
. .-....-z\,. .
c...
U

C.P. No. 1021

MINISTRY OF TECHNOLOGY

AERONAUTICAL RESEARCH COUNCIL

CURRENT PAPERS
.. I ": ,

ltOY~1. A: _ " : ,,' ac
Rf-O::'ORD.

The Derivation of Power
Spectra of Density Variations in

Hypersonic Wakes from
Schlieren Photographs

by

j. P. Thompson

LONDON: HER MAJESTY'S STATIONERY OFFICE

1968

SIX SHILLINGS NET





U.D.C. 533.6.011.55 : 532.517 519.242 533.12: 533.6.071.31

C.P. 1021*
September 1967

THE DERIVATION OF FOliER SPECTRA OF DENSITY VARIATIONS IN

HIPERSONIC WAXES FROM SClILIEREN PHOTOGRAPHS

by

J. P. Thompson

SUMMARY

An analysis is given of the relationship between power spectra of :iJnage

density variations in a schlieren film. of a hypersonic wake and the power

spectra of gas density variations in the wake. Some results are given for

the application of this theory to the schlieren film. produced in an R.A.R.D.E.

hypervelocity range test.

*Replaces R.A.E. Technical Report 67226 - A.R.C. 29905
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1 INTRODUCTION

This paper describes some work on the deduction of density variations in

the bypersonic wake from schlieren photographs taken in the R.A.R.D.E. No.2

bypervelocity range. A method is described by means of which the autocorrela­

tion and spectrum fUnctions of the density variations in the wake may be

calculated from the autocorrelation and spectrum fUnctions of the schlieren

film density variations.

1
Clay, Herrmann and Slattery at Lincoln Laboratory have reported work

done on similar lines, in which a mach larger quantity of experimental results

was analysed.

2 THE EXPERIMENTS

The wake studied in this report was that of a 3/8 in aluminium sphere

fired at 12000 ft/sec into air at 100 IlIIlI!fg pressure. The Reynolds number

based on body diameter was 3.4 X 105• The wake was photographed at a point

268 body diameters (8 ft 4.5 inches) behind the body; at this point it was

1.8 inches (4.7 body diameters) wide. Photographs were taken using a spark

source and a single pass schlieren system giving a full-size image. The

knife-edge was parallel to the wake axis. Typical photographs are shown in

Fig.l.

A Joyce Loebl double-beam recording microdensitometer, model E12

Mark III, was used to measure schlieren film density. Traverses were taken

parallel to the wake axis. The microdensitometer output for each traverse

was a pen recording on white paper. These recordings were photographed on

35 mm film in R.A.E. Printing Department and the films were read on the

digital film reader at R.R.E. Malvern. The output of this film reader was an

8-hole paper tape which could be read by the R.A.E. ICT Mercury computer.

3 MATHEMATICAL RELATIONSHIPS

2For a single-pass schlieren system

,

dx'
3

(1 )



For air,

(2) •

so •

•

Uberoi and ICovasznay;l give a discussion of the problem of determining

the statistical properties of a quantity from the statistical properties of

the output of a measuring system. They consider the case in which a quantity

to be measured, Uf.!l), is related to the output of the measuring system, n(~),

by the equation

where the integration is over the whole of ~ space. K(~ ~), which

expresses the operation of the measuring system, mq be a generalised
4

function. For eX8lllPle,

K(~ ~) • 6(~ - ~)

makes n(~) equal to U(~). This is the case of a perfect instrument.

(4)

(5)

,

Uberoi and !Covasznay consider particularly the case where U(x) is
~

statistica11;y homogeneous and infinite in extent and the response character-

istics of the measuring system are independent of position in the field.

Then

n(~) • J K(~ - ~) U(~) ~

or, with a change of variable,

•

(6)

,
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It is possible to express the schlieren relationship (;S) in the

form (7).

