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solution for high s~bsonio flow past a curved aerofoil, although the numerical 
work was heavy. Oswatitsch and Keune-/ gave reasons for believing that for 

sonic speed (l>fm = 1) the factor @,, on the right-hznd sv3e of equation (1.1) 

could‘be approximnted by a constant; tnls approjCUTLlt1on lxwrises the 
potential equation, turrung it into the equation of heat conduction. This 

approach was exploited and extended by several authors 8,9,10 Cole an.3 Royce 11 
. 

argued that turning equation (1,l) into a parabolic equation wes unsatisfactory 
for p'nysxd reasons an3 that a better approach was to replace @X by a linear 
function of X; this approxxmation makes the equation elliptic on one sde of 
a plans normal to the X axis and hyperbolic on the other side. Cole and Royce 
applied this technique to the nxi-synrmetric problem; later, mans 12 extended 
it to the two-dimensional problem, Although replacing mX or BXX by at most a 
linear function of X involves drastic simplifications, the results obtained 
by these methods are in surprisingly good agreement mlth experiment. 

The most recent developments in the theory hwe been further iwestiga- 
tions into the beh<viour of sonic flow at large &stances from the body. A 

number of authors 13,14,15 have xndepcndently ob‘taned 3 representation in a 
simple closed form of the asymptotic behwiour of @ in axi-symmetric flow; 
this 1-w previously awilable in numerical form only3. The representation is 

achieved by changing from X, Y (Y no8 being the radial coortirmtc) to new 
independent ;izriables U, T; these ne7r vnrizbles are such that small values of 
T corre,pond to large distances from the body. It 1s possible to expand Q 
In powers of 7, the coefficients being functions of G; the first term in the 
expnnsions is the representation obtsined'numericdly in Ref.3. Further terms 

in the expansion are derived in Rcf.15, where it is shoxn tlm.t the powers of 

7 are not, in yenerd, integral; nevertheless, the functions of U forming the 
coefficients of the powers of 7 can all be obtaxnd In simple closed fan 

The most far-reaching odvsnces have been made by Zuvrarxl 16 , who has obtained 

a sixilzr eigansion for the nxi-symnetno problem valid &en th- governing 
equetions arc the full inviscid equations of motion. Ho indicates that all 
the functions of c can still be obtained in sxm@e closed form; as before, 
the powers of 'c with which they nra associated are rat, 13 generd., integrd. 

l&m-~ has dso obtained 17 c, corre,qording expansion for thz two-dimensional 
sonic problem, agxn bzsed on thti full inviscid equations. The functions of 

u cm again be obtsined in sxnplc closed form, but t:?is time the povcrs of 

'c with Mx.sh they are associated UL all intsgral. 
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1.2 l&rching procedures 

The present paper describes a method for determining the steady, sonic 
flow past a symnetr-ical, blunt, two-dimensional body, when the governing 
equations are the exact inviscid equations of motion. It is shown that a 
knowledge of Euvrard's results for the asymptotic behaviour of the flow sllovrs 
the equations of motion to be solved by a method similar to that employed by 
Mangler and Evans 18 in their work on hypersonic flp?: post a synnnetncal, blunt, 
two-dimenslonnl body. Mangler and Evans argue that Y, the streem fur&ion, 
can be chosen to be zero along the line of symmetry 3rd on the b&y and that 
it is then equal to p, U Y on the bow shock, where p, and U are respectively 
tho free-stream dcnslty and speed, By transforming the independent vartibles 
from X, Y to c, Y, where E = "6, U Y),the upper half of the physical plane 
is mppcd on to a semi-infinite strip bourded by the lines C = 1 (corresponding 
to the shock), c = 0 (the body), and Y = 0 (the line of synnnetry). If the 
dependent variables are km.%% along a line of constant 2, their derivatives 
with respect to Y canbe foun3 numerically; the equations of motion can then 
be used to obtain the derivatives with respect to 2; this nllows an approximate 
calculation of the depedent variables along a lint of constant I: lying at 
a sufficiently small distance from the first one. Once the shock shape is 
prescribe&, all the dependent variables oan be found along the line E = 1, so 
that the mzching procedure can be started fmm there. The rmrching ends 
when the line c = 0 is resched. The success of the procedure depeds upon 
the fact that Y/Y tends to a firute ltit as Y tends to zero; for this to be 
true the X axis must be a line of symmetry. For the tronsonic problem it is 
also necessary for the governing equations to be the full inviscid equations 
(ati not the transonic npprotination to these) and for the bcdy to be blunt. 
The reason for both those requirements is that an involircd singularity exists 
at the nose if either of them is relaxed. 

There are two significant differences between t!le nnrchin& procedure 
employed by ?!angler and Evans s.nd the one anploycd here. First, whereas the 

line C = 1 corresponds in hypersonic flow to the bow shock, in sonic flow it 
corresponds to points infinitely far from the body, Now, in hypersonic flow 
the dependent variables along the line Z = 1 are undetermined to the extent 
of an nrbitrrrry funztlon (the shock shape); on the reasonable assumption that 
each choice of shock shape lends to a different body, it is clear tFat, in 
theory, nn enormous variety o- f bodies can be obtsined; of course, the very 
mture of the marching procedure precludes any possibility of prescribinE the 
body shape beforehd. In contrast, In some flow the dependent variables 



along the line c = I are undetermined only to the extent of an arbltrazy constant; 
this is bemuse, apart from c soalmg factor, all two-dimensional bodies have 1 

3 - the same asyzrrptotlc be'haviour in sonic f:ov . I'or tXs reason, the marc:ung 
procedure for the sonic problem takes place effectively in the Y direction. It . 
can be shovn that along the lrne Y = 0 appropriately chosen dependent vaables 
are un?iotennined to tne extent of an arbitrary function; the situetion is then 
the same as for the hypersonvz problem. Ekking I? specmlchoice of the arbitrary 
function is here equivalent to prescribing the pressure hstribution along the 
line of sjmotry from free-stream condition? tQ the stagnation point at the 
nose. 

