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A method for the calculation of the section thickness distribution to 
produce a given symmetrical pressure distribution near the critical Mach number 
is presented. By linearisation about a known solution, obtained by Sells' 
program, aNeumann problem with the ssme field equations but a different 
boundary condition is established, and the computer solution of this problem 
forms one link in 811 iteration sequence. In the symmetrical case studied, the 
sequence converged to a slightly different solution from that sought. Attempts 
at solution of the lifting problem have been unsuccessful. 

* Replaces R.A.E. Technical Report 68109 - A.R.C. 30621. 
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1 mTRCEUCTIOlV 

The aerodynamic section design problem is the counterpart of the direct 
subcritical flow problem for a given section, and presents its own special 
rewards for successful solution: for instance the pressure distribution csn 
be prescribed so that the turbulent boundary layer does not separate, and so 
that favourable drag-rise conditions obtain. No exact analytic method exists 
for either problem, but two computer programs now exist 172 which together 
provide the exact numerical solution to the direct problem, and it was felt 
worthwhile to see whether the design problem was also amenable to computer 
solution. 

By linearisation about a known solution (section), an iterative technique 
is developed to generate a sequence of sections, which would ideally converge 
to the desired section. At each stage, the calculation of the next section is 
cast as a Neumann problem, with the ssme field equations as the direct problem 
but a different boundary condition on the section, so that very little 
reprogramming is needed to solve the equations. The sequence indeed converged, 
for the symmetrical case studied, but to a slightly different snswer from that 
sought. When a lifting case was attempted, the sequence failed to converge at 
all, and so this attempt to solve the most interesting problem of section 
design must be counted a failure. However, it is thought worthwhile to place 
the method and its one concrete result on record. 

2 LmXARISATION CF THS PROBLEM 

The method depends fundamentally on perturbations from a known section, 

so SW. First we establish the coordinate system. If z, c, c are complex 
variables, the contour So and its exterior in the z plane (Fig.1) csn be 
mapped conformally onto the unit circle and its exterior in the 5 plane 
(Catherall'); the mapping function c = l/r then transforms this region into 
the interior of the unit circle in the c plane, and polar coordinates r,S 
are fixed at the centre of this circle so that 0 d r 5 1 is the image in the 
CT plane of the exterior of So in the a plane (Fig.2). Using these 
coordinates, for subcritical Mach numbers the flow round So can be computed 
(Sells2). 

Let the solution for some incidence a and Mach number M be 

JI = JI, he) 

where $ is the stream function, introduced to satisfy the equation of 
continuity. 

(2.1) 



Row keep the mapping function z = z(u) fixed, aud consider a section 
S, in the z plane which differs slightly from So. Let the image of S, * 
in the c plane be (Figs.3 and 4) 

r = l-R(B) (2.2) - 

where IRI << 1, and suppose that the corresponding stream function represent- 
ing the solution for S., at the same M and given C is 

P 

JI = 6, (r, e) = JI, + y (1; 0) 

where T represents a small perturbation. 

(2.3) 

Suppose that the desired pressure distribution is Cp = C . Then from 
Pl 

Bernoulli's equation and the equation of state with y = 1.4, the speed q, 
snd density o, (scaled with respect to free stream values) on the body are 
given by 

2 
q1 

= 1 + -$ [I - (1 + 0.7 M2 Cp,)2'71 

and 

Pl = (1 + 0.7 I? cp,g7 . 

By definition of $, on S., 

in the c plane ldrl = ldcl 
where n is the outward nom&to S.,. IVow in the z plane ldul = ldzl and 

f so 

Iql = PI B I q1l approximately (2.4) 

where B = Idz/dol on r = 1; linearisation allows us to transfer the evalua- 
tion of B from S, (where it is at present uuknown) to So. 

The actual sign of c$,/dr is most easily determined from the analogous 
incompressible solution without circulation, JI = (r - l/r, sin 8; we see that 
a*,lar is positive on the lower surface of S,, which corresponds to 
0 < .9 < eL where @b gives the position of the leading edge staguation point, 
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and &#,/dr is negative on the upper surface. (For the symmetrical section 
at zero lift the stagnation point is at the leading edge and the sign 
determination is trivial.) Hence a+,/dr is determined from the given 
pressure distribution C 

p1' 
in magnitude and sign. 

NOW 

(i,e) + 0 (R2, . 

Rut the boundary conditions in the direct problems for So, S, are: 

$0 
= 0 on So:r = 1 

$1 = 0 on S,:r =1-R . 

