L™

"

C.P. No. 992

C.P. No. 992

LigraRy
ROYAL AIRCRAST T _TABLISHMENY

BoDFORD.

MINISTRY OF TECHNOLOGY

AERONAUTICAL RESEARCH COUNCIL
CURRENT  PAPERS

A Marching Procedure
for the Determination of Inviscid
Two-Dimensional Sonic Flow Past a
Blunt Symmetrical Body
by
D. G. Randall

LONDON: HER MAJESTY'S STATIONERY OFFICE
1968
PRICE 6s 6d NET






U.DoCo Noa 533.6.011.4 & 532.5.031 @ 533,6,011.35 5324582, 34

C.P- NO' 992*
November 1966

A MARCHING PROCEDURE FOR THE DETERMINATION OF INVISCID TWO-DIMENSIONAL
SOWIC FIOW PAST A BLUNT SYMMETRICAL BCDY

by
D. G, Randall

SUMMARY

The equations of motion for two-dimensional, inviscid, sonic flow are
written in a form that permits the introduction of a marching procedure for
determining the flow past & symmetrical, blunt body, The independent
varisbles are transformed to new variables, © and s, such that points
infinitely far from the body are mapped into the line & = O, the line of
symmetry is mapped into the line = = 0, and the body contour is mapped into
the line 6 = 1; marching takes place in the s direction, starting from the
line s = 0, The dependent variables are also transformed, in such a way
that the physical quantities have the corrcct asymptotic behaviour far from
the body.

. Replaces R...L. Technical Report No.66371 - L.R.C. 29233
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solution for high siubsonic flow past a curved aerofoil, although the numerical
7 gave reasons for believing that for
vx On the right-hand side of equation (1,1)

could "be approximated by a constant; this aspproximation linearises the

work was heavy, Oswatitsch and Keune

sonic speed (M_= 1) the factor 2

potential equation, turming it into the equation of heat conduction, This
8’9’10. Cole and Royce
argued that turning equation (1,1) into a parabolic equation was unsatisfactory

epproach was exploited and extended by several authors 1

for physical reasons and that a better approach was to replace QX by a linear
function of X; this approximation mekes the egquation elliptic on one side of
a plane normal to the X axis and hyperbolic on the other side, Cole and Royce
applied this technique to the axi-symmetric problem; later, Evans12 extended
it to the two-dimensional problem, Although replacing @X or QXX by at most a
linear function of X involves drastic simplifications, the results obtained

by these methods are in surprisingly good agreement wath experiment,

The most recent developments in the theory have been further investiga-
tions into the behoviour of sonic flow at large distances from the body, 4

13,14,45

number of authors have independently obtoined a representation in a

simple closed form of the asymptotic behaviour of @ in axi-symmetric flow;
this was previously avzilable in numerical form onlyj. The representation is
achieved by changing from X, ¥ (Y now being the rodial coordinate) to new
indepcendent variables ¢, T; these new variables are such that small velues of
T correspond to large distances from the body, It is possible to expand &

in powers of T, the coefficients being functions of o; the first term in the
expansions is the representation dbtained‘numerically in Ref, 3, Further terms
in the ecxponsion are derived in Ref, 15, where it is shown that the powers of
T are not, in general, integral; nevertheless, the functions of ¢ forming the
coefficicnts of the powers of T can all be obtarned an sample closed form,
The most far-reaching advances have been made by Euvrard16, who has obtained
a similar expansion for the axd-symmetrac problem valid when the governing
equations arc the full inviseid equations of motion., He indicates that all
the functions of ¢ can st1ll be obtained in siumple closed form; as before,
the powers of T with which they are associated are not, in general, integral,
Buvrard has also obtained17 o correcpording expansion for thz two-dimensional
sonic problcom, again based on the full inviscid egustions, The furctions of
¢ can again be obtained in simple closed form, but this time the powers of

T with whach they are associated ar: 21l integral.



1.2 Marching procedurcs

The present paper describes a method for determining the steady, sonic
flow past a symmetrical, blunt, two-dimensional body, when the governing
equations are the exact inviscid equations of motion. It is shovm that a
knowledge of Fuvrard's results for the asymptotic behaviour of the flow allows
the equations of motion to be solved by a method similar to that employed by
Mangler and Evans18 in their work on hypersonic flow past o symmetrzcal, blunt,
two-dimensional body., Mangler and Evans argue that ¥, the stream function,
can be chaosen %o be zero along the line of symmetry amd on the body and that
it is then equal to p U Y on the bow shock, where p_ and U are respectively
the free-stream density and speed, By transforming the independent variables
from X, Y to £, ¥, where I = %«pm’U Y}, the upper half of the physical plane
is mepped on to & semi-infinite strip bounded by the lines I = 1 {corresponding
to the shock), £ = O (the body), and ¥ = 0 (the line of symmetry), If the
dependent variables are known along a lane of constant I, their derivatives
with respect to Y can be found numerically; the equations of motion can then
be used to obtain the derivatives with respect to IZ; this allows an approximate
calculation of the deperdent variables along a linc of constant £ lying at
a sufficiontly small distance from the first one, Once the shock shape is
pregcribed, all the dependent variables can be found nlong the line I = 4, so
that the marching procedure can be started from there, The mrching ends
when the line X = O is reached., The success of the procedure depends upon
the fact that ¥/Y tends to a finite lamit as Y tends to zero; for this to be
true the X axis must be a line of symmetry, TFor {ihe tronsonic problem it is
also neceasary for the governing eqguations to be the full inviscid equations
(end not the transonic approximation to these) and for the body to be blunt,
The reason for both these requirements is that an involved singularity exists
at the nose if either of them is relaxed,