A further difference is that for th,- hypersonic problem 1 mpching pm- 

ceduro 1s possible for both two-timensionll a& za-eyrnnetrw flow. For the 
sonic problem an extension to an-smetno flow caznot be made; this is 

ComCCtCd with the foot mentioned earllor thyt the po~a-s of T in the nsynptotic 

expnnsions of the dependent varl~blas are integral in two-dlmensioml flow but 

not III axi-symmetric flow (see Section 2.3 for further details). Other 
&fferenoes bekeenthe marching procedures in the hypersonic and the sonic 
prdalems are ones of detail only. 

1.3 Purpose of present investigntlon 

Each choice of the zbitrazy function detcmining thz behaviour of the 
dependent varzables along the 'line Y = 0 presunnbiy leads to a different body. 
The ult53nat.e aim of the present 1nvestigntion 13 to produce bodies vhose 
mximum thicknesses are small compared w~tii their lengths and to fin3 the 

pressure distributions over them. The distributions can then be compared 76th 

the results obtained by approtitlons in current use 7,8,9,ww, Slnoe 

these nrc intended to be applied to the t-ypz of body mentioned above. By this 

mans it is hoped to decide vhich of the currently used approxirmtions is the 
nest accurate. Admittedly, these ~pp~ximations hz-~c usually been applied to 
determine pressure distributions on bodies zitl? pointed noses; nevcrthclcss, 

at least one of 9 them has been used on n roud-nosed body, ard it may wCl1 

be possible to m&a this extension to some of the ot‘ier zpproxinmte thGories. 

In any case, it should be possible to make a comparison between results 
obtzined by tire present nethkt and results obtaned by CpprOnmte theorzes 
applied to c body having a pointed nose that fairs into tine original body a 
short &stance downstream of the nose. 
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The present paper carries the investigation to an intermediate stage 

only. In Section 2 new dependent and independent variables are introduced that 
put the equations of motion in a form suitable for a marching procedure. It 

is shown that the curve along which the velocity component in the Y direction 
vanishes is a singular line in the transfomation from old to new coordinates, 
so that the marching procedure cannot give results beyond this line without 
modification. There seems to be no insuperable obstacle to the introduction 
of such a modification, and it is hoped to attempt this at a later date. Since 
this is only an interim rLport, the analysis in Section 2 -has been considerably 
condensed. 

Section 3 contains a description of a Mercury Autocode program for carry- 
ing out the marching procedure. The program has been used to calculate one 
example; the results obtained suggest that the marching procedure is stable. 

2 DRRIVATION OF E'qUATIONS 

In sonic flow the free-stream speed is equal to the speed of sound, a& 
Let R. be some representative length; for example, ii, could be set equal to 
the radius of curvature of the body at the nose. Introduce non-dimensional 
quantities x, y, p, p, u, v, Jr and $5, suoh that 

R, x, R, y are rectangular Cartesian coordinates (y = 0 being the line 

of symmetry), 

Pm a; P is the pressure, 

PCC p is the density, 

a- us a, Y are the velocity components in the x and y directions 
respectively, 

p, a-R0 $ is the stream function ($ is chosen to be zero on the body 

al-n along the line of synmetry), and 
. :. '. 

ac‘a R. 6 is the velocity potential. 

There are four equations for the depetient variables ps p, u and v in terms 
of the independent variables x and y: the continuity equation; an equation 
expressing the fact that the flow is ii-rotational; Bernoulli's equation; an t 
equation expressing the fact that the flow is 'hornentropic. The boundary 
conditions associated with these equations are that on the body the normal 

velocity component smst be zero and that at large distances from the body the 
dependent variables must tend to their free-stream values in a prescribed 



s 3 manner ; the free-stream values are given by p = 1, u z 1, v = 0, aad 

P = l/Y. 

The four equations mentioned above may be ueltten as follows 3 : 

p ux + p vy + u p, J. ‘I p, = 0 , 

the contmuity equation; 

"y - "x =o, 

the zrrotationsl equation; 

Bernoulli's equation; and 

==I , 
PY 
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(7-l) 

(2.2) 

(203) 

(2.4) 

the homentroplc equation. It is known' t:bat there exists a shock starting 
from some point on the body; domnsvea?m of the shock equations (2.2) and (2.4) 
are not did. 

T!le non-dmensioml stream-function, $, satisfies 

*y = PU , (2.5a) 

ifx = -pv ; (2.5b) 

elimination of $ from equuations (2.5) by cross-differentiation leads to 
equation (2.1). The non-c3.monsion.d velocity potential, 9, satisfies 

$* = u , (2.6a) 

"y = v ; (2.6b) 

elimination of $ by cross-differentiation leads to eqil2i-ion (2.2). 
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From equations (2.3) and (2.4), 

P = [$(y + 1) - &(y - 1)(u2 + v )I 2 MY- 1) ; (2.7) 

this can be used to turn equations (2.1) and. (2.2) into equations having u 
and v as the only depedent variables. 

2.1 The flow at lame distsnces fmm the body 

To obtain an expansion vald far fmm the body it is expedient I7 to 
replace the independent variables x, y by two quantities U, 7, where 

x = - (Y + ,)‘h !A(1 - 2uw2 , (2.8a) 

Here, i.r is an unspecified oonstant; it is effectively a scaling factor. By 
combining equations (2.6), (2.7) and (2.1) a second order partial differential 
equation for $ can be obtained; this can be used to determine an expansion 
for $ in powers of 2, the coefficients being fumtions of U. It is found 
that 

. 
$5 = -(y + I)‘/3 p(1 - 24 +4@ 3(6 - 3a + 2 $1 P5 !3&4 . 

