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SUMMARY

An asnalysls is given of the relationship between power spectra of image
density verimtions in s schlieren film of a hypersonic weke and the power
spectra of gas density varlations in the wake, Some results are given for
the applicaetion of this theory to the schlieren film produced in an R.A.R.D.E.
hypervelocity range test,
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1 INTRODUCTION

This paper describes some work on the deduction of density variations in
the hypersonic weke from schlieren photographs taken in the R.A.R.D.E. No.2
hypervelocity range. A method is described by means of which the autocorrela-
tion and spectrum functions of the density veriations in the wake may be
calculated from the sutocorreletion and spectrum functions of the schlieren
film density variations.

Cley, Herrmann end Slattery1 at Lincoln Laboratory have reported work
done on similar lines, in which a much larger quantity of experimental results

was analysed.

2 THE EXPERIMENTS

The wake studled in this repert was that of a 5/8 in sluminium sphere
fired at 12000 ft/sec into air et 100 mmHg pressure, The Reynolds number
based on body diameter was 3.4 X 105 . The wake was photogrephed at a point
268 body diameters (8 ft 4.5 inches) behind the body; at this point it was
1.8 inches (4.7 body diameters) wide. Photographs were taken using a spark
source and a single pass schlieren system giving a fullesize image. The
knife~edge was parallel to the wake axis. Typical photogrsphs are shown in
Fig.l.

A Joyce Loebl double-beam recording microdensitometer, model E12
Mark ITIT, was used to measure schlieren film demsity. Traverses were taken
parallel to the wake axis. The microdensitometer output for each traverse
wes a pen recording on white paper. These recordings were photographed on
35 mm film in R.A.E, Printing Department and the films were read on the
digital film reader at R.R,E. Malvern, The ocutput of this film reader was an
8-hole paper tape which could be read by the R.A.E. ICT Mercury computer.

3 MATHEMATICAL RELATIONSHIPS

For a single-pass schlieren system2

On(xq,x,, x!

f 1 17 72?

h(x,x,) = Efﬁ' 5%, 2 axf . (1)
-4




For air,
nu1+09 (2)

80

£ op(x,,x,,xt)
h(x;,x,) = _f_ag f Pﬁazﬁ ax} . )

Uberoi and Kovasznsy3 give a discussion of the problem of determining

the stetistical properties of a quantlty from the statistical properties of
the ocutput of a measuring system, They consider the case in which a quantity
to be measured, U(s), 1s related to the output of the measuring system, 0(x),
by the equation

(x) = S K@x, s) U(s) ds »
where the integration is over the whole of s space, K(Jf, 8), which

expresses the operation of the measuring system, may be a generalised
ﬂmctionu. For example,

K(x, 8) = 5(s - x) (5)

makes §(x) equal to U(x). This is the case of a perfect instrument.

Uberoi and Kovaszney consider particulerly the case where U(x) is
statistically homogeneous and infinite in extent and the response character-
istics of the measuring system are independent of positlion in the field.

Then
a(x) = S K(z - x) U(s) ds (6)

or, with a change of variable,

a(x) = S K(3) U(x+g) as . (7)



Tt 1s possible to express the schlieren relationship (3) in the
form (7)0

Defining

p*(x.‘,xz, {xj' + xj}) = P(x-l:xa,xi)

and
B(x) %y Xg) = B, %)

then 1t 1s possible to rewrite (3) in the form

L
£ 0 EN Op* (xq, X, 85)
Blxpxpy %) = 5 f:. 5 3
x}-—

It is shown in Appendix A thet if a function K(s) is defined by

K(g) = -E£8061(s,) 8(s)) , [sg] 54
o , |33[>z
then

hix) = J K(s) p*(x + 8) ds .

(8)

(9)

(10)

(11)

(12)

(13)

It now becomes possible to apply the enalysis of Uberol and Kovasznay to the

schlieren problem, They show that if V() end S(k) are defined by

V() = f K(s + 1) K(s) ds

and

(14)



sk) = J ¥(z) e kT dz (15)
then the relationship between the spectra Gk) and P(I.E) is

P{k) = s(k) 6*(x) . (16)

In Appendix B the functions ¥(%¥) and S(k) are found for the K(s) defined
by (12). The result is

B2 o roin kg 1N .
P(x) = ll-aT-kz(——k—:L) G* (k) . (17)

If the gas density fleld is homogeneous and isotropic then

L3

r) = 4ES ki(sink} ) fj‘:{% (18)

The relationship between 7, (k‘l) and I'(k) is
74 (k-]) JS (k) dk,, dk3 . (19}

It is shown in Appendix C that (18), (19) yield the relation

G(k)=“f202:, { jd—ﬂ—[k17(k.,)]:1k1——:k’)¥}.(ao)