There are two significant xfferences between the marching procedure
employed by Mangler and Bvans and the one employed here, TFirst, whereas the
line £ = 1 corresponds in hypersonic flow to thc bow shock, in sonic flow it
corresponds to points infinitely far from the body, Now, in hypersonic flow
the dependent varishles along the line & = 1 are undetermined to the extent
of an arbitrary furction (the shock shape); on the reasonable agsumption that
each choice of shock shaope leads to o different body, it is clear that, in
theory, an enormous variety of bodies can be obtained; of course, the very
nature of the marching procedure precludes any possibility of prescribing the
body shape beforehand, In contrast, in sonic flow the dependent variables



along the line Z = 4 are undetermined only ito the extent of an arbitrary constant;
this is because, apart from a scaling factor, £ll two-dimensional bodies have

the same asympiotic behaviour in sonic flow3. For this reason, the marching
procedure for the sonic problem takes place effectively in the ¥ direction., It
can be showm that 2long the line Y = O appropriately choscn dependent variables
are undctermined to tne extent of an arbitrary furction; the situation is then
the same as for the hypersonic problem, DMaking a special choice of the arbitrary
function is here equivalent fo prescribing the pressure distribution along the

line ofl symmetry from free-stream conditions tn *he stagnation point at the

nose,

A further difference is that for the hypersomic problem 2 marching pro-
cedure 1s possible for both two-damensional and axa-symmetric flow. For the
sonic problem an extension to ax-symmetric flow coanot be made; this is
connected with the fact mentioned earlier that the powers of 7 in the asymptotic
expansions of the dependent variables are antegral in two-dimensional flow but
not 1n axi-symmetric flow (see Section 2,3 for further details), Other
drfferences bebtween the marching procedures in the hypersonic and the sonic

problems are ones of detail only.

1.3 Purpose of present investigation

Fach choice of the arbitrary function detemmining the behaviour of the
dependent variables along the line Y = 0 presumnbly leads to a dafferent body.
The ultimate aim of the present ainvestigation i1s to produce bodies whose
maximum thicknesses are small cormpared with their lengths and to fimd the
pressure dastributions over them, The dastributions can then be compared with

.1
the results obtained by spproximitions in current use7’8’9’ 0,11,12

, since
these are intended to be applied to the typc of body mentioned above, By this
means it is hoped to decide which of the currently used approximetions is the
most accurate, Admittedly, these aprroximations have asually been applied to
dctermine pressure distributions on bodies with pointed noses; nevertheless,
at lcast one of them9 has been used on a round-noscd body, and it may well

be possible to meke this extension to some of the other approximate thcories,
In any case, it should be possidble to make a comparison between results
obtained by the present method and results obtaxned by approxmate theories
applied to 2 body having a pointed nose that fairs into the original vody a

short distance downstream of the nose,
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The present paper carries the investigation to an intermediate stage
only. In Section 2 new dependent and independent variables are introduced that
put the equations of moticn in a form suitable for a marching procedure, It
is shown that the curve along which the velocity component in the ¥ direction
vanishes 18 a singular line in the transformation from old to new coordimtes,
so that the marching procedure cannot give results beyond this line without
nodification, There seems to be no insuperable obstacle to the introduction
of such a modification, and it is hoped to attempt this at a later date, Since
this is only an interim report, the analysis in Section 2 has been considerably
condensed,

Section 3 contains a description of a Mercury Aulocode program for carry-
ing out the marching procedure, The program has been usad to calculate one
example; the results obtained suggest that the marching procedure is stable,

2 DERIVATION OF EQUATIONS

In sonic flow the free-stream speed is equal to the speed of sound, 8.,
Tet Ro be some representative length; for example, Rb could be set equal to
the radius of curvature of the body at the nose, Introduce non-dimensional

guantities x, y, p, P, u, v, ¥ and ¢, such that

R X, Ry are rectangular cartesian coordinates {(y = O being the line
of symnmetry),

P, gi,p is the pressure,
P P is the density,

a_Uu, a Vv are the velocity components in the x and y directions

respectively,

P, 2 R ¥ is the stream function (¥ is chosen to be zero on the body

and along the line of symmetry), and

e R 4  is the velacity potential,
There are four equations for the dependent variables p, p, u and v in terms
of the independent variables x and y: the continuity equation; an equation
expressing the fact that the flow is irrotational; Bernoulli's equation; an
equation expressing the fact that the flow is homentropic. The boundary
conditions asscciated with these equations are that on the body the normal
velocity component must be zero and that at large distances from the body the

dependent varisbles must tend to their free-stream values in a prescribed



mannerj; the free-stream values are paven by p =1, u =1, v = 0, and
P = 1/Yn

3

The four equations mentioned above may be wratien as follows”:

pu,spvorup rvp = 0, (2.1)

the contimuity equation;