2 32 + n + l **- 
, (2.9) 

where the first term is simply equal to x, the second term is the well-known3 
dominant term in the asymptotic expansion of the Ssturbance velocity potential, 
ana the as yet udetermined function g,(U) must not be singular when U = 0. 
From equations (2.6) and (2.9), 

2(, - u)z + 5 P4 0 .qu~3 
u = 1-4cr 

(Y + IF3 2(Y + ,g3 (1 + 34 
4 . . . . , (2.104 

8 p3 ,-$c3 _ 2u)$/2 2 P5 &I - 24 +a)% 
5/2 

v = 
.! + (u+1) “3 (1 + 34 

+ . . . . ) (2.lOb) 

where dashes denote differentiation with respect to U. On substituting 
equations (2.10) into equation (2.2) it is fourd-that g., satisfies the 
following ordinary differential equation; . 
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0(4- 3a)g';+ 2(1- 2cr)g; = - 9 [3(2y- 1) - 24&v+ lb + 13(6Y+ 5)Z 

- 6(6u+ 5Pl . 

The appropriate solution of this can be obtained in closed form; it is 

g,(u) = const - + [,5(2y- I)C- 5(&y+ 5$+ 2(6~+ 5)d 
l (2.11) 

Equations (2.10) and (2.11) lead to 

v = _ 16 p5 &I - 20)[ 15(zy- 1) - 10(6yt 5)u+ 6(6yc ~)o?T~'~ 
3 ij(r+ 1p3 (I+ 3a) 

+ . . . . . (2.12b) 

The expansion for $ is obtained by the folloting procedure. First, the 
expnsion for p is obtained frum equations (2.7) and (2.12); this expansion 
and equations (2.8) ard (2.12) are then used to turn equations (2.5) into two 
linear simultaneous equations for Jr, and Jr,; on solving these ard integrating 
it is found that 

,& 
6 = p- 

8(y + ,)1/3 p4 &(3 - u)(ltu). '1 
3 G- 

(2.13) 

+$I6 p6 ~7+30b+3)-45(~+l)at24(3y+5)~- 8(%t 5)# 
45 + . . . . , 

where the constant of integration has been chosen so that J = 0 when y = 0; the 
first term in the expansion is simply equal to y, $f could have been deter&-d 

directly by writing it as an expansion in peers of 'c of the form of 

equation (2.13) and then deriving ordir~ry differential equations for the 
unknown coefficients by using equation (2.2); but, since the expansion for 
Q is already available, it is simpler to use the a3ove procedure. 

2.2 Eauations for the marchinff procedure 

The first transformation is very similar to one employed in Ref. 18. 

The independent variables x, y are replaced by z, y, where 

. 
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z = l- !L 
Y l 

. 

. 

This transformation maps regions infinitely far from the body into the line 
E = 0, the x axis into the oart of the line y = 0 running from c = 0 to 
c = I, and the body contour into the line c = 1. The fact that the line 
G = 0 corresponds to regions infinitely far from the body makes it vcrjr likely 
that the dependent variables will have singularities along this line. This 
is the reason for taking the new variable g to be 1 - $/y rather than $/y 
(as in Ref..18); *expansions in powers of Z use less print than expansions 
in pavers of (1-c). 

The results collected in Section 2.1 are now used to investigate the 
behaviour of the dependent variables along the line 1: = 0. From equations 

(2.13), (2.8b) ana (2.14), 

6 z = e(y+ ,)1’3 &(~-~(I+u)T~ I 16 1-1 
3 -45 x 

[30(2d3L5(2Y+ lb+ 24bY+5P:8h+5P173 + . . . . . 

(2.15) 

Equations (2.15) and (2.6%) give the relations:hip between G, y and U, 2. 
It 2s known15 .A that negative values of u do not correspod to any part of the , 
physical plane ad that a shook intervenes before the point U = 3, 't = 0 
is reached; heme, the coefficient of 2 in equation (2.15) is always positive. 
From equations (2.10), the,expansion for u contains powers of r;;" and that 
for v contains powers of Z.'. Consequently, at first sight it seems reasonable 
to intrcduce a new variable, 8, by writing g = e4; but in the equations that 

are shortly to bX'obtained v always appears in the form v2 (this is connected 
with the symnctry of the flow), so that 

z = ey (2.16) .- , 
is a more-ap$%opriat.e change of variable. It7Also turns out that y always 

2..-5 appears in the-'cimbination y ;t\,' - L.i_ Fh$re. $$',appearance of y2 rather than y 
is again c6&&&-with th~s-~et~‘y;o?;t~~,f~w, Thf~factor e5 arises for 
the following reasons. From squations (2.8%), d = 2 y2; from equations 

(2.15) ad (2.16);~ 'c behaves initially like 0; hence, Gbehnves like e5 y2; 
and previous work has shown that d is an important variable. Al.1 this 
leads tc the following transformation of independent variables; 
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s = 

(2.17a) 

, 

(2. IPI 
. 

Regions infinitely far from the body correspond to the line 8 = 0; the line 
y = 0 corresponds to the part of the line s = 0 running from 8 = 0 to 8 = 1; 

the bcdy contour corresponds to the line 8 = 1. The partial derivative 
a a operators z, dy -can be obtained in terms of $jati-& by using equations 

(2.17) an3. (2.5). 