A gimilar analysis (Appendix D) ylelds

G{k) = -::zfzczf [ 72(1&2)]—2? (21)



(20) and (21) are relations by means of which the one-dimensional spectrum
function of the density variations in the flow field may be found from the
spectrum functions measured on the schlieren film,

For the cases where 7](k1) or 72(k2) may be expressed as series in
negative powers of k, and k,, the integrals in (20) and (21) may be
evaluated analytically to give expressions for G(k), which are series in
negative powers of k. (Appendix E;)} If G(k) hes the form of an inverse
q power law for all values of k £ some value ko, then 71(k]) follows an
inverse (q-1) power law if ¢ > 2, and 72(1:2) follows an inverse (q - 1) power
law if q > 1, in both cases over the range Z ko' 1This relationship is the
same a8 that found by Cley, Herrmann and Slattery ; their function Sp is,
apart from & constant factor, equivaletnit to the G*(g) = jiﬂﬂé of the present

«
report. it

The relationship between the one-dimensional and three-dimensional
spectra of density variations in the flow is

[=]
P(k,) = %f Glk) g (22)

ky

for a homogeneous isotropic field. This result is proved in Appendix F.

The integral in (22) may be evaluated analytically for the case where
G(kx) is expressible as a series in negative powers of k. (Appendix F,) If
G(k) follows an inverse q power law for all k 2 some value k_, then F(kT)

follows the same power law for k1 2 kb’

4 DATA REDUCTION AND RESULTS

A programme was written for the R.A.E. ICT Mercury computer which
analysed the data on the tape produced by the film resder., Autocorrelstion
and spectrum functions of the film density variations Wwere calculated from
the standard formulae given by Blackman esnd Tukey5 with a2 hanning window of
15% of the length of the wake traverse. The spectrum function G(k) of the
density variations in the wake was then calculated by means of equation (20)
on the assumption that the field was homogeneous and isotropic. The one-
dimensional spectrum function F(kj) was calculated from equation (22). Power
law lipnes were fitted to the spectrum functions by a least squares process,
All these operations on each wake traverse were done by one run of the

computer programme.



Values obtained for the power of wave number glving the best fit to
the spectra were as follows,

Table 1

Wave number index of spectrum functions

Film Flow Flow
Traverse one=- three-~ one-
dimensional | dimensionsl | dimensional
74(xy) G(k) F(k,)
AAl -~1.64 -1.15 -2.84
AAZ -1.47 -1.10 -2.56
BB1 -1.70 -0.97 -2.,86
BB2 -1.72 -1.09 242
Mean for
AA -1.56 -1,12 -2.70
Mean for
BB -1.7 -1.0% -2.64
Overall
mean ~1.63 -1,08 -2.67

Measurements were made on two negatives, 1 and 2, derived from a schlieren
photograph reproduced as the lower picture in Fig.l. Traverses AAl, AA2 were
taken at a distance 0,75 of the wake radius from the wake axis; traverses
BB1 and BB2 were taken at 0,55 of the weke radius from the wake axis. It is
seen that the spectrum derived directly from the film density comes much
cloger to the -5/3 power law expected for homogeneous isotroplc turbulence
than does that allowing for the 3-dimensionality of the field (for which =1
is a better approximation to the data). In fact however the assumption of
homogeneocus isotroplic turbulence 1s not necessarily a good one especilally for
an off-axial slice of an axisymmetric wake, which might be expected to include
a falrly large proportion of low-wave-number eddies for which a power-law
repregentation of the spectral function is inappropriate.



More sccurate velues for the spectral density especlally at the
low-wave-number end could only be obtained by anslysis of longer strips of
wake (in terms of wake diameter), but these were not obtainable with the
exlsting schlieren windows at R,A.R.D.E,

In conclusion, the technique of analysing films by means of a densi-
tometer to obtain turbulent spectra appears a valuable one, but the inter-
pretation is very sensitive to the particular assumption made about the type
of dlstribution, and an iwmprovement on that of spatizl homogeneity would be
desirable,
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Appendix A
SR Mz e @ = -2 [ 80 8(s)) prix+ 0) an
|83| =2

28 [ ar(a, - x) B(sy - x,) pr(e) an

by change of variasble

- L€ ff&(s - x, [fa'(s -xa)p*(s)ds]ds.lds}

P 5%y 5 4

- Ifﬁ(s - x,) [fﬁ(s -x2) a‘;*ss)ds:lds

NE 5-%3| 52

by integration by parts
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Appendlx B