U.y“vx-.:o 3 (202)
the i1rrotaticnal eguation;
2 2 ) +.]
A CZEE ) IS COPiE ) B (2.3)
Bernoulli's equation; and
T, (2.4)
P
3

the homentropic equation, It is known” that there exists a shock starting
from some point on the body; downstream of the shock equations (2,2) and (2.4)

are not valid,

The non-dimensional stream-function, y, satisfies

i

q!y pu P (2953-)
by = -pV (2.5b)

elimination of ¥ from equations (2,5) by cross-differentiation leads to

equation (2,1). The non-dimensional velocity potential, ¢, satisfies

b, = u (2.6a)
¢y = VvV 3 (2.6b)

elimination of ¢ by cross-differentistion leads to eaualion (2.2),
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From equations {2.3) and (2.4),

[20r + 1) = &y = )2 + ¥D1VO=1 (2.7)

p

this can be used to turn equations (2,4) and (2,2) into equations having u
and v as the only deperdent variables,

2.1 The flow at large distances from the body

17

To obtain an expansion valid far from tho body it is expedient’  to

replace the independent variables x, y by two quantities ¢, 7, where

I Y IR V- (2.82)

b
§

L
y = 2R (2.80)
Here, {4 is en unspecified constant; it is effectively a scaling factor. By
combining equations (2.6), (2,7) and (2.1) a second order partial differential
equation for ¢ can be obtained; this can be used to determine an expansion
for ¢ in powers of T, the coefficlents being functions of o, It is fourd
that

5
Ay + 13 w4 - 20) . L po(6 = 30 4+ 207) . v gy (o)

$ = ’rz T ¢ + .1)1/3 + eoes (2-9)

where the first term is asimply equal to x, the second term is the well-known;
dominant term in the asymptotic expansion of the disturbance velocity potentaal,
and the as yet urdetermined function g1(6) must not be singular when ¢ = O,

From equations (2,6) and (2,9),

I 2
20, _ 5pogl{o)r
u = 1o kU 17%1 * 2/3‘I *esss (2.10a)
(r + 1) 20r + 1)7 {4 + 30)
1
3 1 32 248 E(1 - 20) gi{o)n?
v = &2 cﬁ(a = 2o)e ., ! *eses , (2.10b)

(v + 1)1/3-(1 + 30)

where dashes denote differentiation with respect to ¢, On substituting
equations (2,10) into equation (2,2) it is found that &4 satisfies the
following ordinary differential equation;
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o(h=30)gl+ 2(1~20)g] = - -135- [3(2r-1) ~ 24(2r+ 1)0 + 13(67+ 5)6

- 6(6v+5)) .
The appropriate soclution of this can be obtained in closed form; it is
g(0) = oomst - & [15(2r~1)o-5(6r+ 5)7+ 206+ 5)7] . (211)

Equations (2,10) and {2,11) lead to

1_4442(1-@1 b of15(2y = 1) = 10(6¢ 5)ox 6(6¢ 1 5)o° 1>

v (Y+1)1/3 3(*{+1)2/3 (1+ 30) T
(2.12a)
. L 812 F(Ge2)? 1610 A= 20)45(2= 1) = A0(6r e 5)s 6(6r 4 5)15/2

3 150e+ 1)Y3 (14 30)

+ eees s (2,12b)

The expansion for ¥ is obtained by the following procedure, First, the
expansion for p is obtained from equations (2.7) and (2.12); this expansion
and equations (2,8) and (2,42) are then used to turn equations (2.5) into two
linear simultanecus eguations for ¥ - and ¥ o3 on solving these ard integrafting
it is found that

1 1
y = == _EKYH)VB u E(3-0)(1+0)
T57§ 31—2_

(2.43)

6 & 12
, 16 02[30(2r~3)-45(2‘f”£*21*(3“5) =82l

where the constant of integration has been chosen so that ¥ = O when y = 0; the
firat term in the expansion is simply equal to y. ¥ could have been determined
directly by writing it as an expansion in powers of % of the form of

equation (2,13) and then deriving ordinary differential equations for the
unknown coef:ficients by using equation {2,2); but, since the expansion for

¢ is already available, it is simpler to use the above procedure.

2.2 Equations for the marching procedure

The first transformation is very similar to one employed in Ref, 18,

The independent variables x, y are replsced by &, y, where
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Ll
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NN
1

PR (2,14)
N

This transformation maps regions infinitely far from the body into the line

Z = 0, the x axis into the part of the line y = O running from & = 0 to

% = 1, and the body contour into the line £ = 4, The fact that the line

% = O corresponds to regions infinitely far from the body makes it very likely
that the dependent variables will have singularities along this line, This

is the reason for taking the new variable Z to be 1 - {/y rather than ¥/y

(as in Ref,18): .expansions in powers of % use less print than expansions

in powers of (1-%),

The results collected in Section 2,1 are now used %o investigate the
behaviour of the dependent variables along the line £ = O, From cquations
(2,13), (2.80) and (2,44),

Y T LAl G [P Ll AT
- R S5

[30(2y = 3) = 45(2v + )0+ 24(37 4 5)0% = 8(3r + 5)C1T + vuee

(2.15)