Equations (2.12), the analogous expansions for p and p, and a considerable 
mount of hindsight suggest the following replacement of the dependent vsriables 

u, v, P* P by b,, e,' f, ana h,, where 

u = 1-ofo(e)-eSf,(0, s) , (29 184 

v2 = e3 s[b,(e)+ s b,(@, s)] , (2.m) 

I. = 
P 9-e eo(e)-s df,(e, 5) - 0 e,(S, s)] , (2.18c) 

m = j+e ho(e)+0 6 h,(e, s) . (2.W 

Here, co(e), fo(e) and he(e) are universal functions of e (for eny given 
value of y), so that they oan be calculated once and for all; bo(8) is 
largely arbitrary (see below fur details). fo(e) sstislies the follting 
equation; 

, I I 

(l-8 fo)[l+ (y-1)8 f,-$(+I) e2 f;]“(‘-‘) q (I-s2) . (2.19) 

eo(e) and ho(e) are given in terms of fo(0) by 

Cf,- 9) 
e 0 = (I-e2) ' 

ho = 
ao+ (Y- 1l(2-e fo) f 0 

2(1-8 eo) . 

(2.20a) 

(22Ob) 
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Equations (2.17) mfi (2.18) lead to 

[4(1-e eo)+s(5-O*)e,+e~f,lsb,~ 

-2(5- 02)(bo+ 9 b,)s e,s-28(bo+ 8 b,)s fls 

= - ~s[(l-G2)e,+Bf,]b,e+28(1-~2)(bo+sb,)e,e+282(bo+sb,)f,e 

- [4(1-e eo)-(,-e2)s e,+Osfilb,+[2(3-e*)bo- e(l-e2)b;le,-e2b; f, 

. . . . (2.21a) 

(the continuity equation); 

5 S2bls+2[4(l-8 eo)+a(5-e2)e,teSf,]s f,S 

. . . . (Z21b) 

(the irrotational equation); 

[(f-e eo)-es (f,-e e,)ls hlB-Y(i+b ho+@sh,)s (f,S-e els) 
, , 

=: E7(:te ho)+(y+i)eah,l (f,-e e,)-(i-e eo)h, (z21c) 

(the homentropic equation, differentiated with respect to s); and 

e S* bls- 2(1+8 ho+esh,)s e,st2(fothots f,ts h,)s fls 

= -e bo- 28sb,+2(1+8 ho+8shl)e,-2(fo+ho+S f,tS h,)f, (221a) 

(an equntion obtained by differentiating the homentropic equation and 
?+XYlOU~~i's equation with respect to s and then combining the resulting 
equations so as to eliminate the term in h,s). Dashes now denote 
differentiation with respect to 8. 

Equations (2.21a),. (2.21b) cmd (2.21d) are three equations for his, 

els ana fls in terms of b,, e,, f,, h,, ble, ele, fib and the dependent 
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variables, 8 an3 s. The determinant, D, of the left-hula side of these 

equations can be written in the form 

, (2.22) 

mhere equations (2.18) have been used. Provided that D * 0, equations (2.21) 

can be solved for b,s, e,s, f,s an3 h,s, because, from equation (2.1&z), the 
coefficient of b,s in equation (2.210) is simply l/p. In subsonic regions D 
is never positive, since 

,,a=gL 25(yp - ;) = 2,(, a2 - ;) 

= 25~ a2 - 
( ) 

1 2 
P2 

where a,a is the local speed of sound. In subsonic flow the sped of sound 
is greater than a, and the density is greater than p,; hence, 

so thet the quantity in the cuter brackets on the right-hand side of equation 
(2.22) is the sum of tm positive terms. It follows that D < 0. 

Equations (2.21) allow the introduction of a marchiag procedure in 
the direction of increasing 8, starting from the line s = 0. Ome the 
quantities b,, e,, f, and h I are known along a line of constant s, the 
derivatives of the quantities with respect to 0 can be found numerically; 
equations (2.21) can then be used to determine the derivatives with respect 
to s; this allows cnother step to be taken in the direction of increasing s, 
The procedure csn be started along tine line s = 0 in the following way. 
VThen s = 0, equations (2.21b) and (2.21d) become 

2(1-8*)(fo+8 f;)e,+2[4(1-0 eo)+ e(fo+ 0 f;)]f, = -(8 bo+b;) , (2.2%) 

2(1+ 0 ho)",- 2(fo+ h& = 0 b. ; (223b) 

3; 

1 

. 

from these equations e,(B, '3) and f,(B, 0) can be determined. 

'aen s = 0, equations (2.2la) and (2.21~) become 
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4(1-O eo)b, = [2(3-e2)bo-e(1-e2)b~1e,- e2 b,: f, 

+ '28(1-e*)bo eiB+ 2e2 bo f10 , 

(l-0 eo)h, = y(l+e ho)(f,-0 e,) ; 

(2.230) 

from these equations b,(B, 0) and h,(B, 0) can be determined. Differentiation 
of equations (2.21) with respeot to s followed by substitution of zero for s 
allows the same procedure to be applied to obtain b,s(0, 0), e,s(e, 0) 

f,&e, 0) and h,&e, 0). Accordingly, the -hing procedure can be started 
as soon 8s the function bo(0) has been prescribed. 

This procedure differs from the one used in the problem of hypersonic 
flow past a blunt body'8; there, the marching technique was effectively 
applied in the 0 direction, from the line 0 = I (in Ref.18 this represents 
the bow shook) towards the line f3 = 0. There is no obvious objection to 
solving the hypersonic problem by marching in the s direction instead; the 
reason for the ohoice of the 0 direction is simply that this allows the shock 
shape to be prescribed, which is attractive from a physical point of view. 
On the other bend, it is impossible to solve the sonic problem by marching 
in the 0 direction from the line e = 0. When 0 = 0, equations (2.21) become 
ordinary differential equations of the first order for b 1' el' 

f, and h,; 
the only arbitrary quantity, ho(O), is simply an undetermined constant. 
Integration of the differential equations leads to functions b,, e,, f, and 
h, that are arbitrary only to the extent of containing five undetermined 
constants, ho(O) and four integration constants; in general, any one set of 
values for these five constants must correspond to an infinite number of 
bodies. In the hypersonic problem the dependent variables along the line 
are undetermined to within an arbitrary function, the shock shape, and there 
is no obvious reason -+hy the correspondence between shock shape and. body shape 
should not be one-to-one. The objection to solving the sonic problem by a 
marching procedure in the 0 direction starting from the line ~3 = 0 does not 
apply to one in the s direction starting from the line s = 0. From equations 
(2.23) it is seen that the quantities b,, e,, f, and h, are undetermined to 
the extent of an arbitrary function, bo(0); there is no obvious reason wb 
the correspondence between ho(e) and the bcdy shape should not be one-to-one. 