¥({T) = [ K(a+1T)K(s) ds

£

= —:émf [6'(32 + 1:2) 6(3.l + 'c1)] [5'(32) b(s.‘)] ds

and all values of s.I and 8,

2
- —-;‘,—2— f d.:s3 fﬁ'(82+12) 6'(32) 5(1:.!) ds,,

syrange
= - fage f f.l.zs3 6(t1)f5(s2) 5"(82 + 1:2) ds,,
& s range
3
- --fo—g-z— f <:'L-a3 6(t1) 6"(1:2) .
& s, range

The dependence on ‘53
shown in Fig,2, This range is

of the range of infegration with respect to 83 is

+ (24 - I'c.jl) i vy =2t

0 > .
if |13| 24
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Therefore

8(x)

Appendix B

viE) = - nga (2% - |'c3|) 5(z,) 8"(x,)

a
s 24
i1f |1:3| 2
= >
0 if |1:3| 24

Jv@) e ar

£2c° o~k n
g acs { 5T (22 - |7,]) 8(5,) 3(c,) ax

& |'z:5 s 28
22
27 ik, Ty
- 2 f (22 - l""_v,') e d‘}
-24
- T
X[ e i 8(z,) a,
-1k T
X[ e :Lke e 6"(1:2) d-cz
2 24
age{f(x?&-t;)e 3d1:+f (2:,“: “5}
(o]
R

XS 81(c,) (-ik,) e dc,,
f'2C2 ¥ -:Lk}tj itjtj
":§“f(25-f5)(e + e ):!t:t:3
o

-ik T
X/ 56, (D) e 22



Appendix B
27 J
2P f 2
= —a—a— 2(2&*'53) 008]%1:3 d':} k2
o]

24 22

kg{[i]; (sin ks ©,) (24 - 1:3)] + f -1%3— sin X, T, d.‘l:a}

1+ 0

2i‘2

-]
1%

k

28
1
-—coska‘t]
3
[+

2

llfida kg (31:11;3 &)2

-

Therefore

in k, 22

a
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Appendix C

7,08 = JF D) ax, d

- (Y e,

W2 5

If 2 is much larger than the scale of the density variations,
{ (sin ky &)/k.j]2 has aimost the effect of a Dirac delts function, so that

PRy o O kgl%)

7,(k) = —— .
10 i 22 dk,
Let
k'aakﬁ'!'kg .
Then

i

rytey) - Sk f‘k'2 i v

- fzzz"‘lz/q./kz-kfk” 6(k) dk
1

k 00

- facZ‘U k7 a(x) de, ¥ -kf]k

a =]

1

-f2§‘f<fk'1 G (k) dk)i(ke-k‘?)“%akdk.
P

The first of these two terms is zero.



Appendix C

This equation may now be inverted by the method given by Uberol and
Kovasznay in their sppendix.

k, o
2
-1 2a d x dk
‘;f k™ a(k) dk 5 k$ ;f 4 [k 71(1{)] -———————(ke - kf)% .
1

Therefore

00
e Ul i;; P dl: {1:_2 f E%[k 7’(k)] (k2k-di:2)%} )

Equation (20) may be obtalned by interchenging k and k.

15
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mendix D

7plk;) = ff P(x) dk; dk,
- e[

If 4 1s much larger than the scale of the density variations,
{ (sin 113&)/153]2 may be replaced by a Dirac delta function as in Appendix C
to glive

224 [ o5 5h

7, (k) = K dk .
2V a2 2 2 4 K2 1
1 2
Let
- 2 2
k K+ kg .
Then
2P4 2 [
1 L
7o) = DS f G(e') kb s
2
a X kt X2 k2
2 2
£Es 2 [
L. 2 -1 2 - o
x 5 kefk G(k) (k kg)%dk .
a8
k,
Inverting,



Appendix D

Therefore
2 ©0
2a d -1
alk B e me—— — [k k ]
(k) 2 1 fdk 7,(k)

%

Trensposition of k and k, gives equation (21).

k dk

(x> - 1{;‘)%

17
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Appendix E

n
g
If7.!(k1) is of the form Z —%l for all k

i
1=1 k,

a certaln value k‘l o the powers Py being positive, then

1 greater than or equal to

< k, dk & X 1-p 1
_a_ 1 1 P12 2.-3
fdk [y 7 06y ) —— 53 " Z 8y 00 ‘Pi)f‘H (e - k) % @,
X 1=1 X

=
for k 1‘10'

k‘l = k cosh @

t:lls:1 = k sinh € &9

cosh29 - sinh2 8 = 1 .
Then the expresslon equals
Y T
Z 84 (1 -pi) k f cosh 6 & .
1=1 o

Gradshteyn and Ryzhiks glve an expression for the integral in terms of the
beta function,

The above expression equals

P,-3

n i
1-p . -1 P, -
i 2 i i
E 2y, (1 pi)k 4 B( 5—» 3 )

i=1

1f p, > 1 for all i,
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Therefore