Hence, to order R2 

0 = Y - R aJI,/ar 

(2.5) 

The evaluation of Y will be considered in the next section. The distribution 
of R(B) follows from (2.6), and we can then determine the corresponding 
distribution of ds in the pbsical plane. We have 

(2.7) 

and a displacement dz outwards from the surface So (Fig.4) corresponds to 
a displacement dc into the circle r d 1 from its boundary (Fig.3), i.e. to 
R positive, from (2.2); the displacement in the physical plane will be inwards 
when R is negative. In this way we obtain a linear approximation to S,. 

The process outlined must be part of sn iteration cycle, because the 
non-linear effects have been neglected in the enalysis so that the answer found 
is not necessarily the answer required. In the iteration cycle, having com- 
puted 5, we can find the transformation that maps S, onto a circle, so 

u: 
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that a new set of B’s is known, and we can aleo compute the flow rouud S,; 
if this is a better approxixation to the desired flow than the origlual flow 

round So, then we may tentatively hope that the iteration procedure con- 

I 

. verges. S, then takes the place of So in the cycle, a mw section (SS say) 
is found and the process continues. 

3 mm1oB BBTAIIS 

3.1 The streem fuuction perturbations 

The major problem is to compute the small perturbation V. To do this 
we extend the method of Sells* for the direct problem. When the velocity E 
and density o are scaled with respect to free stream values, the field 
equations are : 

cant inuity : v.(p u,, = 0 (3.1) 

Irrotational flow: VXE = 0 (3.2) 

Y-1 
Bernoulli: p;7-,)++u2 = $(;-,)+” . (3.3) 

Equation (3.1) is satisfied by introducing the stream function qo, and then 
in the direct problem for So the boundary condition on 9, at r = 1 is 

qo=o . (3.4) 

There is also a complicated boundary condition as r-+ 0. Equations (S.S), 
(3.3) and (3.4) are solved iteratively for $, and p to give the flow field 
outside So. Because (3.4) does not involve the normal derivative N,/dr, 
the problem is of Mrichlet type. 

Here the problem is to find sn approximation to the stream function 9, 
for the flow past S, in the So working plane. The condition 4, = 0 now 
holds on the image of S,, r = 1 - R(B), and not on So; but because we are 
seeking a prescribed pressure distribution C 

Pl 
, we can instead use (2.4) to 

prescribe W,/or on S, (within the linear approximation for B), snd since 
R is assumed small we transfer the whole condition to So within the linear 
approximation. So the boundary condition on r s 1 becomes 

T 
xF= function of C 

Pl 
(3.5) 



and the problem posed by (3.2), (3.3) end (3.5) is HOW of Neumann type. unless 
the new problem is supercritical, or some other factor intervenes, the same 
iterative technique can be used as before, values of $', on r=l now being 
determined within the iteration with the aid of (3.5), and then since $o = 0 
0* r = 1, the small perturbations Y ~111 be just the converged values of 

$1 - 

The reprogramming needed to solve (3.5) rather than (3.4) is almost 

trivial. Finally we remark that, when the symmetrical aerofoil at zero incl- 

dence is studied, the Kutta condition at the trailing edge 1s automatically 
satisfied; when a lifting case at given M is studied, CN IS prescribed and 

so the circulation is determined; the Kutta condition then becomes, III 
principle, an iterative equation for the incidence, just as 111 the corresponding 

Dirichlet problem for $,. 

3.2 The new points on the new section 

We now have enough information to compute the displacements IdsI from 

so to %, by (2.7) at each grid point. 

We now mention briefly how the normal is computed. Since the grid points 
are equally spaced on r = 1, the tangent to So at the point ZK = xK + i yK 
will be in the direction of the line joining the points %+I' 'K-1 ' mth a 
second-order error (Fig.4); if the zK go clockwise round So as K 
increases, the unit outward normal ~111 be on the left following the curve, and 
so will be given by the complex number 

(3.6) 

Then from (2.6) and (2.7), the point on S, corresponding to zK on So IS 

sK+"K+ . 

Now (Catherallf) the transformation z + r + o is such that )dz/dt:I + 1 in 
the free stream; then for a map onto the unit circle in the o plane the 

chord c of the aerofoil is fixed (and can be calculated). In general we work 
with section ordinates x/c, y/c, and so here we rewrite the formula (3.7) as 

sK "K BY 
c+:sqjG * (3.8) 



3.3 Under-relaxation round the leading-edge 
c 

When the program was run on a symmetrical section, it was found that the 
pressure distribution was very sensitive to the near-leading-edge corrections 
and that considerable supersonic peaks were introduced at first. So the 
corrections were arranged to decrease in proportion as the leading-edge was 
approached; satisfactory results were found by leaving all the corrections 
alone eight or more grid points from the leading-edge (sixty points were taken 
all round the section) and decreasing the corrections at the nearer points in 
proportion, the nth point away receiving n-eighths of the value in (3.8). This 

conveniently sets the correction to zero at the leading-edge itself; for the 
symmetrical section Y and d$,/dr vanish together there, so the correction is 
indeterminate. T!his system is a compromise, as it partly abendons the results 
of the linear theory in favour of the programmerss judgment, but it happens 
to produce a result for the symmetrical section. 