Equations (2,45) and (2,8b) give the relationship between %, y and ©, T,

1t is knownﬁ that negative values of o do not correspond to any part of the ,
physical plane and that a shock intervencs before the point ¢ = 3, 1 = O

is reached; hence, the coefficient of @ in equation (2,15) is a?lways positive,
Prom equations (2.10), the1expansion for u contains powers of %% and that

for v contains powers of Z7, Consequently, at first sight it seems reasonable
to introduce z new variable, €, by writing & = 61"; but in the equations that
are shortly to bé obtained v always appears in the form ¥ (this is comnected
with the symmetry of the Flow), so that

£ = 6% (2,46)

is a more agpropr:.ate change of variable, It“ ;lso tu;rns out that y always
appears in thri fzgmblnatlon ¥ 65 ' where. the appearance of y2 rather than y
is again connectgd with thé synmetr;n of the flow. The- fa.ctor 85 arises for
the follomng reasons, Irom equatlons (2, 8‘b) O = 1‘5 ¥ ;3 from eguations
(2.15) and (2,16), T behaves initially like 0; hence, O behaves like 05
R has shown that ¢ is an important variable, All this

leads to the lollowing transformation of independent variables;

and previous work
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6 - 2F - (1 —%)i , (2.172)
5/2 )
8 = 05 y2 = ( -%) Y2 . (2.1?13)

Regions infinitely far from the body correspond to the line & = O; the line
y = 0 corresponds to the part of the line s = O running from 8 = 0 to 6 = 1;
the body contour corresponds to the line 8 = 1, The partial derivative

Eg) aay can be obtained in terms of aae and 3= by using equations

(2n7)an1(ash

9
operators <

Equations (2.12), the analogous expansions for p and p, and a considerable
amount of hindsight suggest the following replacement of the dependent varisbles
u, v, py P by ‘b1, 8y f'1 and h,, where

1’
u = 1-07 (0)-6s£,(6, 5) (2.182)
v - B8 s[b°(6)+s b1(e, s)] (2, 18p)
% = 1-0e (8)-8 5[z (6, 5) ~ 0 e, (0, )] (2.18¢)
Yp = 1+6 ho(6)+0 8 h,l(e, s) . (2,183)

Here, e (B), £,(6) and h
value n‘f' v\ g0 that they can be ealculated onece and for alls h (63 ia

e - S 22= QLR & L et |

h_(8) are universal functions of 6 (for any given

largely arbitrary (see below for details), ( ) satisfies the follcm.ng
equation;

* . . ’ s

(1-6 2 )14 (r=1)8 £ = r-1) 62 2101 (i_6?) | (2,19)

e (8) and h_(8) are given in terms of £ _(6) by

(f_=-9)
e = __,__9___2_ » (2,202}
° (1-6%)

e +{y~1)(2-0¢f )¢
h, o= =S -5 5 2, (2.20b)
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Equations (2,17) and (2.18) lead to

[4(1-9 eo)+ 3(5-62)e1+63f1]sb1s

-2(5- 62)

(b°+s ‘b1)s R 29(b0+s b1)s £q

1

2 2 2
= -08s[(1-0 )e1+6 f‘1}b1e+26(1-8 )(bo+s]-:~1)e1e+26 (]:To+s 'b1) fi0
2 2 2 2
- [4(1-8 0 )= (1-87)s e+ Osf1]b1+[2(3-6 Yo~ 8(1-0 )bo']e1—9 bt £,

XY (za 213-)
(the continuity equation);

2
5 32 byg* 2[1‘.;.('1-6 e°)+ a(5-8 )e1+es f1]s f1s

2
= =~ 03b,,-208[(1-8 Jo + 8 f1]'f18- (8b,+ 00))~ 138D,

16

.

- 2(1=~ 62)(f°+ or!)e, - 2{[6(1=0 e )+ O(£ + Gfé)] +2(3- 02)5e1 +268 f1]f1

eees  (2.210)
(the irrotational equation);

[(1~8 eo)—es (f1-6 61)15 h_]s—Y(‘!-i-O hq-!- G?h_')s (f1s-6 918)

= [¢{41+0 h°)+ (y+1)8s h1] (f‘_;-B 31)- (1-9 eo)h1 (2,21c)

(the homentropic equation, differentiated with respect to s); and

2
6 b, ~2(1+9 ho+esh1)s L 2(f°+ h +sf

1s +8 hy)s £,

1

= ~8b -20sb,+ 2(1+ 8 h°+esh1)e.1-2(f°+ h +s f,+s 1n1)f,l (2,21a)

(an equation obtained by differentiating the homentropic equation and
Bernoulli's equation with respect to s and then combining the resulting
equations so as to eliminate the term in h 15). Dashes now denote
differentiation with respect to €,

Bquations (2. 213),, (2.21b) and (2.21&) are three equations for b
< and ¥

18?

e in terms of b1, €45 f1, h1, bw, vy f16 and the dependent

1 18
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variables, © and s, The determinant, D, of the left-hand side of these

equations can be written in the form ’
3 ' 2 2 242
D = - L—i [yp EL—)-';B - 5u:| +|:25r\{p - -(5—-—)-—"96 ]vz] , (2.22)
0

where equations (2.18) have been used, Provided that D # 0, equations (2.21)
can be solved for b'ls’ €42 f1s and h1s’ because, from equation (2.18¢), the

coefficient of b 1s in equation {2.210) is simply 1/p. In subsonic regions D

2 1
2 - -
5<P > P)

25p (az - —%) 3
P

where & a is the local speed of sound, In subsonic flow the speed of sound

is never positive, since

2.2
25vp _Q;PE_L N 25(YP _1)

P

is greater than a and the density is greater than p_; hence,

242
zm_ihpe_)_>0 ,

-4

so thet the quantity in the outer brackets on the right-hani side of equation
(2,22) is the sum of two positive terms, It follows thet D < O, .

