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SUMMARY

A method for the calculation of the section thickness distribution to
produce a given symmetrical pressure distribution near the eritical Mach number
is presented. By linearisation about a known solution, obtained by Sells?
program, & Neumann problem with the same field equations but a different
boundary condition 1s established, and the computer solution of this problem
forms one link in an iteration sequence, In the symmetrical case studied, the

sequence converged to a slightly different solution from that sought. Attempts
at solution of the lifting problem have been unsuccessful.

* Replaces R.A.E. Technical Report 68109 - A.R.C, 30621,
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1 INTRODUCTION

The aerodynamic section design problem is the counterpart of the direct
subcritical flow problem for a given section, and presents its own special
rewards for successful solution: for instance the pressure distribution can
be prescribed so that the turbulent boundary layer does not separate, and so
that favourable drag-rise conditions obtein, No exact analytic method exists
for either problem, but two computer programs now exist1’2 which together
provide the exact numerical solution to the direct problem, and it was felt
worthwhile to see whether the design problem was also amenable to computer
solution,

By linearisation about & known solution (section), an iterative technique
is developed to generate a sequence of sections, which would ideally converge
to the desired section. At each stage, the calculation of the next section is
cast as a Neumann problem, with the same field equations as the direct problem
but a different boundary condition on the section, so that very little
reprogramming is needed to solve the equations, The sequence indeed converged,
for the symmetrical case studled, but to a slightly different answer from that
sought, When a lifting case was attempted, the sequence failed to converge at
all, and so this attempt to solve the most interesting problem of section
design must be counted a failure, However, it is thought worthwhile to place
the method and its cne concrete result on record.

2 LINEARTSATION OF THE PROBLEM

The method depends fundamentally on perturbations from & known section,
SO say. First we establish the coordinate system, If 2z, ¢, o are complex
variables, the contour §_ = end its exterior in the z plane (Fig.1) can be
mapped conformally ontoc the unit circle and its exterior in the ¥ plane
(Catheralll); the mapping function o = 1/t then transformes this region into
the interior of the unit c¢ircle in the o plane, and polar coordinates r,0
are fixed at the centre of this circle so that 0 £ r £1 is the image in the
¢ plane of the exterior of So in the z plane (Fig.2). Using these
coordinates, for subcritical Mach numbers the flow round So can be computed

(Sellsa).

Let the solution for scme incidence o and Mach number M be

LA (r,0) (2.1)

where ¢ 1is the stream function, introduced to satisfy the equation of
continuity.



Now keep the mapping function 2z = z{o) fixed, and consider a section

S.l in the =z plane which differs slightly from So' Let the image of S'l
in the ¢ plane be (Figs.? and 4)

r = 1 -R(6) (2.2)

where |R| << 1, and suppose that the corresponding stream function represent-
ing the solution for S1 at the same M and given C'p is

v = ‘4’1 (r:e) = ‘J’o + ¥ (ra ) (2-5)
where ¥ represents a small perturbation.

Suppose that the desired pressure distribution is CP = C o * Then from
1
Bernoulli's equation and the equation of state with ¥ = 1.4, the speed 9

and density P1 (scaled with respect to free stream values) on the body are
given by

q$ = 1 +:—2{1 -+ M cp_l)a/fl

and

- 517
pp = (1+o.7necp1)/ .

By definition of ¥, on S.I

1 %N
lul = 5 5=
where n is the outward normal to S,. Now in the z plane |@n] = |dz] and
in the ¢ plane |dr| = [do], s0
Gﬂ!-l dz M
e B b lqy] = pq B g4l approximately (2.4)

where B = |dz/do| on r =71; linearisation allows us to transfer the evalusa-
tion of B from § (where it is at present unknown) to 5, -

The actual sign of aw1 /ar is most easily determined from the analogous
incompressible solution without circulation, ¢ = (r - 'l/r) sin 8; we see that
6411 /ar is positive on the lower surface of S.l s which corresponds to
0 <8< QL where QL gives the position of the leading edge stagnation point,



and a¢1/ar is negative on the upper surface. (For the symmetrical section
at zero lift the stagnation point is at the leading edge and the sign
determination is trivial.) Hence aw1/ar is determined from the given

pressure distribution Cp » in magnitude and sigm.
1

Now

¥
v, (1 -R8) = ¥, (1,0) - R(—5£-> (1,6) + 0 (&)

Oy
- v, e Y (L0 - R[5 ) (L) w0 () (2.5)

But the boundary conditions in the direct problems for So’ S1 are:

wo = 0 on S0 tr = 1
¥7 = 0 on S1 :r = 1 =-R ,
2
Hence, to order R
0 = ¥ - Ry, or
R = ¥ (2.6)
6w170r * *

The evaluation of ¥ will be considered in the next section. The distribution
of R(€) follows from (2,6), and we can then determine the corresponding
distribution of dz in the physical plane. We have

| az| |ds] = B |R| (2.7)

4z
do

and a displacement dz outwards from the surface S° (Pig.4) corresponds to
a displacement do into the circle r =1 from its boundary (Fig.3), i.e. to
R positive, from (2.2); the displacement in the physical plene will be inwards
when R is negative. In this way we obtain a linear approximation to S1.