P;->3
n i 2 _
o) 20° 247361"1 Pi"")“‘:n (py - 1)
= 2 2 P +1
“f2c2‘i=1 ki
for k& kio
pi>1 for al1 1 ,
Therefore if G(k) Z——— for all k2 k , where q, > 2 for all i,
i=1 k
”2&:, T (an?,
i=1 q_i(q_i-E)k

for k, &% k .,
1 o

a
12
E - 2
It 72(1:2) is of the form o for all k2 some value k.ao, the powers r

i
i
i=1 k2
being positive,
( ( T 2 a2y
G{k) Z Ty + ‘!)f - kK°) % ax
x facaz 2
for k& k20
2 & ~l-r i +1 T, +1
i 2 b i
= (r, + Nk 4 B(r )
zr:t"?cal';:l.Z i 2 2 .
r,~1
202 5= (F gt 1 x4 a.ia(ri-i-‘l)
k) = S5 i B
% £°0F & 2
i=1 x
for k& k

20 *
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b
Therefore if G(k) = i —513 for all k & k_, where
1
ial k

1>1fora.lli,

2-t

n i
2 k2 232 27’ 2 £, ~1 ¢
i=1 t, k
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Appendix F

Plk,) = ﬂc*(g) di, di,

G{k) = f ¢*(k) do (k)

vhere do (k) 1s & surface element of & sphere of radius k 1n Kk space,

For homogeneous isotropic density variations G*(k) 1s a function of k
only, 80

ok) = bxk® a*(x) .
Therefore
Glk
Fik
(k) = ﬂ—i—lwk

k2 and hj may be replaced by k and ¢, the polar angle in the ka, kj Plans,

k2 -,/ka-kﬁcos¢
[2 2
lgj k-k.lsinep o

The Jacobien is

T2 X
9k 0

« 1302 - kf)'% 2k cos ¢ -2 - kf)% sin ¢
3102 - k?)—% 2k sin ¢ (2 - kf)% cos ¢
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Therefore
rlk,) = ff Gk) a9
1 bl
o<p<2n
k> k,
[+.+]
G(k)
F(k.l) = %f - Ak .
X,
Ir

ot - ) 2%

i=1 k

for all k & ko, the powers 4y being positive,

oo n
b
F(k,) = %fk"]z‘-%dk
k.] i=1 k
) i__‘ia__
i=12qik?i

for k. =2k .,
1 s]

S
qy

1

n
Therefore if F(k.l) - Z
i=1 k

s (qi+vefora.lli) for all k, & k,

a(k) = i ﬁq—:’—“

i=1 k
for all k= ko .



x1,x2,xj'

a3

SYMBOLS

width of the slit image at the knife edge of the schlieren
aystem

constants defined in Appendix E

beta function of a,b

constants defined in Appendix E

constant defined in Appendix F

Gladstone-Dale constant

constant defined in Appendix F

one-dimensional spectrum of density variations in the flow
focal length of schlieren mirror

three-dimensional k spectrum of the flow density field
three-dimensional k spectrum of the flow density field
fractional change in intensity at the schldieren film at a
point corresponding to coordinates x.l,xa in the flow
defined by equation {10)

vector wave number

components of k corresponding to x1,x2,23

defined in Appendix E

defined in Appendix E

kernel defined by (4)

kernel defined by (6)

kernel defined by (12)

% length of light path in density field

refractive index

defined in Appendix E

defined in Appendices E, F

defined in Appendix E

a position vector in the flow with components 849809 83, where
8, = X, ands2=x2
a function defined by (15)

defined in Appendix E

a fleld to be measured

position coordinates in the flow; x, and X, define a
corresponding point on the schlieren film

8 constant dummy variable
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X
T (k)

7,0k

7,(ky)

8(x), 6(25)
51(x), 8"(x)
P

p*

T

P
¥(2)
2(x)

SYMBOLS (Contd)
(g5 %3 X5)
three-dimensional k spectrum of the mapped field on the
schlieren film
one-dimensional spectrum of the mapped fleld along a directicn
parallel to the schlieren knlfe-edge
one-dimensional spectrum of the mapped field slong a direction
perpendicular to knife-edge
Dirac delta functions of x and X
firat and second derivatives of the Dirac delta function of x
gas density
defined by equation (9)
a position vector introduced in equation (14)
a polar angle in the kz’kj plane (Appendix F)
a function defined by equation (14)
s mapped field (equation (4))
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3/8-inch sphere V=14,000 ft/sec p=100mm Hg

Wake 8 feet behind 3/8-inch sphere  p=100mm Hg

Fig.l. Typical schlieren photographs
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