Equations (2.21) allow the introduction of a marching procedure in
the direction of inereasing s, starting from the line s = O, Once the
quantities b1, €, f1 and h1 are known slong a line of constant s, the
derivatives of the quantities with respect to © can be found numerically;
equations (2,21) can then be used to determine the derivatives with respect
to s; this allows another step to be taken in the direction of increasing s,
The procedure can be started along the line s = O in the following way,

When 8 = O, equations (2,21b) and (2.214) become

il

2(41 - 62)(f°+ 8 :E'(_'J)e1 +2[4(1~0 eo)+ 6(f0+ 8 f‘(;)]f‘_l -(8 'bo+bc") s (2.232)

6b  ; (2,23b)

0

1

2(1+ 9 ho)e1 - 2(f0+ ho)f1

from these equations 31(8, 9) and f1(6, 0) can be determined,

When s = 0, equations (2.21a) and (2,21c) become
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2 2 2
W(1-8 e )b, = [2(3ﬂe’)bo_e(1-e )bé]er‘e b) £,
2 2
+28(1-€%)b_ 0,0+ 28" b £, (2.230)
(1~8 eo)h1 = v{1+6 ho)(f1_e e1) ; (2.23d)

from these equations b1(6, 0) and h1(6, 0) can be determined, Dafferentiation
of equations (2,21) with respect to s followed by substitution of zero for s
allows the same procedure to be applied to obtain b1s(6, 0), e1s(8, 0)

£,.(6, 0) anmd h1s(6, 0). Accordingly, the marching procedure can be started
as soon as the function bo(e) has been prescribed,

This procedure differs from the one used in the problem of hypersonic
flow past a blunt body18; there, the marching technique was effectively
applied in the © direction, from the line © = 1 (in Ref,18 +¢his represents
the bow shock) towards the line ® = O, There is no obvious obJjection to
solving the hypersonic problem by marching in the s direction instead; the
reason for the cholce of the § direction is simply that this allows the shock
shape to be prescribed, which is attractive from a physical point of view,

On the other hand, it is impossible to solve the sonic problem by marching
in the 6 direction from the line ® = O, When 6 = 0, equations (2.21) become
42 f1 and h
the only arbitrary quantity, bo(o), is simply an undetermined constant,

ordinary differential equations of the first order for b1, e 43

Integration of the differential equations leads to functions b1, s f1 and

h1 that are arbitrary only to the extent of containing five undetermmined
constants, bo(O) and four integration constants; in general, any one set of
values for these five constants must correspond to an infinite number of
bodies, In the hypersonic problem the dependent variables along the line

are undetermined to within an arbitrary function, the shock shape, and there
is no obvious reason why the corréspondence hetween shock shape and body shape
should not be one-to-ons, The objection to solving the sonic problem by a
marching procedure in the © direction starting from the line © = O does not
apply to one in the s direction starting from the line s = O, From equations
(2.23) it is seen that the quantities b1, e1, f1 and h1 are undetermined to
the extent of an arbitrary function, bo(e); there is no obvious reason why

the correspondence between bo(e) and the body shape should not be one~-to-one,

bo(e) is no%, in fact, entirely arbitrary; an examination of the
results obtained in Section 2,1 shows that it must satis{y one minor
restriction, The rth term (r » 3) in the expansion on the right-hand side of



16

equation (2,9) is a constant times © 2 times gr_z(O‘), where, aecording to
Buvrard ’, gf(G) satisfies an ordinary linear differential equation of the
gsecond order; the physically relevant solution of this equation is a function
that can always be obtainegd in closed form and that contains just one arbitrary
constant; in other words, only one of the two complementary functions of the
differential equation appears in the physically relevant solution, In general,
this means that the functions of ¢ occurring in the expansions on the right-hand
sides of equations (2,12), (2,13) and (2,15) can all be obtained in closed form
and all contain one arbitrary constant, The only exceptions are the terms
associated with g1(oj. From equation (2,11) it is seen that the relevant com~
plementary function for g1(dﬁ is unity, so that the derivatives of this com=
plementary function are zero, Hence, the toerms in u, v, ¥ and £ associated
with g, do not contain an arbitrary constant, low, ¢ and T can be obtained

in terms of 0 and s from equations (2.17), (2.13) and (2.8b); equations (2,42b)
and (2,18b) can then be used to determine bo(6)+ 0 b1(6, s); finnlly, bo(B)

is found by putting s equal to zero, Because no arbitrary constant appears in
the terms associated with g, in the expansions for u, v, ¥ and &, it is found
that bé(O) depends only on bo(O); on the other hand, bg?)(O) can be arbitrarily
prescribed when r » 2, The relation between bé(O) and bo(O) is

1
. o _(9-2v) [ 2 \? n
bO(O) = -5 Y+‘1> b 2 -1.8866 b, (2,24)
on the assumption that ¥ = 1.4 Apart from this minor restriction bo(e) can be
arbitrarily prescribed,

Another important point is that marching in the s direction cemnot be
contimied indefinitely, This can be seen most clearly by considering the line