The process outlined must be part of an iteration cycle, because the
non=-linear effects have been neglected in the analysis so that the answer found
is not necessarily the answer required. In the iteration cycle, having com-

puted S1, we can find the transformation that maps S1 onto a circle, so
*



that a new set of B%s is known, and we can also compute the flow round S.I;
1f this is a better approximation to the desired flow than the original fiow
round So, then we may tentatively hope that the iteration procedure con-
verges, 81 then takes the place of So in the cycle, a new section (82 say)
is found and the process contimues,

3 COMPUTATION DETAILS

3,1 The stream function perturbations

The major problem is to compute the small perturbation ¥. To do this
we extend the method of Sellsa for the direct problem. When the velocity u
and density p are scaled with respect to free stream values, the field
equations are:

Contimuity: vpu) = 0 (3.1)

Irrotational flow: vxu = 0 (3.2)
7-1 2 1

Bernoulli: —P—m 0+ (3.3)

e (7 - 1) b =M2(7-1)+% .

Equation {3.1) is satisfied by introducing the stream function ¥ ) and then
in the direct problem for So the boundary condition on Wo at r=1 1is

vy, = 0 (3.4)

There is also a complicated boundary condition s r ~* 0, Equations (3.2),
(3.3) end (3.4) are solved iteratively for V, and p to give the flow field
outside S . Because (3.4) does not involve the normal derivative awo/ar,
the problem is of Dirichlet type.

Here the problem is to find an approximation to the stream function W.I
for the flow past S.l in the So working plane, The condition ‘*‘1 =0 now
holds on the image of S1’ r =1 - R(8), and not on So; but because we are

seeking a prescribed pressure distribution Cp , We can instead use (2.4) to
1
prescribe aw1 Jor on S.| (within the linear approximation for B), and since

R is assumed small we transfer the whole condition to So within the linear
approximation, So the boundary condition on r =1 becomes
GW1

5y = function of cp'l (3.5)



and the problem posed by (3.2), (3.3) and (3.5) is now of Neumann type., Unless
the new problem is supercritical, or some other factor intervenes, the same
iterative technique can be used as before, values of w1 on r =1 now being
determined within the iteration with the aid of {3.5), and then since wo =0
o r =1, the small perturbations ¥ will be just the converged values of
Vq o

The reprogramming needed to solve (3.5) rather than (3.4) is almost
trivial, Finally we remark that, when the symmetrical aercfoil at zero inci-
dence is studied, the Kutta condition at the trailing edge 1s automatically
satisfied; when a 1lifting case at given M 1is studied, CN 15 prescribed and
50 the circulation is determined; the Kutta condition then becomes, in
principle, an iterative equation for the incidence, just as in the corresponding

Dirichlet problem for wo.

5.2 The new points on the new section

We now have enough informetion to compute the displacements |dz[ from
8, to 8, by (2.7) at each grid point,

We now mention briefly how the normal is computed. Since the grid points
are equally spaced on r =1, the tangent to S0 at the point 2g = xK + i Yk

will be in the direction of the line joining the points with a

Zg+1’ 2RV’
second-order error (Fig.4); if the Zp &0 clockwise round So as K
increases, the unit outward normal will be on the left following the curve, and

so will be given by the complex number

- Z

z
K+1 K-1
. (3.6)
’zK+1 - ZK-1]

nK = i

Then from (2.6) and (2.7), the point on S, corresponding to Ze on SO 1S

BY
k * UK 5%, /6 - (.7

Now (Catherall1) the transformation z — ¥ - ¢ is such that |dz/dZ] ~+ 1 in
the free stream; then for & map onto the unit circle in the ¢ plane the
chord ¢ of the aerofoil is fixed (and can be calculated). In general we work

with section ordinates x/c, y/c, and so here we rewrite the formula (3.7) as

z
K "k BY
-c_ + ""é_ aw‘] rar' . (3-8)



3.3 Under-relaxation round the leading-edge

When the program was run on a symmetrical section, it was found that the
pressure distribution was very sensitive to the near-leading-edge corrections
and that considerable supersonic peaks were introduced at first. So the
corrections were arranged to decrease in proportion as the leading-edge was
approached; satisfactory results were found by leaving all the corrections
alone eight or more grid points from the leading-edge (sixty points were taken
all round the section) and decreasing the corrections at the nearer points in
proportion, the nth point away receiving n-eighths of the value in (3.8)., 'This
conveniently sets the correction to zero at the leading~edge itself; for the
symmetrical section VY and 6¢1/6r vanish together there, so the correction is
indeterminate, This system is a compromise, as it partly sbandons the results

of the linear theory in favour of the programmer®s judgment, but it happens
to produce a result for the symmetrical sectionm.