ho(e) is not, in fact, entirely arbitrary; an examination of the 

results obtained in Section 2.1 shows that it must satisfy one minor 
restriction The rth term (r > 3) in the expansion on the right-hand side of 
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3 equation (2.9) is a constant times ? times 
Euvrard17, gr( 

am, where, ascording to 
5 satisfies an ordinary linear differential equation of the ) 

second order; tine physically relevant solution of this equation is a function 
that can always be obtained in closed form and that contains just one arbitrary 
constant; in other words, only one of the two complementary functions of the 
differential equation appears in the physically relevant solution. In general, 
this means that the furcticns of (5 occurring in the expansions on the right-hand 
sides of equations (2.12), (2.13) ard (2.15) can all be obtained in closed form 

and all contain one arbitrary constant. The only exceptions are the terms 
associated with g,(o). From equation (2.11) it is seen that the relevant com- 
plementary function for g,(U) is unity, so that the derivatives of this 00% 
plementary function are zero. Hence, the terms in u, v, $ and c associated 
with gl do not contain an arbitrary constant. Now, 6 and 7 can be cbtsined 
in terms of 0 and s from equations (2.l7), (2.13) and (2.8b); equations (2.12b) 
ard (2.18b) can then be used to determine be(e)+ Osb,(O, s); finally, be(e) 

is found by putting s equal to zero. Because 170 arbitrary constant appears in 
the terms associated with g, in the expansions for u, v, $ and <, it is found 
that b;(O) depends only on bc(0); on the other hand, bc (r) (0) cenbe arbitrarily 
prescribed when r 5 2. The relation between b:(O) and bc(0) is 

2 -1.8866 bo , (2.24) 

on the assumption that y = 1.4. Apart from this minor restriction bo(0) canbe 
arbitrarily prescribed. 

Another important point is that marching in the s direction cannot ba 
continued indefinitely. This oanbe seen most clearly by considering the line 
e T I, which corresponds to the body contour. From equation (2.17b), s = y2 
when 0 = 1; hence, s C y2 

max 
, where 2y mnx is the maxiniun thickness of the bcdy 

(referred to Rc). The part of the body lying beyond the position of maximum 
thickness is mapped into the portion of the line 0 = 1 lying between s = y2 
and s = 0. Consequently, along 8 = 1 the mapping of the x, y plane into the 

0, 
2 s plane is not one-to-one; in particular, the point 8 = I, s = ymax must 

have a singularity associated with it. The same state of affairs exists along 
the line 0 = 0. From equations (2.12b), (2.16b), (2.l7), (2.8b) and (2.13), 
it cnnbe shown that along 63 = 0 

1 

l 

. 
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215/2 ( +,)5/G 10 at3-a15/2 t,+cj5/2 ’ 
9 = 

35'2 
, (2.25a) 

ho(O)+ s b&O, s) = 9(3- 242 

64(u+ ij4/ 3 py3-cr)4 (I+ a)4 
. (2.25b) 

Equation (2.75a) gives 

3% 21512 (y+t)5/6 ~'O(3-2a)(1+3~)(3-a)~'~ tt+d3j2 
au = 

35'2 
I 

SO that s = 0 when u I 3/2. Itf~n~~thats = Owhenfl= Oandthats 
reaches a maxLmum when d = 3/2; s-, the maximum value of s, is given by 

9 
max = 

23/2 . 3 . 55b (u+ P PI0 . (2.26) 

Hence, mapping of the x, y plane into the 0, s plane is not one-to-one along 
0 = 0; in psrticulsr, the point 8 5 0, 8 = S- has a singularity associated 
with it. From equations (2.25) it can be shown that along 6 = 0 the expansion 
for ho(O)+ s b,(O, s) in the neighbourhood of ike 

P 
oint 

a term in (s-- s) followed by one in (s--s) 32 
s = smax starts with 

. Later, it will be shown 
that a singular line of the mapping of x, y into 8, s runs from the point 
e = 0, s = smax to the point 8 = q, s = yzax; only points to one side of t-his 
line (thosehaving the smaller value of s) kve physical significance, and such 
points correspond to two points in the physical pls,ne. 

The final step is the derivation of equations for returning from the 

0, s plane to the x, y plane. From equations (2.5), 

a* = - pvax + puay . 

From equations (2.17a) and (2.271, 

de = LLax + (W2)-pu 
2eY aY l 

From equation (2.17b), 

(2.27) 

(2.28) 

(2.29) 

Along a line 8 = constant equations (2.28) and (2.29) give 
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2 & = - (‘-e 1-m dy = - y ilqLu 
C 1 

2sv as . 
PV 

From equations (2.lTb), (2,18a), (2.18b), (2.18~) and (2.2Oa), it follows that 

dx = - [e f,+ (1-e21e,l as 
1 

2e2(ba+ s b,)' 
. (2.30) 

Along a line s = constant equations (2.28) and (2.29) give 

Y[c5-e2) ; - 5u 
-- 1 

From equations (2.17b), (2.18a), (2.1&), (2.18~) and (2.20a), it follows 
that 

dX= 
[4(1-e eo)+esf,+(5-e2)8 e,l 

2e3 (bo+ S b,)" 
de . (2.31) 

Equations (2.30) ad (2.31) are equations for x; y can be obtained directly 
from equation (2.17b). For example, along the line e = 1 

x = - 
S 

& 
I 

f,(L sb 
l- 

o [bo(l)+s b,(l, s)]" ' 

provided that the origin of axes is chosen to lie at the nose of the bdy; 
along the line s = 0 

x q -2 
' (I- a eo)d8 

e3 & ' 
cl 

Y=O . 