© = 1, which corresponds to the body contour. From equation (2,17b}, = = ¥2

when © = 1; hence, s < yﬁax’ where Zymax is the maximum thickness of the body
(referred to R ). The part of the body lying beyond the position of maximgm
thickness is mapped into the portion of the line 0 = 1 lying between s = Yoox
ard s = O, Consequently, along © = 1 the mapping of the x, y plane into the

9, s planc is not one-to-one; in particular, the point © = 1 must

» 8 = Jmax
have a singularity associated wath it, The same state of affairs exists along
the line 8 = O, From equations (2,12b), (2.18b), (2.417), (2.8b) and (2,13),

it can be shown that along © = O
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POV 4(0s ) = TS O Ak (11

Equation (2.75a) gives

ds _ 215/2 (4 115/ u10(3-20‘)(1+3°j_(3—0')3/2 (14 )2

ac = 35/2 ’

so0 that gii__.ss_ = O When 0 = 3/2. It follows that s = O when ¢ = O and that s

reaches a maximum when & = 3/2; s___, the maximum value of s, is given by

<)
max

53/2 3 55/.2 (Y+1)5/6 40, (2.26)

Hence, mapping of the x, y plane into the @, s plane is not one-to-one along
® = 0; in particular, the point & = 0, 8 = Soax Pes & singularity associated
with it. From equations (2,25) it can be shown that along 8 = O the expansion
for b (O)+ s b, (0, @) in the neighbourhood of tnefoo:mt s =8 sterts with
a term in (Smax" s} followed by one in (s 3)3 . Later, it will be shown
that a singular line of the mepping of x, ¥ inta 0, s runs from the point
=0, 8= S ax to the point & = 1, s = ynzlax; only points to one side of this
line (thosehaving the smaller value of s) have physical significance, and such

points correspond to two points in the physical plane,

The final step is the derivation of equations for returning from the
6, s plane to the x, y plane, From equations (2,5),

Ay = -pvdx +pudy . (2.27)

From equations (2.17a) and (2,27),

ae = d .QL_).__L (2.28)

- 2ey 20y y

From equation (2.17b),

ds = 59—5-6.64-2?3-&3’ . (2.29)

Along & line © = constant equations (2.28) and (2.29) give
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dx = _Md‘y - -

pv = 28 v

ds .

From equations (2,17b), (2,182), (2.18b), (2,18c) and (2,20a), it follows that

K £+ (1-82)31]

dx = - 5 T ds . (20 30)
26°(b, + 5 b1)3

Along a line s = constant equations (2,28) ard (2.29) give

y{‘(s-ez) 1. 5{]

dx = 28’\7’ de L]

From equations (2.17b), (2.18a), (2.18b), (2.18c) and (2,202), it follows
that

[4(1-06 e )+ 05 f1+(5—32)s e1]
ax = °3 - és . (2.31)
20 (b°+s‘o1)2

Equations (2. 30) amd (2. 31) ara equations for x; y can be obtained directly
from equation {2,17b). For example, along the line 6 = 1

1 s £,(1, s)as
e 20[ [b°(1)+sb1(1, S)]% ’

1
2
Y = 3 3

provided that the origin of axes is chosen to lie at the nose of the body;
along tha line 58 = 0O

(1-0 ¢ )ao
X = =2 —_"‘3*"_?_—""' ’
87 b?
o
y--o .

From equations (2.30) and (2,31) it can be seen that the mapping of x, y
to s, O becomes singular when (b°+ ) b1) = O3y from equation (2.‘18b), this
occurs when v = O, This agrees with the remarks made sbove about the

singular points on the lines 6 = 0 and 8 = 1 and confirms that a singnlar

line runs from the singular point on the line 6 = O to that on the line 0 = 1,
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2.3 Axi~-symmetric flow

It 13 not possible to extendi the preceding technique to the solution
of axi~symmetric sonic flow, This is best demonstrated by quickly going
through the analysis and pointing out where the procedure breaks down,

The equations of motion and the boundary conditions are the same as

for the two-dimensional problem, except that the contimuity equation is now

pux+pvy+px+vpy-'e§!'=0 . (2432)

The stream function must now be written as p_ a_R- ¥, where the non-

dimensional quantity ¥ satisfies the equations

b, = puy , (2. 33a)
by = -PVY (2.33v)

elimination of ¥ from equations (2,33) by cross-differentiation leads to
equation (2,32), If ¥ is chosen to be zero along the axis and on the body,

then ¥ = ;,2/2 in the free stream, Hence, the varieble & must now be defined

by
g - 1-2 (2, 38)

instead of by equation (2.14).

