = ¢p + tq_!;, Both the real and imaginary parts, ER and g_b, , individuslly satisfy the
Laplace equation
The velocity potential due to a small wing 1n unconstrained flow is,
o0
- - U SEL 7 @ tUE 127 .

b = Dp+ 1¢,, = . (=P +y2s zz)3f2 dx (B2
o

Boundary conditions are as follows* for a closed wall,

B _ W (83
dn dn '
for an open boundary,
b =& =0, (B4)
whilst for ideal slotted walls,
br +Kddp/dn = &; + Kdd/on = 0 (B5)

Since the real and 1maginary parts of each of the above equations are independent 1t is permissible
to consider the real and imaginary parts separately
The parameter 5, can be denved from equation (A4) of Appendix A 1n terms of the complex

interference parameter, ¢, ,

—_ =1 —
5, - |@h USCY 99,
° (U bR | Jz (B6)
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Hence 8, can be calculated from the imaginary part of the complex potential The equations re-

quired to solve this problem for a small wing are as follows:

2 —

Ve, = 0,
with boundary conditions,
dby/on = —Obn/on
au = - asm.r !
or Sy + KdDy/on = — Gy —Kodo/on

oy SC, z sin{wx'/U) d

Where 2 8n d [(x=x") + y2 + 22)*2

B7

(B8)
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Fig. 2. Mesh spacing on a plane x = congtant, showing nodes
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