4 RESULTS

4,1 The symmetrical case

The symmetrical 10% thick RAE 101 section was used to start the itera-
tions. At zero incidence the critical Mach number is about 0,75 and there is
a triangulasr peak at about x/c = 0.3, %The goal sought was a rooftop pressure
distribution ¢, Cp/max from x/c=0.05 to x/c = 0.4, as near critical
as possible at M = 0,75, with a steep linear rise region near the leading-edge
and a linear fall region from x/c = 0.4 back to near the trailing edge. The

input value of qp/max was =0,5300, compared with the critical value
cp/crit. = =0.5912,

The pressure distribution attained after nine iterations is shown in
Fig.5; the RAE 101 pressure distribution is given also, for comparison, We
shall refer to this section as the N10111; this is the author?s file mumber
for this particular section and has nothing to do with any external nomen-
clature, These two sections are shown in Fig.6, and the upper surface co-
ordinates are listed in Pig.6a. We see that the K10111 is thicker (10.6% at
35% chord) and has lower leading-edge curvature than the RAE 101 (for the
N10111 (p/ac)% = 0,0816, for the RAE 101 it is 0,061781)., The corresponding
incompressible pressure distributions are shown in Fig.7. That for the RAE 101
resembles a rooftop up to x/¢c = 0.3, by design; that for the N10111 has a
leading-edge peak, which is flattened by compressibility effects as M tends



to critical, This demonstrates anew the vanity of incompressible theory in
the design of high Mach number serofoils,

On examination of Fig.S, we notice that the rooftop is a trifle bumpy.
This is a legacy from the previous section shapes obtained dquring the iteration,
small peaks at the front of the intended rooftop were left behind even with the
under-relaxation technique described in sub-section 3.3, and these oscillated
a8 the iteration proceeded from section to section before gradually dying out
to leave only the marginal bumps of N10111, Fig.8 shows these peaks in the
pressure distribution of an intermediate section iterate (N1016 in the author's
file). The rear of the rooftop here is actually less bumpy than the NK10111,
Next, it is observed that although the input Cp/max was -0.5300, the effective
value of Cp/max for the Ni10111 is only about -0.51; and there was no
substantial chenge from the last section iterste in this regard. Thus the
linear scheme has converged to the wrong answer, As mentioned at the end of
section 2, this and the peaky behaviour of the previocus section iterates may
be due to neglected non-linear effects, especially round the leading-edge where
the pressures are so sensitive; po difficulty has been experienced behind the
rooftop, except that on a few section iterates the trailing edge had to be
straightened out to eliminate unwanted concavity or convexity, before continu-

1
ing with the conformal mapping program .

4.2 The lifting case

No worthwhile results have been obtained at all for the lifting case,
which 1s unfortunate because this is the case of interest in section design.
What happens here is that at the first iteration peaks appear at the front and
rear of the intended rooftop, and to get rid of these a very lucky guess for
the under-relaxation scheme would be needed {if no under-relaxation is used at
all, the points convolute and do not ;ie on any sensible section); falling
that, as iteration proceeds the peaks go supercritical and cannot be reduced.
One reason in theory why things go wrong is that near the leading-edge stagna-
tion point awl/ar is small but ¥ {as computed by the Neumann program) is
not, so that the linearisation process based on (2.6) breaks down, The author
has tried to correct this by taking the Taylor series (2.5) to one more term,
order Ra, and using the values of aawl/ara, but this quantity (as computed)
fluctuates around zero near the leading-edge (this is to be expected from the
proximity of the streamline ¥y = 0), and no discernible improvement was found,



10

even with severe under-relaxation., Thig ecould mean, for instance, that the
picture of Fig.3, where normal displacements in the two planes correspond, no
longer holds, It was concluded that the leading-edge modifications predicted
by this simple theory bore little relation to those required in prectice, and
so this line of attack was abandoned.
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Fig.3 Images of S, and S in the & plane

Fig.4 The perturbation section 5,
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Fig.6a Ordinates of N10111
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Fig.8 Pressure distribution for intermediate section iterate NIOI6
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