Defining

and

then it is possible to rewrite (;S) in the form

It is shown in Appendix A that if a :f\mction Xes) is defined by
~

•

(8)

(10)

(11 )

o (12)

then

hex) .. J xes) p*(x + s) ds_ ." N"'''' •

It now becomes possible to apply the analysis of Uberoi and !Covas~ to the

schlieren problem. They show that if 1/1 (1:) and S(k) are defined by
~ ~

and

1/1(1:) .. J X(s + 1:) Xes) ds
". ... - - - (14)
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S(k) '" J V('l:) e-~.~ d'l:- - -
then the relationship between the spectraG*(k) and r(k) is- -

•

(15)

(16)

In Appendix B the :functions H'l:) and S(k) are found for the lC(s) defined- - -
by (12). The result is

r(k) .. 4 f2rl- k2 (Sin ~ 1,)2 G*(k)
- 2 2 k -a 3

• (17)

If the ges density field is homogeneous and isotropic then

• (18)

The relationship between 11 (k1) and r (~) is

•

It is shown in Appendix C that (18), (19) yield the relation

G(k) ..
2 CXl

2 a d {-2J d [ (] k, «nt,J22 k dk k dk ~ 1 1 k,) 2 2' (20)
It rc- I, k 1 (kl - k )

A similar ana.l¥sis (Appendix D) yields

00

2 a
2 JG(k) .. - It I, f2rl-

k

(21 )
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(20) and (2') are relations by means of which the one-dimensional spectrum

function of the density variations in the flow field may be found from the

spectrum functions measured on the schlieren film.

For the cases where 7,(k,) or 7
2(k2)

may be expressed as series in

negative powers of k1 and k2, the integrals in (20) and (2') may be

evaluated analytically to give expressions for G(k), which are series in

negative powers of k , (Appendix E.) If G(k) has the form of an inverse

q power law for all values of k ~ some value ko' then 7, (k
J

) follows an

inverse (q - 1) power law if q > 2, and 72 (k
2)

follows an inverse (q - 'l ) power

law if s > " in both cases over the range ~ k • This relationship is the
o 1

same as that found by Clay, Herrmann and Slattery j their function Sp is,

apart from a constant factor, equivalent to the G*(k) = G(k)2 of the present
- 411: k

report.

The relationship between the one-dimensional and three-dimensional

spectra of density variations in the flow is

ftitl dk
k

(22)

for a homogeneous isotropic field. ntis result is proved in Appendix F.

The integral in (22) may be evaluated analytically for the case where

G(k) is expressible as a series in negative powers of k , (Appendix F.) If

G(k) follows an inverse q power law for all k "' some value k
o'

then F(k,)

follows the same power law for k1 ~ k
o'

4 DATA REDUCTION AND RESULTS

A progrannne was written for the R.A.E. ICT Mercury computer which

analysed the data on the tape produced by the film reader. Autocorrelation

and spectrum functions of the film density variations were calculated from

the standard formulae given by Blackman and Tukey5 With a hanning window of

15i of the length of the wake traverse. The spectrum function G(k) of the

density variations in the wake was then calculated by means of equation (20)

on the assumption that the field was homogeneous and isotropic. The one­

dimensional spectrum function F(k1) was calculated from equation (22). Power

law lines were fitted to the spectrum functions by a least squares process.

All these operations on each wake traverse were done by one run of the

computer progrannne.
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Values obtained for the power of wave number giving the best fit to

the spectra were as follows.

Table 1

Wave number index of spectrum functions

Film Flow Flow
Traverse one- three- one-

dilnensional dilnensional dilnensional

71(k1) G(k) F(k
1)

AA1 -1.64 -1.15 -2.84

AA2 -1.47 -1.10 -2.56

BB1 -1.70 -0.97 -2.86

BB2 -1.72 -1.09 -2.42

Mean for
AA -1.56 -1.12 -2.70

Mean for
BB -1.71 -1.03 -2.64

Overall
mean -1.63 -1.08 -2.67

Measurements were made on two negatives, 1 and 2, derived from a schlieren

photograph reproduced as the lower picture in Fig.1. Traverses AA1, AA2 were

taken at a distance 0.75 of the wake radius from the wake axis; traverses

BB1 and BB2 were taken at 0.55 of the wake radius from the wake axis. It is

seen that the spectrum derived directly from the film density comes much

closer to the -5/3 power law expected for homogeneous isotropic turbulence

than does that allowing for the 3-dilnensionality of the field (for which -1

is a better approximation to the data). In fact however the assumption of

homogeneous isotropic turbulence is not necessarily a good one especially for

an off-axial slice of an axisymmetric wake, which might be expected to include

a fairly large proportion of low-wave-number eddies for which a power-law

representation of the spectral function is inappropriate.