From equations (2.30) and (2.31) it can be seen that the mapping of x, y 
to s, 8 becomes singular when (bo+ s b,) = 0; from equation (2.18%), this 

occurs when v = 0. This agrees with the remarks made above about the 
singular points on the lines 8 = 0 and 3 = 1 and confirms that a singular 

line runs from the singular point on t'he line 0 = 0 to that on the line 0 = 1. 

3 

1 

. 

. 
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2.3 -4xhwmetric flow 

It 1s nd possible to extervl the preceding technique to the solution 
of axi-symmetric sonic flow. This is best demonstrated by quickly going 
through the analysis and pointing out where the procedure breaks down. 

The equations of motion and the boundary conditions sre the same as 
for the tpro-dimensional problem, except that the continuity equation is now 

pux+pvy+px+vpy-y = 0 . 

The stream function must now be written as p, a-R: $, where the non- 
dimensional quantity $ satisfies the equations 

ey = P-JY , (2.334 

G.& = -pvy ; (2.33) 

elimination of Jr from equations (2.33) by cross-different~ation leads to 

equation (2.32). If J is chosen to be zero along the axis ad on the body, 
then $ = s2/2 in the free stream. Hence, the variable c must now be defined 

by 

instead of by equatzon (2.14). 

It is known16 that suitable independent variables, correspodir$ to 
those defined by equations (2.8), are land 7, where 

x = - (y+,)1/3 ,LLdd ) 
T2 

y = &q/2 , 

an3 that the expansions for $, u and v in terms of T start with 

ti = -(y+,)'/3 pm-d y $6+3a-22) , 

u = 1 - .-$@ ,:'+3 , 

v = J-$$ CJ& (3-2+~~/~ . 

(2.35a) 

(2.35b) 



20 

From equations (2.37) and (2.7) the start of the expansion for p can be found, 
Eqluations (2.33) can then be used to determine the start of the expansion for 
$; this turns out to be 

JI = L- 16(y+ ,)'/j w4 &(~-a)~ 

2T7 9 T , 

where the first term is simply equal to y2/2. From equations (2.34) and (2.38), 
the expansion for g starts with 

From equation (2.35b), Q = y2 TV; 
83 P 

from equation (2.39) this means tnat U varies 
; this suggests writing t; = e6, which corresponds to the substitution 

C = e2 in the tuo-d5.xensio~,2problem. From equations (2.37) and (2.39), (u-1) 
and Y then vary as e3 and 0 respectively; as in the two-dimensional problem, 
the fIna form of the equations of motion contains v only in the fozm v2, which 
does not have a singularity when 9 = 0. Eence, the equations correspoding to 
equations (2.17) are 

(2.404 

(2.0) 

So far no difficulty has arisen In carrying out an analysis analogous to 
that of the two-dimensional problem. The next step, hcr#ever, introduces what 
seems to be an insuperable obstacle. It 1s known'6 that the full expansion for 
$ is of the form 

m 

# = - (Y+l) 
j/3 ~ (1-M 

2 
+ v3 +$(6+3~-2&+ 

c 

;N 
c@) 

h= 

p h&4-J . (2.41) 

Here, the gN are functions of Q that can be obtained in simple closed form; 
each of them contains Just one arbitrary constant. The % are functions of d 
that con also be obtained in simple closed form; es& of them contsins some 
of the ubitrazy constants present in the gN but none of them contd.ns new 
arbitrary constants. Some of the indices vN and h are integral, but most of 

. 

. 
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. 

them sre half the difference between a quadratic sur3 ad an integer; e~mnples 

of the indices are From equations (2.4dl, (2.35) 

and (2.38) it follows'that the expansion for $ (and, hence, for u, V, p 
and p) in pavers of 6 has a form similar to equation (2.41) in that a 
typical power of 0 is occasionally sn integer but is more usually half the 
difference between an integer ard a quadratic surd. This is completely 
different from the tv~o-dimensiond problem, where the powers of S are all 
integers. Hence, whereas the dependent varinbles in the two-di.nensione.1 
problem cnn be expanded AS Taylor series in powers of 0 (the coefficients 
being functions of c), the corresponding expansions in the axi-smetrio 

problem are most certainly not Taylor series. Further, there seems to 
be no obvious substitution to turn sn expansion like that of eq+tion (2.41) 

into a Taylor series. This means that any attempt at numeric51 differcntia- 
tion in the 6 direction is bound to fail, at least in the neighbourhood of 
the line 0 = 0; as this is sn essential step in a marching pmcedurc in the 
s direction. it follows that the axi-symnctric problem cxnnotbe solved by 
such a procedure. 

3 ~GXUCAL RWJLTS AXB DISCUSSION 

The marching procedure describe3 in Section 2.2 hzs been prohranmed 
in Mercury Autocode. There are tvc programs, one for deriving starting 

vulues Ytony the line s z 0, the other for marching from this line in the 
direction of increasing 9. 