16

It i= known = that suitable independent variables, corresponding %o

those defined by equations {2.8), are ¢ and T, where

x = - (pa1)/3 {220 (2.350)
T
y = FA2 ' (2. 35b)

and that the expansions for ¢, u and v in terms of T start with

3 +
¢ = - (Y"‘ '])1/3 ]J'L"-zzc) - 89}1 T(6+50‘- 202) ! (2'56)
T
3
SRl AL (2.57)
3
v = 1_6_1:‘}-.. 0"% (3_ 20')';9/2 . (zc 37b)

9
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From equations (2,37) and (2.7) the start of the expansion for p can be found,
Equations (2,33) can then be used to determine the start of the expansion for
¥; this turns out to be

g 16{y + 1)1/3 p.)+ 5‘(1-6)2

v =
2t/ ? H ’

(2.38)

where the Tirst term is simply equal to y=/2, From equations (2, 3%4) and (2, 38),
the expansion for & starts with

y o 22lrx 19)1/5 it (1-0)2 ° (2.39)

From equation (2,35b), ¢ = y2 ¢7 from equation {2.39) this means tnat ¢ varies
as ?-_'.?’ 6; this suggests writing & = 0, which corresponds to the substitution

L = 62 in the two~dimensional problem. From equations (2,37) and (2,39), (u-1)}
and v then vary as o? and 89/2 regpectively: as in the two-dimensional problem,
the fanal form of the equations of motion contains v only in the forn1v2, which
does not have a singularity when © = O, Hence, the equations correspording to
equations (2,17) are

1/6
gi) , (2.%402)

. (24 40b)

<
1]
P
1
e
[y

So far no difficulty has arisen in carrying out an analysis analogous to

that of the two~-dimensional problem, The next step, however, introduces what

ssems to be an insuperable obstacle, It is known16 that the full expansion for

¢ is of the form

¢ = "("{+1)1/3Hﬁ:'22£)'+ll r § 6+}G‘—202)+Z’rvN gN(G')
< L 2 X

+N>_’(‘TIW hN(cr)j . (2.41)

Here, the gy are functions of ¢ that can be obtained in simple closed form;
each of them contains Just one arbitrary constant, The hN are functions of o
that can also be obtained in simple closed form; each of them contains some

of the arbitrary constants present in the &y but noene of them conteins new
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them are half the difference between a quadratic surd and an integer; exomples
- - -
of the indices are “JEE%-—JQ s Dy —A§1?;—2 . From equations (2,40, (2,35)

and (2,38) it follows that the expansaon for ¢ (amd, hence, for u, v, p

ard D) in powers of © has a form similar to equation (2,41) in that a
typical power of O is occasionally an integer but is more usually half the
difference between an integer and a quadratic surd, This is completely
different from the two-dimensional problem, where the powers of & are all
integers, Hence, whereas the dependent variables in the two-dimensional
problem can be expanded as Taylor series in powers of © (the coefficients
being functions of o), the correspording exponsions in the axi-symmetric
problem are most certainly not Taylor series. IMurther, there seems to

be no obvious substitution to turn an expansion like that of eguation (2.41)
into a Taylor series. This means that any attempt at numerical differcntia-
tion in the O direction is bound %o fail, at least in the neighbourhood of
the line O = 0; as this is an essential step in a marching procedure in the
8 direction, it follows that the axi-symmetric problem cannot be solved by

such a procedure,

3 NUMERICAL RESULTS AND DISCUSSION

The marching procedure described in Scchion 2.2 has been programmed
in Mercury Autocode, There are two programs, one for deriving starting
values along the line 8 = 0, the other for merching from this line in the

direction of increasing s.

The first program produces output consisting of the values of eo(e),
fo(O), ho(e), bq(e, 07, 31(6, 0), £,(e, 0), n,(6, 0), b18(8, 0), e1s(a, 0),
f1s(6, 0} and h1s(6, 0) corresponding to ® = 0, 0 = 0,05, eeee, O = 1;
it is assumed that ¥ = 1.4, The program has to be provaded with a routine
for calculating bo(e), bé(@), b;(e) and " (8), since it can be shown that
all these funciions are required in the determinntion of the guantities
b1(6, 0)y eeess h1s(0, 0). The datn tape for the farst pregram contains
the values at ® = 0 , 6 = 0,05, vees, O = 4 oOf eo(a), fo(e), ho(e), and

variocus derivatives of these functions.

The secord program has to be provided with a routine for calculating
bo(e) and bé(e). The output tope of the Tirst program is the data tape for
the second one, which alse has to be given the length, 6, of the steps in
the marching procedure,
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The mmerical techniques used in the marching procedure are =bout as
simple as possible, MNumerical dafferentiation of a function in the ©
direction is performed by fitting a parabolic spproximation to the function
that passes through three successive points, those corresponding, say, to
QA - 0,05, BA’ and GA + 0,05; the differential coefficient of the approxi-
mation when 6 = eA is regarded as the differential coefficient of the function
at that value of 6, The end points, © = 0 and 8 = 1, are treated in a
similar way; for example, to obtain the differential coefficient when € = 0,

QA is put equal to 0.05 and the differential coefficient of the approximation

when 0 = @A - 0,05 = O is taken, A step in the s direction from, say, the

line s + & is taken as follows: the & derivatives of

Sg to the line s = Sp
the dependent varisbles are found along the line s = Sp3 a fargt aopproximation
to the values of the dependent variasbles along the line s = s + d is obtained
by adding & times the s derivatives along the line s = S to the values of

the dependent variables along the same line; the s derivatives along the line
8 =85+ & are found; a new approximation to the values of the dependent

variables along the line s = Sp

is obtained by adding 3/2 times the sum of the
s derivatives along the lanes 8 = sp and s = sy + & to the values of the
dependent variables along the line s = Sp; the latter process is carried out
twice more, The second program prints out the current value of sy and the
last two approximations of the deperdent variables on the line @ = 1, the
line corresponding to the body contour; it would be easy to modify the program
to print out the dependent variables for other values of O if these were

required,

The method has been applied to the flow past thz body associated wath
the folloving choice of bo(e);

b (8) = 1-1,8866 6 + o (3.1)