More accurate values for the spectral density especiall,y at the

low-wave-number end could onl,y be obtained by anal,ysis of longer strips of

wake (in terms of wake diameter), but these were not obtainable with the

existing schlieren windows at R.A.R.D.E.

In conclusion, the technique of anal,ysing films by means of a densi­

tometer to obtain turbulent spectra appears a valuable one, but the inter­

pretation is very sensitive to the particular assumption made about the type

of distribution, and an improvement on that of spatial homogeneity would be

desirable.

9
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ApPendix A

r IC(!) p*(! + !.) ~ .. - fae I 6'(S2) 6(s,) p*(~ + !.) ~
Is,l :l J,

by change of variable

by integration by parts

•
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Appendix B

,. I-t 1[/)1(8
2

+ "'2) /)(8 1 + "'1)) [/)1(82) /)(s1)] ~
a

the range of: integration being

and a1l values of: 81 and s2

•

The dependence on "'3 of: the range of: integration with respect to s3 is

shown in Fig.2. This range i8

o if: •
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Therefore

Appendix B

• - t?-~ r e-~·: (21, - 1'1:
3

1) ~('l:1) ~n('l:2) d:.

a I'I:~ ~ 2.t

• _t?-~ jJ, (2J, _ 1'1:
3

' ) e-~'1:3 ~3
a -2J,

xl

xl

-n,'I:
e 1 ~('l:1) ~1

e-~'l:2 ~n('l:2) d'l:2



~pendix B

2.t. t?t J2 (2J. - '1:,) cos ~ '1:, d~ k~
a

o

l'

Therefore

•
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APpendix C

7 1 (It,) .. II rq~) dk2 ~

If I- is IlII1ch larger than the scale of the density veriations,

[ (sin It; I- )/It;]2
has alJDost the effect of a Dirac delta function,

•

so that

2 2 1

71 (It,)
I-c2 I- 2 G([k1 + 1t2]2)

'" a2 I 1t2 ~ + ~ ~ •

Let

k r2 .. k2 k
2

1 + 2 •

Then

00

71(~) .. I-c2 I- I (k,2 _ k2) G(k') k'dk'
a2 1 k,2 Vk,2 _~

k1 1

co

I-c2 l- I Jk
2

- k~ k-
1

G(k) dk..
2

a
k1

k 00

.. I-~ I- [[ k-1 G(k) dkJk
2

- k~ J
a \Xl k1

The first of these two terms is zero.



Appendix C

This equation may now be inverted by the method given by Uberoi and

Xovasznay in their appendix.

15

Therefore

•

•

Equation (20) may be obtained by interchanging k and k
1•
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Appendix D

•

If J is much larger tl!la.n the scale of the density variations,

[ (sin ~J)/~]2 llIIly be replaced by a Dirac delta function as in Appendix C

to give

" 2 (k2)
r2~ J k2 J G([k~ + ~]t).. dk •

i~' 2 k2 k2 1
1 + 2

Let

k t2 2 2
• k 1 + k

2 •

Then

•

00

r2~.t. k2 J
2 2

a k
2

Inverting,

•



Appendix D

There:fore

17

Transposition o:f k and ~ gives equation (21).
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Appendix E

n
\' ail

If '1
1

(k1) is of the form L. Pi for all k1
1=01 k1

a certain value k
1

0' the powers Pi being positive,

greater than or equal to

then

Let

k
1

.. k cosh 9

dk
1

.. k sinh 9 dB

2 2cosh 9 - sinh 9 .. 1

Then the expression equals

•

t
i ..l

l-p J<>O l-p
- Pi) k i cosh i 9 dEl

o
•

6
Gradshteyn and Ryzhik give an expression for the integral in terms of the

beta function.