The first progrun produces ou+ut consisting of the values of co(e), 

fo(e), Ilo( b,(e, o), e,(h o), f,(e, 01, h,(e, o), b,&e, o), e,.(e, 01, 
f,s(8, 0) and hlls(e, 0) oorrespotiing to 0 = 0, 0 = 0.05, . . . . . 8 = 1; 

it is assumed that y = 1.4. The program has to be provded with a routine 
for calculating ho(e), b;(B), b;(e) d b"'(O), since it can be shwn that 
all these functzons are required in the determimtion of the quantities 
b,(0, 0), . . . . . hls(O, 0). The data tape for t!xz first program oontxins 
the valves 3t e = 0 , 8 = 0.05, . . . . . 0 = 1 of e,(e), fo(@), ho(e), and 

various derivatives of these functions. 

The second program has to be provided with n routire for cdoul~ting 

b,(e) d. b;(e). The output tape of the first program is the data tasne for 

the second one, which also has to be given the length, 6, of the steps in 
the mwching procedure. 
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The numerical techniques used in the marching procedure are shout as 
siqle as possible. Numerical dd'ferentiation of a function in the 9 
direction is performed by fitting a parabolic appro;dmstion to the function 
that passes through three successive points, those corresponding, say, to 

eA - 0.05, @*, an3 9A + 0.05; the differential coefficient of the approxi- 
mation when 9 = 9Ais regarded. as the differential coefficient of the function 
at that value of 8. The end points, 9 = 0 and e = 1, are treated in a 
similar way; for example, to obtain the differential coefficient when 9 = 0, 
9Ais put equal to 0.05 snd the differentlalcoefficient of the approximation 
when 9 = 9A - 0.05 = 0 is taken. .'L step in the s direction from, say, the 
line s = % to the line s = sB + 6 is taken as follows: the s derivatives of 
the dependent variables are found along the line s = sB; a fzrst approximation 
to the values of the dependent variables along the line s = sB + 6 is obtained 
by adding 6 times the s derivatives along the line s = sB to the values of 
the dependent variables along the same line; the s der?vatives along the line 
s = ss + 6 are found; a ne?r approximation to the values of the dependent 
variables along the line s = sB is obtained by adding 6/2 times the sum of the 
s cierivntives along the lines 8 = sB and s = sB + 6 to the values of the 
dependent variables along the line s = sB; the latter process is carried out 
twice more. The second program prints out the current value of % srd the 
last +SO a>prox?mations of the depedent variables on the line 9 = 1, the 
lint corresponding to the body contour; it would be easy to modify the progrtLll 
to print out the depenrlent vamables for other values of 9 if these mere 
required. 

The method has been applied to the flow past the body associatea rmth 
the following choice of bo(9); 

ho(e) = 1-1.8866e+92 . (3.1) 

It is clear that this satisfies the restriction imposed by equation (2.24). 
Of course, it oannot do so exactly, since tho number 1.8866 is only an 
approximation to (9-2~) <22/j m); but there is no evidence that the 
slight error involved leads to divergence. The first singular point to be 
encountered 5s apparently the one lying on the line 9.= 0. Now, from 
equation (3.1), ho(O) = 1, ad, from equntions (2.25), 

. 

bo@) = 1 

64(-i+ 1)4/3 11" 
. 
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Hence, 

PI0 1 
= 64(y+ ,)d3 

i 

and, from equation (2.26), 

It follows that the marching procedure cannot be continued beyond the line 
8 = 4.7784 and that results obtained for values of s close to this line must 
be regar&Kl with suspicion 

Figs.1 and 2 show results obtained with a step-length, 6, of 0.02, 
Fig.1 is a plot of p, obtained from equation (2.$&l), against s from s = 0 
to s = ll.5. The value of p at the sonic point is easily show to be l/y, 

so that the procedure has h&d to be stopped a long way short of the sm-60 

point. Fig.2 shows the bo&y contour; here, x ana y have been determined by 
the process described at the end of Section 2.2. Fig.2 also contains a 
few values of the non.-dimensional pressure, p. The curves in both Figs.1 
ad 2 exhibit points of inflec'c1on that look a little odd, although they 
do not seem to have arisen from errors in the numerical procedure. Halving 
the step interval (0.01 instead of 0.02) makes no difference to the results. 
Further, as stated above, the last two approximations from the iteration pro- 
cedure used in going from the line s = sB t3 s :: sB + 6 are printed out; 
these always agree tQ:,five figures (zt least, up to the point s = 4.,5). 
In short, there seems little doubt that the marching pmcdure is stable. 

It is all too obvious that the present investigation is stdl at a 
preliminary stage, Some means must be foun3 of overcoming the problan of 
the sinybr line in the mapping from the x, y plane to the 8, s plane. In 
the exmnple associated with equation (3.1) this might be done by cutting 
out the value 0 = 0 in the marohing prooeduro shortly before the point 
e = 0, 8 = smx is reached ad working only from S = 0.05 to 8 = 1. Pre- 

sumnbly, a singular point on the line 8 = 0.05 would. soon be reached.; 
shortly before this happened, the value S = 0.05 would have to be cut out 
from the marching procedure as well as the value 0 = 0. By continuing this 
process it might be possible to reach the whole of tine singular line rather 
than the point on it for which s is least. The next problem would be to 
determine the nrtture of the singdnrlty at an nrbitrnry point on the singular 
line; this might well turn out to be simply a squire root singularity, since 
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it has been shown in Section 2.2 that this is so for the point 6 = 0, s = s& 
lkre might then be some means of marching bnckwovards (in the direction of 
decreasing s), so as to obtain the values of the dependent variables in the 
secord sheet of the 9, s plane. In any event, there would be no need to continue . 
marching beyond the limiting characteristic 3 , sinoc conditions downstreem of 
this could not affect points upstream of it; the remainder of the bcdy OOUE be 
arbitrarily prescribed end the flow field calculated by the method of 
characteristics, at least up to the shock wave that terminates the supersonic 

region. 