4 RESJLTS 

4.1 The symmetrical case 

The symmetrical lO$ thick RAE 101 section was used to start the itera- 
tions. At zero incidence the critical Mach number is about 0.75 end there is 
a triangular peak at about x/c = 0.3. The goal sought was a rooftop pressure 
distribution C P = Cp/mex from x/c-O.05 to x/c = 0.4, as near critical 
as possible at M = 0.75, with a steep linear rise region near the leading-edge 
and a linear fall region from x/c = 0.4 back to near the trailing edge. The 
input value of Cp/mex was -0.53C0, compared with the critical value 
Cp/crit. = -0.5912. 

The pressure distribution attained after nine iterations is shown in 
Fig.5; the PAW 101 pressure distribution is given also, for comparison. We 
shall refer to this section as the NlOlll; this is the author's file number 
for this particular section end has nothing to do with any external nomen- 
clature. These two sections are shoun in Fig.6, and the upper surface co- 
ordinates are listed in Fig.6a. We see that the Xl0111 is thicker (10.6s at 
35% chord) and has lower leading-edge curvature then the RAE 101 (for the 
NlOlll (p/2c) 4- - 0.0816, for the RAE 101 it is 0.061781). The corresponding 
incompressible pressure distributions are shown in Fig.7. That, for the RAE 101 

resembles a rooftop up to x/c = 0.3, by design; that for the NlOlll has a 

leading-edge peak, which is flattened by compressibility effects as M tends 
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to critical. This demonstrates anew the vanity of incompressible theory in 
the design of high Mach number aerofoils. 

On examination of Pig.5, we notice that the rooftop is a trifle bumpy. 
This is a legacy from the previous section shapes obtained during the iteration, 

small peaks at the front of the intended moftop were left behind even with the 
under-relaxation technique described in sub-section 3.3, and these oscillated 

as the iteration proceeded from section to section before gradually dying out 
to leave only the marginal bumps of N10111. Fig.8 shows these peaks in the 
pressure distribution of an intermediate section iterate (N1016 in the author's 
file). The rear of the rooftop here is actually less bumpy than the NlO1l1. 
Next, it is observed that although the input Cp/max was -0.5300, the effective 
value of Cp/max for the NIOI I1 is only about -0.51; and there was no 
substantial change from the last section iterate in this regard. Thus the 
linear scheme has converged to the wrong answer. As mentioned at the end of 
section 2, this and the pesky behaviour of the previous section iterates may 
be due to neglected non-linear effects, especially round the leading-edge where 

the pressures are so sensitive; no difficulty has been experienced behind the 

rooftop, except that on a few section iterates the trailing edge had to be 
straightened out to eliminate unwanted concavity or convexity, before continu- 

ing with the conformal mapping program'. 

4.2 The lifting case 

No worthwhile results have been obtained at all for the lifting case, 
which is unfortunate because this is the case of interest in section design. 
What happens here is that at the first iteration peaks appear at the front and 
rear of the intended rooftop, and to get rid of these a very luclry guess for 
the under-relaxation scheme would be needed (if no under-relaxation is used at 
all, the points convolute and do not lie on eny sensible section); failing 
that, as iteration proceeds the peaks go supercritical and cannot be reduced. 
One reason in theory why things go wrong is that near the leading-edge stagna- 
tion point o$l/or is small but Y (as computed by the Neumann program) is 
not, so that the linearisation process based on (2.6) breaks down. The author 
has tried to correct this by taking the Taylor series (2.5) to one more term, 
order R2, and using the values of d2$,/dr2, but this quantity (as computed) 
fluctuates around zero near the leading-edge (this is to be expected from the 
proximity of the streamline ql = O), end no discernible improvement was found, 
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even with severe under-relaxation. This could mean, for instance, that the 
picture of Fig.3, where normal displacements in the two planes correspond, no 
longer holds. It was concluded that the Leading-edge modifications predicted 
by this simple theory bore little relation to those required in practice, and 
so this line of attack was abandoned. 
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Fig.1 Section So and grid in physical plane 



Fig. 2 The regular grid In the working (c) plane 



Fig. 3 Images of So and S, in the CY plane 

Fig.4 The perturbation section S, 
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