The above expression equals

P -3
l-p _i_ (p - 1 P - 1\

ail (1 - Pi) k i 4 2 B\_i 2 ' i 2 ')

if Pi> 1 for all L,



Appendix E

Therefore p -3
n i

2 2 '\ -2- (Pi - 1
G(k) "2

a2 L 4 B,,- 2 '
II rlT I. i=l

19

for k ~ k10

Pi > 1 for all i •

Therefore if G(k) for all k i& ko' where ~ > 2 for all i,

4-q t
-r -1 (~ - 2 ~ - ~ btl

4 B 2' 2 -) ~-1
~(~ - 2) k

being positive,

some value k20' the powers r t

G(k) ..

r
i

- 1
-l-r - rr + 1

(rt + 1)k t 4 2 B,i 2 '
r t + 1)

2 .

G(k) ..

for k i& k
20

•
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f. b i2Therefore if G(k) .. L T for all k il; ko' where t 1 > ,
i ..' k i

for all 1,

Appendix E

•

•



21

Appendix F

F(It, ) • ff G*(~) dk2 ~

G(k) • JG* (~) da (k)

where da (k) is a surface e1ement of' a sphere of radius kink space.
N

For homogeneous isotropic density variations G*(k) is a function of k
N

onJy, so

•

Therefore

~ and t, may be replaced b;y k and lp, the p01ar eng1e in the k2' ~ p1ane •

The Jacobian is

•

•

• k

.l. 2 2 _1.
"2"(k - k

1)
2 2k cos lp

,(k2 _ k~)-' 2k sin lp

•

2 2,-(k - k:j) sin lp

2 2 t(k - k1) cos <p



22

Therefore

Appendix F

If

F(It, ) .. G(k) dk
k •

n b
G(k) .. I i

1=1 k~

tor all k i; ko' the powers ~ beiDg positive,

F(Jt,) ..

..

(~ + ve tor all i) for all k1 i; ko'

for all k i; k •
o



&il' &12
B(a, b)

b
i l

, b
12

b i
C

c i
F(kl)
f

G(k)

G*(!)
h(~, X:2)

h(~,~,X,)

k-
kl,k2'~

klO'~O
ko
IC(;:, !)
IC(! - !)
IC(.!!)

"n

s(~)

t i
U(!)

~'X:2'X;
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SYMBOLS

width of the slit image at the knife edge of the schlieren

system

constants defined in Appendix E

beta function of a, b

constants defined in Appendix E

constant defined in Appendix F

Gladstone-Dale constant

constant defined in Appendix F

one-dimensional spectrum of density variations in the flow

focal length of schlieren mirror

three-dimensional k spectrum of the flow density field

three-dimensional k spectrum of the flow density field

fractional change in intensity at the schlieren fUm at a

point corresponding to coordinates ~, X:2 in the flow

defined by equation (10)

vector wave number

com;ponents of !- corresponding to ~,~,X,

defined in Appendix E

defined in Appendix E

kernel defined by (4)

kernel defined by (6)

kernel defined by (12)

i length of light path in density field

refractive index

defined in Appendix E

defined in Appendices E, F

defined in Appendix E

a position vector in the flow with components sl's2's3' where

sl = x, and s2 = x2
a function defined by ('5)
defined in Appendix E

a field to be measured

position coordinates in the flow; x, and X:2 define a

corresponding point on the schlieren film

a constant dumm;y variable
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x-

5(x), 5(~)

5'(x), 511(x)

P
p*

'C-

SYMBOLS (Contd)

(x,,~,~)

three-dimensional ~ spectrwn of the lIl8;pped fie1d on the

sch1ieren film

one-dimensional spectrwn of the mapped fie1d along a direction

paral1el to the sch1ieren knife-edge

one-dimensional spectrwn of the mapped field along a direction

perpendicular to knife-edge

Dirac de1ta functions of x and x-
first and second derivatives of the Dirac de1ta function of x

gas density

defined by equation (9)

a position vector introduced in equation (14)

a p01ar angle in the k2'~ p1ane (Appendix F)

a function defined by equation (14)

a mapped fie1d (equation (4»
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