One problem that might arise in the marching procedure is the vanishing 
of the determinant D defined by equation (2.22). This would presumably occur 
when a characteristic direction became parallel to either the 13 or the s 
direction. Thers should not be any difficulty in dealing with this problem. 

Choosing a function bo(0) that produces the required type of body is 
likely to be much more troublesome; from Pig.2 it is clear that the fuxmtion 

defined by equation (3.1) has certainly not done so. The only way of solving 
this problem seems to be trial and error; e~erimentalists are unlikely to view 
with favour a request for values of the pressure on the line of symmetry from 

the free stream to the nose of the body, and these have to be known if b. is 
to be determined from experimental results. 

The author hopes to continue his investigation of the tee.hnique 
described in this paper, although his changed circumstances may make this 
difficult. 

. 



25 

a 
: 

a co 

bo 

bl 

D 

. 

e 0 

c1 

*o 

*I 

% 

ho 

hl 

XI co 

P 

R. 
s 

s 

u 

UP v 

x9 y, 2 
XI Y 

. 

Y 
6 

G 

0 

I-I 

P 

PC.3 

z 

SmBOIs 

non-dimensional speed of sound 
freelstream speed of sound 

arbitrary function of 0 

see equation (2.1&) 

determinant associated with equations (2.21a), (2.21b) an3 

(2.21c) 

defined by equation (2.20a) 

see equation (2.180) 

defined by equation (2.19) 

see equation (2.18~~) 

functions of a in expansions of 6, Jr, et0 in powers of z 

defined by equation (2.2Ob) 

see equation (2.18d) 

free-stream Nach number 

non-dimensional pressure 
representative length 

defined by equation (2.17b) and later by equation (2.@b) 
maximum value df s on the lxne 0 = 0 

free-stream speed 

non-dimensiom.1 velocity components in the x ad y directions 
respeotively 

rectangular Cartesian coordinates 
non-dimensional rectangular Cartesian coordinates 
half the maximum thickness of the body (referred to R,) 

patio of the specific heats of the fluid , 

-step length in,marching procedure 
. . Ciirined by equat'ion (2.14) an3 later by equation (2.34) 

~--$$$ed~by e~q<ation (LITa) ad later by equation (2.40~1) 
._ n.v>_~ 

Y/P,.&UY 
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defined by equations (2.8) and later by equations (2.35) 
respectively actual. a.& non-dimensimal velocity potential 
respectively actual and non-dimensional strem function 

37; 



27 

: 

i 

E. Author 

1 T. van l'&r&n 

2 K, Oswatitsch 
S. B. Herndt 

3 K. G. Guderley 

I+ H. Yoshihara 

r  5 K. Oswatitsch 

6 J. R. Spreiter . 
A. Y. Alksne 

7 K. Oswatitsch 
F. Keune 

Title, etc. 

The simi.larity law of ~l%m?olliO flow. 

J. E&th Phys. Vol. 26, p. 182. 1947 

Aerodynamic similarity of axi-synnletnc transonx 
flow around slender bodies. 
KTH Aero TN 15. 1950 

The theory of transonic flow. 
Pergemon Press. 1962 

The flow over a cone cylinder body at Vach number 
one. 
WADC Tech Rep No. 52-295. 1953 

Die Gesohwmdigkeitsverteilung bei lokalen 
ijberschallgebieten an flachen Profllen. 
u&M vol. 30, I?50 

TheoretIcal prediction of pressure distributions 
on nonlifting airfoils at high subsomo speeds. 
NACA Rep 1217. 1955 

The flow around bodies of revolution at &.ch 

nwbcr 1. 
Proceedings of Conference on High-Speed. Aero- 
nautics, Polytechnzc Institute of Brooklyn, 
Brooklyn, N.Y. p. 113. J~&='Y 1955 

8 J. Spreiter .. -Thin airfoil theory based on approxuate solution 
.,.~ 

A. Y. Alksn;. 1 &' the $a&ioni$ flow-equation, 

ma= VOL 17, p. 216. 1966 



28 

mmc3s (conta) 

‘Tim?. etc. 

An approximate theory for the pressure distribution 
and wave drag of bodies of revolution at Mach number 
one. 
lroceedings of Sixth Annual Conference on Fluid 

Mechanics, University of Texas, Austin, Texas. 
September 1959. X?C 22,464 

An approdmate solution for txo-dimensional transonic 
flow past thin airfods. 
Proc. Cmb. Phil. Sot., Vol. 61, p. 573. 1965 
a. 
Ahnlichkeitl&ungen der transsonischen Gleichungen 

bei der Anstr&dachzahl I. 
Proceedings of the XIth Congress of Applied Mechanics. 

Julius Springer Verlag, Berlin 

&e Author 

11 J. D. Cole 
w. m. Royce 

12 T. Evans 

13 E. MLler 
K. Matschat 

14 S. V. Falkovich Flow of a sonic gas strea past a b&y of revolution. 

I. A. Chernov J. Appl, Math hlech. Vol. 28, p. 342. 1964 

15 D. G. Randall Sane results in the theory of almost axi-smetric , 
flm at transoluc speed. 
AIL4 Journal Vol. 3, p. 2339. 1965 

16 D. Xuvrard 

17 D. Euvrad 

Nouveaux risultats concernant le d&loppement 
asyxxptotique du potentiel des vitesses 'a gran3.e 
dist,ance d'un profll plan transsonique. 

Comptes Rendus, Vol. 263, p. 1851. February 1965 
. 
Ycoulement transsonique 'a grade distsnce d'un 

corps de rkolution 
Comptes R~ndues, Vol. 260, p. 569j. May 1965 

18 K. IV. Mangler 

hf. Xvans 

The calculation of the inviscid flow between a 

detached bow wave 2nd a b&y. 
R.A.E. TN Aero 2536. October 1957 

A.R.C. 20013 



S 
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