It is clear that this satisfies the restriction imposed by equation (2,24),
Of course, it cannot do so exactly, since the number 1,8866 is only an
spprozimtion to (9-2y) v2/3 Vv(y+ 1); but there is no evidence that the
slight error involved leads to divergence., The first singular point to be
encountered is apparently the one lying on the line 9.= 0, Now, from
equation (3,1), bO(O) = 1, ard, from equations (2,25),

b (0) = ! .
© 64 (v + 1)2’/3 uto
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Henca,
RN N
1 6Ly + 1)
and, from equation {2.26),
B4

) = T = l,\.78l¢. ]

max 29/2 (y+ 1)2

It follows that the marching procedure cannot be continued beyond the line
8 = 4784 and that results obtained for values of s close to this line must
be regarded with suspicion,

FPigs.1 and 2 show results obtained with a step-length, &, of 0,02,
Fig.1 is & plot of p, obtained from equation (2,18d), against s from s = O
to s = k5. The value of p at the sonic point is casily shown to be 1/*{,
so that the procedure has had to be stopped a long way short of the sonie
point, Fig.,2 shows the body contour; here, x and y have been detemmined by
the process described at the end of Section 2,2. Fig,2 also contains =
few values of the non-dimensional pressure, p. The curves in both Figs, 1
and 2 exhibit points of inflection that look a little odd, although they
do not seem to have arisen from errors in the numerical procedure, Halving
the step interval (0,01 instead of 0.02) makes no difference to the results,
Further, as stated above, the last two approximations from the iteration pro-
cedure used in going from the line s = sy to 5 = 8y + & are printed out;
these always agree to five figures (at least, up to the point s = 4s5)e
In short, there seems little doubt that the narching procedure is stable,

It is all too obvious that the present investigation is still at a
preliminary stage, Some means must be fourd of overcoming the problem of
the singular line in the mapping from the x, y plane to the 6, s plane, In
the example associated with equation (%.1) this might be done by cutting
out the volue © = Q0 in the marching procedurc shortly before the point
& =0, 8= 8 . 18 Teached and working only from ® = 0,05 to © = 1, Pro-
sumably, a singular point on the line 9 = 0,05 would scon be reached;
shortly before this happened, the value © = 0,05 would have to be cut out
from the marching procedurc as well as the value 6 = 0, By continuing this
process it might be possible to reach the whole of the singular line rather
than the point on it for which s is least, The next problem would be to
determine the mature of the singularaty at an arbitrary point on the singular

line; this might well turn out to be simply a squere root singularity, since
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it has been shown in Section 2.2 that this is so for the point € = 0, s = S ax®
There might then be some means of marching backwards (in the direction of
decreasing s), S0 as to obtain the values of thc dependent variables in the
second sheet of the 8, s plane, In any event, there would be no need to continue
marching beyond the limiting characteristic3, gince condaitions downstream of

this could not affect points upstream of it; the remainder of the body could be
arbitrarily prescribed and the flow field caleulated by the method of
characteristics, at least up to the shock wave that teminates the superscnic

Terion.
(= as i

One problem that might arise in the marching procedure is the vanishing
of the determinant D defined by equation (2,22), This would presumably oceur
when a characteristic direction became parallel to either the 0 or the s

direction., Thers should not be any difficulty in dealing with this provlem,

Choosing a function bo(e) that produces the required type of body is
likely to be much more troublesome; from Fig,2 it is clear that the function
defined by equation (3,1) has certainly not done so, The only way of solving
this problem seems to be trial and error; sxperimentalists are unlikely to view
with favour a request for values of the pressure on the line of symmetry from
the free siream to the nose of the body, and these have to be known if 'bo is
to be determained from experimental results,

The author hopes to continue his investigation of the technique
descrived in this paper, although his changed circumstances may make this
difficult,

n
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SYMBOLS

non-dimensioral speed of sound

free-stream speed of sound
arbitrary function of ©
see equation (2,18b)

determinant associated with eguations (2,2%a), (2,21b) and
(2.21¢e)
defined by equation (2,20a)

see equation (2,18¢)

defined by equation (2,19)

see equation (2,18a)

functions of ¢ in expansions of ¢, ¥, etc in powers of 7
defined by equation (2,20b)

see eguation (2,183)

free~-stream Mach number

non-dimensional pressure

representative length

defined by equation (2.17b) and later by equation (2,40b)

maximum velue 6f s on the line 5 = O

free~stream speed

non-dimensional velocity components in the x and y directions
respectively

rectangular cartesian coordinates

non-dimensional rectangular cartesian coordimates

half the maximum thickness of the body (referred to Ro)

ratio of tho specific heats of the fluid

‘step length in.marching procedure
. defined by equation (2,14) ard later by equation (2.,34)

- 4d&fined by equation (2,17a) and later by equation (2,40a)

“ag5i1ing factor

non~-dimensional density

free-~stream densaity

‘I’/pm UY
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SYMBOLS (Contd)

defined by equations (2.8) and later by equations (2,35)
respectively actual and non-dimensional velocity potential

respectively actual and non-dimensional stream function

37:
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